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Abstract: A multi-track string is a tuple of strings of the same length. Given the pattern and text of
two multi-track strings, the permuted pattern matching problem is to find the occurrence positions of
all permutations of the pattern in the text. In this paper, we propose several algorithms for permuted
pattern matching. Our first algorithm, which is based on the Knuth–Morris–Pratt (KMP) algorithm,
has a fast theoretical computing time with O(mk) as the preprocessing time and O(nk log σ) as the
matching time, where n, m, k, σ, and occ denote the length of the text, the length of the pattern, the
number of strings in the multi-track, the alphabet size, and the number of occurrences of the pattern,
respectively. We then improve the KMP-based algorithm by using an automaton, which has a better
experimental running time. The next proposed algorithms are based on the Boyer–Moore algorithm
and the Horspool algorithm that try to perform pattern matching. These algorithms are the fastest
experimental algorithms. Furthermore, we propose an extension of the AC-automaton algorithm that
can solve dictionary matching on multi-tracks, which is a task to find multiple multi-track patterns
in a multi-track text. Finally, we propose filtering algorithms that can perform permuted pattern
matching quickly in practice.

Keywords: multi-track string; permuted pattern matching; AC-automaton

1. Introduction

The pattern matching problem on strings is to find all occurrence positions of a pattern string
in a text string. Pattern matching algorithms such as the Knuth–Morris–Pratt (KMP) algorithm [1],
the Boyer–Moore algorithm [2], and the Horspool algorithm [3] perform pattern matching quickly by
preprocessing the pattern. On the other hand, pattern matching can be accelerated by preprocessing
the text into some indexing structure such as suffix trees [4], suffix arrays [5], or position heaps [6].

The permuted pattern matching problem, proposed by Katsura et al. [7,8], is a generalization of the
pattern matching problem, where we compare tuples of strings. We call a tuple of strings of the same
length a multi-track string. The permuted pattern matching problem is as follows: given two multi-track
strings T = (T1, T2, . . . , Tk) and P = (P1, P2, . . . , Pk) where |T1| = · · · = |Tk| = n ≥ |P1| = · · · =

|Pk| = m, to find all positions i such that (T1[i : i + m− 1], . . . , Tk[i : i + m− 1]) is a permutation of P.
The problem can be solved by constructing indexing structures from the text such as multi-track suffix
trees [7], multi-track position heaps [8], and filtering multi-set trees [9], or by preprocessing the pattern
such as the AC-automaton-based algorithm [7].

Multi-track strings can model various types of real data when sequences in the data have the
same meaning. For example, data from a three-dimensional accelerometer in a smartphone can be
considered a multi-track string. Consider two smartphones with the same position, and rotate one
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of them several times where each rotation is 90 degrees on the x, y, or z axis. If we perform the same
motion on both smartphones, the generated data from three-dimensional accelerometer of one phone
is a permutation of the other one. By using permuted pattern matching, we can find occurrences of a
pattern on both smartphones without permuting the pattern.

In this paper, we propose several algorithms that solve permuted pattern matching quickly. These
algorithms can be classified into three groups. The first group consists of algorithms that are based
on the KMP algorithm [1]. This group includes the multi-track KMP, multi-track AC-automaton, and
multi-track permuted matching automaton algorithms. The second group consists of algorithms that
are based on the Boyer–Moore algorithm [2] and the Horspool algorithm [3]. This group includes
the multi-track Boyer–Moore and multi-track Horspool algorithms. The third group consists of filtering
algorithms. Moreover, we conduct experiments and show that our algorithms perform permuted
pattern matching faster than existing algorithms. The worst case running times of the proposed
algorithms and existing algorithms are summarized in Table 1, where d is the total length of the
patterns and σ is the size of the alphabet.

Table 1. Comparison of the algorithms for permuted pattern matching. Multi-track AC-automaton can
find occurrences of multiple patterns.

Algorithm Preprocessing Time Matching Time

AC-automaton-based [7] O(mk log σ) O(nk log σ)
Multi-track KMP O(mk) O(nk)
MTAC-automaton O(dk log σ) O(nk log σ)
MT permuted matching automaton O(mk log σ) O(nk log σ)
MT Boyer–Moore O(m(k log σ + σ)) O(nk(m + log σ) + n(k + σ))
MT Horspool O(m(k log σ + σ)) O(nk(m + log σ) + n(k + σ))

Preliminary versions of this work appeared in [10,11].

2. Notation and Definition on Multi-Track Strings

Let Σ be a totally-ordered alphabet and σ = |Σ| be the size of the alphabet. An element of Σ∗ is
called a string. For a string W ∈ Σ∗, the length of W is denoted by |W|. The empty string, denoted by
ε, is a string of length zero. For a string W ∈ Σ∗ of length n, W[i] denotes the ith symbol of W, and
W[i : j] = W[i]W[i + 1] . . . W[j] denotes a substring of W that begins at i and ends at j for 1 ≤ i ≤ j ≤ n.
For convenience, we abbreviate W[1 : i] to W[: i] and W[i : n] to W[i :]; these terms are known as the
prefix and the suffix of W, respectively. Moreover, let W[i : j] = ε if i > j. The reverse string of W
is denoted by WR = W[n]W[n− 1] . . . W[2]W[1]. For two strings, X and Y, X ≺ Y denotes that X is
lexicographically smaller than Y, and X � Y denotes that either X = Y or X ≺ Y.

A multi-track symbol C = (c1, c2, . . . , ck) is a k-tuple of symbols ci ∈ Σ. A multi-track string (or
multi-track for short) W = (W1, W2, . . . , Wk) is a k-tuple of strings Wi ∈ Σ∗ where |W1| = |W2| = · · · =
|Wk|, and each Wi is called the ith track of W. The length n of strings in W is called the length of W
and denoted by |W|len, and the number k of tracks in W is called the track count of W and is denoted
by |W|num. For a multi-track symbol C = (c1, c2, . . . , ck), we define C[i] = ci. For a multi-track W
of track count k = |W|num, W[i] = (W1[i], W2[i], . . . , Wk[i]) denotes the ith multi-track symbol, and
W[i][j] denotes Wj[i] for 1 ≤ i ≤ |W|len and 1 ≤ j ≤ |W|num. Moreover, W[i : j] = (W1[i : j], W2[i :
j], . . . , Wk[i : j]) denotes a substring of W that begins at i and ends at j for 1 ≤ i ≤ j ≤ |W|len. Similarly
to the notation for strings, W[: i] and W[i :] mean W[1 : i] and W[i : |W|len], which are called the prefix
and the suffix of W, respectively.

