
algorithms

Article

Parameter Tuning of PI Control for Speed Regulation
of a PMSM Using Bio-Inspired Algorithms

Juan Luis Templos-Santos 1,*, Omar Aguilar-Mejia 2, Edgar Peralta-Sanchez 2 and
Raul Sosa-Cortez 1

1 Departamento de Posgrado, Universidad Politécnica de Tulancingo, Tulancingo, Hidalgo C. P. 43629,
Mexico; raul.sosa.cortes@gmail.com

2 Departamento de Posgrado, UPAEP Universidad, Puebla C.P. 72410, Mexico;
omar.aguilar@upaep.mx (O.A.-M.); edgar.peralta@upaep.mx (E.P.-S.)

* Correspondence: jluistsantos@gmail.com; Tel.: +52-775-111-7181

Received: 31 December 2018; Accepted: 9 February 2019; Published: 4 March 2019
����������
�������

Abstract: This article focuses on the optimal gain selection for Proportional Integral (PI) controllers
comprising a speed control scheme for the Permanent Magnet Synchronous Motor (PMSM). The gains
calculation is performed by means of different algorithms inspired by nature, which allows
improvement of the system performance in speed regulation tasks. For the tuning of the control
parameters, five optimization algorithms are chosen: Bat Algorithm (BA), Biogeography-Based
Optimization (BBO), Cuckoo Search Algorithm (CSA), Flower Pollination Algorithm (FPA) and
Sine-Cosine Algorithm (SCA). Finally, for purposes of efficiency assessment, two reference speed
profiles are introduced, where an acceptable PMSM performance is attained by using the proposed PI
controllers tuned by nature inspired algorithms.

Keywords: PI controller; bio-inspired; speed control; PMSM; FPA; SCA; BBO; CSA; BA

1. Introduction

Recently, the permanent magnet synchronous motor (PMSM) has achieved notoriety in industrial
applications (e.g., electric vehicles [1], computer numerical control machines [2], industrial robots [3]).
Among its most relevant features are a fast dynamic response, compact size, high power density,
high torque capacity and low losses due to heat dissipation, which make it highly efficient.
The performance of the PMSM can be affected during operation by the non-linearity of the dynamic
system, some parametric variations and bounded perturbations of the load torque, which the controller
must be able to overcome in real-time operation by always considering the physical constraints of the
machine [4–6].

In the literature, several speed-control schemes have been proposed for PMSM, where a proper
performance in tasks of regulating the speed of the rotor is achieved [7–12]. Some controllers use
adaptive schemes [8,13–15], artificial neural networks (ANNs) [5,11,12,16], sliding mode control (SMC)
based techniques [17–20], and fuzzy logic [5,10], to name a few methods. Sliding-modes based
control provides a high disturbance rejection and a low sensitivity to parametric variations. However,
the well-known phenomenon of chattering is also presented, which leads to low precision, warm-up
in electrical power devices and wear in motor’s mechanical parts. With the use of fuzzy logic a good
performance is presented but it has the problem that the fuzzification rules, the inference mechanism,
and the defuzzification operations are not clear and, in addition, they demand high computational
processing capacity. Where using ANNs, a large amount of data and various operating scenarios of
the plant are required for offline training. Also, it’s necessary to have a device with a high processing
capacity to manipulate all of the data, resulting in greater cost and system complexity.

Algorithms 2019, 12, 54; doi:10.3390/a12030054 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/12/3/54?type=check_update&version=1
http://dx.doi.org/10.3390/a12030054
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 54 2 of 21

The conventional integral proportional controller (PI) is the dominant choice in most industrial
applications due to its easy implementation. However, PI controllers are unable to offer effective
solutions against different external disturbances and parametric variations. In this paper, we propose
the use of stochastic optimization algorithms based on evolutionary and particle intelligence techniques,
as well as mathematical functions for calculation of the controller gains, in order to improve and
optimize the closed-loop system performance under different operating conditions.

Nature inspired algorithms, stochastic algorithms, and algorithms based on population behavior
are inspired by two principles: (1) nature; (2) the environment. The first aspect is Darwin’s evolutionary
theory, where only the strongest individuals or those who adapt to the environment around them
survive [21]. This feature is the basis for the development or inspiration of evolutionary algorithms,
where the best solutions generated by mutation and crossover operators are used to transfer the
best genes to the next generation in an evolutionary simulation process, an example of which is the
biogeography-based optimization (BBO) algorithm developed by Dan Simon [22], which takes up
the work “The Theory of Island Biogeography” by Marc Arthur and Wilson (1960), this algorithm
is based on the behavior of the species within a habitat, taking into account the phenomena of
emigration, immigration and mutation. Another clear example is the flower pollination algorithm
(FPA) proposed by Yang (2012) [23], in which flower reproduction is imitated by taking into account
all the factors and processes necessary for pollination, and where the reproduction of the most suitable
floral species predominates.

The second aspect of inspiration are the algorithms developed or created from observing different
kinds of particle swarms [24]. In 1995 Russell Eberhart and James Kennedy developed a particle swarm
optimization algorithm based on groups of social relationships between individuals. Thanks to this
research, the behaviors of some biological species have been emulated, such as birds, fish, ants, fireflies,
whales, bats, gray wolves, termites, among others. These search algorithms are based on a randomly
generated population that moves continuously around a search space using variation operators. In [25]
the cuckoo search algorithm (CSA) is modeled on the aggressive way of reproduction of the cuckoo
bird and the characteristic flight patterns of other types of birds. In reference [26] the so-called bat
algorithm (BA) is proposed that mimics the phenomenon of echolocation of small bats to reach their
prey. Beneoluchi et al [27] proposed an algorithm based on the behavior of the African buffalo that
has the ability to organize itself through two basic sounds for finding solutions. Another algorithm
based on swarm intelligence is the Artificial Bee Colony (ABC), in which the honeybee’s food search is
imitated to solve problems of numerical optimization, both the ABC and the improved algorithms that
derive from it have been applied in the training of neural networks [28,29].

There are also meta-heuristics that do not necessarily have a real inspiration, where simple
mathematical functions can also be used to design optimization algorithms in this field. One of these
is the sine cosine algorithm (SCA), which uses the sine and cosine functions to explore and exploit the
space between two solutions in the search space in order to find better solutions.

Several bioinspired algorithms have been used for the calculation of conventional controller gains
are detailed in different works. In reference [30], the BA is used to optimize a PID robust controller
that takes care of maintaining a constant voltage level at the load of a DC-DC converter. Similarly,
in reference [31] a BA searches for the gains of a PI controller to calculate the maximum power point of
a photovoltaic system that supplies the current and voltage for a switchable reluctance motor.

In the same way, in reference [32] the performance of the frequency control strategy of a hybrid
power system based on the CSA is investigated. The system’s generator units are used in hybrid
vehicles. Here CSA-optimized PI/PID controllers are used for control of wind turbine generators,
a diesel engine generator, and a battery power storage system to adjust total active power generation
according to load demand. Also, in reference [33] we have found the use of the CSA for finding
optimal tuning parameters for the I-PD and PI-PD controllers, which are applied for speed control of
DC motors in the presence of load disturbances.

Algorithms 2019, 12, 54 3 of 21

In reference [34], FPA is used for the calculation of the gains of a PI controller of two degrees of
freedom, to control of the heat flow experiment. Also, in reference [35], it is used for the optimization
of a PI-PD controller in cascade within a multi-area power system. The BBO algorithm is also found in
reference [36] where the comparison is made between the use of BBO for the optimization of PI and
PID controllers, for handling of a thermal hybrid system composed of a Dish-Stirling solar thermal
and a wind turbine. This type of strategy is also present in the control of electrical devices as in
reference [37], where a PI controller is optimized for the control of the voltage of a three-phase rectifier.
In reference [38] SCA is used along with a PI controller for the optimal control of a capacitive energy
storage system, just as in reference [39] a hybrid system is used that consists of the calculation of
optimal gains of a PID controller through the use of SCA and fuzzy logic for frequency control in an
autonomous power system.

The purpose of this paper is to compare five different nature inspired algorithms to adjust the
parameters of the PI controllers in order to determine which provides better performance when applied
to the speed control of a PMSM. Algorithms inspired by the nature of BA, BBO, CSA, FPA and SCA
are tested and the result is compared to show which one is more useful for speed regulation tasks.
In summary, nature inspired algorithms search six gains for the speed tracking of a PMSM. The control
system is based on three PI controllers where the gains are tuned using nature-inspired algorithms.
The external PI control loop regulates the rotor speed to the desired reference value and sets the
reference values for the internal control loop which regulates the currents on the d-axis and q-axis
of the PMSM (Figure 1). The internal control loop consists of two PI controllers whose tasks are to
regulate the iq current to the value set by the external control loop and keep the id current equal to zero.

