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Abstract: Depth-first search (DFS) is a well-known graph traversal algorithm and can be performed
in O(n + m) time for a graph with n vertices and m edges. We consider the dynamic DFS problem,
that is, to maintain a DFS tree of an undirected graph G under the condition that edges and vertices
are gradually inserted into or deleted from G. We present an algorithm for this problem, which takes
worst-case O(

√
mn · polylog(n)) time per update and requires only (3m + o(m)) log n bits of space.

This algorithm reduces the space usage of dynamic DFS algorithm to only 1.5 times as much space
as that of the adjacency list of the graph. We also show applications of our dynamic DFS algorithm
to dynamic connectivity, biconnectivity, and 2-edge-connectivity problems under vertex insertions
and deletions.

Keywords: dynamic graph; depth-first search; biconnectivity; 2-edge-connectivity

1. Introduction

Depth-first search (DFS) is a fundamental algorithm for searching graphs. As a result of performing
DFS, a rooted tree (or forest, for disconnected graphs) which spans all vertices is constructed. This rooted
tree (forest) is called DFS tree (DFS forest), which is used as a tool for many graph algorithms such as
finding strongly connected components of digraphs and detecting articulation vertices or bridges of
undirected graphs. Generally, for a graph with n vertices and m edges, DFS can be performed in O(n+m)

time, and a DFS tree (forest) can be constructed in the same time.
The graph structure that appears in the real world often changes gradually with time. Therefore,

we consider DFS on dynamic graphs, not on static graphs. This problem is called dynamic DFS problem,
and the goal for this problem is to design a data structure which can rebuild, for any on-line sequence
of updates on G, a DFS tree (forest) for G after each update. Here single update on the graph is one of
the following four operations: inserting a new edge, deleting an existing edge, inserting a new vertex
and its incident edges (simultaneously), and deleting an existing vertex and its incident edges.

The problem of computing a DFS tree can be classified into two settings. For an undirected graph
G, a DFS tree is generally not unique even if a root vertex is fixed. However, if the order of adjacent
vertices to visit is fixed for every vertex, the DFS tree will be unique. The ordered DFS tree problem is to
compute the order in which the vertices are visited in this setting. Contrary to this, the general DFS
tree problem is, given an undirected graph G, to compute any one of DFS trees. In this paper, we focus
on the general DFS tree problem. Meanwhile, dynamic graph algorithms can be classified into three
types. If an algorithm supports only insertion of edges, it is said to be incremental. If an algorithm
supports only deletion of edges, it is called decremental. If an algorithm supports both insertion and
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deletion updates, it is called fully dynamic. We consider the incremental and fully dynamic settings.
Generally, dynamic graph algorithms focus on only edge insertions and deletions. However, for the
fully dynamic setting we also consider the vertex insertions and deletions.

1.1. Existing Results

All the works described in this section focus on the general DFS tree problem, not the ordered
DFS tree problem. Until recently, there were few papers for the dynamic DFS problem, despite of
the simplicity of DFS in static setting. For directed acyclic graphs, Franciosa et al. [1] proposed an
incremental algorithm and later Baswana and Choudhary [2] proposed a randomized decremental
algorithm. For undirected graphs, Baswana and Khan [3] proposed an incremental algorithm. However,
these algorithms support only either of insertion or deletion, and do not support vertex updates.
Moreover, none of these algorithms achieve the worst-case time complexity of o(m) per single update
though the amortized update time is better than the static DFS algorithm. This means in the worst case
the computational time becomes the same as the static algorithm.

In 2016, Baswana et al. [4] proposed a dynamic DFS algorithm for undirected graphs which
overcomes these two problems. Their algorithm supports all four types of graph updates, edge/vertex
insertions/deletions, and achieves worst case O(

√
mn log2.5 n) time per update. They also proposed

an incremental (supporting only edge insertions) dynamic DFS algorithm with worst case O(n log3 n)
time per update. Later Chen et al. [5] improved the fully dynamic worst-case update time by a
polylog(n) factor. Baswana et al. also showed in the full version [6] of their paper the conditional
lower bounds for fully dynamic DFS problems: Ω(n) time per update, under strong exponential time
hypothesis, for any fully dynamic DFS under vertex updates, and Ω(n) time per update, under the
condition the DFS tree is explicitly stored, for any fully dynamic DFS under edge updates. Now the
recently proposed incremental dynamic DFS algorithm of Chen et al. [7] has O(n) worst-case update
time and thus meets the lower bound of the incremental setting.

Recently, Baswana et al. [8] conducted an experimental study for the incremental (not fully
dynamic) DFS problem. Besides this, Khan [9] proposed a parallel algorithm for the fully dynamic
DFS (including vertex updates), which can compute the DFS tree after each update in O(log3 n) time
using m processors.

Please note that after the preliminary version [10] of this paper was published, Baswana et al. [11]
proposes an improved algorithm for the fully dynamic DFS in undirected graphs. This algorithm has
worst-case O(

√
mn log n) update time and requires O(m log n) bits of space.

1.2. Our Results

We develop algorithms for incremental (i.e., under edge insertions) and fully dynamic (i.e., under
edge/vertex insertions/deletions) DFS problems in undirected graphs, based on the algorithms
Baswana et al. [4] proposed (an overview of their algorithms is in Section 3). The dynamic DFS
algorithms of both Baswana et al. [4] and Chen et al. [5,7] require O(m log2 n) bits of space, which is
O(log n) times larger than the space usage of the adjacency list of the graph G and thus do not seem to
be optimal. Thus, we seek to compress the required space of the dynamic DFS.

Besides this, we focus on relatively dense graphs, i.e., graphs with n = o(m), because in sparse
graphs, i.e., m = O(n), DFS can be performed in O(n) time, which meets the conditional lower bound
Baswana et al. [6] suggests. Here please note that they showed an example of a graph in which any
dynamic DFS algorithm under edge update takes Ω(n) time. Since this graph has only O(n) edges,
the (conditional) lower bound holds even for the sparse graphs.

We develop two algorithms for the dynamic DFS algorithm, namely algorithms A and B.
Algorithm A is a simple modification of the work of Baswana et al. [4], while algorithm B is designed to
reduce the space usage more and more. The comparison of the required space and worst-case update
time of these algorithms with those of Baswana et al. [4] and Chen et al. [5,7] is given in Table 1. Both of
our algorithms compress the required space by a factor of O(log n) and improve the worst-case update



Algorithms 2019, 12, 52 3 of 24

time by a polylog(n) factor under the fully dynamic case (i.e., supporting all four types of updates).
Even under the incremental case (i.e., supporting only edge insertions), the update time is improved
from [4], and close to [7]. Our main ingredient is the space usage of algorithm B: it is asymptotically
only 1.5 times as much space as that of the adjacency list of G. Here note that since G is undirected,
the adjacency list of G should have two elements for each edge in G and thus requires 2m log n bits of
space. We also show that if amortized update time is permitted instead of worst-case update time, the
required space of algorithm B can be reduced to only (2m + o(m)) log n bits.

Here note that the new dynamic DFS algorithm of Baswana et al. [11] does not subsume algorithm
B in terms of the space usage. However, it subsumes algorithm A because the space usage is the same,
but the update time is faster. Even so, we describe the details of algorithm A in this paper because,
as described below, our algorithm A (as well as algorithm B) can be applied to dynamic biconnectivity
and 2-edge-connectivity problems including vertex insertions and deletions.

Table 1. Comparison of required space and worst-case update time for dynamic DFS algorithms.

Worst-Case Update Time
Space (bits) Fully Dynamic Incremental

[4] O(m log2 n) O(
√

mn log2.5 n) O(n log3 n)
[5,7] O(m log2 n) O(

√
mn log1.5 n) O(n)

A O(m log n) O(
√

mn log0.75+ε n) O(n
√

log n)∗

B (3m + o(m)) log n O(
√

mn log1.25 n) O(n log n)
[11] O(m log n) O(

√
mn log0.5 n) -

∗ If m = O(n2/
√

log n), this can be reduced to O(n logε n).

Our work can be summarized as follows. First, we improve the way to solve a query that is
frequently used in the algorithm of Baswana et al. [4] (Section 4), by using the idea of Chen et al. [5]
partially. By this improvement, we propose a linear space (i.e., requiring O(m log n) bits of space)
algorithm, algorithm A, for the incremental and fully dynamic DFS problems (Theorem 1 in Section 5).
Second, we further compress the data structures used in [4,5] using wavelet tree [12] (Section 6).
In this contribution, we develop an efficient method for solving a kind of query on integer sequences,
named range leftmost (rightmost) value query, and give a space-efficient method for solving a variant of
orthogonal range search problems, which has been studied in the computational geometry community.
These queries are of independent interest. Third, we consider a space-efficient method to implement
the algorithm of Baswana et al. [4] (Section 7). By combining them, we propose a more space-efficient
algorithm with worst-case update time, algorithm B, for the incremental and fully dynamic DFS
problems (Theorems 4 and 5). Simultaneously, results for the amortized update time algorithms are
also obtained (Theorems 2 and 3).

1.3. Applications

For static undirected graphs, connectivity, biconnectivity and 2-edge-connectivity queries can be
answered by using a DFS tree (details for these queries are in Section 8). The existing fully dynamic
DFS algorithms [4,5] can be applied to solve these queries in fully dynamic graphs including vertex
updates. Our algorithms can also be extended to answer these queries under the fully dynamic
setting including vertex updates. Though we need some additional considerations for our algorithms
(Section 8), the worst-case update time complexity and the required space can be kept same as the
dynamic DFS algorithms in Table 1 (Theorems 6 and 7). Moreover, as well as the existing fully dynamic
DFS algorithms, our algorithms can solve these queries in worst-case O(1) time.

For the dynamic connectivity problem under vertex updates, the dynamic subgraph connectivity
problem [13,14] has been extensively studied. In this problem, given an undirected graph G, a binary
status is associated with each vertex in G and we can switch it between “on” and “off”, and the query
is to answer whether there is a path between two vertices in the subgraph of G induced by the “on”



Algorithms 2019, 12, 52 4 of 24

vertices. Indeed, our dynamic setting including vertex insertions and deletions is a generalization of
this dynamic subgraph setting. Under the dynamic subgraph setting, we cannot change the topology
of G, i.e., all edges and vertices in G are fixed, while under our setting we can. Under the generalized
fully dynamic setting (i.e., our setting), we improve the deterministic worst-case update time bound
of [4,5] (with keeping query time O(polylog(n))) by a polylog(n) factor. We also compress the required
space of their algorithms.