Let r = (r1, r2, . . . , rk) be a permutation of (1, 2, . . . , k). For a multi-track W = (W1, W2, . . . , Wk),
W〈r〉 = W〈r1, r2, . . . , rk〉 = (Wr1 , . . . , Wrk ) is called a permuted multi-track of W. The sorted index SI(W)

of a multi-track W is a permutation (r1, . . . , rk) such that Wri � Wri+1 for any 1 ≤ i < k, where we
assume ri < ri+1 in the case Wri = Wri+1 . The sorted multi-track sort(W) is defined as W〈SI(W)〉. The
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reverse of a multi-track is W = (W1, . . . , Wk) is WR = (WR
1 , . . . , WR

k ). The sorted index of the reverse
multi-track, denoted by RI(W), is a permutation (r1, . . . , rk) such that wR

ri
� wR

ri+1
for any 1 ≤ i < k.

Lemma 1 ([7]). Let SIW be a two-dimensional array such that SIW[i] = SI(W[i :]) for 1 ≤ i ≤ n. SIW can be
computed in O(nk) time offline, where n = |P|len and k = |P|num.

Lemma 2. Let RIW be a two-dimensional array such that RIW[i] = RI(W[i :]) for 1 ≤ i ≤ n. RIW can be
computed in O(n(k + σ)) time online, where n = |P|len and k = |P|num.

Proof. Clearly, RIW can be computed in O(n(k + σ)) by using a radix sort algorithm.

For two multi-tracks X = (X1, X2, . . . , Xk) and Y = (Y1, Y2, . . . , Yk) of the same length, we say
that X permuted-matches Y if X = Y〈r〉 for some permutation r, and it is denoted by X ./ Y.

Lemma 3 ([7]). For two multi-tracks X and Y, X ./ Y if and only if sort(X) = sort(Y).

Throughout this paper, we assume that P is a pattern with |P|num = k and |P|len = m, and T is
text with |T|num = k and |T|len = n ≥ m. The pattern matching problem on multi-tracks is defined
as follows.

Definition 1 (Permuted pattern matching [7]). Given a multi-track text T and a multi-track pattern P,
compute all positions i that satisfy P ./ T[i : i + m− 1]. We call such positions occurrence positions of P
in T.

For example, given a text T =

 aabaaaaa ,
abaabbaa ,
baaababa

 and a pattern P =

 aba ,
baa ,
aaa

, we can see that

the pattern P matches T at two because T[2 : 4] = P. Moreover, the pattern P permuted-matches T at

six, since P〈3, 2, 1〉 =

 aaa ,
baa ,
aba

 = T[6 : 8]. Therefore, we should output two and six in this case.

We remark that Katsura et al. [7] defined a more general problem called the sub-permuted pattern
matching, where we have |T|num ≥ |P|num, and our task is to find a partial permutation (r1, . . . , r|P|num)

of (1, . . . , |T|num) and a position i for which P ./ T〈r1, . . . , r|P|num〉[i : i + m− 1] holds. However, in
this paper, we only consider the case |T|num = |P|num, which was called full-permuted pattern matching
in [7].

3. KMP-Based Permuted Pattern Matching Algorithms

In this section, we propose three algorithms for permuted pattern matching based on the KMP
algorithm. In Section 3.1, we introduce our first algorithm, the multi-track KMP algorithm (MTKMP
algorithm) which uses the border array of a multi-track pattern. We remark that this algorithm is a
variant of the generalized KMP algorithm proposed by Matsuoka et al. [12]. They showed that the
KMP algorithm can be applied to string classes that satisfy some equality and border properties. In
this paper, we show some properties of multi-track strings so that the KMP algorithm can be applied
to multi-track strings and give the exact computation time of the algorithm.

In Section 3.2, we extend it to the multi-track AC-automaton algorithm, which can perform
dictionary matching on multi-tracks. Last, in Section 3.3, we introduce another extension of the
MTKMP algorithm, the permuted matching automaton algorithm, which can perform permuted
pattern matching faster than the MTKMP algorithm.
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3.1. Multi-Track KMP Algorithm

Similar to the original KMP algorithms, the multi-track KMP algorithm uses multi-track border arrays
to compute the shift amount when the algorithm finds a mismatch. First, we define borders for multi
track strings.

Definition 2 (Borders of multi-tracks). A border of a multi-track P is any multi-track that permuted-matches
with a prefix and a suffix of P. Moreover, a border B of P is called proper if B 6./ P.

We can easily confirm the following lemma.

Lemma 4. For any two borders B1 and B2 of P, if |B1|len < |B2|len, then B1 is a border of B2.

Let T[i : i + j] ./ P[1 : j + 1] for some i and j. If T[i + x : i + x + m− 1] ./ P[1 : m] for some
x ≤ j, then T[i : i + (j − x)] ./ P[1 : (j − x) + 1] and T[i + x : i + j] ./ P[1 : (j − x) + 1] hold,
i.e., P[1 : (j− x) + 1] is a proper border of P[1 : j + 1]. Therefore, if T[i : i + j] ./ P[1 : j + 1] and
T[i : i + j] 6./ P[1 : j + 1], we can safely shift P by x, where (j− x + 1) is the length of the longest proper
border of P[1 : j + 1]. We store the length of the longest proper border of P[1 : j + 1] for 1 ≤ j ≤ m as
the border array of P.

Definition 3 (Multi-track border array). Given a multi-track P of |P|len = m, the border array BorderP
of P is an array of length m + 1, where the ith element of BorderP is the length of the longest proper border of
P[1 : i]. Formally,

BorderP[i] = max {j | P[1 : j] ./ P[i− j + 1 : i], 0 ≤ j < i} . (1)

For algorithmic purpose, we define BorderP[0] = −1. Algorithm 1 constructs the multi-track
border array of an input P.

Lemma 5. Given a multi-track P of |P|len = m and |P|num = k, Algorithm 1 constructs the border array of P
in O(mk) time.