Algorithms 2018, 11, x FOR PEER REVIEW 3 of 21

In reference [34], FPA is used for the calculation of the gains of a PI controller of two degrees of

freedom, to control of the heat flow experiment. Also, in reference [35], it is used for the optimization

of a PI-PD controller in cascade within a multi-area power system. The BBO algorithm is also found

in reference [36] where the comparison is made between the use of BBO for the optimization of PI

and PID controllers, for handling of a thermal hybrid system composed of a Dish-Stirling solar

thermal and a wind turbine. This type of strategy is also present in the control of electrical devices as

in reference [37], where a PI controller is optimized for the control of the voltage of a three-phase

rectifier. In reference [38] SCA is used along with a PI controller for the optimal control of a

capacitive energy storage system, just as in reference [39] a hybrid system is used that consists of the

calculation of optimal gains of a PID controller through the use of SCA and fuzzy logic for frequency

control in an autonomous power system.

The purpose of this paper is to compare five different nature inspired algorithms to adjust the

parameters of the PI controllers in order to determine which provides better performance when

applied to the speed control of a PMSM. Algorithms inspired by the nature of BA, BBO, CSA, FPA

and SCA are tested and the result is compared to show which one is more useful for speed

regulation tasks. In summary, nature inspired algorithms search six gains for the speed tracking of a

PMSM. The control system is based on three PI controllers where the gains are tuned using

nature-inspired algorithms. The external PI control loop regulates the rotor speed to the desired

reference value and sets the reference values for the internal control loop which regulates the

currents on the d-axis and q-axis of the PMSM (Figure 1). The internal control loop consists of two PI

controllers whose tasks are to regulate the qi current to the value set by the external control loop

and keep the di current equal to zero.

It is important to note that these optimization algorithms are increasingly popular in

engineering applications because: (I) they are based on fairly simple concepts and are easy to

implement; (II) they do not require gradient information; (III) they can overlook local optimals; (IV)

they can be used in a wide range of problems spanning different disciplines.

Figure 1. Speed control scheme of a PMSM.

2. Mathematical Model of PMSM

The PMSM is a nonlinear system, strong coupling between its mechanical and electrical

variables. The differential equations that define the dynamics of the motor in a frame of reference dq

can be defined as:

���

��
= −

��

��

�� +
���

��

��� +
1

��

�� (1)

Figure 1. Speed control scheme of a PMSM.

It is important to note that these optimization algorithms are increasingly popular in engineering
applications because: (I) they are based on fairly simple concepts and are easy to implement; (II) they
do not require gradient information; (III) they can overlook local optimals; (IV) they can be used in a
wide range of problems spanning different disciplines.

Algorithms 2019, 12, 54 4 of 21

2. Mathematical Model of PMSM

The PMSM is a nonlinear system, strong coupling between its mechanical and electrical variables.
The differential equations that define the dynamics of the motor in a frame of reference dq can be
defined as:

did
dt

= −Rs

Ld
id +

PLq

Ld
iqω +

1
Ld

ud (1)

diq
dt

= −Rs

Lq
iq −

PLd
Lq

idω− Pλm

Lq
ω +

1
Lq

uq (2)

dω

dt
=

1.5Pλm

J
iq −

b
J

ω− 1
J

Tl (3)

where id, iq, ud and uq, are dq components of the current and the voltage in the stator respectively, Rs is
the stator resistance, P is the number of pole pairs, λm is the flux generated by the permanent magnet
of the rotor, Ld and Lq are the dq components of the stator winding inductance, b is a viscous damping
coefficient, J is the inertia moment and Tl is the load torque. In case the PMSM is surface mounted
permanent magnet type, Lq is equal Ld, consequently, the electromagnetic torque Te can be defined
as follows:

Te = 1.5
np

2
λmiq (4)

where np is the number of poles. The dynamic equations of the mechanical variables of the PMSM are
expressed as

dωr

dt
=

1
J
(Te − Tl) (5)

dθr

dt
= ωr (6)

where ωr is the mechanical speed of the rotor and, θr is the position of the rotor.

3. Control Scheme for PMSM

The control objective is to design an asymptotically stable speed controller for PMSM to make the
rotor speed track the reference trajectory correctly under different parameter perturbations and load
torque disturbances. Therefore, the main signal error can be defined as,

eω = ω∗ −ωr (7)

where ω* is the desired rotor speed. If that the constant flow links have a linear relationship with the
current in the stator; thereby its values can be estimate in an easy way. We can define the tracking error
of the d-axis current as,

ed = i∗d − id (8)

where i∗d is the d-axis current reference value. In theory, the proposed controller forces the current id to
have a value of zero in a finite time, so that the electric torque is proportional to current iq. Therefore,
the current error in q-axis is defined as follows

eq = i∗q − iq (9)

where i∗q is the q-axis current reference value. The proposed control system is based on a sinusoidal
pulse width modulation (SPWM) scheme; mq and md are the modulating signals in dq reference frame.
The modulation signals are transformed to abc system using the Park transformation and rotor position
θr, for comparison with high-frequency carrier signal. Figure 1 details the control scheme.

Algorithms 2019, 12, 54 5 of 21

4. Definition of the Tuning Problem Based on Optimization Algorithms

The problem to be solved in this work is a search for more optimal values for three PI controllers
that regulate the rotor speed of the PMSM. To solve the optimization problem, it is necessary to use
a target function to generate an adequate search space and find the best parameters of PI regulators.
The objective function can be defined using different error criteria of the dynamic response of the
system, such as: (a) Integrated absolute error (IAE), (b) Integrated Squared Error (ISE), (c) Integrated
Time Squared Error (ITSE), (d) Integrated Time Absolute Error (ITAE). Although these definitions
work properly, in this work we propose to use the following objective function [40], which allows us to
obtain better results:

minJ =
(

1− e−β
)(

Mp + ess
)
+ e−β(ts − tr) (10)

where Mp is the maximum overshoot; ess is the error in steady state; ts is the time of establishment;
tr is the rise time; and β is the weighting factor that can be modified depending on the dynamic
characteristics that are required to be reached. In relation to the objective function, Equation (10) the
optimization problem can be defined as follows: minimize J subject to:

kmin
p,j ≤ kp ≤ kmax

p,j (11)

kmin
i,j ≤ ki ≤ kmax

i,j (12)

for j = [iq, id, w]. It should be mentioned that β in (10) determines the magnitude of the characteristic
values of the transient response of the system. If β > 0.7 is reduced MP and ess; if β < 0.7 is minimized
tr and ts. The search space of the parameters is defined as:

kp,iq = (0.01,300) ki,iq = (0.01,50)
kp,id = (0.01,180) ki,id = (0.01,150)
kp,ωr = (0.01,500) ki,ωr = (0.01,350)

The control scheme for PMSM is exposed in section three, however, a proper operation requires
robust strategies or adaptive control that ensure safe and reliable performance also must respond
quickly and appropriately to various scenarios that it may face.

5. Nature-Inspired Algorithms

The optimization process refers to finding the optimal values of the parameters of a given system
from all possible values, in order to maximize or minimize its performance. Optimization problems
can be found in all fields of study, which makes the development of optimization algorithms essential.

Optimization algorithms can be classified based on their nature as deterministic or stochastic
algorithms. Deterministic algorithms follow a rigorous procedure, and its path and values of both
design variables and functions are repeatable. Most conventional classical algorithms are deterministic,
an example is the Newton Raphson algorithm.

Stochastic algorithms always have some randomness, the strings or solutions in the population
will be different each time a program is executed because the algorithms use some pseudo-random
numbers, the final results may not be very different, but the paths of each individual are not exactly
equal. These algorithms are divided into two main groups: heuristic and metaheuristic.

The term heuristics means “to find or discover by trial and error”, using these algorithms quality
solutions are found for a difficult optimization problem in a reasonable time, but there is no guarantee
that optimal solutions will be reached. Metaheuristic algorithms generally work better than a simple
heuristic, because these use some randomization trading and local search. It is worth noting that there
are no agreed definitions of heuristics and metaheuristics in literature; some use “heuristics” and
“metaheuristics” interchangeably [41].

Algorithms 2019, 12, 54 6 of 21

Metaheuristics can be classified by their source of inspiration, most new algorithms today have
been developed inspired by nature, most nature-inspired algorithms are based on some successful
features of the biological system (biologically inspired, or bioinspired for short). Not all algorithms
were based on biological systems, as many algorithms have been developed using the inspiration of
physical, chemical and mathematical systems [42].

5.1. Bat Algorithm

The BA was developed by Yang [43] and mimics the behavior of small bats that use echolocation
to orient themselves in the dark to avoid obstacles, detect prey and locate cracks. Echolocation is
a navigation system based on the hearing of bats and some other animals to detect objects in their
environment by emitting a sound signal to the environment.