For the dynamic biconnectivity and 2-edge-connectivity problems, the setting including vertex
updates was not well considered. Under the fully dynamic setting including vertex updates,
we improve the deterministic worst-case update time bound of [4,5] (with keeping query time
O(polylog(n))) by a polylog(n) factor. We again compress the required space of their algorithms.

2. Preliminaries

Throughout this paper, n denotes the number of vertices and m denotes the number of edges.
We assume that a graph is always simple, i.e., has no self-loops or parallel edges, since they make
no sense in constructing DFS tree. With this assumption we can conclude m = O(n2) and log m =

O(log n). We also assume that n = o(m). We use log(·) as the base-2 logarithm. From now, the term
“fully dynamic setting” includes vertex updates as well as edge updates, while “incremental setting”
includes only edge insertions.

Given an undirected graph G and its DFS tree (forest) T, the parent vertex of a vertex v in T is
denoted by par(v). A subtree of T rooted at v is the subgraph of T induced by v and its descendants,
and is denoted by T(v). Two vertices x and y are said to have ancestor-descendant relation iff x = y,
x is an ancestor of y, or y is an ancestor of x. The path in T connecting two vertices x and y is
denoted by path(x, y). A path p in T is called an ancestor-descendant path iff the endpoints of p have
ancestor-descendant relation.

Given a connected undirected graph G and its rooted spanning tree T, non-tree edges, i.e.,
the edges in G which are not included in T, can be classified into two types. A non-tree edge is called
a back edge if it connects two vertices which have ancestor-descendant relation; otherwise it is called a
cross edge. Then T is a DFS tree of G iff all non-tree edges are back edges. We call this DFS property.

We can assume that the graph G is always connected by the following way. At the beginning,
we add a virtual vertex r, and edges (r, v) for all vertices v in G, to the graph G. During our algorithm,
we keep a DFS tree of this augmented graph rooted at r. The DFS tree (forest) of the original graph can
be obtained by simply removing r from the DFS tree of the augmented graph.

Bit Vectors. Let B[1..l] be a 0,1-sequence of length l, and consider two queries on B: for c = 0, 1,
rankc(i, B) returns the number of occurrences of c in B[1..i], and selectc(i, B) returns the position
of the i-th occurrence of c in B if exists or ∅ otherwise. Then there exists a data structure such that
rank and select queries for c = 0, 1 can both be answered in O(1) time and the required space is
l + O(l log log l/ log l) = l + o(l) bits [15,16]. Moreover, the space can be reduced to lH0(B) + o(l)
bits while keeping O(1) query time [17], where H0(B) ≤ 1 is the zeroth-order empirical entropy of B.
When 1 occurs k times in B, lH0(B) = k log l

k + (l − k) log l
l−k ≤ k log el

k .
Wavelet Trees. Let S[1..l] be an integer sequence of symbols [0, σ− 1]. A wavelet tree [12] for

S is a complete binary tree with σ leaves and σ− 1 internal nodes, each internal node of which has
a bit vector [15,16]. Each node v corresponds to an interval of symbols [lv, rv] ⊆ [0, σ− 1]; the root
corresponds to [0, σ− 1] and its left (right) child to [0, bσ/2c] ([bσ/2c+ 1, σ− 1]), and these intervals
are recursively divided until leaves, each of which corresponds to one symbol. The bit vector Bv[1..Lv]

corresponding to an internal node v is defined as follows. Let Sv[1..Lv] be the subsequence of S which
consists of elements with symbols [lv, rv]. Then if the symbol Sv[i] corresponds to the left child of v
then Bv[i] = 0; otherwise Bv[i] = 1. The wavelet tree requires (l + o(l)) log σ bits of space, and can be
built in O(l log σ/

√
log l) time [18]. Using wavelet tree for S, the following queries can be solved in

O(log σ) time for each: access(i, S) returns S[i], rankc(i, S) returns the number of occurrences of c in
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S[1..i], and selectc(i, B) returns the position of the i-th occurrence of c in B if exists or ∅ otherwise
(here c ∈ [0, σ− 1]).

3. Overview of the Algorithms of Baswana et al.

In this section, we give an overview of the DFS algorithms in dynamic setting proposed by
Baswana et al. [4], and describe some lemmas used in this paper.

3.1. Fault Tolerant DFS Algorithm

We first refer to the algorithm for fault tolerant DFS problem. This problem is described as follows:
given an undirected graph G and its DFS tree T, we try to rebuild a DFS tree for the new graph obtained
by deleting k(≤ n) edges and vertices (simultaneously) from G. In this part U denotes a set of vertices
and edges we want to delete from G, and G−U denotes the new graph obtained by deleting vertices
and edges in U from G.

Their algorithm uses a partitioning technique which divides a DFS tree into connected paths and
subtrees. This partitioning is called disjoint tree partitioning (DTP).

Definition 1 ([4]). A DFS tree T of an undirected graph G and a set U of vertices and edges are given, and the
forest T−U obtained by removing the vertices and edges in U from T is considered. Given a vertex subset A of
T −U, a disjoint tree partitioning of T −U defined by A is a partition of a subgraph of T −U induced by
A into a set P of paths with |P| ≤ |U| and a set T of trees. Here each p ∈ P is an ancestor-descendant path in
T and each τ ∈ T is a subtree of T.

Using DTP, their algorithm can be summarized as follows. First, the DTP of T −U defined by
V \ {r} (where V is the vertex set of T −U and r is the virtual vertex in Section 2) is calculated. As a
result, a set P of paths and a set T of subtrees are constructed. Now let T∗ be the partially constructed
DFS tree of G−U, and at first T∗ contains only r. Then their algorithm can be seen as if performing a
static DFS traversal (start with r) on the graph whose vertex set is P ∪ T . When a path or a subtree
x ∈ P ∪ T is visited during the traversal, the algorithm extracts an ancestor-descendant path p∗ from
x and attaches it to T∗, which means the vertices of p∗ are marked as visited. Thereafter, the DTP of
T −U defined by the unvisited vertices is recalculated. This can be performed by local operations
around x. More specifically, if x ∈ T the remaining part x \ p∗ is divided into some subtrees and they
are stored in T ; otherwise x \ p∗ is an ancestor-descendant path and is pushed back to P . Then the
traversal continues. If all vertices are visited, T∗ is indeed the DFS tree of G−U.

The key point of reducing computational complexity is that taking advantage of partitioning,
the number of edges accessed by this algorithm can be decreased from m. At this time, it must be
ensured that the edges not accessed by this algorithm are not needed to construct the new DFS tree T∗.
To achieve this, they use a reduced adjacency list L and two kinds of queries Q and Q′. Here Q and Q′

are defined as follows.

Definition 2 ([4]). A connected undirected graph G, its DFS tree T, and a set U of vertices and edges are
given. Then for any three vertices w, x, y in G −U, the following queries are considered. Among all edges
in G−U which directly connect a subtree T(w) and an ancestor-descendant path path(x, y), Q(T(w), x, y)
returns one of the edges whose endpoint on path(x, y) is the nearest to x. Similarly, among all edges in G−U
which directly connect a vertex w and an ancestor-descendant path path(x, y), Q′(w, x, y) returns one of the
edges whose endpoint on path(x, y) is the nearest to x. If there are no connecting edges, these queries should
return ∅. Here we can assume that T(w) (or {w}) and path(x, y) have no common vertices, and contain no
vertices or edges in U.

During the construction of T∗, the edges added to L are chosen carefully by Q and Q′ and, instead
of the whole adjacency list of G, only L is accessed. Please note that in these queries, the virtual



Algorithms 2019, 12, 52 6 of 24

vertex r and its incident edges are not considered, i.e., there are no queries such that T(w) or path(x, y)
contains r.

In fact, this fault tolerant DFS algorithm can be easily extended to handle insertion of
vertices/edges as well as deletion updates [4]. Now we consider each of the situations: fully dynamic
and incremental. Under the incremental case, the number of times the query Q is called is bounded
by O(n), and Q′ is not used. In this case, the number of edges in L is at most O(n). Under the
fully dynamic case, the number of times Q and Q′ is executed is bounded by O(nk log n) and O(nk),
respectively, and the number of edges in L is at most O(nk log n). Solving these queries Q and Q′ is
the most time-consuming part of their algorithm. Therefore, the time complexity of their fault tolerant
DFS algorithm can be summarized in the following lemma.

Lemma 1 ([4]). An undirected graph G and its DFS tree T are given. Suppose that the query Q can be solved
in O( f ) time with a data structure constructed in O(F) time under the incremental case. Then with O(F + n)
preprocessing time, a DFS tree for the graph obtained by applying any k(≤ n) edge insertions to G can be
built in O( f n) time. Similarly, suppose Q and Q′ can be solved in O(g) and O(g′) time (resp.) with a data
structure built in O(G) time under the fully dynamic case. Then with O(G + n) preprocessing time, a DFS tree
for the graph obtained by applying any k(≤ n) updates (vertex/edge insertions/deletions) to G can be built in
O(k(g log n + g′)n) time.

3.2. Dynamic DFS Algorithm

Next we refer to the algorithm for the dynamic DFS. Baswana et al. [4] proposed an algorithm for
this problem by using the fault tolerant DFS algorithm as a subroutine. Their result can be summarized
in the following lemma.

Lemma 2 ([4]). Suppose that for any k(≤ n) updates on an undirected graph G, a new DFS tree can be
built in O(kg + h) time with a data structure constructed in O( f ) time (i.e., with O( f ) preprocessing time).
Then for any on-line sequence of updates on the graph, a new DFS tree after each update can be built in
amortized/worst-case O(

√
f g + h) time per update, if

√
f /g ≤ n holds.

First we refer to the amortized (not worst-case) update time algorithm. Their idea is to rebuild
the data structure D, which is constructed at the preprocessing in the fault tolerant DFS algorithm,
periodically. To explain this idea in detail, let Gj be the graph obtained by applying first Cj :=
c0 + · · ·+ cj−1 updates on G (c1, c2, . . . is later decided), nj and mj be the number of vertices and edges
in Gj, and Tj be the DFS tree for Gj reported by this algorithm. For the first c0 updates, use the data
structure D0 constructed from the original graph G and DFS tree T. That is, after each arrival of graph
update, we perform the fault tolerant DFS algorithm as if all previous updates come simultaneously.
After c0 updates are processed, build the data structure D1 from G1 and T1, and use D1 for next c2

updates. In other words, from (c0 + 1)-st to (c0 + c1)-th updates, we perform the fault tolerant DFS as
if from (c0 + 1)-st to the latest updates come simultaneously. Similarly, after Cj updates are processed,
the data structure Dj is built from Gj and Tj, and Dj is used for next cj updates. We call the moment Dj
is used phase j of the amortized update time algorithm. In this way the construction time of the data
structures is amortized over cj updates in phase j. Now suppose that for any k(≤ n) updates on G,
a new DFS tree can be built in O(kgj + hj) time with Dj built in O( f j) time, where f j, gj and hj are all

functions of nj and mj. Then the update time complexity becomes O( f j/cj + gjcj + hj) = O(
√

f jgj + hj)

by setting cj =
√

f j/gj. Therefore, we can achieve the amortized update time bound in Lemma 2.
Here in phase j, f , g and h in Lemma 2 are indeed f j, gj and hj, and are functions of nj and mj.