Proof. First, we show the correctness of the algorithm by induction. Assume we have computed the
longest proper border of P[: j] and stored it in Border[j] for 1 ≤ j ≤ i. Let P[: b] be the longest proper
border of P[: i + 1]. Clearly, P[: b− 1] is a border of P[: i]. Using Lemma 4, we can find b− 1 by finding
max{j | P[: j] is a proper border of P[: i] and P[: j + 1] ./ P[i − j + 1 : i + 1]}. Since Border[j] is the
longest proper border of P[: j], the algorithm can find b− 1 by updating j← Border[j] from j = i until
P[: Border[j] + 1] ./ P[i− Border[j] + 1 : i + 1] holds. Therefore, Algorithm 1 computes the border array
of P correctly.

Next, we show the computation time of the algorithm. Using Lemma 1, SI can be computed in
O(mk). Both while loops are called O(m) times at most, since i− j ≤ i ≤ m + 1, and the value of i
always increases each time the outer loop is called, while the value of i− j always increases each time
the inner loop is called. Each comparison of P[j]〈SI(P[1 :])〉 and P[i]〈SI(P[i − j :])〉 consumes O(k)
time; hence, Algorithm 1 runs in O(mk) time.

Algorithm 2 shows the pseudocode of the MTKMPalgorithm. The MTKMP algorithm performs
permuted pattern matching from left to right of the pattern and the text. The sorted pattern Psort and
the array SI save the sorted indices of suffixes of text used to perform permuted-matching between the
pattern and a substring of the text. If symbols on the text and the pattern are mismatched, we shift
the matching position of the pattern using Border. If the pattern matches a substring of the text, then
the MTKMP algorithm outputs the occurrence position at the text and shifts the pattern according
to Border.
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Algorithm 1: Multi-track border array construction algorithm.

1 Function constructMTBorderArray(P)
2 compute SI[i]← SI(P[i :]) for 1 ≤ i ≤ m;
3 i← 1; j← 0; Border[0]← −1;
4 while i ≤ m do
5 while j ≥ 0 and P[j + 1]〈SI[1]〉 6= P[i]〈SI[i− j]〉 do
6 j← Border[j];

7 i← i + 1; j← j + 1;
8 Border[i]← j;

9 return Border[i];

Algorithm 2: The multi-track KMP algorithm.

1 Function MTKMP(T,P)
2 compute SI[i]← SI(T[i :]) for 1 ≤ i ≤ n;
3 compute Psort ← SI(P);
4 Border[i]← constructMTBorderArray(P);
5 i← 1; j← 0;
6 while i ≤ n do
7 while j ≥ 0 and T[i]〈SI[i− j]〉 6= Psort[j + 1] do
8 j← Border[j];

9 i← i + 1; j← j + 1;
10 if j = m then
11 output (i− j);
12 j← Border[j];

Theorem 1. Given a text T and a pattern P, the MTKMP algorithm computes all occurrence positions of P in
T in O(nk + mk) time.

Proof. According to the above arguments, we can shift P by x, where (j− x + 1) is the length of the
longest proper border of P[1 : j + 1] if T[i : i + j] ./ P[1 : j + 1] and T[i : i + j] 6./ P[1 : j + 1]. Since
Border[i] is the longest proper border of P[: i], the algorithm finds the occurrence position of P in T
correctly.

Using Lemma 1, SI can be computed in O(nk). From Lemma 5, constructMTBorderArray(P) runs
in O(mk). Both while loops are called O(n) times at most, since i− j ≤ i ≤ n + 1, and the value of i
always increases each time the outer loop is called, while the value of i− j always increases each time
the inner loop is called. Each comparison of P[j]〈SI(P[1 :])〉 and T[i]〈SI(T[i − j :])〉 consumes O(k)
time. Hence, Algorithm 2 runs in O(nk + mk) time.

3.2. Multi-Track AC-Automaton

In this subsection, we introduce a data structure called a multi-track AC-automaton that
can perform dictionary matching on multi-tracks, namely permuted dictionary matching. Let D =

{P1,P2, . . . ,Pr} be a set of patterns of the same track count k, called a dictionary, and let d = ∑r
i=1 mi be

the total length of the patterns in D, where mi = |Pi|len. The multi-track AC-automaton of D, denoted
by MTAC(D), consists of a set of states and three functions: goto, failure, and output functions. Figure 1
shows an example of MTAC(D).

For a dictionary D, the states of MTAC(D) are S = {sort(Pi)[: j] | Pi ∈ D, 0 ≤ j ≤ mi}. Each state
corresponds to a prefix of sort(Pi) for some Pi ∈ D. Unlike the original AC-automaton, the multi-track
AC-automaton uses a multi-track symbol, instead of a single symbol, to define the goto function.
The goto, failure, and output functions of MTAC(D) are defined as follows.
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Figure 1. The multi-track AC-automaton MTAC(D) for D = {P1,P2,P3}, where P1 =

(aaabb, abaab, bbaaa), P2 = (abab, abba, bbab), and P3 = (aabbab, bababb, baaaab). The asterisk
“*” is a special symbol that matches any symbol in Σ.

Definition 4 (Goto function). We define the goto function δ of MTAC(D) by δ(sort(Pi)[: j]),C) = sort(Pi)[:
j + 1] iff C = sort(Pi)[j + 1] for a state sort(Pi)[: j] and a multi-track symbol C.

Definition 5 (Failure function). The failure link of a state sort(Pi)[: j] is defined as flink(sort(Pi)[: j]) =

sort(Pi[l : j]), where Pi[l : j] is the longest proper suffix of Pi[: j] such that Pi[l : j] permuted-matches a prefix
of some pattern in D.

Definition 6 (Output function). The output output(Pi[: j]) of a state sort(Pi)[: j] is the set of patterns that
permuted-matches Pi[l : j] for some 1 ≤ l ≤ j.

Next, we explain how to construct MTAC(D). We use multi-track symbol tries to implement the
goto function.

Definition 7 (Multi-track symbol trie). Let C = {C1, ...,Cz} be a set of multi-track symbols. The multi-track
symbol trie of C is the trie for the set of strings {C1[1]C1[2] . . .C1[|C1|num], . . . ,Cz[1]Cz[2] . . .Cz[|Cz|num]}.

For a state s ∈ S , we use the multi-track symbol trie of a set {C | δ(s,C) 6= NULL} and each leaf
of multi-track symbol tries labeled by δ(s,C). Since a child of a node in multi-track symbol tries can
be searched in O(log σ) time, δ(s,C) can be computed in O(k log σ) time. The goto function δ can be
constructed by using Algorithm 3.