Within the BA each virtual bat in the initial population employs a similar echolocation
phenomenon to update its position. Bat echolocation is a perceptual system in which a series of
strong ultrasonic waves are released to create echoes. These waves return with delays and at different
audio levels, those bats evaluate to detect a specific prey. BA is based on the following rules that can
summarize the behavior of bats using the echolocation process:

(a) Each bat uses the characteristics of the echolocation process to make a classification among its
prey and obstacles.

(b) Bats fly randomly at an initial speed vi to reach the initial position xi; with a frequency that
can vary from a minimum frequency f min to a maximum frequency f max; or varying the wavelength λ

and its intensity or volume L to search for their prey. Bats can automatically adjust the wavelength or
frequency of the signal they emit, and the number of pulses emitted r depends on how close your prey
or target is.

(c) The intensity or volume changes from a high value L0 to a constant minimum value Lmin.
During the optimization process, the xi position and vi speed of each bat must be specified and

updated in each BA iteration. The rules for obtaining new bat solutions and velocities are given by the
following equations

fi = fmin + (fmax − fmin)rand (13)

vt+1
i = vt

i +
(
x∗ − xt

i
)

fi (14)

xt+1
i = xt

i + vt+1
i (15)

where rand ∈ [0, 1] is a random vector that follows a normal distribution, fi is the frequency of the ith
virtual bat, fmin and fmax is the minimum and maximum frequency that the bats will emit, respectively,
vt

i and vt+1
i is the flight speed of the ith current bat and the next flight speed respectively, xt

i and xt+1
i is

the position of the ith bat currently and at a later instant; y x* is the best solution currently generated,
which is calculated by comparing all bat solutions. For the local search, a solution of all the best current
solutions is chosen, a new solution for each bat is generated by means of a random path defined by the
following expression

xn = xa + εLt (16)

where xn is the new solution, xa is the best old solution ε ∈ [−1, 1], is a random number, Lt is the
average volume of all bats in iteration t. As the intensity is reduced if the bats are closer to their prey,
while the number of emitted pulses is increased, the volume can be adjusted to a convenient value
as follows

Lt+1
i = α + Lt

i (17)

rt+1
i = r0

i
(
1− e−γt) (18)

where α is a random constant between 0 and 1, γ is a constant value greater than zero. The basic steps
in the BA algorithm process are presented in the flowchart shown in Figure 2.

Algorithms 2019, 12, 54 7 of 21

Algorithms 2018, 11, x FOR PEER REVIEW 7 of 21

where  is a random constant between 0 and 1,  is a constant value greater than zero. The basic

steps in the BA algorithm process are presented in the flowchart shown in Figure 2.

Figure 2. Bat Algorithm Flowchart.

5.2. Cuckoo Search Algorithm

CSA is an algorithm based on the application of metaheuristics from nature. The CSA is an

algorithm based on the aggressive breeding strategy of cuckoo birds and the Lévy flight

characteristics of some bird species [44]. The CSA begins when the mother cuckoo lays her eggs in

other people’s nests, of the same or another species of bird. The mother nest owner may discover

that the eggs do not belong to her, so she may destroy the eggs or leave the nest with all the eggs

inside.

Some species of cuckoo birds have evolved in such a way that the females throwing the eggs

can imitate the color and pattern of the eggs of the selected nest. This action reduces the chance of

the egg being abandoned and increases the ability to reproduce.

The cuckoo search algorithm can be described by the following three actions:

(a) Each cuckoo lays one egg at a time, which represents a set of coordinates of the solution and

deposits it in a nest chosen at random.

(b) The part of the nests that contain the best eggs or candidate solutions is moved to form the

next generation.

(c) The number of nests is fixed and sometimes the nest owner may discover a strange egg with

a probability]10[aP . If this happens, the host may destroy the egg or leave the nest. This results

in the construction of a new nest at a different location.

Using the above three rules, the CSA starts with an initial population randomly distributed to

perform the search for a nest to lay the egg. The random position of the nest where the egg is laid is

decided by making Levy flights, defined as:

Figure 2. Bat Algorithm Flowchart.

5.2. Cuckoo Search Algorithm

CSA is an algorithm based on the application of metaheuristics from nature. The CSA is an
algorithm based on the aggressive breeding strategy of cuckoo birds and the Lévy flight characteristics
of some bird species [44]. The CSA begins when the mother cuckoo lays her eggs in other people’s
nests, of the same or another species of bird. The mother nest owner may discover that the eggs do not
belong to her, so she may destroy the eggs or leave the nest with all the eggs inside.

Some species of cuckoo birds have evolved in such a way that the females throwing the eggs can
imitate the color and pattern of the eggs of the selected nest. This action reduces the chance of the egg
being abandoned and increases the ability to reproduce.

The cuckoo search algorithm can be described by the following three actions:
(a) Each cuckoo lays one egg at a time, which represents a set of coordinates of the solution and

deposits it in a nest chosen at random.
(b) The part of the nests that contain the best eggs or candidate solutions is moved to form the

next generation.
(c) The number of nests is fixed and sometimes the nest owner may discover a strange egg with a

probability Pa ∈ [0, 1]. If this happens, the host may destroy the egg or leave the nest. This results in
the construction of a new nest at a different location.

Using the above three rules, the CSA starts with an initial population randomly distributed to
perform the search for a nest to lay the egg. The random position of the nest where the egg is laid is
decided by making Levy flights, defined as:

x(t + 1) = x(t) + α⊕ Levy(λ) (19)

Algorithms 2019, 12, 54 8 of 21

where t is the current generation number and α > 0 is the step size. The product

Algorithms 2018, 11, x FOR PEER REVIEW 8 of 21

�(� + 1) = �(�) + � ⊕ ����(�) (19)

where t is the current generation number and 0 is the step size. The product  means input

multiplications. Basically, Lévy flights provide a random walk, while their random steps are drawn

from a Lévy distribution, which for large steps has an infinite variance with an infinite mean, with

the form

���� ~� = ����, (−1 < �� ≤ 3) (20)

In the real world, if the egg of a cuckoo bird is very similar to the egg of the nest-owning bird,

then the egg has less chance of being discovered so the suitability must be related to the difference in

solutions. Following the rules defined above, the optimization algorithm can be summarized in the

following flowchart (Figure 3).

Figure 3. Cuckoo Search Algorithm Flowchart.

5.3. Sine-Cosine Algorithm

The sine cosine algorithm (SCA) is a new metaheuristic algorithm SCA is population based

optimization technique that founds the optimization process with a set of random solutions [45].

These solutions are iteratively calculated over the course of iterations by an objective function. The

probability of finding global optima is increased with the sufficient number of random solutions.

The SCA is simply based on the Sine-Cosine function used for exploration and exploitation phases in

optimization problems, which can be formulated as:

��
��� = ��

� + �� × sin(��) × |����
� − ��

�| (21)

��
��� = ��

� + �� × cos(��) × |����
� − ��

�| (22)

where t
iX is the location of current solution in i-th dimension at t-th iteration 1r , 2r , 3r are

random values, and iP is the location of targeted optimal solution. The parameter 1r is a control

parameter that is decreased linearly from a constant value a to 0 by each iteration to achieve the

balance between the exploration and exploitation phases of the algorithm Equations (21) and (22) are

combined to be used for exploration and exploitation processes as follows:

means input multiplications. Basically, Lévy flights provide a random walk, while their random steps
are drawn from a Lévy distribution, which for large steps has an infinite variance with an infinite
mean, with the form

Levy ∼ u = t−λc , (−1 < λc ≤ 3) (20)

In the real world, if the egg of a cuckoo bird is very similar to the egg of the nest-owning bird,
then the egg has less chance of being discovered so the suitability must be related to the difference in
solutions. Following the rules defined above, the optimization algorithm can be summarized in the
following flowchart (Figure 3).

Algorithms 2018, 11, x FOR PEER REVIEW 8 of 21

�(� + 1) = �(�) + � ⊕ ����(�) (19)

where t is the current generation number and 0 is the step size. The product  means input

multiplications. Basically, Lévy flights provide a random walk, while their random steps are drawn

from a Lévy distribution, which for large steps has an infinite variance with an infinite mean, with

the form

���� ~� = ����, (−1 < �� ≤ 3) (20)

In the real world, if the egg of a cuckoo bird is very similar to the egg of the nest-owning bird,

then the egg has less chance of being discovered so the suitability must be related to the difference in

solutions. Following the rules defined above, the optimization algorithm can be summarized in the

following flowchart (Figure 3).

Figure 3. Cuckoo Search Algorithm Flowchart.

5.3. Sine-Cosine Algorithm

The sine cosine algorithm (SCA) is a new metaheuristic algorithm SCA is population based

optimization technique that founds the optimization process with a set of random solutions [45].

These solutions are iteratively calculated over the course of iterations by an objective function. The

probability of finding global optima is increased with the sufficient number of random solutions.