Next we proceed to the worst-case update time algorithm. The idea to achieve the efficient
“worst-case” update time described in [4] is to actually divide the construction process of data structure
over cj updates. Here we assume that the number of edges is not dramatically changed during
each phase, i.e., lmj ≤ mj+1 ≤ hmj holds for all j = 1, 2, . . . with some constants l and h. With this
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assumption we can say cj and cj+1 differs only by a constant factor (since the number of vertices is not
dramatically changed during each phase). In our algorithm described in Sections 5 and 7, we can say
this assumption always holds on condition that n = o(m), so later we do not touch it.

Let us go into detail. For the first c0 updates, use the data structure D0 built from the original
graph G and DFS tree T. For the next c1 updates, use again D0 and build D1 gradually from G1 and
T1. Similarly, from (Cj + 1)-st to Cj+1-th updates on the graph (Cj = c0 + · · ·+ cj−1), use Dj−1 for
fault tolerant DFS and build Dj gradually from Gj and Tj. In this way the construction time of data
structures is divided, and the efficient worst-case update time in Lemma 2 is achieved.

4. Query Reduction to Orthogonal Range Search Problem

In this section, we show an efficient reduction from the queries Q and Q′ to orthogonal range
search queries. Generally speaking, given some points on the grid points, an orthogonal range search
problem (in a 2-dimensional plane) is to answer queries about the points within any rectangular region
R = [x1, x2]× [y1, y2]. Queries of this kind are extensively studied in the computational geometry
community, e.g., counting the number of points (orthogonal range counting) or reporting all points
(orthogonal range reporting) within R. Now we consider the following query.

Definition 3. On grid points in a 2-dimensional plane, k points are given. Then for any rectangular region
R = [x1, x2]× [y1, y2], the orthogonal range successor (predecessor) query returns one of the points whose
y-coordinate is the smallest (largest) within R. If there are no points within R, the query should return ∅.
We abbreviate it as ORS (ORP) query.

4.1. Original Reduction

First we describe the original reduction of queries Q and Q′ [4] proposed by Baswana et al. In their
paper, the ORS (ORP) query is not explicitly used, but is implicitly used. Indeed, their method to
answer Q and Q′ is equivalent to solving O(log n) ORS (ORP) queries on the adjacency matrix of G;
details are described below. We later use part of their ideas.

Now we describe that how a set of points is constructed from G. The high-level idea is quite
simple: the vertices in G are numbered from 0 to n− 1, and an adjacency matrix according to this
numbering is constructed. Let us go into detail. First, a heavy-light (HL) decomposition [19] of T is
calculated. Then the order L of vertices is decided according to the pre-order traversal of T, such that
for the first time a vertex v is visited, the next vertex to visit is one that is directly connected with a
heavy edge derived from the HL decomposition. Next, the vertices of G (except r) are numbered from
0 to n− 1 according to L; here the vertex id of v is denoted by f (v). Finally, on a 2-dimensional grid G,
for each edge (i, j) of G \ {r}, we put two points on the coordinates ( f (i), f (j)) and ( f (j), f (i)) in G.
This is equivalent to considering the adjacency matrix of G, and thus 2m points are placed.

The order L has some good features. First, for any subtree T(w) of T, the vertex ids of the
vertices of T(w) occupy single consecutive interval [tb, te] since L is a pre-order traversal of T. Second,
for any ancestor-descendant path path(x, y) in T, those of path(x, y) occupy at most O(log n) intervals
[a1, b1], . . . , [ak, bk]. This is because path(x, y) contains at most O(log n) light edges (i.e., non-heavy
edges) thanks to the property of HL decomposition [19]. Therefore, all edges in G between T(w)

and path(x, y) are within O(log n) rectangular regions [tb, te] × [ai, bi] (i = 1, . . . , k) on G. Then if
U = ∅ (e.g., the incremental case), the answer for Q(T(w), x, y) can be obtained by searching them.
More specifically, if f (x) ≤ f (y) we solve ORS queries on G with R = [tb, te]× [ai, bi] (i = 1, . . . , k)
and return the point with the smallest y-coordinate among the ORS queries’ answers. Otherwise,
we solve ORP queries with the same rectangles and return the point with the largest y-coordinate
among the ORP queries’ answers. If all ORS (ORP) queries return ∅, the answer for Q(T(w), x, y)
is also ∅. The same argument can be applied for Q′(w, x, y) except that the rectangular regions are
[ f (w), f (w)]× [ai, bi] (i = 1, . . . , k).
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If U 6= ∅ (e.g., the fully dynamic case), deletion of points on G should be supported, since the
edges in U and the incident edges of the vertices in U must be removed from G to prevent Q and Q′

from reporting already deleted edges. To achieve this, Baswana et al. [4] uses a kind of range tree data
structures to solve Q and Q′, which supports deleting a point.

4.2. Efficient Reduction

Next we show the following: (a) the query Q(T(w), x, y) can be converted to single (not O(log n))
ORS/ORP query for any w, x, y, and (b) the deletion of points from G need not be supported. Note that
the idea to partially achieve (a) is first proposed by Chen et al. [5] and we use a part of it. However, the
solution of the query Q of Chen et al. [5] deals with only the case T(w) is hanging from path(x, y) (that
is, the case (ii) in Figure 1 explained later). Thus we here extend this to deal with an arbitrary case.
The goal is to prove the following lemma.

Lemma 3. Suppose there exists a data structure D which can solve both ORS and ORP queries on G in O( f )
time for each. Then for any three vertices w, x, y, the query Q(T(w), x, y) can be solved in O( f ) time with D.
Similarly, for any w, x, y the query Q′(w, x, y) can be answered in O( f log n) time with D. Please note that D
need not support deletion of points from G.

First we show (a) when U = ∅ (later this assumption is removed). Here we define some symbols
for convenience: for two vertices a and b in G, a ≺ b means a is an ancestor of b in T, a � b means a ≺ b
or a = b, and a ‖ b means neither a � b nor b � a holds, i.e., a and b have no ancestor-descendant
relation. Let p = par(w). Please note that it is confirmed that w always has a parent because if w is the
root of T, T(w) = T spans all vertices of G and has some common vertices with any path(x, y), which
contradicts the assumption (see Definition 2). Now we assume x � y (the case y ≺ x is considered
at last). Then the configurations of T(w) and path(x, y) can be classified into five patterns in terms
of x, y and p as drawn in Figure 1: (i) p ≺ x � y, (ii) x � p � y, (iii) x � y ≺ p, (iv) x ‖ p and y ‖ p,
and (v) x ≺ p and y ‖ p. Now we show the following.

(i)

y

x
p

w

(ii)

y

x
p

w

(iii)
y
x

p
w

(iv)

y

x p
w

(v)

y

x

p
w

Figure 1. The configurations of T(w) and path(x, y) in T that can appear in Q(T(w), x, y).

Claim 1. For all cases from (i) to (v), the answer for Q(T(w), x, y) can be obtained by solving the ORS query
on G with R = [tb, te]× [ f (x), f (LCA(y, w))], where [tb, te] is the interval the vertices of T(w) occupy in the
vertex numbering and LCA(y, w) is the lowest common ancestor of y and w in T.

Proof. First, for the cases (i) and (iv), the answer for Q(T(w), x, y) is ∅ since if such edge exists,
it becomes a cross edge and thus refutes DFS property. For these cases, since LCA(y, w) comes above x
and thus f (x) > f (LCA(y, w)), the ORS query also returns ∅, which correctly answers Q(T(w), x, y).
For other cases ((ii), (iii) and (v)), LCA(y, w) lies on path(x, y). Here all edges between T(w) and
path(x, y) are indeed between T(w) and path(x, LCA(y, w)) due to DFS property. It may be that
the interval [ f (x), f (LCA(y, w))] contains some vertex ids of the vertices of branches forking from
path(x, LCA(y, w)), which happens when these branches are traversed prior to y and w in L. This does
not cause trouble because there are no edges between T(w) and these branches again due to DFS
property. Hence R contains all edges between T(w) and path(x, y) and no other edges, when we see
G as an adjacency matrix of G. Thus, reporting a point whose y-coordinate is the smallest within R
yields an answer for Q(T(w), x, y). Here note that the LCA query can be solved in O(1) time with a
data structure of O(n log n) = o(m) log n bits built in O(n) time [20]. Therefore Claim 1 holds.
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From Claim 1 we prove (a) under U = ∅ and x � y. Lastly, if y ≺ x, all we must do is swap x and
y and perform almost the same as described above, except that we solve an ORP (not ORS) query on G.

Next we show (b). First we assume that U consists of only vertices and contains no edges. In this
setting we can confirm from Definition 2 that for the query Q(T(w), x, y), T(w) and path(x, y) have
no vertices in U. Thus, [tb, te] contains no vertex ids of the vertices in U. We can also say that even if
[ f (x), f (LCA(y, w))] in Claim 1 contains some vertex ids of the vertices in U, these vertices are all in
the branches forking from path(x, y) and cause no trouble. Therefore, even if U contains some vertices,
Claim 1 also holds. For the query Q′(w, x, y), we use the original reduction described in Section 4.1.
We can also say from Definition 2 that {w} and path(x, y) have no vertices in U. Thus, [ f (w), f (w)]

and [ai, bi] (i = 1, . . . , k) contain no vertex ids of the vertices in U.
Finally, we consider the case U contains some edges. In this case, it seems that deletion of these

edges from G is needed. However, deleting one edge e = (u, v) can be simulated by one vertex deletion
and one vertex insertion as follows: first record u’s incident edges (u, wi) (i = 1, 2, . . .) excluding
e = (u, v) itself, second delete v, and then insert a vertex u′ with its incident edges (u′, wi) (i = 1, 2, . . .).
In the algorithm of Baswana et al. [4], vertex insertions are treated separately from the queries Q and
Q′. Thus, in this way we can avoid deleting e from G. This completes the proof of Lemma 3.