Algorithm 3: Multi-track AC-automaton goto function construction algorithm.

1 Function constructGotoFunction(D)
2 compute SI[i][j]← SI(Pi[j :]) for 1 ≤ i ≤ r and 1 ≤ j ≤ mi;
3 create states root and ⊥;
4 depth(root)← 0; depth(⊥)← −1;
5 δ(⊥,C)← root for any multi-track symbol C of track count k;
6 for i← 1 to r do
7 v← root;
8 for 1 ≤ j ≤ mi do
9 if δ(v,Pi[j]〈SI[i][1]〉) 6= NULL then

10 v← δ(v,Pi[j]〈SI[i][1]〉);

11 else
12 create newState;
13 δ(v,Pi[j]〈SI[i][1]〉)← newState;
14 label(newState)← i;
15 depth(newState)← depth(v) + 1;
16 v← newState;
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Lemma 6. Algorithm 3 constructs the goto function of the multi-track AC-automaton of a dictionary
D = {P1,P2, . . . ,Pr} in O(dk log σ) time.

Proof. The goto function δ(s,C) is executed O(d) times, and δ(s,C) can be computed in
O(k log σ) time.

After constructing the goto function, we can construct the failure function of MTAC(D).
Algorithm 4 shows a construction algorithm for the failure function of a multi-track AC-automaton.
In order to simplify the construction algorithm, we use a special state that reads any multi-track symbol
to get to the root state.

Algorithm 4: Multi-track AC-automaton failure function construction algorithm.

1 Function constructFailureFunction(D)
2 compute SI[i][j]← SI(Pi[j :]) for 1 ≤ i ≤ r and 1 ≤ j ≤ mi;
3 flink(root)← ⊥;
4 push root to queue;
5 while queue 6= ∅ do
6 pop v from queue;
7 for C such that δ(v,C) = u 6= NULL do
8 push u to queue;
9 s← flink(v);

10 i← label(u);
11 while δ(s,Pi[depth(u)]〈SI[i][depth(u)− depth(s)]〉) = NULL do
12 s← flink(s);

13 flink(u)← δ(s,Pi[depth(u)]〈SI[i][depth(u)− depth(s)]〉);

Lemma 7. Algorithm 4 constructs the failure function of the multi-track AC-automaton of a dictionary
D = {P1,P2, . . . ,Pr} in O(dk log σ) time.

Proof. We can bound the running time of Algorithm 4 by counting the number of executions of
δ(s,C). For each pattern Pi, let si,j be a state such that si,j = δ(root,Pi[: j]) for 1 ≤ j ≤ mi. Let fi,j be
the number of executions of flink when finding flink(si,j). The maximum value of fi,j is bounded by
depth(flink(si,j−1)) + 1. Because the depth of flink(si,j) is, at most, depth(flink(si,j−1))− fi,j + 1, we get
fi,j ≤ depth(flink(si,j−2))− fi,j−1 + 2 recursively. By solving this formula, we get ∑mi

j=1 fi,j ≤ 2mi and

∑r
i=1 ∑mi

j=1 fi,j ≤ ∑r
i=1 2mi = 2d. Moreover, each δ(s,C) is executed in O(k log σ) time.

Last, by using the goto and failure functions, Algorithm 4 constructs the output function of a
multi-track AC-automaton.

Lemma 8. Algorithm 5 constructs the output function of the multi-track AC-automaton of a dictionary
D = {P1,P2, . . . ,Pr} in O(dk log σ) time.

Proof. Updating the output function can be performed in O(1) time by using lists to save the output
function and updating it by concatenating the list (see [13]). The proof is similar to the proofs of
Lemmas 3 and 4.

From Lemmas 6–8, we get the following theorem.

Theorem 2. The multi-track AC-automaton of a dictionary D = {P1,P2, . . . ,Pr} can be constructed in
O(dk log σ) time.
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Algorithm 5: Multi-track AC-automaton output function construction algorithm.

1 Function constructOutputFunction(D)
2 compute SI[i][j]← SI(Pi[j :]) for 1 ≤ i ≤ r and 1 ≤ j ≤ mi;
3 for i← 1 to r do
4 v← root;
5 for 1 ≤ j ≤ mi do
6 v← δ(v,Pi[j]〈SI[i][1]〉);
7 if j = mi then
8 output(v)← output(v) ∪ {i};

9 push root to queue;
10 while queue 6= ∅ do
11 pop v from queue;
12 output(v)← output(v) ∪ output(flink(v));
13 for C such that δ(activeState,C) = s 6= NULL do
14 push s to queue;

By using the multi-track AC-automaton of D, we can perform permuted dictionary matching on
a text T, as shown in Algorithm 6. Let v be the current state of the multi-track AC-automaton. For each
position i on T, Algorithm 6 uses the sorted index of T[i− depth(v) :] to determine the permutation of
T[i] that is used in the goto function.

Algorithm 6: Permuted dictionary matching algorithm by using multi-track AC-automaton.

1 Function MTACADictionaryMatching(T)
2 compute SI[i]← SI(T[i :]) for 1 ≤ i ≤ n;
3 v← root;
4 for 1 ≤ i ≤ n do
5 while δ(v,T[i]〈SI[i− depth(v) + 1]〉) = NULL do v← flink(v);
6 v← δ(v,T[i]〈SI[i− depth(v) + 1]〉);
7 for k ∈ output(v) do output (k, i−mk + 1);

Theorem 3. Permuted dictionary matching on a multi-track text T can be performed in O(nk log σ) time by
using the multi-track AC-automaton of D.

Proof. The running time of Algorithm 6 can be evaluated by counting the number of executions of
δ(s,C). First, for each i, δ(s,C) is executed at least once on the v transition. Next, δ(s,C) is executed to
check whether the transition is NULL or not. In this case, the number of executions of δ(s,C) is the
same as that of flink. The latter is, at most, n, because whenever δ(s,C) is executed, the depth of v is
increased by one, and whenever flink is executed, the depth of v is decreased by at least one. Therefore,
the number of executions of δ(s,C) is O(n).