The SCA is simply based on the Sine-Cosine function used for exploration and exploitation phases in

optimization problems, which can be formulated as:

��
��� = ��

� + �� × sin(��) × |����
� − ��

�| (21)

��
��� = ��

� + �� × cos(��) × |����
� − ��

�| (22)

where t
iX is the location of current solution in i-th dimension at t-th iteration 1r , 2r , 3r are

random values, and iP is the location of targeted optimal solution. The parameter 1r is a control

parameter that is decreased linearly from a constant value a to 0 by each iteration to achieve the

balance between the exploration and exploitation phases of the algorithm Equations (21) and (22) are

combined to be used for exploration and exploitation processes as follows:

Figure 3. Cuckoo Search Algorithm Flowchart.

5.3. Sine-Cosine Algorithm

The sine cosine algorithm (SCA) is a new metaheuristic algorithm SCA is population based
optimization technique that founds the optimization process with a set of random solutions [45].
These solutions are iteratively calculated over the course of iterations by an objective function.
The probability of finding global optima is increased with the sufficient number of random solutions.
The SCA is simply based on the Sine-Cosine function used for exploration and exploitation phases in
optimization problems, which can be formulated as:

Xt+1
i = Xt

i + r1 × sin(r2)×
∣∣r3Pt

i − Xt
i
∣∣ (21)

Xt+1
i = Xt

i + r1 × cos(r2)×
∣∣r3Pt

i − Xt
i
∣∣ (22)

where Xt
i is the location of current solution in i-th dimension at t-th iteration r1, r2, r3 are random

values, and Pi is the location of targeted optimal solution. The parameter r1 is a control parameter that
is decreased linearly from a constant value a to 0 by each iteration to achieve the balance between the

Algorithms 2019, 12, 54 9 of 21

exploration and exploitation phases of the algorithm Equations (21) and (22) are combined to be used
for exploration and exploitation processes as follows:

Xt+1
i =

{
Xt

i + r1 × sin(r2)×
∣∣r3Pt

i − Xt
i

∣∣, r4 < 0.5
Xt

i + r1 × cos(r2)×
∣∣r3Pt

i − Xt
i

∣∣, r4 ≥ 0.5
(23)

The designed parameter r1 is employed to guide the next position’s region, which may be between
the solution and destination or outside it. To achieve balance between exploration and exploitation
phase, the dynamical fine-tune of r1 during search process is carried out using Equation (24) as:

r1 = a− t
a
T

(24)

where a is a constant, T is the maximum number of iterations and t is the current iteration. The r2

is random variable which used to find the direction of the movement of the next solution (i.e., if it
towards or outwards Pi). Also, the r2 is random variable which gives random weights for Pi in order
to stochastically emphasize (r3 > 1) or deemphasize (r3 < 1) the effect of desalination in defining the
distance. The r4 is a random number in [0, 1] is used to switch between the sine and cosine functions
as in Equation (23). The steps of the SCA algorithm are given in Figure 4.

Algorithms 2018, 11, x FOR PEER REVIEW 10 of 21

��
��� = ��

� + � × �(�) × (�∗ − ��
�) (25)

where t
ix is the pollen or solution vector in iteration t ; g is the best solution of all the generation

of current solutions;  is a scale factor to control the step isize and L is the pollination force,

which is a step size related to the Lévy distribution.

Levy flight is a group of random processes in which the length of each jump follows Levy's

probability distribution function and has infinite variation. Following, L for a Levy distribution is

given by:

� ≈
� × Γ(�) × ���

��
2

�
×

1

����
� ≫ ��0, (26)

where   is a standard range function.

For pollination, the second and third rule is given by

��
��� = ��

� + ����
� − ��

� � (27)

where
t
jx y t

kx are pollens from different flowers of the same plant species. This essentially

imitates the constancy of the flower in a limited neighborhood. Mathematically, if
t
jx y t

kx come

from the same species or are selected from the same population, this becomes a local random walk if

we extract  from a uniform distribution in [0,1].

Most flower pollination activities can occur on both a local and global scale. In practice, adjacent

flower patches or flowers in the not-so-distant neighborhood are more likely to be pollinated by

local flower pollen than those that are far away. For this, we use a change probability (Rule 4) or a

proximity probability p to switch between global pollination common to intensive local pollination.

Figure 5 represents the flowchart of the FPA algorithm that provides information on the

execution steps of the optimization technique.

Figure 4. Sine Cosine Algorithm Flowchart.

5.4. Flower Pollination Algorithm

Pollination is a natural mechanism for the reproduction of flowering plants and is defined as
the transfer of pollen from one flower to the stigma of the pistil of the same flower or another flower

Algorithms 2019, 12, 54 10 of 21

of the same plant species. There are two types of pollination according to pollen transfer methods:
(1) biotic pollination (90% of plants have this pollination) this is done by pollinators such as insects or
animals. and (2) abiotic pollination (10% of plants have this pollination) does not require the transfer of
pollen by living organisms, it is done by water, wind or gravity as pollinators. When pollen goes from
one plant to another of the same type, such pollination is called cross-pollination and self-pollination
occurs when pollen is delivered to the same flower or flowers of the same plant.

Generally, the size of the flowers is consistent with the bodies of the insects so that the insects
can enter the flowers and their bodies are in contact with the pollen and pistil. Pollinating insects are
often associated with a specific type of flower, which is defined as the constancy of the flower. That is,
pollinators tend to sit on certain species of flowers. Therefore, flower constancy helps to quantify
the cost of searching for each of the pollinators. For biotic pollination, pollinators such as flies, birds,
and bats can fly long distances. Therefore, they can be considered as global pollination. Similarly,
the passage jump or flight of birds or bees can be described as a collection flight. The strategies of
biotic pollination, cross-pollination, abiotic pollination and self-pollination are defined in the domain
optimization and incorporated in the flower pollination algorithm. The pollination process includes a
series of complex mechanisms in plant production strategies. A flower and its pollen gametes form a
solution to the optimization problem. The constancy of the flower as an adjusted solution is perceptible.
In global pollination, pollinators transfer pollen over long distances to high adaptation. On the other
hand, local pollination within a limited area of a single flower takes place under the shade of wind or
water. Global pollination occurs with a probability called change probability. If this step is removed,
then local pollination replaces it [23].

Four rules are followed in the FPA algorithm:

1. Biotic pollination and cross-pollination are considered global pollination and pollen transporters
or pollinators move in a way that follows Lévy flights.

2. Abiotics and self-pollination are considered local pollination.
3. Pollinators, including insects, can develop a floral constancy. Flower constancy is a production

probability that is proportional to the similarity of two flowers involved.
4. The interaction of global and local pollination can be controlled by the probability of change.

The first and third rules can be expressed as:

xt+1
i = xt

i + γ× L(λ)×
(

g∗ − xt
i
)

(25)

where xt
i is the pollen or solution vector in iteration t; g* is the best solution of all the generation of

current solutions; γ is a scale factor to control the step isize and L is the pollination force, which is a
step size related to the Lévy distribution.

Levy flight is a group of random processes in which the length of each jump follows Levy’s
probability distribution function and has infinite variation. Following, L for a Levy distribution is
given by:

L ≈
λ× Γ(λ)× sin πλ

2
π

× 1
S1+λ

S� S00, (26)

where Γ(λ) is a standard range function.
For pollination, the second and third rule is given by

xt+1
i = xt

i + ε
(

xt
j − xt

k

)
(27)

where xt
j y xt

k are pollens from different flowers of the same plant species. This essentially imitates
the constancy of the flower in a limited neighborhood. Mathematically, if xt

j y xt
k come from the same

species or are selected from the same population, this becomes a local random walk if we extract ∈
from a uniform distribution in [0, 1].

Algorithms 2019, 12, 54 11 of 21

Most flower pollination activities can occur on both a local and global scale. In practice, adjacent
flower patches or flowers in the not-so-distant neighborhood are more likely to be pollinated by local
flower pollen than those that are far away. For this, we use a change probability (Rule 4) or a proximity
probability p to switch between global pollination common to intensive local pollination.

Figure 5 represents the flowchart of the FPA algorithm that provides information on the execution
steps of the optimization technique.

Algorithms 2018, 11, x FOR PEER REVIEW 11 of 21

Figure 4. Sine Cosine Algorithm Flowchart.

Figure 5. Flower Pollination Algorithm Flowchart.

5.5. Biogeography-Based Optimization Algorithm

Inspired by biogeography, Simon developed a new approach called Biogeography-Based

Optimization (BBO) in 2008. This algorithm is an example of how a natural process can be modeled

to solve optimization [14]. In BBO, each possible solution is an island and their features that describe

habitability are included in a Habitat Suitability Index (HSI). The goodness of each solution are

named Suitability Index Variables (SIV). For example, of the natural process, why some islands may

lean towards accumulating many more species than others. Because of possess certain

environmental features that are more suitable to sustaining that kind than other islands with fewer

species. It is axiomatic the habitats with high HSI have large populations and a high immigration

rate and feature of a large number of species that migrate to other habitats. The rate of immigration

will be lower if these habitats are already saturated with species. On the other hand, habitats with

low HSI have high immigration and low immigration rate, because of the sparse population.