Lastly we briefly explain that Q′ cannot be converted to single ORS (ORP) query in the same way
as Q. The five patterns of configuration of vertices drawn in Figure 1 can also appear in Q′(w, x, y).
However, there is a corner case that can appear in Q′(w, x, y) but cannot appear in Q(T(w), x, y):
w ≺ x � y, as drawn in Figure 2. This pattern cannot appear in Q(T(w), x, y) since if w ≺ x � y then
T(w) overlaps with path(x, y). This corner case is relatively hard to convert to single ORS/ORP query
on G, since every vertex of a branch forking from path(x, y) has ancestor-descendant relation with
w. Please note that it does not matter if Q′(w, x, y) is solved O(log n) times slower than Q(T(w), x, y)
(see Lemma 1).

(vi)

y

x

w

Figure 2. The configuration of path(x, y) and w in T that can appear in Q′(w, x, y) and cannot appear
in Q(T(w), x, y).

5. Linear Space Dynamic DFS

In this section, we propose a linear space fast dynamic DFS algorithm. In Section 4.2, we prove
that there is no need to support deletion of points from G even if there are some deletion updates of
edges and vertices. This means we can bring a static data structure for the queries Q and Q′ rather than
a dynamic one. Indeed, the data structure by Belazzougui and Puglisi [21] can solve the ORS query in
rank space. The rank space with k points is a [1, k]× [1, k] grid where all points differ in both x- and
y-coordinates. For the rank space with k points, their data structure can solve ORS query in O(logε k)
time for an arbitrary 0 < ε < 1, can be constructed in O(k

√
log k) time, and occupies O(k log k) bits of

space. Though G is not a rank space, we can convert G to the rank space by using bit vectors. Please
note that this kind of conversion is regularly employed for various orthogonal range search data
structures (e.g., see [22]). So, in the proof below we do not show the conversion from G to a rank space,
but show that from the adjacency list of G to a rank space directly.

Lemma 4. There exists a data structure D which can solve both ORS and ORP queries on G in O(logε n)
time for each for arbitrary 0 < ε < 1. This data structure requires O(m log n) bits of space and can be built in
O(m

√
log n) time.
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Proof. Let di be the degree of a vertex v in G whose vertex id is i and Mi = ∑i−1
j=0 dj (M0 = 0). Now we

have Mn = 2m, since G is an undirected graph. We construct a rank spaceR satisfying the following
condition: for two vertices v, w with f (v) = i and f (w) = j, there exists an edge between v and w in G
iff there exists a point within [Mi + 1, Mi+1]× [Mj + 1, Mj+1] inR. This can be done by the following
procedure. First, prepare two arrays A, B with A[i] = B[i] = Mi for i = 0, . . . , n− 1. Then for each
edge e = (u, v) in G, increment A[ f (u)], B[ f (v)], A[ f (v)] and B[ f (u)] by one and then place two points
on the coordinates (A[ f (u)], B[ f (v)]) and (A[ f (v)], B[ f (u)]) in R. When all edges are processed,
R satisfies the above condition.

Besides R, we construct a bit vector with B = 0d010d11 · · · 0dn−11. Here for i = 0, . . . , n,
rank0(select1(i, B), B) = Mi and rank1(select0(j, B), B) = i for Mi + 1 ≤ j ≤ Mi+1 (i 6= n).
These mean that the bit vector for B enables us to interconvert between the vertex id f (·) and the
coordinate inR in O(1) time. Therefore, given an ORS query with a rectangle R on G we can solve it
as follows. First, convert the coordinates of R into that inR by the bit vector for B. Second, solve the
converted ORS query onR by the data structure of Belazzougui and Puglisi [21]. Finally, if the answer
is ∅ then the original answer is also ∅. Otherwise the answer is again converted to the vertex id by the
bit vector for B. The overall cost for single ORS query is thus O(logε n). Please note that the bit vector
requires only (n + 2m)H0(B) + o(m) ≤ n log e(n+2m)

n + o(m) = o(m) log n bits of space.
We above mentioned only the ORS query, but the data structure for the ORP query can be built in

a similar way. Let R′ be a rank space constructed by flipping R vertically; i.e., R′ is constructed by
putting a point on coordinates (i, 2m + 1− j) for every point (i, j) onR. R′ can also be built directly
from the adjacency list of G, and the ORP query on G can be converted to the ORS query onR′ in the
same manner as described above.

Figure 3 is an example of an undirected graph G and its corresponding rank space R. In this
example, the rectangles [1, 3]× [4, 5] and [4, 5]× [1, 3] have a point inside, which corresponds to the
edge connecting 0 and 1. Conversely, the rectangles [1, 3]× [6, 7] and [6, 7]× [1, 3] do not have a point
inside, which indicates the absence of the edge connecting 0 and 2.

0

1

4

3

2

0→ 1, 3, 4
1→ 0, 2
2→ 1, 3
3→ 0, 2, 4
4→ 0, 3

y

1
12

x
1 12

Figure 3. An example of an undirected graph with vertex numbering, its adjacency list, and the
corresponding rank spaceR.

Combining Lemma 4 with Lemma 3 implies the following corollary.

Corollary 1. There exists a data structure of O(m log n) bits such that for any w, x, y, Q(T(w), x, y)
can be solved in O(logε n) time and Q′(w, x, y) in O(log1+ε n) time. This data structure can be built in
O(m

√
log n) time.

This corollary directly gives a fault tolerant DFS algorithm when combining with Lemma 1.
Here we must consider the space requirement of this algorithm, but it is simple. Information used in
the algorithm other than the data structure to solve Q and Q′ and the reduced adjacency list L takes
only O(n log n) = o(m) log n bits: there are O(n) words of information for the original DFS tree T
(including the data representing the disjoint tree partition), O(1) words of information attached to each
vertex and each edge in T, a stack which has at most O(n) elements, and a partially constructed DFS
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tree, but these sum up to only O(n) words. Moreover, since the reduced adjacency list L contains at
most O(m) edges, the required space for L is bounded by O(m log n) bits. From Corollary 1, the data
structure to solve Q and Q′ occupies O(m log n) bits. Hence the following lemma holds.

Lemma 5. An undirected graph G and its DFS tree T are given. Then there exists an algorithm such that with
O(m

√
log n) preprocessing time, a DFS tree for the graph obtained by applying any k(≤ n) edge insertions to G

can be built in O(n logε n) time. Similarly, there exists an algorithm such that with O(m
√

log n) preprocessing
time, a DFS tree for the graph obtained by applying any k(≤ n) updates (vertex/edge insertions/deletions) to G
can be built in O(nk log1+ε n) time. These algorithms require O(m log n) bits of space.

Linear space dynamic DFS algorithms are obtained by combining Lemma 5 with Lemma 2. For the
incremental case, we set f = m

√
log n, g = m

√
log n/n2 and h = n logε n for Lemma 2 (here the

condition
√

f /g ≤ n must be satisfied). Then the update time is O(
√

f g + h) = O(m/n ·
√

log n +

n logε n). We can say the update time is O(n logε n) if m = O(n2/
√

log n), or O(n
√

log n) otherwise.
For the fully dynamic case, we set f = m

√
log n, g = n log1+ε n and h = 0, and, therefore, the update

time is O(
√

mn log0.75+ε n).

Theorem 1. There exists an algorithm such that given an undirected graph G and its DFS tree T, for any
on-line sequence of updates on G, a new DFS tree after each update can be built in worst-case O(m/n ·

√
log n+

n logε n) time per update under the incremental case, and O(
√

mn log0.75+ε n) time per update under the fully
dynamic case, where 0 < ε < 1/2 is an arbitrary constant. This algorithm requires O(m log n) bits.

6. Compression of Data Structures

In this section, we show a way to solve Q and Q′ more space-efficiently, which is later used in the
space-efficient dynamic DFS algorithm in Section 7.

6.1. Range Next Value Query

First, we show a data structure of (2m + o(m)) log n bits, which can be derived immediately from
the existing results.

It is already known that the ORS (ORP) query on a k× σ grid G ′ with k points, where all points
differ in x-coordinates, can be solved efficiently with wavelet tree [23]. Now we describe this method
in detail. The method is to build an integer array S[1..k] where S[i] (1 ≤ i ≤ k) is the y-coordinate of
the point whose x-coordinate is i. Then the ORS (ORP) query is converted to the following query on S.

Definition 4. An integer sequence S[1..l] is given. Then for any interval [a, b] ⊆ [1, l] and integer p (q),
the range next (previous) value query returns one of the smallest (largest) elements among the ones in S[a..b]
which are not less than p (not more than q). If there is no such element, the query should return ∅. We abbreviate
it as RN (RP) query.

These queries can be efficiently solved with the wavelet treeW for S; if S[i] ∈ [0, σ− 1] for all
i = 1, . . . , l, they can be solved with O(log σ) rank and select queries onW [23]. The pseudocode for
solving RN query by the wavelet tree for S is given in Algorithm 1. In Algorithm 1, left(v) and right(v)
stand for the left and right child of the node v, respectively. When calling RN(root, p, [a, b], [0, σ− 1]),
we can obtain the answer for the RN query with [a, b] and p. Here a pair of the position and the value
of the element is returned. If (0,−1) is returned, the answer for the RN query is ∅. The RP queries on
S can be solved in a similar way using the same wavelet tree as the RN queries.
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Algorithm 1 Range Next Value by Wavelet Tree

1: function RN(v, p, [a, b], [α, ω])
2: if a > b or ω < p then return (0,−1)
3: if α = ω then return (a, α)
4: γ← b(α + ω)/2c
5: if p ≤ γ then
6: (pos, val)← RN(left(v), p, [rank0(Bv, a− 1) + 1, rank0(Bv, b)], [α, γ])
7: if pos 6= 0 then return (select0(Bv, pos), val)
8: end if
9: (pos, val)← RN(right(v), p, [rank1(Bv, a− 1) + 1, rank1(Bv, b)], [γ + 1, ω])

10: if pos 6= 0 then return (select1(Bv, pos), val)
11: else return (0,−1)
12: end function

The ORS query on G ′ with R = [x1, x2]× [y1, y2] can be answered by solving the RN query on S
with [a, b] = [x1, x2] and p = y1. If the RN query returns ∅, the answer for the ORS query is also ∅.
If the RN query returns an element, the answer is ∅ if the value of this element is larger than y2, or the
point corresponding to this element otherwise. Similarly, the ORP query on G ′ can be converted to the
RP query on S.