3.3. Multi-Track Permuted Matching Automaton

In this subsection, we describe a data structure called a multi-track permuted matching automaton
that can perform permuted pattern matching on a multi-track text T online, by preprocessing a
multi-track pattern P. For a multi-track pattern P = (P1, P2, ..., Pk), the multi-track permuted matching
automaton of P, denoted by MTPMA(P), consists of a set of states and two functions, goto and failure
functions. In addition, each state of the multi-track permuted matching automaton has a weight in
order to determine whether flink should be executed or not. Figure 2 shows an example of a multi-track
permuted matching automaton.
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Figure 2. The multi-track permuted matching automaton MTPMA(P) for P = (aaabb, abaab, bbaaa).
The asterisk is a special symbol that matches with any symbols in Σ.

Let S be the set of states of MTPMA(P). Each state of MTPMA(P) corresponds to a prefix of Pi,
i.e., S = {Pi[: j] | 1 ≤ i ≤ k, 0 ≤ j ≤ m}. Each state s has a weight, which is the number of tracks
containing s as a prefix. Moreover, a state s is called an accept state if s = Pi for some i. The goto and
failure functions of MTPMA(P) are defined as follows.

Definition 8 (Goto function). We define the goto function δ as δ(Pi[: j], c) = Pi[: j + 1] iff c = Pi[j + 1] for
each state Pi[: j] and symbol c.

Definition 9 (Failure function). Let Sj = {Pi[: j] | 1 ≤ i ≤ k} be the set of states whose depth is j. The
failure link of the state is flink(Pi[: j]) = Px[: y] ∈ Sy such that Px[: y] is a proper suffix of Pi[: j] and P[: y] is
the longest prefix of P that permuted-matches with a proper suffix of P[: j]. The latter condition is similar to that
of the multi-track KMP algorithm.

Next, we explain how to construct MTPMA(P). Algorithm 7 constructs the goto function of a
multi-track permuted matching automaton. We add a weight on each state each time we visit the state
when reading each track.

Lemma 9. Algorithm 7 constructs the goto function of MTPMA(P) in O(mk log σ) time.

Proof. For each track, the number of executions of δ(s, c) is m, and there are k tracks in a pattern P.
Moreover, δ(s, c) can be executed in O(log σ) time.

After constructing the goto function, Algorithm 8 constructs the failure function of MTPMA(P).
For each state s, we use a multi-track border array to determine the depth of flink(s).

Lemma 10. Algorithm 8 constructs the failure function of P in O(mk log σ) time.

Proof. Similarly to the proof of Theorem 7, the failure and goto functions are executed O(mk)
times. Moreover, the execution time of the failure function is O(1), and that of the goto function
is O(log σ).

From Lemmas 9 and 10 we get the following theorem.

Theorem 4. The multi-track permuted matching automaton of a pattern P can be constructed in
O(mk log σ) time.

Finally, by using MTPMA(P), Algorithm 9 can perform permuted pattern matching on a
multi-track text T. Algorithm 9 uses k pointers activeStates to point to the current states. Note that all
activeStates always have the same depth. Algorithm 9 uses two conditions to determine whether it
should execute the failure function or not. The first condition is when it cannot find the goto transition,
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and the second condition is when the number of state pointers in the state is more than the weight of
the state. If any of the activeStates fail, then all of the activeStates execute the failure function, otherwise
activeStates executes the goto function.

Theorem 5. By using MTPMA(P), Algorithm 9 performs permuted pattern matching on a multi-track string
T in O(nk log σ) time.

Proof. Similarly to the proof of Theorem 3, the number of executions of the failure and goto function
is O(nk). Since the execution time of the failure function is O(1) and the goto function is O(log σ),
Algorithm 9 runs in O(nk log σ) time.

Algorithm 7: Multi-track permuted matching automaton goto function construction algorithm.

1 Function constructGotoFunction(P)
2 create states root and ⊥;
3 δ(⊥, c)← root for all symbol c ∈ Σ;
4 newState← root;
5 weight(⊥)← weight(root)← k;
6 for 1 ≤ i ≤ k do
7 v← root;
8 for 1 ≤ j ≤ m do
9 if δ(v,P[j][i]) = NULL then

10 create newState;
11 δ(v,P[j][i])← newState;
12 weight(newState)← 1;
13 v← newState;

14 else
15 v← δ(v,P[j][i]);
16 weight(v)← weight(v) + 1;

17 if j = m then set v as an accept state;

Algorithm 8: Multi-track permuted matching automaton failure function construction algorithm.

1 Function constructFailureFunction(P)
2 activeStates← {root};
3 flink(root)← ⊥;
4 BorderP[i]← constructMTBorderArray(P);
5 for 1 ≤ i ≤ m do
6 temp← ∅;
7 for v ∈ activeStates do
8 u← flink(v);
9 while depth(u) + 1 6= BorderP[i] do u← flink(v);

10 for c such that δ(v, c) = s 6= NULL do
11 temp← temp∪ {s};
12 flink(s)← δ(u, c);

13 activeStates← temp;
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Algorithm 9: Multi-track permuted matching automaton matching algorithm.

1 Function MTPMAMatching(T)
2 activeStates[i]← root for 1 ≤ i ≤ k;
3 for 1 ≤ i ≤ n do
4 failFlag← true;
5 while failFlag = true do
6 failFlag← false;
7 failFlag← isFail(activeStates,T, i);
8 if failFlag = true then
9 for j = 1 to k do activeStates[j]← flink(activeStates);

10 else
11 for j = 1 to |activeStates| do
12 activeStates[j]← δ(activeStates[j],T[i][j]);

13 if activeStates[1] is an accept state then output i−m + 1;

14 Function isFail(activeStates,T, i)
15 for j = 1 to k do
16 if δ(activeStates[j],T[i][j]) = NULL then return true;
17 else
18 nextState = δ(activeStates[j],T[i][j]);
19 temp(nextState)← temp(nextState) + 1;
20 if temp(nextState) > weight(nextState) then return true;

21 return false;

4. Multi-Track Boyer–Moore and Horspool Algorithms

In this section, we propose two permuted pattern matching algorithms that are based on the
Boyer–Moore algorithm and the Horspool algorithm, which we call MT-BM and MT-H, respectively.
The original Boyer–Moore algorithm uses two functions GoodSuf (good suffixes) and BadSym (bad
symbols), and the Horspool algorithm only uses BadSym to determine how much the position of a
substring to compare should be shifted when a mismatch is found between the input patten and the
substring of the text. For multi-track strings, we use a permuted match to define GoodSuf instead of
a complete match, and we use sorted multi-track symbols for BadSym instead of symbols. Formally,
those functions are defined as follows on multi-tracks.