The fitness function FF is associated with each solution of Biogeography-Based Optimization

BBO, which is analogous to HSI of a habitat. A good solution is analogous to a habitat having high

HSI and a poor solution represents a habitat having a low HSI. The best solutions share their

geographies of the lowest solutions throw migration (emigration and immigration). The best

solutions have more resistance to change than the lowest solutions. However, the lowest solutions

have more change from time to time and accept many new features from the best solutions. The

immigration rate and emigration rate of the j-th island may be formulated as follows in Equations 28

and 29 [22].

�� = � �1 −
�

�
� (28)

�� =
�. �

�
 (29)

Figure 5. Flower Pollination Algorithm Flowchart.

5.5. Biogeography-Based Optimization Algorithm

Inspired by biogeography, Simon developed a new approach called Biogeography-Based
Optimization (BBO) in 2008. This algorithm is an example of how a natural process can be modeled to
solve optimization [14]. In BBO, each possible solution is an island and their features that describe
habitability are included in a Habitat Suitability Index (HSI). The goodness of each solution are named
Suitability Index Variables (SIV). For example, of the natural process, why some islands may lean
towards accumulating many more species than others. Because of possess certain environmental
features that are more suitable to sustaining that kind than other islands with fewer species. It is
axiomatic the habitats with high HSI have large populations and a high immigration rate and feature
of a large number of species that migrate to other habitats. The rate of immigration will be lower if
these habitats are already saturated with species. On the other hand, habitats with low HSI have high
immigration and low immigration rate, because of the sparse population.

The fitness function FF is associated with each solution of Biogeography-Based Optimization
BBO, which is analogous to HSI of a habitat. A good solution is analogous to a habitat having high HSI
and a poor solution represents a habitat having a low HSI. The best solutions share their geographies
of the lowest solutions throw migration (emigration and immigration). The best solutions have more
resistance to change than the lowest solutions. However, the lowest solutions have more change

Algorithms 2019, 12, 54 12 of 21

from time to time and accept many new features from the best solutions. The immigration rate and
emigration rate of the j-th island may be formulated as follows in Equations (28) and (29) [22].

λi = I
(

1− j
n

)
(28)

µi =
E.j
n

(29)

where: µi, λi are the immigration rate and the emigration rate of j individual; I is the maximum
possible immigration rate; E is the maximum possible emigration rate; j is the number of species of j-th
individual; and is the maximum number of species. j-th in BBO, the mutation is used to increase the
diversity of the population to get the best solutions.

Mutation operator modifies a habitat’s SIV randomly based on mutation rate. The mutation rate
mj is expressed in Equation (30).

mj = mmax

(
1− pj

pmax

)
(30)

where mj is the mutation rate for the j-th habitat having a j number of species; mmax is the maximum
mutation rate; pmax is the maximum species count probability; pj the species count probability for the
j-th habitat and is given by Equation (31):

Xt+1
i =


−(λi + µi)Pj + µiPj, j ≤ 0

−(λi + µi)Pj + λj−1Pj−1 + µj+1Pj+1, 1 ≤ j ≤ n
−(λi + µi)Pj + λj−1Pj−1+, j ≤ n

(31)

where µj+1, λj+1 are the immigration and emigration rate for the j-th habitat contains j + 1 species;
µj−1, λj−1, are the immigration and emigration rate for the j-th habitat contains j − 1 species. Figure 6
represents the flowchart of the BBO.

Figure 6. Biogeography-Based Optimization Flowchart.

Algorithms 2019, 12, 54 13 of 21

6. Results and Discussion

The adjustment parameters of the algorithms, which were used for the BBO are number of habitats
equal to 40, a permanence range of 1 and a mutation factor of 0.04 [46]. For SCA was set maximum of
iterations equal to 40 and 40 search agents, r1 = 2 − (0.2t), r2, r3 and r4 with a randomized value [45].
While CSA occupied the parameters 40 nests and a probability of finding foreign eggs Pa = 0.25 [25],
the adjustment of the FPA are as size of population equal to 40, a maximum number of iterations equal
to 40 and initial value of p equal to 0.8 [47], and BA with r0 = 0.1, L0 = 0.9, γ = 0.9, α = 0.9, Fmin = 0 and
Fmax = 0 [43]. The initial population and the number of iterations for all the algorithms was fixed at 40,
the same value was chosen so that the results could be object of comparison, the parameters of each
algorithm are taken from the referenced articles.

Obtaining the gains of the three PI controllers that make up the speed control scheme occurs
based on simulations developed in the Matlab environment, where the different heuristics and the
dynamic model of the PMSM described by the differential Equations (1)–(3) are integrated.

The motor parameters used in the simulation are contained in Table 1. While the graphs in Figure 7
show the behavior of the system using the different algorithms, feeding with a step (1000 rad/s),
and under constant load torque (1 Nm).

Table 1. Parameters of PMSM.

Parameter Symbol Value and Units

Inertia moment J 3.5 × 10−5 Nm
Nominal voltage v 200 V
Stator resistance rs 2.6 Ω

Stator inductance d Ld 6.73 mH
Stator inductance q Lq 6.73 mH

Magnetic flux λm 0.319 Wb
Pole pairs np 4

Algorithms 2018, 11, x FOR PEER REVIEW 13 of 21

iterations for all the algorithms was fixed at 40, the same value was chosen so that the results could

be object of comparison, the parameters of each algorithm are taken from the referenced articles.

Obtaining the gains of the three PI controllers that make up the speed control scheme occurs

based on simulations developed in the Matlab environment, where the different heuristics and the

dynamic model of the PMSM described by the differential Equations (1)–(3) are integrated.

The motor parameters used in the simulation are contained in Table 1. While the graphs in

Figure 7 show the behavior of the system using the different algorithms, feeding with a step (1000

rad/s), and under constant load torque (1 Nm).

Table 1. Parameters of PMSM.

Parameter Symbol Value and Units

Inertia moment 𝑱 3.5x10-5 Nm

Nominal voltage 𝒗 200 V

Stator resistance 𝒓𝒔 2.6 Ω

Stator inductance d 𝑳𝒅 6.73 mH

Stator inductance q 𝑳𝒒 6.73 mH

Magnetic flux 𝝀𝒎 0.319 Wb

Pole pairs 𝒏𝒑 4

(a)

(b)

Figure 7. Cont.

Algorithms 2019, 12, 54 14 of 21

Algorithms 2018, 11, x FOR PEER REVIEW 14 of 21

(c)

(d)

(e)

Figure 7. Motor response to step and constant torque (a) Response using BA; (b) Response using

BBO; (c) Response using CSA; (d) Response using FPA; (e) Response using SCA.

The results of single run might be unreliable due to the stochastic nature of meta-heuristics. All

of the algorithms are run 25 times and statistical results from the evaluation of the gains of the three

PI controllers, calculated by the different optimization algorithms in the control the PMSM

(minimum, maximum, mean and standard deviation) are collected and reported in Table 2. These

results show that the FPA managed to obtain the smallest value of the minimum function, with the

BBO being the second best, followed by SCA and CSA, with BA presenting the worst result.

Figure 7. Motor response to step and constant torque (a) Response using BA; (b) Response using BBO;
(c) Response using CSA; (d) Response using FPA; (e) Response using SCA.

The results of single run might be unreliable due to the stochastic nature of meta-heuristics. All of
the algorithms are run 25 times and statistical results from the evaluation of the gains of the three PI
controllers, calculated by the different optimization algorithms in the control the PMSM (minimum,
maximum, mean and standard deviation) are collected and reported in Table 2. These results show
that the FPA managed to obtain the smallest value of the minimum function, with the BBO being the
second best, followed by SCA and CSA, with BA presenting the worst result.

Algorithms 2019, 12, 54 15 of 21

Table 2. Minimum function statistical data using different optimization algorithms.

Algorithm Min Max Mean Std

FPA 1.7518 11.9437 5.93158 2.9066
BBO 10.1006 22.3857 13.0411 3.4514
BA 10.9315 32.5701 18.1538 6.3145

CSA 10.4840 15.2290 12.0131 1.2182
SCA 10.2420 14.0670 11.49813 1.3842

The gains of PI controllers found through BA, FPA, SCA, CSA and BBO are listed in Table 3.
The tests were performed on PC with Intel (R) Core (TM) i7-7500U 2.9 GHz with 8.00 GB in RAM and
with 2016b version of Matlab.

Table 3. Optimal gains for PI controllers.