Although in the grid G, on which we want to solve ORS (ORP) queries, some points share the
same x-coordinate, it is addressed by preparing a bit vector B in the same way as the proof of Lemma 4.
B enables us to convert x-coordinates. Here the integer sequence S[1..2m] consists of the y-coordinates
of the points on G sorted by the corresponding x-coordinates. The required space of the wavelet tree is
(2m + o(m)) log n bits since there are k = 2m points on G and the y-coordinates vary between [0, n− 1].
Hence now we obtain a data structure of (2m + o(m)) log n bits to solve Q and Q′ (note that the bit
vector requires only o(m) log n bits as described in the proof of Lemma 4).

6.2. Halving Required Space

Next, we propose a data structure of (m + o(m)) log n bits to solve Q and Q′. The data structure
shown in Section 6.1 has information of both directions for each edge of G since G is an undirected
graph. This seems to be redundant, thus we want to hold information of only one direction for each
edge. In fact, the placement of points on G is symmetric since the adjacency matrix of G is also
symmetric. So now we consider, of the grid G, the upper triangular part Gu and the lower triangular
part Gl ; a grid Gu inherits from G the points within the region the x-coordinate is larger than the
y-coordinate, and Gl is defined in the same manner. Since G has no self-loops, Gu and Gl have m points
for each. Now we show that we can use Gu as a substitute for G.

Let Su[1..m] be an integer sequence which contains the y-coordinates of the points on Gu sorted by
the corresponding x-coordinates. Let Bu be a bit vector 0d0,u 10d1,u 1 · · · 0dn−1,u 1, where di,u is the number
of occurrences of i in Su. Bu enables us to convert the x-coordinate on G to the position in Su and vice
versa in O(1) time. Figure 4 is an example of the grid G and its upper triangular part Gu. Here we
should observe that Gu has half as much point as G and thus the length of Su is halved from S.

G y 0
4

x
0 4

S = 134021302403

B = 00010010010001001

Gu y 0
4

x
0 4

Su = 010203

Bu = 10101001001

Figure 4. (Left) an example of the grid G and its corresponding array S and bit vector B. Please
note that this grid corresponds to the graph in Figure 3. (Right) the upper triangular part Gu and its
corresponding array Su and bit vector Bu.
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Lemma 6. Any ORS (ORP) query which appears in the reduction of Lemma 3 can be answered by solving one
RN (RP) query, or by solving one rank and one select queries, on Su.

Proof. We give a proof for only ORS queries since that for ORP queries is almost same. It can be
observed that if the query rectangle of the ORS query is inside the upper triangular part of G, this ORS
query can be converted to an RN query on Su in the same way as Section 6.1, since Gu contains all
points inside the upper triangular part in G. The below claim ensures us that any ORS query related to
Q can be converted to the RN query on Su.

Claim 2. The rectangles appearing in Claim 1 are all inside the upper triangular part of G, i.e., these rectangles
are of the form: [x1, x2]× [y1, y2] with y1 ≤ y2 < x1 ≤ x2.

Proof. It can be easily observed that tb, appearing in the interval [tb, te] corresponding to the vertices
of a subtree T(w), equals to f (w). Since LCA(y, w) � p ≺ w, f (LCA(y, w)) ≤ f (p) < f (w) and thus
[tb, te]× [ f (x), f (LCA(y, w))] is inside the upper triangular part.

In solving Q′, there may be query rectangles inside the lower triangular part. However, these
rectangles are of the form: [ f (w), f (w)] × [a, b] with f (w) < a ≤ b. Transposing this rectangle,
it is inside the upper triangular part and the problem becomes like the following: for a rectangle
R = [a, b]× [c, c] (with c < a ≤ b) on Gu, we want to know the point whose “x-coordinate” is the
smallest within R. Converting the x-coordinate to the position in Su by Bu, this problem is equivalent
to the following problem: to find the leftmost element among ones in Su[a′..b′] with a value just c.

Claim 3. Finding the leftmost element among ones in Su[a′..b′] with a value just c can be done by one rank
and one select queries on Su for any a′, b′, c.

Proof. Let k = rankc(a′ − 1, Su). It is observed that the (k + 1)-st occurrence of c in Su is the answer if
it exists and its position is in [a′, b′]. So, if selectc(k + 1, Su) returns ∅ or a value more than b′ then the
answer is “not exist”. Otherwise the answer can be obtained by this select query itself.

This completes the proof of Lemma 6.

Since rank, select, RN and RP queries on Su can be solved in O(log n) time for each with a
wavelet tree for Su, we immediately obtain a data structure of (m + o(m)) log n bits for the queries Q
and Q′. Here the required space of Bu is again o(m) log n bits and does not matter.

Corollary 2. There exists a data structure of (m + o(m)) log n bits such that for any w, x, y, Q(T(w), x, y)
can be solved in O(log n) time and Q′(w, x, y) in O(log2 n) time. This data structure can be built in
O(m

√
log n) time.

Please note that the above corollary does not mention working space for the construction of the
data structure. Therefore, obtaining space-efficient dynamic DFS algorithm requires consideration of
the building process, since in the algorithm of Baswana et al. we need to rebuild this data structure
periodically. We further consider this in Section 7.

6.3. Range Leftmost Value Query

Next, we show another way to compress the data structure to (m + o(m)) log n bits. This is
achieved by solving range leftmost (rightmost) value query with a wavelet tree. This query appears in the
preliminary version [10] of this paper. In the preliminary version, this query and the RN (RP) query
(Definition 4) is used simultaneously to obtain a data structure of (m + o(m)) log n bits. Although we
no longer need to use this query to halve the required space as described in Section 6.2, this query still
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gives us another way to compress the data structure. Moreover, this query is of independent interest
since its application is beyond the dynamic DFS algorithm, as described later.

The range leftmost (rightmost) value query is defined as follows.

Definition 5. An integer sequence S[1..l] is given. Then for any interval [a, b] ⊆ [1, l] and two integers p ≤ q,
the range leftmost (rightmost) value query returns the leftmost (rightmost) element among the ones in
S[a..b] with a value not less than p and not more than q. If there is no such element, the query should return ∅.
We abbreviate it as RL (RR) query.

This RL (RR) query is a generalization of the query of Claim 3 in the sense that the value of
elements we focus varies between [p, q] instead of being fixed to just c. Moreover, the RL (RR) query
is a generalization of a prevLess query [24], which is the RR query with a = 1 and p = 0. It is already
known that the prevLess query can be efficiently solved with the wavelet tree for S [24].

First we describe the idea to use RL (RR) query for solving Q and Q′. Here we consider the
symmetric variant of ORS (ORP) query, which is almost the same as ORS (ORP) query except that it
returns one of the points whose “x-coordinate” is the smallest (largest) within R (we call it symmetric
ORS (ORP) query). The motivation to consider symmetric ORS (ORP) queries comes from transposing
the query rectangle of normal ORS (ORP) queries. Since G is symmetric, the (normal) ORS query on G
with rectangle R = [x1, x2]× [y1, y2] is equivalent to the symmetric ORS query on G with rectangle
R> = [y1, y2]× [x1, x2]. When transposing the rectangle, we can focus on the lower triangular part Gl
instead of the upper triangular part Gu, as described below.

Let Sl and Bl be an integer sequence and a bit vector constructed from Gl in the same manner as
Su and Bu. Bl enables us to convert between the x-coordinate on Gl and the position in Su. Then it
can be observed that the symmetric ORS query on Gl with R = [x1, x2]× [y1, y2] can be answered by
solving the RL query on Sl with [a, b] = [x′1, x′2] and [p, q] = [y1, y2], where [x′1, x′2] is the interval of the
position in Sl corresponding to [x1, x2]. If the RL query returns ∅, the answer for the symmetric ORS
query is also ∅. Otherwise the answer can be obtained by converting the returned position in Sl to the
x-coordinate on Gl by Bl . In this reduction “leftmost” means “the smallest x-coordinate”. Similarly,
a symmetric ORP query on Gl can be converted to an RR query on Sl . With this conversion from the
symmetric ORS (ORP) query to the RL (RR) query, we can prove the following lemma which is a lower
triangular version of Lemma 6.

Lemma 7. Any ORS (ORP) query which appears in the reduction of Lemma 3 can be answered by solving one
RL (RR) query, or by solving one rank and one select queries, on Sl .

Proof. From Claim 2, the rectangles of the ORS queries corresponding to Q is all inside the upper
triangular part. Therefore, when we transpose them, they are inside the lower triangular part. Since the
symmetric ORS query can be converted into the RL query as described above, it is enough for solving Q.
In solving Q′, there may be query rectangles inside the upper triangular part. However, they are
solved by one rank and one select queries on Sl , in the same way as Claim 3.

Next we describe how to solve RL (RR) queries with a wavelet tree. We prove the following
lemma, by referring to the method to solve prevLess [24] by a wavelet tree.

Lemma 8. An integer sequence S[1..l] is given. Suppose that S[i] ∈ [0, σ− 1] for all i = 1, . . . , l. Then using
the wavelet tree for S, both RL and RR queries can be answered in O(log σ) time for each.

Proof. We show that with the pseudocode given in Algorithm 2. First we show the correctness. In the
arguments of RL, v is the node of the wavelet tree we are present, and [α, ω] is the interval of symbols
v corresponds to (i.e., [α, ω] = [lv, rv]). We claim the following, which ensures us that the answer for
the RL query can be obtained by calling RL(root, [p, q], [a, b], [0, σ− 1]).
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Claim 4. For any node v of wavelet tree and four integers a, b, p, q, calling RL(v, [p, q], [a, b], [lv, rv]) yields
the position of the answer for the RL query on Sv. If the answer for the RL query is ∅, this function returns 0.

Proof. We use an induction on the depth of the node v. The base case is [lv, rv] ∪ [p, q] = ∅ or
[lv, rv] ⊆ [p, q] (note that either of them must occur when lv = rv, so if v is a leaf node the basis case
must happen). For the former case, the answer is obviously ∅. For the latter case, the answer is a
since all elements in Sv[a..b] have value between [lv, rv] ⊆ [p, q]. In these cases, the answer is correctly
returned with lines 2–3 of Algorithm 2.