Definition 10 (Good suffixes function). For a multi-track P of length |P|len = m, let A[i] = {0 <

s < i | P[i − s + 1 : m − s] ./ P[i + 1 : m], P[i − s : m − s] 6./ P[i : m]} and B[i] = {i ≤ s <

m | P[1 : m − s] ./ P[s + 1 : m]}. The good suffixes function is defined as GoodSufP[m] = 1 and
GoodSufP[i] = min A[i] ∪ B[i] ∪ {m} for 0 ≤ i < m.

Definition 11 (Bad symbols function). For a multi-track P of length |P|len = m and a multi-track symbol
C, BadSymP(C) is the first occurrence position of sort(C) in PR[2 :]. The function BadSymP(C) returns m if
there is no occurrence of sort(C) in PR[2 :].

In the implementation, GoodSuf is computed by using an array, while BadSym can be computed
by using a trie of the multi-track symbols. We perform permuted-match instead of exact matching
when computing GoodSuf. We also use another array suf to compute GoodSuf.

Definition 12 (Suffixes). For a multi-track P of length |P|len = m, sufP[i] is the maximum value of l such
that P[i− l + 1 : i] ./ P[m− l + 1 : m] for 1 ≤ i ≤ m.
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Algorithm 10 shows how to construct GoodSuf and BadSym. The array GoodSuf is computed by
ComputeGoodSuf, which uses array suf computed by ComputeSuf. Note that we compute RI(P[: i])
at the beginning (Lines 2 and 26) of the algorithm and will not recompute them when we use the
values later.

Algorithm 10: MT-BM and MT-H preprocessing functions.

1 Function ComputeSuf(P)
2 compute RI[i]← RI(P[: i]) for 1 ≤ i ≤ m;
3 suf[m]← m, j← m, l ← m;
4 for i← m− 1 to 1 do
5 if i > l and suf[m− (j− i)] < i− l then
6 suf[i]← suf[m− (j− i)];

7 else
8 if i < l then l ← i;
9 j← i;

10 while l > 0 and P[l]〈RI[j]〉 = P[l + m− j]〈RI[m]〉 do
11 k← l − 1;

12 suf[i]← j− l ;

13 return suf;

14 Function ComputeGoodSuf(P)
15 suf ← ComputeSuf(P);
16 j← 1;
17 for i← 1 to m do GoodSuf[i]← m;
18 for i← m to 1 do
19 if suf[i] = i then
20 while j ≤ m− i do
21 if GoodSuf[j] = m then GoodSuf[j]← m− i;
22 j← j + 1;

23 for i← 1 to m− 1 do GoodSuf[m− suf[i]]← m− i;
24 return GoodSuf;

25 Function ComputeBadSym(P)
26 compute RI[i]← RI(P[: i]) for 1 ≤ i ≤ m;
27 for i← 1 to m− 1 do
28 if BadSym(P[i]〈RI[i]〉) = m then
29 BadSym.add(P[i]〈RI[i]〉, m− i);

30 else
31 BadSym(P[i]〈RI[i]〉)← m− i;

32 return BadSym;

Lemma 11. The function ComputeSuf computes the array suf in O(m(k + σ)) time.

Proof. First, RI can be computed in O(m(k + σ)) time by using radix sort. The for loop is executed
m− 1 times, and the while loop in Line 11 is executed m times at most through the whole run, because
k is always reduced in each loop. A comparison of two multi-track symbols of the pattern that was
executed in each loop can be computed in O(k) time.

Lemma 12. The function ComputeGoodSuf computes GoodSuf in O(m) time.
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Proof. All the for loops are executed m times at most. The while loop is executed m times at most
through the whole execution of the algorithm, since j is always increased and does not exceed m.

Lemma 13. The function ComputeBadSym computes BadSym in O(m(k log σ + σ)) time.

Proof. RI can be computed in O(m(k + σ)) time by using radix sort. Each edge in the trie of BadSym

can be accessed in O(log σ) time by using a binary search. Since the depth of the trie is, at most, k, each
BadSym(P[i]) for 1 ≤ i ≤ m can be added and accessed in O(k log σ) time.

By using both GoodSufP and BadSymP, MT-BM outputs the positions of the text that are
permuted-matched with the pattern. The matching algorithm of MT-BM is shown in Algorithm 11.

Algorithm 11: Multi-track Boyer–Moore algorithm.

1 Function MTBM(T,P)
2 compute RI[i]← RI(T[: i]) for 1 ≤ i ≤ n;
3 compute Psort ← RI(P);
4 BadSym← ComputeBadSym(P);
5 GoodSuf ← ComputeGoodSuf(P);
6 j← 0;
7 while j ≤ n−m + 1 do
8 i← m;
9 while i > 0 and T[i + j]〈RI[j + m]〉 = Psort[i] do

10 i← i− 1;

11 if i ≤ 0 then
12 output j + 1;
13 j← j + GoodSuf[0];

14 else
15 j← j + max(GoodSuf[i], BadSym(T[i + j]〈RI[i + j]〉)− (m− i));

Theorem 6. Given a multi-track text T and a pattern P, MT-BM outputs all occurrence positions of P in T in
O(nk(m + log σ) + n(k + σ)) time with O(m(k log σ + σ)) preprocessing time.

Proof. From Lemmas 11–13, Algorithm 11 needs O(m(k log σ + σ)) time for preprocessing. Next, RI
can be computed in O(n(k + σ)) time by using radix sort. In the outer while loop starting at Line 7, the
value of j is increased by at least one, so the loop is executed n−m + 2 times at most. In each execution
of the outer loop, the inner while loop is executed m times at most, where multi-track symbols of the
pattern and the text can be compared in O(k) time. BadSym can be accessed in O(k log σ) time, and
GoodSuf can be executed in O(1) time.

Similarly to the original Horspool algorithm, the multi-track Horspool algorithm (MT-H) uses
BadSym to shift the pattern.

Theorem 7. Given a multi-track text T and a pattern P, MT-H outputs all occurrence positions of P in T in
O(nk(m + log σ) + n(k + σ)) time with O(m(k log σ + σ)) preprocessing time.

Proof. Similar to the proof of Theorem 6.