Algorithm kp, ω ki, ω kp, iq ki, iq kp, id ki, id

FPA 0.2252 9.7873 6.7903 12.1943 2.6506 8.5429
BBO 0.3274 18.4462 9.7514 19.2666 19.0868 10.9512
BA 0.3449 18.2279 9.1039 25.0000 31.3601 13.1409

CSA 0.3460 17.0000 9.0940 3.4042 6.9401 4.1019
SCA 0.3158 17.0000 9.6341 1.9076 0.1152 4.6480

The execution time of the different algorithms for the calculation of the profits of the PI controllers
is shown in Table 4.

Table 4. Execution time of optimization algorithms.

Algorithm Average Running Time (s)

FPA 7.7704
BBO 30.0921
BA 5.8327

CSA 5.1923
SCA 5.2713

In order to know the performance of controllers in operating conditions where an unknown
variable load torque is presented, the load torque is modeled using a Lorenz system described by the
following first-order differential equations.

dx
dt

= a(y− x) (32)

dy
dt

= x(b− z)− y (33)

dz
dt

= xy− cz (34)

Tl = 0.04z (35)

where a = 5, b = 12y, c = 25; with initial conditions: x(0) = 0.1, y(0) = 0.1 and z(0) = 0.5 [48]. Below are
two cases in which the reference trajectory has different natures. In the first case the transition between
the desired speed values is smooth. In the second case the changes in the reference speed are values
with a constant rate of change defined by slopes.

Algorithms 2019, 12, 54 16 of 21

6.1. Case 1 PMSM Response to a Speed Reference Characterized by Bezier Polynomials with Variable Load Torque

The reference speed is given by a Bézier polynomial ψ for providing a sufficiently smooth
transfer between the actual and desired speed reference values, within a specific time interval. Then,
the reference trajectory is as follows [49]

ω∗ =



ω1 + (ω2 −ω1)ψ(t, T1, T2) f or T1 ≤ t ≤ T2

ω1 f or T2 ≤ t ≤ T3

ω1 + (ω2 −ω1)ψ(t, T3, T4) f or T3 ≤ t ≤ T4

ω2 f or T4 ≤ t ≤ T5

ω1 + (ω3 −ω2)ψ(t, T5, T6) f or T5 ≤ t ≤ T6

ω3 f or t > T6

(36)

where ω1 = 1000 rad/s, ω2 = 600 rad/s, ω3 = 300 rad/s, T1 = 0 s, T2 = 1 s, T3 = 3 s, T4 = 5 s, T5 = 6.5 s y
T 6 = 7.50 s, and ψ is a polynomial function with the form

ψ = K5
[
r1 − r2K + r3K2 − r4K3 + . . .− r6K5

]
(37)

K =
t + Ti

Tf − Ti
, for i = 1, 2, 3, 4 (38)

The performance of the controllers is verified using performance indices such as ISE, IAE, ITSE and
ITAE. The ISE penalizes the controller for steady state errors, while IAE penalizes the controller for
transient errors, ITSE penalizes the controller for steady state errors over a prolonged time and ITAE
penalizes the controller for transient state errors over a prolonged time. Table 5 shows these indicators
for case 1. The smallest indicators are the result of the BBO algorithm, presenting the best performance
in speed tracking, followed by the FPA, BA, SCA algorithms and with the largest amount of error for
the CSA.

Table 5. Performance indices of PI controllers tuned using BA, BBO, CSA, FPA and SCA in case 1.

Algorithm ISE IAE ITSE ITAE

FPA 0.0692 0.4489 0.1122 1.6248
BBO 0.0681 0.4445 0.1095 1.6036
BA 0.0697 0.4494 0.1126 1.6251

CSA 0.0824 0.4925 0.1340 1.7851
SCA 0.0820 0.4886 0.1318 1.7697

Figure 8 show the speed tracking of all algorithms for case 1, where there is an error in steady
state less than 0.001% of the nominal reference value, it can be observed that the different algorithms
achieve the appropriate tracking of the desired speed profile. The absolute error is shown in Figure 9,
being the maximum error of just 0.9 rad/s, being the BBO the algorithm that gives the least error and
CSA the one that gives the greatest error.

Algorithms 2019, 12, 54 17 of 21
Algorithms 2018, 11, x FOR PEER REVIEW 17 of 21

Figure 8. Simulated waveforms of the rotor speed responses, Case 1.

Figure 9. Waveforms of the rotor speed error performance, Case 1.

6.2. Case 2 PMSM Response to a Trapezoidal Speed Reference with Variable Load Torque

The speed references given by a series of trapezoidal shapes, where the change of reference

values depends on the slope of the waveform. Then, the reference trajectory is as follows

�∗ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ �

�� − ��

�� − ��,
× �� + �� ��� �� ≤ � ≤ ��

�� ��� �� < � ≤ ��

�
�� − ��

�� − ��,
× �� − �� ��� �� < � ≤ ��

�� ��� �� < � ≤ ��

�
�� − ��

�� − ��,
× �� + (�� + ��) ��� �� < � ≤ ��

�� ��� � > ��

(39)

where ω1 = 0 rad/s, ω2 = 500 rad/s, ω2 = ω3, ω4 = 1000 rad/s, ω4 = ω5, ω6 = 800 rad/s, T1 = 0 s,

T2 = 1.5 s, T3 = 3 s, T4 = 4.5 s, T5 = 6 s and T6 = 7.5 s.

Figure 8. Simulated waveforms of the rotor speed responses, Case 1.

Algorithms 2018, 11, x FOR PEER REVIEW 17 of 21

Figure 8. Simulated waveforms of the rotor speed responses, Case 1.

Figure 9. Waveforms of the rotor speed error performance, Case 1.

6.2. Case 2 PMSM Response to a Trapezoidal Speed Reference with Variable Load Torque

The speed references given by a series of trapezoidal shapes, where the change of reference

values depends on the slope of the waveform. Then, the reference trajectory is as follows

�∗ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ �

�� − ��

�� − ��,
× �� + �� ��� �� ≤ � ≤ ��

�� ��� �� < � ≤ ��

�
�� − ��

�� − ��,
× �� − �� ��� �� < � ≤ ��

�� ��� �� < � ≤ ��

�
�� − ��

�� − ��,
× �� + (�� + ��) ��� �� < � ≤ ��

�� ��� � > ��

(39)

where ω1 = 0 rad/s, ω2 = 500 rad/s, ω2 = ω3, ω4 = 1000 rad/s, ω4 = ω5, ω6 = 800 rad/s, T1 = 0 s,

T2 = 1.5 s, T3 = 3 s, T4 = 4.5 s, T5 = 6 s and T6 = 7.5 s.

Figure 9. Waveforms of the rotor speed error performance, Case 1.

6.2. Case 2 PMSM Response to a Trapezoidal Speed Reference with Variable Load Torque

The speed references given by a series of trapezoidal shapes, where the change of reference values
depends on the slope of the waveform. Then, the reference trajectory is as follows

ω∗ =



(
ω2−ω1
T2−T1

× t
)
+ ω1 f or T1 ≤ t ≤ T2

ω2 f or T2 ≤ t ≤ T3(
ω4−ω3
T4−T3

× t
)
−ω3 f or T3 ≤ t ≤ T4

ω4 f or T4 ≤ t ≤ T5(
ω6−ω5
T6−T5

× t
)
+ (ω6 + ω5) f or T5 ≤ t ≤ T6

ω6 f or t > 6

(39)

where ω1 = 0 rad/s, ω2 = 500 rad/s, ω2 = ω3, ω4 = 1000 rad/s, ω4 = ω5, ω6 = 800 rad/s, T1 = 0 s,
T2 = 1.5 s, T3 = 3 s, T4 = 4.5 s, T5 = 6 s and T6 = 7.5 s.

Figure 10 shows the speed tracking of all algorithms for case 2, the speed behavior is shown when
the path changes from a slope-dependent value to a constant value. The absolute error is shown in
Figure 11, where unlike case 1, the initial error is greater because this path is not as smooth. As in case 1

Algorithms 2019, 12, 54 18 of 21

the best result is obtained using the BBO and the algorithm with the largest error is CSA. Table 6 shows
performance indicators ISE, IAE, ITSE and ITAE for case 2, sorting these algorithms in ascending order
according to the smallest error we first have the BBO, followed by FPA, BA, SCA and lastly CSA.Algorithms 2018, 11, x FOR PEER REVIEW 18 of 21

Figure 10. Simulated waveforms of the rotor speed responses, Case 2.

Figure 11. Waveform of the rotor speed error performance, Case 2.

Figure 10 shows the speed tracking of all algorithms for case 2, the speed behavior is shown

when the path changes from a slope-dependent value to a constant value. The absolute error is

shown in Figure 11, where unlike case 1, the initial error is greater because this path is not as smooth.