Now we proceed to the general case. Let l(v) = left(v), r(v) = right(v) and γ = b(lv + rv)/2c.
Then [ll(v), rl(v)] = [lv, γ] and [lr(v), rr(v)] = [γ + 1, rv]. Therefore, the elements in Sv[a..b] with a
value between [lv, γ] appear in the left child Sl(v)[al ..bl ], and those with a value between [γ + 1, rv]

appear in the right child Sr(v)[ar..br]. Here al , bl , ar and br can be calculated by rank queries on Bv:
[al , bl ] = [rank0(Bv, a− 1) + 1, rank0(Bv, b)] and [ar, br] = [rank1(Bv, a− 1) + 1, rank1(Bv, b)]. It can
be observed that the element Sv[i′] of Sv corresponding to the leftmost element Sl(v)[i] in Sl(v)[al , bl ]

with a value within [p, q] is also the leftmost element in Sv[a..b] with a value within [p, q] ∩ [lv, γ].
Here i can be obtained by RL(l(v), [p, q], [al , bl ], [lv, γ]) (induction hypothesis) and i′ = select0(Bv, i).
Similarly, the element Sv[j′] of Sv corresponding to the leftmost element Sr(v)[i] in Sr(v)[ar, br] with a
value within [p, q] is also the leftmost element in Sv[a..b] with a value within [p, q] ∩ [γ + 1, rv]. Again j
can be obtained by RL(r(v), [p, q], [ar, br], [γ + 1, rv]) (induction hypothesis) and j′ = select1(Bv, j).
Hence Sv[min{i′, j′}] is the leftmost element we want to know. Now the answer is correctly returned
with lines 4–10 of Algorithm 2: lines 7–10 cope with the case the RL function returns 0.

Next we discuss the time complexity when calling RL(v, [p, q], [a, b], [lv, rv]). We show that for
each level (depth) of the wavelet tree the function visits at most four nodes. At the top level we
visit only one node root. At level k, the general case occurs at most two times: it may occur when
[lv, rv] contains the endpoints of [p, q]. Thus, at level k + 1 the RL function is called at most 2× 2 = 4
times. Since the wavelet tree has depth dlog σe, RL function is called O(log σ) times. For each node,
all calculation other than the recursion can be done in O(1) time, so the overall time complexity
is O(log σ).

The same argument can be applied for the RR query. This completes the proof.

Algorithm 2 Range Leftmost Value by Wavelet Tree

1: function RL(v, [p, q], [a, b], [α, ω])
2: if a > b or [α, ω] ∩ [p, q] = ∅ then return 0
3: if [α, ω] ⊆ [p, q] then return a
4: γ← b(α + ω)/2c
5: i← RL(left(v), [p, q], [rank0(Bv, a− 1) + 1, rank0(Bv, b)], [α, γ])
6: j← RL(right(v), [p, q], [rank1(Bv, a− 1) + 1, rank1(Bv, b)], [γ + 1, ω])
7: if i 6= 0 and j 6= 0 then return min(select0(Bv, i), select1(Bv, j))
8: else if i 6= 0 then return select0(Bv, i)
9: else if j 6= 0 then return select1(Bv, j)

10: else return 0
11: end function

Lemmas 7 and 8 imply another way to achieve Corollary 2.
Finally, we discuss the application of RL (RR) query beyond the dynamic DFS algorithm. Let us

consider ORS and ORP queries on an l × l grid S whose placement of points is symmetric. Suppose
that there are d points on a diagonal line of S (we call them diagonal points) and 2k points within the
other part of S . Generally, there is no assumption on query rectangles such as Claim 2, so with only RN
(RP) queries we cannot remove the points within the lower triangular part of S . However, using RL
(RR) queries as well as RN (RP) queries, we can consider only the upper triangular and the diagonal
parts of S . The idea, which is very similar to the method in the preliminary version [10] of this paper,



Algorithms 2019, 12, 52 16 of 24

is as follows. First, for a query rectangle R = [x1, x2]× [y1, y2] of the ORS (ORP) query, we solve the
corresponding RN (RP) query. Second, for the transposed query rectangle R> = [y1, y2]× [x1, x2],
we solve the corresponding RL (RR) query, and “transpose” the answer. Finally, we combine these two
answers: choose the one with smaller (larger) y-coordinate. Let Sud and Bud be an integer sequence
and a bit vector constructed from the upper triangular and the diagonal parts of S in the same manner
as Su and Bu. A wavelet tree for Sud can solve RN, RP, RL and RR queries on Sud and occupies
(k + d + o(k) + o(d)) log l bits, since the diagonal part has d points and the upper triangular part has
k points. Because the space required for Bud is not a matter, now we obtain a space-efficient data
structure for solving ORS and ORP queries on S . If d = 0, the required space of the data structure is
actually halved from using wavelet tree directly ((2k + d + o(k) + o(d)) log n bits).

If d is large, we can further compress the space from (k + d + o(k) + o(d)) log l bits by treating
diagonal points separately. Let Bd[1..l] be a bit vector such that Bd[i] = 1 if there exists a point on
coordinates (i, i) and Bd[i] = 0 otherwise. For a query rectangle R = [x1, y1] × [x2, y2], let [a, b] =
[max{x1, y1}, min{x2, y2}]. Then it can be easily observed that R contains diagonal lines from (a, a)
to (b, b) if a ≤ b and R has no diagonal points otherwise. Therefore if a ≤ b, a diagonal point with
smallest (largest) y-coordinate within R can be obtained by one rank and one select query on Bd.
Now we do not retain the information of the diagonal points in the wavelet tree, so the overall required
space of data structures is (k + o(k)) log l + lH0(Bd) + o(l) ≤ (k + o(k)) log l + d log el

d + o(l) bits.

7. More Space-Efficient Dynamic DFS

In this section, we show algorithms to solve the dynamic DFS problem space-efficiently.
Our algorithm is based on the algorithms of Baswana et al. [4], but there is much consideration
in compressing the working space of it.

7.1. Fault Tolerant DFS

We begin with the algorithm for the fault tolerant DFS problem. Following the original algorithm
described in Section 3.1, the important point is that once a data structure for answering Q and Q′ is
built, the reduced adjacency list L is used and the whole adjacency list of the original graph is no longer
needed. Moreover, information used in the algorithm other than the data structure and the reduced
adjacency list takes only O(n log n) = o(m) log n bits, as described in Section 5. Since we have already
shown in Corollary 2 that the data structure takes (m + o(m)) log n bits, we have only to consider the
size of the reduced adjacency list L. From Section 3.1, for any k(≤ n) graph updates, the number of
edges in L is at most O(n) under the incremental case, and O(nk log n) under the fully dynamic case.
The time complexity of this algorithm can be calculated from Lemma 1 and Corollary 2. The required
space of this algorithm is (m + o(m)) log n bits plus the space required for L, that is, O(mL log n) bits
(with standard linked lists) where mL is the upper bound of the number of edges in L. To sum up,
we can obtain the following lemma.

Lemma 9. An undirected graph G and its DFS tree T are given. Then there exists an algorithm such that with
O(m

√
log n) preprocessing time, a DFS tree for the graph obtained by applying any k(≤ n) edge insertions

to G can be built in O(n log n) time. This algorithm requires (m + o(m)) log n bits once the preprocessing
is finished. Similarly, there exists an algorithm such that with O(m

√
log n) preprocessing time, a DFS tree

for the graph obtained by applying any k(≤ n) updates (vertex/edge insertions/deletions) to G can be built
in O(nk log2 n) time. This algorithm requires (m + o(m)) log n + O(nk log2 n) bits once the preprocessing
is finished.

7.2. Amortized Update Time Dynamic DFS

Next, we focus on the amortized update time dynamic DFS algorithm. During the “amortized
time” algorithm described in Section 3.2, we should perform the reconstruction of the data structure D
to solve the fault tolerant DFS problem besides the fault tolerant DFS itself, and store information of
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up to last c updates. Here D is indeed a bit vector and a wavelet tree described in Section 6. Therefore,
we must consider (a) how many edges the reduced adjacency list L may have, (b) how much space is
required to store information of updates, and (c) how to rebuild the data structure space-efficiently.
We analyze these issues one by one.

First we consider (a). Since we rebuild D periodically, we solve the fault tolerant DFS problem
with at most cj updates in phase j. Therefore, we can obtain an upper bound on the number of edges
in L. Under the incremental case, we can say f = m

√
log n, g =

√
log n and h = n log n for Lemma 2

(here
√

f /g =
√

m ≤ n holds), and the size of L is bounded by O(n), as described in Section 7.1.
Under the fully dynamic case, we can say f = m

√
log n, g = n log2 n and h = 0, thus the upper bound

is O(n log n ·
√

f /g) = O(
√

mn log0.25 n) which is o(m) under the assumption m = ω(n log0.5 n).
Hence we can conclude that L takes only o(m) log n bits under any conditions.

Next we consider (b), but this is almost the same as (a). Under the incremental case, the number
of edges inserted during cj updates is up to

√
f /g =

√
m which is o(m). Under the fully dynamic case,

the number of edges inserted or deleted during cj updates is up to O(n
√

f /g) = O(
√

mn/ log0.75 n),
since insertion or deletion of one vertex involves those of O(n) incident edges. This is smaller than the
maximum size of L, and thus it does not affect the bound. Please note that in the analysis of (a) and (b),
we write nj, mj, f j, gj, hj in Section 3.2 as n, m, f , g, h for simplicity.

Finally, we consider (c). Let Lj be the order of vertices in Gj defined by the pre-order traversal of
Tj, where Gj and Tj are the graph and its reported DFS tree at the beginning of phase j of the amortized
update time algorithm, and let Gj be the grid like G constructed from Gj and Lj (in our algorithm we
do not retain Gj, but it helps the description of our algorithm clear). In addition to these, let Sj[1..mj]

and Bj be an integer sequence and a bit vector built from the upper (or lower) triangular part of Gj in
the same manner as Section 6 (in Section 6, they are written as Su and Bu (or Sl and Bl)). Now we focus
on the end of phase j, i.e., the time Tj+1 is reported. Using these symbols, the rebuilding process at
this moment is briefly described as follows. First, the order of vertices Lj+1 is decided according to
the pre-order traversal of Tj+1, and information attached to each vertex and edge of Tj+1 is initialized.
Second, a grid Gj+1 is considered, and Sj+1 and Bj+1 are built. Finally, a wavelet treeWj+1 for Sj+1
is constructed.

The main difficulty in this rebuilding process is that the whole adjacency list is not retained.
That means the information of all edges in Gj+1 is not explicitly stored at this moment. It is stored in
the wavelet treeWj for Sj, the bit vector Bj, and the information of the last cj updates. In our algorithm,
we additionally retain the integer sequence Sj during phase j of the algorithm. Then the main job in
this moment is to construct Sj+1 and Bj+1 from Sj, Bj and the information of last cj updates.