Boyer–Moore and Horspool Matching Algorithms with Track Trie

The two algorithms presented in the previous subsections determine if two multi-tracks
permuted-match by sorting them. In this subsection, we present another idea for this task using
a data structure called a track trie. The track trie TrackTrie(P) of a multi-track P stores all the reversed
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strings of the tracks of P, that is {PR
1 , PR

2 , . . . , PR
k }. Figure 3a shows the track trie of a multi-track

pattern P = (bbaba, abbba, aaabb).
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Figure 3. (a) Track trie of P = (bbaba, abbba, aaabb); (b) example of mismatch when the track trie
cannot find the transition; (c) example of mismatch when the number of tracks is more than the weight
of the node.

Algorithm 12 is the construction algorithm of TrackTrie(P). For a node s of TrackTrie(P) and a
symbol c ∈ Σ, the goto function δ(s, c) returns the child of s that has an edge labeled c. We naturally
extend it to the domain Σ∗ by δ(s, ε) = s and δ(s, aw) = δ(δ(s, a), w) for any a ∈ Σ and w ∈ Σ∗. We also
associate a weight with each node to find mismatch on a text, as we explain later.

Algorithm 12: Track trie construction algorithm.
1 Function constructTrackTrie(P)
2 newNode← root;
3 weight(root)← k;
4 for i← 1 to k do
5 activeNode← root;
6 for j← m to 1 do
7 if δ(activeNode,P[j][i]) = NULL then
8 newNode← newNode + 1;
9 weight(newNode)← 1;

10 δ(activeNode,P[j][i])← newNode;
11 activeNode← newNode;

12 else
13 activeNode← δ(activeNode,P[j][i]);
14 weight(activeNode)← weight(activeNode) + 1;

Theorem 8. Algorithm 12 constructs TrackTrie(P) in O(mk log σ) time.

Proof. The function goto can be calculated in O(log σ) time by binary search. On each execution of the
inner for loop (Line 6), Algorithm 12 executes goto to check the child nodes of activeNode. If there is no
node with an edge labeled P[j][i], then a new node is constructed, which can be done in O(1) time.
On the other hand, if there is a node with an edge labeled P[j][i], Algorithm 12 accesses the child node
and then increases its weight by one. The total number of iterations of the inner loop is mk.

For a given multi-track text T and a position i, Algorithm 13 finds a mismatch position in two
cases: (1) when a track cannot find its goto destination, and (2) when the number of tracks that have
the same string w is more than the weight of the node that represents the string δ(root, w). Those
mismatch conditions are illustrated in Figure 3b,c, respectively. Figure 3b shows that the track trie
cannot find a transition for the second symbol b of the third track. On the other hand, Figure 3c shows
that T2[3 :] has two “bba” on its track; however, the P[3 :] has only one “bba” on its track, i.e., the node
that represents “bba” has one on its weight.
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Algorithm 13: Track trie matching algorithm.

1 Function matchTrackTrie(T, j)
2 activeNode[l]← root for 1 ≤ l ≤ k;
3 temp(node)← 0 for all node in TrackTrie(P);
4 for i← m to 1 do
5 for l ← 1 to k do
6 if δ(activeNodes[l],T[i + j][l]) = NULL then return i;
7 else
8 activeNodes[l]← δ(activeNodes[k],T[i + j][l]);
9 temp(activeNodes[l])← temp(activeNodes[l]) + 1;

10 if temp(activeNodes[l]) > weight(activeNodes[l]) then
11 return i;

12 return 0;

Theorem 9. Given a multi-track text T and a position j, Algorithm 13 finds a mismatch position in the pattern
in O(mk log σ) time.

Proof. For each position i + j on the text, Algorithm 13 executes goto to check whether activeNodes[l]
has a child node with an edge labeled T[i + j][l] for 1 ≤ l ≤ k. If there is no child node with an
edge labeled T[i + j][l], then Algorithm 13 considers it a mismatch and returns the mismatch position.
On the other hand, if there is such a child node, Algorithm 13 updates activeNodes[l] to the child node
and then checks whether the number of tracks of T[i + j :] that contain T[i + j : i + m][l] as a prefix is
more than the weight of the child node. If the number of tracks exceeds the weight, then Algorithm 13
treats it as mismatch and returns the mismatch position. The total number of iterations of the inner
loop is, at most, mk.

Although the worst case time complexity remains the same, by using track trie, both MT-BM and
MT-H can match the pattern to the text faster, because we do not need to compute the reverse-sorted
index of the text. First, we construct the track trie of the pattern by using constructTrackTrie(P). Then,
we replace Line 10 of Algorithm 11 by matchTrackTrie(T, j) to find a mismatch position.

5. Filtering Algorithm on a Multi-Track String

In this section, we propose filtering algorithms for permuted pattern matching. The filtering
algorithm uses a function to transform a multi-track string into another sequence. Then, the algorithm
implements a pattern matching algorithm on the transformed pattern and text to get candidate
positions where the pattern may permuted-match. Finally, every candidate position is checked for
whether the pattern is permuted-matched in each position or not.

The filtering algorithm uses a function φ that inputs a multi-track W and outputs a sequence of
length |W|len. The function φ must have a false-positive property, that is, for two multi-tracks X and Y,
if X ./ Y, then φ(X) = φ(Y). We can use any hash function such as the Karp–Rabin fingerprint [14]
and locality-sensitive hashing [15]. We describe the filtering algorithm by using a simple function β

that is defined as follows.

Definition 13 (Bucket function β). For W = (W1, W2, . . . , Wk), β(W) = (B1, B2, . . . , Bσ) such that Bj[i]
is the number of the jth symbol in Z[i].

For example, for a multi-track W = (abab, bbac, aabb, cabb, abba), β(W) is as follows,
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
a b a b

b b a c

a a b b

c a b b

a b b a

 , β(Z) =

 3 2 2 1
1 3 3 3
1 0 0 1

 . (2)

β(W) can be computed in O(n(k + σ)) time by counting all symbols in W.
Algorithm 14 shows an example of filtering algorithm for permuted pattern matching.

This algorithm uses β as a hash function, and the KMP algorithm as a patten matching algorithm. First,
the algorithm computes P′ = β(P) and T′ = β(T) and then constructs the border array BorderP′ using
the same procedure as the KMP algorithm. Next, the algorithm performs pattern matching on P′ and
T′. When a mismatch occurs, the pattern is shifted by using BorderP′ . If P′ matches T′[i : j], then the
algorithm checks whether the pattern P permuted-matches T[i : j] or not, and it outputs the position
if true.