As in case 1 the best result is obtained using the BBO and the algorithm with the largest error is CSA.

Table 6 shows performance indicators ISE, IAE, ITSE and ITAE for case 2, sorting these algorithms in

ascending order according to the smallest error we first have the BBO, followed by FPA, BA, SCA

and lastly CSA.

Table 6. Performance indices of PI controllers tuned using BA, BBO, CSA, FPA and SCA in case 2.

Algorithm ISE IAE ITSE ITAE

FPA 0.0803 0.4513 0.1133 1.6335

BBO 0.0784 0.4462 0.11036 1.6120

BA 0.0804 0.4515 0.1134 1.6338

CSA 0.0928 0.4938 0.1349 1.7937

SCA 0.0915 0.4896 0.1328 1.7781

The results shown prove the usefulness and good performance of nature inspired algorithms.

The tests carried out with the gains of the PI controllers calculated for the speed control show that

Figure 10. Simulated waveforms of the rotor speed responses, Case 2.

Algorithms 2018, 11, x FOR PEER REVIEW 18 of 21

Figure 10. Simulated waveforms of the rotor speed responses, Case 2.

Figure 11. Waveform of the rotor speed error performance, Case 2.

Figure 10 shows the speed tracking of all algorithms for case 2, the speed behavior is shown

when the path changes from a slope-dependent value to a constant value. The absolute error is

shown in Figure 11, where unlike case 1, the initial error is greater because this path is not as smooth.

As in case 1 the best result is obtained using the BBO and the algorithm with the largest error is CSA.

Table 6 shows performance indicators ISE, IAE, ITSE and ITAE for case 2, sorting these algorithms in

ascending order according to the smallest error we first have the BBO, followed by FPA, BA, SCA

and lastly CSA.

Table 6. Performance indices of PI controllers tuned using BA, BBO, CSA, FPA and SCA in case 2.

Algorithm ISE IAE ITSE ITAE

FPA 0.0803 0.4513 0.1133 1.6335

BBO 0.0784 0.4462 0.11036 1.6120

BA 0.0804 0.4515 0.1134 1.6338

CSA 0.0928 0.4938 0.1349 1.7937

SCA 0.0915 0.4896 0.1328 1.7781

The results shown prove the usefulness and good performance of nature inspired algorithms.

The tests carried out with the gains of the PI controllers calculated for the speed control show that

Figure 11. Waveform of the rotor speed error performance, Case 2.

Table 6. Performance indices of PI controllers tuned using BA, BBO, CSA, FPA and SCA in case 2.

Algorithm ISE IAE ITSE ITAE

FPA 0.0803 0.4513 0.1133 1.6335
BBO 0.0784 0.4462 0.11036 1.6120
BA 0.0804 0.4515 0.1134 1.6338

CSA 0.0928 0.4938 0.1349 1.7937
SCA 0.0915 0.4896 0.1328 1.7781

The results shown prove the usefulness and good performance of nature inspired algorithms.
The tests carried out with the gains of the PI controllers calculated for the speed control show that the
algorithms have a similar behavior since everyone complies with the tracking of the reference speed
trajectory, only highlighting the BBO algorithm as the one that has a minor error.

Algorithms 2019, 12, 54 19 of 21

7. Conclusions

In this work we compare optimization algorithms based on nature to tune three PI controllers
that regulate the rotor speed of a PMSM. Four algorithms inspired by nature: BA, BBO, CSA and FPA
and one algorithm inspired by the mathematical function SCA were taken into account to make the
most optimal search for gains.

The results of the simulations show that the five algorithms used to tune the parameters of
the PI controllers work well to follow different trajectories with variable or constant load torque.
By comparing the response of each of the algorithms in the two proposed cases, and based on
the different error indicators (Table 5; Table 6) it can be concluded that the BBO works best under
different operating conditions. It is worth mentioning that the gains were calculated in conditions of
constant load torque and constant speed. Under these conditions, the algorithm that showed the best
performance was the FPA, having the smallest minimum function and the smallest average among
all the algorithms as can be seen in Table 3, situation that changed when having a variable load
torque. Future research should focus on improving the response of these algorithms to disturbances,
uncertainties and parametric variations.

Future works consist of the application of different algorithms inspired by nature to calculate and
optimize PID controller gains for others electric machines. Experimental results on optimized PID
controller combined with adaptive control in electromechanical energy conversion systems will also
be introduced in subsequent studies. Another research line will involve testing the response of more
complex industrial plants when using other bio-inspired and intelligent techniques. In the same way,
a statistical analysis will be included to determine the significance of the results. The final research
goal will include the experimental validation of this paper.

Author Contributions: J.L.T.-S. and O.A.-M. contributed to the conceptualization, formal analysis, simulations
and writing of this work. E.P.-S. and R.S.-C. contributed to the methodology and revision of the document.

Funding: This research was funded by Universidad Popular Autónoma del Estado de Puebla (UPAEP
Universidad).

Acknowledgments: The authors thank M. E. Hugo Yañez Badillo for dedicating time to review this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Z.; Ma, R.; Wang, L.; Zhang, J. Novel PMSM Control for Anti-Lock Braking Considering Transmission
Properties of the Electric Vehicle. IEEE Trans. Veh. Technol. 2018. [CrossRef]

2. Pietrusewicz, K. Multi-degree of freedom robust control of the CNC X-Y table PMSM-based feed-drive
module. Arch. Electr. Eng. 2012, 61, 15–31. [CrossRef]

3. Khorashadizadeh, S.; Sadeghijaleh, M. Adaptive fuzzy tracking control of robot manipulators actuated by
permanent magnet synchronous motors. Comput. Electr. Eng. 2018, 72, 100–111. [CrossRef]

4. Krishnan, R. Electric Motor Drives: Modeling, Analysis and Control; Prentice-Hall: Upper Saddle River, NJ,
USA, 2001.

5. Fayez, F.M. El-Sousy, Adaptive hybrid control system using a recurrent RBFN-based self-evolving
fuzzy-neural-network for PMSM servo drives. Appl. Soft Comput. 2014, 21, 509–532.

6. Liang, Q.; Shi, H. Adaptive position tracking control of permanent magnet synchronous motor based on
RBF fast terminal sliding mode control. Neurocomputing 2013, 115, 23–30.

7. Assaad, M.; Glumineau, A.; de Leon, J.; Loron, L. Robust adaptive high order sliding-mode optimum
controller for sensorless interior permanent magnet synchronous motors. Math. Comput. Simul. 2014, 105,
79–104.

8. Thi-Thuy, N.; Choi, H.H.; Jin-Woo, J. Certainty equivalence adaptive speed controller for permanent magnet
synchronous motor. Mechatronics 2012, 22, 811–818.

9. Jun-Jien, R.; Yan-Cheng, L.; Wang, N.; Si-Yuan, L. Sensorless control of ship propulsion interior permanent
magnet synchronous motor based on a new sliding mode observer. ISA Trans. 2015, 54, 15–26.

http://dx.doi.org/10.1109/TVT.2018.2866828
http://dx.doi.org/10.2478/v10171-012-0002-6
http://dx.doi.org/10.1016/j.compeleceng.2018.09.010

Algorithms 2019, 12, 54 20 of 21

10. Choi, H.H.; Jin-Woo, J. Takagi-Sugeno fuzzy speed controller design for a permanent magnet synchronous
motor. Mechatronics 2011, 21, 1317–1328. [CrossRef]

11. Lin-Hong, L.; Chih-Peng, L. The hybrid RFNN control for a PMSM drive electric scooter using rotor flux
estimator. Electr. Power Energy Syst. 2013, 51, 213–223.

12. Kumar, V.; Gaur, P.; Mittal, A.P. ANN based self tuned PID like adaptive controller design for high
performance PMSM position control. Expert Syst. Appl. 2014, 41, 7995–8002. [CrossRef]

13. Iqbala, A.; Abu-Rubb, H.; Nounoub, H. Adaptive fuzzy logic-controlled surface mount permanent magnet
synchronous motor drive. Syst. Sci. Control Eng. 2014, 2, 465–475. [CrossRef]

14. Hashemi, H.; Mardaneh, M.; Sadeghi, M. High performance controller Z for interior permanent magnet
synchronous motor drive using artificial intelligence methods. Sci. Iran. D 2012, 19, 1788–1793. [CrossRef]

15. Zheng, S.; Tang, X.; Song, B.; Lu, S.; Ye, B. Stable adaptive PI control for permanent magnet synchronous
motor drive based on improved JITL technique. ISA Trans. 2013, 52, 539–549. [CrossRef] [PubMed]

16. Zhang, Y.; Ligong, S.; Song, J.; Song, S.; Yan, M. Adaptive PID Speed Controller Based on RBF for Permanent
Magnet Synchronous Motor System. Intell. Comput. Technol. Autom. 2010, 1, 425–428.