To do this, we also retain during phase j an integer sequence Mj[0..nj], where Mj[i] is the number
of points in the upper (or lower) triangular part of Gj whose x-coordinate is less than i. Then 0 =

Mj[0] ≤ Mj[1] ≤ · · · ≤ Mj[nj] = mj holds. The y-coordinates of the points whose x-coordinate is i are
stored in Sj[Mj[i] + 1..Mj[i + 1]]; we call this subsequence a block i of Sj. We impose a condition on Sj
that each block of Sj is sorted in ascending order. Please note that Sj takes mj log nj bits and Mj takes
O(nj log mj) = o(mj) log nj bits.

Now we describe the way to rebuild the data structures space-efficiently at the end of phase j.
First, destroy Bj andWj. Second, sort the information of last cj updates, i.e., the inserted or deleted
edges during the last c updates, in the same order as Sj. This can be performed as follows. First convert
this information to tuples (xi, yi, di) where (xi, yi) is the vertex ids (according to Lj) of the endpoints
of the edge with xi > yi (or xi < yi in the lower triangular case), and di is information of 1 bit
which represents whether the edge is inserted or deleted (here if there are inserted vertices, they are
numbered from nj). Second sort them by the ascending order of xi. If there are some tuples which
share xi, they are sorted by the ascending order of yi. Please note that since the number of edges
inserted or deleted during cj updates is up to o(mj), sorting can be performed in linear time (i.e., o(mj)

time) and o(mj) log nj bits of working space by radix sort. Third, create a new array S′j+1[1..mj+1]

and M′j+1[0..nj+1], which retains information of all edges in Gj+1 with the vertex numbering from Lj.
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This can be done by simply scanning the tuples and Sj simultaneously and merging them, since they
are sorted in the same order. Fourth, destroy Sj and Mj, and decide the order Lj+1 of vertices in Gj+1
according to the pre-order traversal of Tj+1. Fifth, create Sj+1[1..mj+1] and Mj+1[0..nj+1] from S′j+1 and
M′j+1, and destroy S′j+1 and M′j+1. The detail of this process is described later. Finally, buildWj+1 and
Bj+1 from Mj+1 and Sj+1. Then we are ready for phase (j + 1).

The remaining part is creating Sj+1 and Mj+1 from S′j+1 and M′j+1. For simplicity, let t = j + 1,
and suppose that we now focus on the upper triangular part of Gt as in Section 6.2 (even if we focus on
the lower triangular part of Gt as in Section 6.3, we can perform this in almost the same way). First,
construct an old-to-new correspondence table N of vertex numbering: N[i] is the vertex id from Lt

of a vertex whose vertex id from Lj is i. Then the pseudocode for converting S′t and M′t to St and
Mt is given in Algorithm 3. Here inc(·) and dec(·) stand for the increment and decrement (resp.) of
this variable by one. This seems to be a bit complicated, but is equivalent to performing a kind of
counting sort for two times. In the first part (lines 1–12 of Algorithm 3), we convert the old vertex id
to the new one, let the points (i.e., edges in Gt) in the “lower” triangular part of Gt, and sort them by
their x-coordinates. In the second part (lines 14–21), we sort them by their y-coordinates and record
their x-coordinates (see line 19) in St. In this way their x- and y-coordinates are swapped, and finally
they are in the upper triangular part of Gt. In these processes, things get complicated since their
x-coordinates are stored implicitly in M′t and M′′t while y-coordinates are explicitly stored in S′t and S′′t ,
but we manage to perform two counting sortings by this coordinate swapping method.

Algorithm 3 Creating St[1..mt] and Mt[0..nt] from S′t[1..mt] and M′t[0..nt]

1: i← 0, create S′′t [1..mt] and M′′t [0..nt] with all elem. 0
2: for k := 1 to mt do
3: while M′t[i + 1] < k do inc(i)
4: inc(M′′t [min{N[i], N[S′t[k]]}])
5: end for
6: for l := 1 to nt do M′′t [l]← M′′t [l] + M′′t [l − 1]
7: i← nt
8: for k := mt downto 1 do
9: while M′t[i] ≥ k do dec(i)

10: S′′t [M
′′
t [min{N[i], N[S′t[k]]}]]← max{N[i], N[S′t[k]]}

11: dec(M′′t [min{N[i], N[S′t[k]]}])
12: end for
13: destroy S′t and M′t, create St[1..mt] and Mt[0..nt] with all elem. 0
14: for k := 1 to mt do inc(Mt[S′′t [k]])
15: for l := 1 to nt do Mt[l]← Mt[l] + Mt[l − 1]
16: i← nt
17: for k := mt downto 1 do
18: while M′′t [i] ≥ k do dec(i)
19: St[Mt[S′′t [k]]]← i
20: dec(Mt[S′′t [k]])
21: end for
22: destroy S′′t and M′′t

Finally, we consider the time complexity and the required space of this building process. In this
analysis we write nj, mj as simply n, m since from (b), the number of edges is changed by only o(mj)

during phase j when nj = o(mj). The whole process to rebuild data structures takes O(m
√

log n)
time, since building single wavelet tree takes O(m

√
log n) time and the others take only O(m) time.

In the whole process, data structures or arrays which take (m + o(m)) log n bits areWj, Sj, S′j+1, S′′j+1,
Sj+1 andWj+1, and at any time, this algorithm retains at most two of them. The working space for
constructing wavelet tree in O(m

√
log n) time [18] is at most O(m

√
log m) bits. This can be written

as O(m/
√

log m) · log n = o(m) log n. Here the integer sequence S has m elements and n symbols
([0, n− 1]). Since we assume n = o(m) as in Section 2, the pointers to form a complete binary tree
shape of the wavelet tree for S requires only O(n log m) = o(m) log n bits, which is negligible. All other
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data take only o(m) log n bits, and thus the space required by the algorithm is (2m + o(m)) log n bits.
Combining these observations with Lemma 2 yields the following theorems. Theorem 2 proposes the
incremental DFS algorithm, while Theorem 3 states the fully dynamic one.

Theorem 2. There exists an algorithm such that given an undirected graph G and its DFS tree T, for any
on-line sequence of edge insertions on G, a new DFS tree after each insertion can be built in amortized O(n log n)
time per update, with O(m

√
log n) preprocessing time. This algorithm requires only (2m + o(m)) log n bits

once data structures for the original graph are built.

Theorem 3. There exists an algorithm such that given an undirected graph G and its DFS tree T, for any on-line
sequence of graph updates on G, a new DFS tree after each update can be built in amortized O(

√
mn log1.25 n)

time per update under fully dynamic setting, with O(m
√

log n) preprocessing time. This algorithm requires
only (2m + o(m)) log n bits under m = ω(n log0.5 n) once data structures for the original graph are built.

7.3. Worst-Case Update Time Dynamic DFS

Finally, we consider the worst-case update time algorithm for the dynamic DFS, following the
“worst-case time” algorithm described in Section 3.2. To implement this space-efficiently, again we
must consider (a), (b) and (c) described in Section 7.2, but two of them are almost the same argument.
In the worst-case time algorithm, we should solve the fault tolerant DFS problem with at most cj−1 + cj
updates and thus store information of last cj−1 + cj updates. Therefore, the required space for the
reduced adjacency list and the information of updates are multiplied by some constant, but these are
absorbed in the big O notation.

Therefore, we have only to consider (c). Let Dj be the pair of the bit vector Bj and the wavelet tree
Wj. Then during phase 0, D0 is used to perform fault tolerant DFS and rebuilding of data structures
is not needed. During phase j(≥ 1), Dj−1 is used and the following processes are done gradually:
first destroy Dj−2 (this is not needed for phase 1), and then build Mj, Sj and Dj from Mj−1, Sj−1 in the
same way as Section 7.2. At the end of phase j there exist Dj−1, Mj, Sj and Dj, and we can continue to
the next phase (j + 1).

Finally, we consider how much space is needed to implement this algorithm. In phase j, Dj−1
takes (m + o(m)) log n bits, and rebuilding the data structures requires at most (2m + o(m)) log n bits
as described in Section 7.2. Therefore, the total required space is (3m + o(m)) log n bits. These results
can be summarized in the following theorems.

Theorem 4. There exists an algorithm such that given an undirected graph G and its DFS tree T, for any on-line
sequence of edge insertions on G, a new DFS tree after each insertion can be built in worst-case O(n log n) time
per update, with O(m

√
log n) preprocessing time. This algorithm requires only (3m + o(m)) log n bits once

data structures for the original graph are built.

Theorem 5. There exists an algorithm such that given an undirected graph G and its DFS tree T, for any on-line
sequence of graph updates on G, a new DFS tree after each update can be built in worst-case O(

√
mn log1.25 n)

time per update under fully dynamic setting, with O(m
√

log n) preprocessing time. This algorithm requires
only (3m + o(m)) log n bits under m = ω(n log0.5 n) once data structures for the original graph are built.

8. Applications

In this section, we show the applications of our fully dynamic DFS algorithms to dynamic
connectivity, dynamic biconnectivity, and dynamic 2-edge-connectivity. The description for these
applications also appears in the full version of the paper of Baswana et al. [6]. We basically follow their
description, but now we must consider the additional space required by calculating them. Moreover,
in dynamic biconnectivity and 2-edge-connectivity, we have some additional considerations to keep
the update time same as Theorems 1 and 5.
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8.1. Dynamic Connectivity

For the dynamic connectivity problem, we deal with an on-line sequence of graph updates and
connectivity queries. The query takes two vertices as an input and asks whether these two vertices
are in the same connected component or not. This can be easily done by the following way. For each
graph update, perform dynamic DFS and obtain a new DFS tree T∗ rooted at the virtual vertex r.
By removing r from T∗, T∗ becomes a forest each tree of which is a spanning tree for one connected
component. Then simply traversing T∗ from r, we can number the connected components of G,
and attach to each vertex v in G the id of the connected component v belongs to. The query can
be solved by simply checking the connected component id of two vertices; connected if they are
same, or disconnected otherwise. Since traversing T∗ takes O(n) time and the additional required
space is only O(n log n) = o(m) log n bits, these operations do not violate the update time and space
complexity of dynamic DFS algorithms. Since the initial DFS tree can be obtained in O(m + n) time
which is absorbed in the preprocessing time, we obtain the following theorem.

Theorem 6. Given an undirected graph G, there exists an algorithm such that with O(m
√

log n) preprocessing
time, for any on-line sequence of graph updates (edge/vertex insertion/deletion) and connectivity queries,
each update can be processed in worst-case O(

√
mn log0.75+ε n) time (O(

√
mn log1.25 n) time) and each query

can be answered in worst-case O(1) time. This algorithm requires O(m log n) bits ((3m + o(m)) log n bits)
once the preprocessing is finished.