Algorithm 14: Filtering algorithm for permuted pattern matching.

1 Function multiTrackFiltering(P)
2 T′ ← β(T); P′ ← β(P);
3 constructBorderArray(P′);
4 i← 1; j← 1;
5 while i ≤ n do
6 while j > 0 and T′[i] 6= P′[j] do j← Border[j];
7 i← i + 1; j← j + 1;
8 if j > m then
9 if T[i− j + 1 : i− 1] ./ P then output (i− j + 1);

10 j← Border[j];

11 Function constructBorderArray(P′)
12 i← 1; j← 1;
13 Border[1]← 0;
14 while i ≤ m do
15 while j > 0 and P′[i] 6= P′[j] do j← Border[j];
16 i← i + 1; j← j + 1;
17 if i ≤ m and P′[i] = P′[j] then Border[j]← Border[i];
18 else Border[j]← i;

Theorem 10. Given a multi-track text T and a pattern P, Algorithm 14 computes all occurrence positions of P
in T in O((m + n)(σ + k) + cmk) time, where c is the number of candidates.

Proof. As described above, P′ = β(P) and T′ = β(T) can be computed in O(m(σ + k)) and O(n(σ +

k)), respectively. The border array BorderP′ can be constructed in O(mσ) time, and pattern matching
can be performed in O(nσ) time, since the comparison P′[i] = P′[i] needs O(σ) time. In addition, the
algorithm takes O(cmk) time to check the candidates.

6. Experiments

We performed some sets of experiments to evaluate the practical performance of the proposed
algorithms. We measured the running time of our algorithms and the AC-automaton-based
algorithm [7]. All experiments were performed on a computer with an Intel Xeon CPU E5-2609
8 core, 2.40 GHz, 256 GB memory, and a Debian Wheezy operating system. We set the parameter
values as n = 100,000, m = 10, k = 1000, and σ = 2, and we changed one of the parameters in
each experiment to see the relation between the parameters and the running time of the algorithms.
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We used randomly-generated texts and patterns. The source code of our algorithm is available at
https://github.com/ushitora/permutedpatternmatching.

The first set of experiments compared the running times of KMP-based algorithms, namely the
multi-track KMP algorithm, the multi-track AC-automaton algorithm, and the multi-track permuted
matching automaton algorithm. The purpose of this experiment was to see the changes in the running
time of the multi-track KMP algorithm when extended to the multi-track AC-automaton algorithm
and the multi-track permuted matching automaton algorithm. The results of the experiment are
shown in Figure 4. From the results, we can see that the multi-track AC-automaton algorithm was
slower than the multi-track KMP algorithm. The reason for this is that the multi-track AC-automaton
algorithm uses state transitions instead of comparing multi-track symbols directly. This time difference
is not significant considering that the multi-track AC-automaton algorithm focuses on dictionary
matching instead of single pattern matching. Next, we can see that the multi-track permuted matching
automaton algorithm is faster than the multi-track KMP algorithm. The multi-track permuted matching
automaton algorithm can perform matching faster because the multi-track permuted matching
automaton algorithm does not need to sort the text.

The next experiment compared the running time of the multi-track Boyer–Moore algorithm and
the multi-track Horspool algorithm. We also checked the effectiveness of track tries in reducing the
matching times of both algorithms. Figure 5 shows the result of the experiment. While the multi-track
Horspool was slightly faster than the multi-track Boyer–Moore algorithm, there was no significant
difference between these algorithms. We can also see that track tries significantly reduced the matching
times of both algorithms, since we do not need to sort the text when using track tries.
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Figure 4. Running time of the multi-track KMP (MTKMP), multi-track AC-automaton (MTACA),
multi-track permuted matching automaton (MTPMA) algorithms on permuted pattern matching with
respect to (a) the text length, (b) the track count, (c) the pattern length, and (d) the alphabet size.

https://github.com/ushitora/permutedpatternmatching
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Figure 5. Running time of the multi-track Buyer–Moore (MTBM) and multi-track Horspool (MTH)
algorithms on permuted pattern matching with respect to (a) the text length, (b) the track count, (c) the
pattern length, and (d) the alphabet size.

The third experiment set compared the running times of the filtering algorithms. We used three
algorithms, the KMP algorithm, the Boyer–Moore algorithm, and the Horspool algorithm, as filtering
algorithms. Figure 6 shows the running times of the filtering algorithms. There was no significant
difference in running time between the filtering algorithms. We can see that the filtering algorithms
were fast apart from when the pattern length was m = 1. The algorithms became very slow, because
there were many occurrence position candidates when m = 1. The occurrence position candidates will
be fewer if the pattern length is longer.

Lastly, we compared the proposed algorithms with the AC-automaton-based algorithm [7].
Figure 7 shows the running time of the AC-automaton-based algorithm [7] and the proposed
algorithms. We chose the fastest algorithms among the groups. We can see that the proposed algorithms
were faster than the AC-automaton-based algorithm overall. The multi-track Boyer–Moore algorithm
with track trie was the fastest among the algorithms.
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Figure 6. Running time of the filtering algorithms (Knuth–Morris–Pratt (Filter-KMP), Boyer–Moore
(Filter-BM), and Horspool (Filter-H)) for permuted pattern matching with respect to (a) the text length,
(b) the track count, (c) the pattern length, and (d) the alphabet size.
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Figure 7. Comparison of the running time of the AC-automaton-based algorithm with the proposed
algorithms for permuted pattern matching with respect to (a) the text length, (b) the track count, (c) the
pattern length, and (d) the alphabet size.

7. Conclusions

We proposed some algorithms for permuted pattern matching on multi-track strings. We primarily
focused on the algorithms that preprocess the pattern before performing permuted pattern matching,
instead of constructing indexing structures from the text. We showed that our proposed algorithms are
faster than the AC-automaton-based algorithm. Moreover, we proposed an algorithm for dictionary
matching on multi-track strings, which, to the best of our knowledge, is the first algorithm for this
problem. Because of its considerable difficulty owing to a larger number of permutations, only a
few algorithms for sub-permuted pattern matching have been proposed. Therefore, developing an
algorithm for the sub-permuted pattern matching problem must be addressed in future work.
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