17. Comanescu, M. Cascaded emf and speed sliding mode observer for the nonsalient pmsm. In Proceedings
of the IECON 2010 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA,
7–10 November 2010; pp. 792–797.

18. Ezzat, M.; Glumineau, A.; Plestan, F. Sensorless speed control of a permanent magnet synchronous motor:
High order sliding mode controller and sliding mode observer. IFAC Proc. 2010, 43, 1290–1295. [CrossRef]

19. Chi, W.C.; Cheng, M.Y. Implementation of a sliding-mode-based position sensorless drive for high-speed
micro permanent-magnet synchronous motors. ISA Trans. 2014, 53, 444–453. [CrossRef] [PubMed]

20. Ilioudis, V.C. Chattering reduction applied in pmsm sensorless control using second order sliding mode
observer. In Proceedings of the 2015 9th International Conference on Compatibility and Power Electronics
(CPE), Costa da Caparica, Portugal, 24–26 June 2015; pp. 240–245.

21. Darwin, C.R. On the Origin of Species by Means of Natural Selection; Murray: London, UK, 1871.
22. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
23. Yang, X.S. Flower pollination algorithm for global optimization. In Proceedings of the International

Conference on Unconventional Computing and Natural Computation, Orléans, France, 3–7 September
2012; pp. 240–249.

24. Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm. In Proceedings of the Sixth International
Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.

25. Yang, X.S.; Deb, S. Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1,
339–343.

26. Xin-She, Y. Bat algorithm for multi-objective optimization. Int. J. Bio-Inspired Comput. 2011, 3, 267–274.
27. Odili, J.B.; Kahar, M.N.M.; Anwar, S. African Buffalo Optimization: A Swarm-Intelligence Technique. Procedia

Comput. Sci. 2015, 76, 443–448. [CrossRef]
28. Shah, H.; Tairan, N.; Garg, H.; Ghazali, R. Global Gbest Guided-Artificial Bee Colony Algorithm for

Numerical Function Optimization. Computers 2018, 7, 69. [CrossRef]
29. Karaboga, D.; Akay, B.; Ozturk, C. Artificial Bee Colony (ABC) Optimization Algorithm for Training

Feed-Forward Neural Networks. In Modeling Decisions for Artificial Intelligence; Torra, V., Narukawa, Y.,
Yoshida, Y., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017;
Volume 4617.

30. Omer, P.; Surjan, B.S.; Kumar, J. Design of robust PID controller for Buck converter using Bat algorithm.
In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and
Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016. [CrossRef]

31. Oshaba, A.S.; Ali, E.S.; Elazimb, S.M.A. MPPT control design of PV system supplied SRM using BAT search
algorithm. Sustain. Energy Grids Netw. 2015, 2, 51–60.

32. Latif, A.; Pramanik, A.; Das, D.C.; Hussain, I.; Ranjan, S. Plug in hybrid vehicle-wind-diesel autonomous
hybrid power system: Frequency control using FA and CSA optimized controller. Int. J. Syst. Assur. Eng.
Manag. 2018, 9, 1147–1158. [CrossRef]

33. Peram, M.; Mishra, S.; Vemulapaty, M.; Verma, B.; Padhy, P.K. Optimal PI-PD and I-PD Controller Design
Using Cuckoo Search Algorithm. In Proceedings of the 5th International Conference on Signal Processing
and Integrated Networks, Delhi, India, 22–23 February 2018. [CrossRef]

http://dx.doi.org/10.1016/j.mechatronics.2011.07.012
http://dx.doi.org/10.1016/j.eswa.2014.06.040
http://dx.doi.org/10.1080/21642583.2014.915203
http://dx.doi.org/10.1016/j.scient.2012.07.001
http://dx.doi.org/10.1016/j.isatra.2013.03.002
http://www.ncbi.nlm.nih.gov/pubmed/23659836
http://dx.doi.org/10.3182/20100901-3-IT-2016.00148
http://dx.doi.org/10.1016/j.isatra.2013.09.017
http://www.ncbi.nlm.nih.gov/pubmed/24206776
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1016/j.procs.2015.12.291
http://dx.doi.org/10.3390/computers7040069
http://dx.doi.org/10.1109/ICPEICES.2016.7853209
http://dx.doi.org/10.1007/s13198-018-0721-1
http://dx.doi.org/10.1109/SPIN.2018.8474214

Algorithms 2019, 12, 54 21 of 21

34. Jain, M.; Rani, A.; Pachauri, N.; Singh, V.; Mittal, A.P. Design of fractional order 2-DOF PI controller for
real-time control of heat flow experiment. Eng. Sci. Technol. Int. J. 2018. [CrossRef]

35. Dash, P.; Saikia, L.C.; Sinha, N. Flower Pollination Algorithm Optimized PI-PD Cascade Controller in
Automatic Generation Control of a Multi-area Power System. Int. J. Electr. Power Energy Syst. 2016, 82, 19–28.
[CrossRef]

36. Rahman, A.; Saikia, L.; Sinha, N. Automatic generation control of an interconnected two-area hybrid thermal
system considering dish-stirling solar thermal and wind turbine system. Renew. Energy 2017, 105, 41–54.
[CrossRef]

37. Shneen, S.W. BBO Tuned PI Control for Three Phase Rectifier. J. Sci. Eng. Res. 2018, 5, 471–479.
38. Dhundhara, S.; Verma, Y. Capacitive Energy Storage with Optimized Controller for Frequency Regulation in

Realistic Multisource Deregulated Power System. Energy 2018, 147, 1108–1128. [CrossRef]
39. Rajesh, K.S.; Publication, S.S.D. Load frequency control of autonomous power system using adaptive fuzzy

based PID controller optimized on improved sine cosine algorithm. J. Ambient Intell. Humaniz. Comput. 2018.
[CrossRef]

40. Sabir, M.M.; Ali, T. Optimal PID controller design through swarm intelligence algorithms for sun tracking
system. Appl. Math. Comput. 2016, 274, 690–699. [CrossRef]

41. Yang, X. Nature-Inspired Metaheuristic Algorithms, 2nd ed.; Luniver Press: Cambridge, UK, 2010.
42. Iztok, F.J.; Yang, X.-S.; Fister, I.; Brest, J.; Fister, D. A Brief Review of Nature-Inspired Algorithms for

Optimization. Electrotech. Rev. 2013.
43. Yang, X.S.; Hossein, A. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput.

Int. J. Comput.-Aided Eng. Softw. 2012, 29, 464–483. [CrossRef]
44. Rajabioun, R. Cuckoo Optimization Algorithm. Appl. Soft Comput. 2011, 11, 5508–5518. [CrossRef]
45. Seyedali, M. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst 2016, 96.

[CrossRef]
46. Kannan, R.; Gayathri, N.; Natarajan, M.; Sankarkumar, R.S.; Iyer, L.V.; Kar, N.C. Selection of PI controller

tuning parameters for speed control of PMSM using Biogeography Based Optimization algorithm.
In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems
(PEDES), Trivandrum, India, 14–17 December 2016.

47. Yang, X.-S.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective
optimization. Eng. Optim. 2014, 46, 1222–1237. [CrossRef]

48. Beltran-Carbajal, F.; Valderrabano-Gonzalez, A.; Rosas-Caro, J.C.; Favela Contreras, A. An asymptotic
differentiation approach of signals in velocity tracking control of DC motors. Electr. Power Syst. Res. 2015,
122, 218–223. [CrossRef]

49. Beltran-Carbajal, F.; Tapia-Olvera, R.; Lopez-Garcia, I.; Guillen, D. Adaptive dynamical tracking control
under uncertainty of shunt DC motors. Electr. Power Syst. Res. 2018, 164, 70–78. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jestch.2018.07.002
http://dx.doi.org/10.1016/j.ijepes.2016.02.028
http://dx.doi.org/10.1016/j.renene.2016.12.048
http://dx.doi.org/10.1016/j.energy.2018.01.076
http://dx.doi.org/10.1007/s12652-018-0834-z
http://dx.doi.org/10.1016/j.amc.2015.11.036
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1016/j.asoc.2011.05.008
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1080/0305215X.2013.832237
http://dx.doi.org/10.1016/j.epsr.2015.01.013
http://dx.doi.org/10.1016/j.epsr.2018.07.033
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Model of PMSM
	Control Scheme for PMSM
	Definition of the Tuning Problem Based on Optimization Algorithms
	Nature-Inspired Algorithms
	Bat Algorithm
	Cuckoo Search Algorithm
	Sine-Cosine Algorithm
	Flower Pollination Algorithm
	Biogeography-Based Optimization Algorithm

	Results and Discussion
	Case 1 PMSM Response to a Speed Reference Characterized by Bezier Polynomials with Variable Load Torque
	Case 2 PMSM Response to a Trapezoidal Speed Reference with Variable Load Torque

	Conclusions
	References