8.2. Dynamic Biconnectivity/2-Edge-Connectivity

For the dynamic biconnectivity (2-edge-connectivity) problems, we first formally define the
problem. A set S of vertices in an undirected graph G is called a biconnected component iff it is the
maximal set such that the removal of any one vertex in S keeps S connected. Similarly, a set S of
vertices is said to be a 2-edge-connected component iff it is the maximal set such that the removal of any
one edge whose endpoints are both in S keeps S connected. The biconnectivity (2-edge-connectivity)
query takes two vertices as an input and asks whether these two vertices are in the same biconnected
(2-edge-connected) component or not. The goal of the dynamic biconnectivity (2-edge-connectivity)
problem is to design an algorithm which can process any on-line sequence of graph updates and
biconnectivity (2-edge-connectivity) queries.

The concepts related to biconnectivity and 2-edge-connectivity are articulation points and bridges.
A vertex v (an edge e) in G is called an articulation point (a bridge) iff the removal of v (e) increases the
number of connected components in G. Then we can say that for any DFS tree T of G, two vertices u and
v are in the same biconnected component iff the path from u to v in T (excluding u and v themselves)
includes no articulation points. Similarly, two vertices u and v are in the same 2-edge-connected
component iff the path from u to v in T contains no bridges. Therefore, now we can reduce the dynamic
biconnectivity (2-edge-connectivity) problem to the following problem: to design an algorithm which
can enumerate, for any on-line sequence of updates on G, all articulation points and bridges after each
update.

In static setting, the articulation points and bridges can be listed also by DFS. Given a connected
undirected graph G and its DFS tree T, we first number the vertices from 0 to n− 1 by the pre-order
traversal of T; the id of a vertex v is denoted by g(v). Then the high number h(v) of a vertex v is defined
by min{g(w) | there is at least one edge in G between w and T(v)}. It can be said that a vertex v is an
articulation point iff v is a root of T and has multiple children, or v is a non-root vertex of T and has at
least one child w with g(v) = h(w). We can also say that a tree edge e = (v, w) (v is a parent of w) is a
bridge iff h(w) = g(v), and h(x) = g(w) for all children x of w. Therefore, if we can calculate h(·) for
all vertices, we can detect all articulation points and bridges in O(n) time by simply traversing T.

Now the problem we want to solve is to design an algorithm such that given an undirected graph
G, it can compute a new DFS tree and h(·) for the graph obtained by applying any k(≤ n) graph
updates to G. Baswana et al. [6] proposed an efficient method for solving this by modifying the fault
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tolerant DFS algorithm. Before explaining this, let us recall the fault tolerant DFS algorithm. We state
in Section 3.1 that during the construction of a new DFS tree T∗, when a path or a subtree x ∈ P ∪ T
(derived from DTP) is visited, an ancestor-descendant path p∗ is extracted from x and the remaining
part x \ p∗ is pushed back to P if originally x ∈ P or T otherwise. Let Pt (Pp) be a set of these extracted
paths from T (P). The algorithm in Section 3.1 ensures us that |Pp| ≤ k log n. For an extracted path
p∗ ∈ Pt ∪ Pp, let u(p∗) and l(p∗) be the endpoints of p∗, where u(p∗) is an ancestor of l(p∗) in the new
DFS tree T∗.

We describe their method to calculate h(·). They use the query Q′ defined in Definition 2. First,
compute the initial DTP in the same way as fault tolerant DFS, and for each vertex v in some subtree
τ ∈ T , calculate the highest ancestor zv among vertices z ∈ τ such that there is an edge (v, z) in the
updated graph. This is calculated by an ORS query on G with R = [ f (v), f (v)]× [tb, te] where [tb, te]

is the interval the vertices of τ occupy in the (old) vertex numbering f (·). Second, obtain a new DFS
tree T∗ by fault tolerant DFS tree algorithm. In constructing T∗, simultaneously number the vertices to
get the (new) vertex numbering g(·). Third, for each vertex v except r, attach an integer H(v) which
is initialized to some constant larger than any vertex numbering g(·), e.g., the number of vertices.
Fourth, for each inserted edge (v, w), update H(v) by g(w) and H(w) by g(u). Here for a vertex v and
an integer k, “update H(v) by k” means substituting min{H(v), k} for H(v). Finally, these operations
are performed.

1. For each vertex v and each path p∗ ∈ Pp, solve Q′(v, u(p∗), l(p∗)) to get an edge (v, w) and update
H(v) by g(w).

2. For each vertex v and each path p∗ ∈ Pp, solve Q′(v, l(p∗), u(p∗)) to get (v, w) and update H(w)

by g(v).
3. For each vertex v that is in some subtree τ ∈ T initially (i.e., when the initial DTP is calculated),

let p∗v ∈ Pt be the path which contains v. Then solve Q′(v, u(p∗v), l(p∗v)) to get (v, w) and update
H(v) by g(w).

4. For each vertex v that is in some subtree τ ∈ T initially, let p∗z ∈ Pt be the path which contains zv.
Then solve Q′(v, u(p∗z ), l(p∗z )) to get (v, w) and update H(v) by g(w).

Baswana et al. [6] show that after performing them, h(·) is calculated by h(v) =

min{H(w) | w is v itself or a descendant of v}. Thus, after calculating H(·), h(·) can be computed
in O(n) time by simply traversing the new DFS tree T∗.

We bring their method to our situation. First we consider the time complexity. Except for the
operations 1. to 4., we throw O(n) ORS queries, perform fault tolerant DFS and scan all inserted
edges. The most time-consuming part among them is fault tolerant DFS, and takes O( f · nk log n)
time with O( f ) ORS (ORP) query time (Lemmas 1 and 3). The operations 3. and 4. solves Q′ for n
times, thus they take O( f · n log n) time which is absorbed. However, the operations 1. and 2. solves
Q′ for O(nk log n) times since |Pt| = O(k log n), and therefore they seem to take O( f · nk log2 n) time,
which is larger than performing fault tolerant DFS. This is because Q′ is solved O(log n) times slower
than Q is. Here we show the following lemma, which implies that they take only O( f · nk log n) time.

Lemma 10. The operations 1. and 2. can be performed by solving O(nk log n) ORS (ORP) queries in total.

Proof. In solving Q′, we solve ORS (ORP) queries with R = [ f (w), f (w)]× [ai, bi] (i = 1, . . . , k), where
[a1, b1], . . . , [ak, bk] is the intervals path(x, y) occupies in the (old) vertex numbering f (·). For p∗ ∈
Pt ∪ Pp, let k(p∗) be the number of intervals of vertex ids p∗ is divided into. Then it suffices to show
that ∑p∗∈Pt∪Pp k(p∗) = O(k log n), since it can be said that for each vertex v, Q′(v, u(p∗), l(p∗)) and
Q′(v, l(p∗), u(p∗)) are solved for all p∗ ∈ Pt ∪ Pp by ∑p∗∈Pt∪Pp k(p∗) ORS (ORP) queries. Let us recall
that the union of all paths in Pp equals to the union of paths inP , a set of ancestor-descendant paths of the
initial DTP. Let S be the vertices of the union of all paths in Pp. Since |P| ≤ k (see Definition 1), S occupies
at most NI = O(k log n) intervals. Thus, even if S is divided into |Pp| = O(k log n) paths, the number
of intervals to consider is at most NI + |Pp| = O(k log n). Hence ∑p∗∈Pt∪Pp k(p∗) = O(k log n).
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In this way we can say the time complexity is O( f · nk log n).
Next we consider the required space, but it is easy. The key point is again that the whole adjacency

list of G is not needed due to the usage of the query Q′. In these processes, we must store the endpoints
of each path in Pt ∪ Pp. For each vertex v, we must retain g(v), H(v), h(v), zv, and a pointer to a
path in Pt ∪ Pp v is contained, and so on. However, these sum up to only O(n) words of information,
thus these takes only O(n log n) = o(m) log n bits. Therefore, we prove the following.

Lemma 11. Given an undirected graph G and its DFS tree T, there exists an algorithm such that with
O(m

√
log n) preprocessing time, articulation points and bridges of the graph obtained by applying any k(≤ n)

updates (vertex/edge insertions/deletions) to G can be all enumerated in O(nk log1+ε n) (O(nk log2 n)) time.
This algorithm requires O(m log n) ((m + o(m)) log n + O(nk log2 n)) bits of space once the preprocessing
is finished.

We propose an efficient fully dynamic biconnectivity/2-edge-connectivity algorithm including
vertex updates using Lemma 11. For 2-edge-connectivity, it can be observed from the definition
that each vertex belongs to exactly one 2-edge-connected component. With the relation between
2-edge-connectivity and bridges, we can number the 2-edge-connected components of G, and attach
to each vertex v the id of the 2-edge-connected component v belongs to, by simply traversing T∗.
Then the 2-edge-connectivity query can be answered in the same way as the connectivity query.
For biconnectivity, we first build an LCA data structure [20] for T∗ after each update. We also compute,
for each vertex v, the lowest ancestor a(v) among articulation points (excluding v itself). They can
be all computed in O(n) time by simply traversing T∗ after each update. Then for the biconnectivity
query with two input vertices v, w, first get x = LCA(v, w) in T∗ by querying the LCA data structure.
Now the path from v to w in T∗ is indeed two ancestor-descendant paths from v to x and from x to
w in T∗. We can check whether these paths contain articulation vertices or not by comparing g(a(v))
to g(x) and g(a(w)) to g(x). For example, if g(x) ≤ g(a(v)), the path from v to x in T∗ contains at
least one articulation points; otherwise does not. For one biconnectivity query the overall time is O(1)
including the LCA query. The additional space required is also O(n log n) = o(m) log n bits because
the LCA data structure takes only O(n log n) bits. Therefore, we obtain the following theorem.

Theorem 7. Given an undirected graph G, there exists an algorithm such that with O(m
√

log n) preprocessing
time, for any on-line sequence of graph updates (edge/vertex insertion/deletion), biconnectivity queries
and 2-edge-connectivity queries, each update can be processed in worst-case O(

√
mn log0.75+ε n) time

(O(
√

mn log1.25 n) time) and each query can be answered in worst-case O(1) time. This algorithm requires
O(m log n) bits ((3m + o(m)) log n bits) once the preprocessing is finished.
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Abbreviations

The following abbreviations are used in this manuscript:

DFS Depth-First Search
ORS query Orthogonal Range Successor query
ORP query Orthogonal Range Predecessor query
HL decomposition Heavy-Light decomposition
LCA query Lowest Common Ancestor query
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