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Abstract: To develop a non-polluting and sustainable city, urban administrators encourage logistics
companies to use electric vehicles instead of conventional (i.e., fuel-based) vehicles for transportation
services. However, electric energy-based limitations pose a new challenge in designing reasonable
visiting routes that are essential for the daily operations of companies. Therefore, this paper
investigates a real-world electric vehicle routing problem (VRP) raised by a logistics company. The
problem combines the features of the capacitated VRP, the VRP with time windows, the heterogeneous
fleet VRP, the multi-trip VRP, and the electric VRP with charging stations. To solve such a complicated
problem, a heuristic approach based on the adaptive large neighborhood search (ALNS) and integer
programming is proposed in this paper. Specifically, a charging station adjustment heuristic and a
departure time adjustment heuristic are devised to decrease the total operational cost. Furthermore,
the best solution obtained by the ALNS is improved by integer programming. Twenty instances
generated from real-world data were used to validate the effectiveness of the proposed algorithm.
The results demonstrate that using our algorithm can save 7.52% of operational cost.

Keywords: transport optimization; metaheuristics; electric vehicles; routing; adaptive large
neighborhood search

1. Introduction

With industrial development and urbanization, air pollution in cities has become increasingly
serious in recent years. For example, in December 2016, Beijing was covered by smog for six days,
forcing authorities to announce the highest-level smog alert of 2016. A major cause of air pollution in
cities is the large number of conventional motor vehicles with internal combustion engines that run
on diesel or gasoline. They emit carbon oxides, nitrogen oxides and particulate matters that cause air
pollution. To alleviate this hazardous situation and to reduce the number of conventional vehicles,
green vehicles, such as alternative fuel vehicles and electric vehicles, which produce fewer emissions
that contribute to air pollution than conventional vehicles, have gained much attention from city
managers. Logistics companies are encouraged by city managers to use electric vehicles to construct a
non-polluting and sustainable urban logistics system. For example, in January 2018, one of the largest
Chinese online retailers, JD.com, used electric vehicles instead of conventional vehicles to deliver
parcels in Beijing, and is going to replace all its conventional vehicles in the next two years. Electric
vehicles are constrained by the capacity of their battery, the location of charging stations, and long
charging times. The routing approaches for conventional vehicles are not applicable to electric vehicles,
which leads to a new optimization problem called the electric vehicle routing problem (EVRP).

The basic EVRP is to obtain a set of routes with the minimum operational cost that serve customers’
requests while satisfying the driving range limitations and charging requirements of electric vehicles.
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A real-world EVRP proposed by a logistics company in Wuhan, China is presented in this paper. In the
problem, a fleet of heterogeneous electric vehicles departs from the distribution center, delivers or
picks up customer parcels within predefined time windows, and finishes at the center. While in transit,
a vehicle can return to the center to load parcels to be delivered or unload collected parcels, and it can
also go to charging stations as well as the distribution center to fully charge its battery in a fixed time
(e.g., 30 min). The objective is to minimize the sum of the acquisition costs of used vehicles, the travel
costs of vehicles, the waiting costs at customers and centers, and the charging costs. In Figure 1, two
types of electric vehicles, i.e., Vehicle 1 and Vehicle 2, are used to fulfill delivery or pickup requests
of customers; the lines having the same color denote a visiting route of a vehicle in the day. The red
route does not need to charge; the purple route requires two charges at two different stations, one
of which it shares with the black route; and the yellow route with two trips needs to go back to the
distribution center. Obviously, the problem combines the features of the capacitated VRP [1], the VRP
with time windows [2,3], the heterogeneous fleet VRP [4], the multi-trip VRP [5], and the EVRP with
charging stations [6]. Considering its complexity, we must resort to meta-heuristics to efficiently solve
the proposed problem.
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Figure 1. Illustration for the proposed problem.

This paper focuses on developing a heuristic approach based on the adaptive large neighborhood
search (ALNS) and integer programming (IP) to solve the proposed problem. In the algorithm, we
devise a charging station adjustment heuristic based on labeling algorithm to obtain the optimal
selection and location of charging stations in a given sequence of customers and a departure time
adjustment heuristic to calculate the optimal departure time when vehicles should first leave from
the distribution center. After the termination of the ALNS iterative process, the best solution is
further improved by set-partitioning-based integer programming. In computational experiments, the
effectiveness of the components of the proposed algorithm was validated by 20 instances generated
from real-world data.

The rest of this paper is organized as follows. Section 2 provides a brief review of the pertinent
literature about the EVRP. Section 3 outlines a definition for the proposed problem. Section 4 presents
the solution approach for the problem. Section 5 reports the computational results. Section 6 presents
the conclusions and future research directions.

2. Literature Review

Research on the VRP and its variants is increasing tremendously in the literature [7–9].
Pelletier et al. [10] presented a survey of the existing research in the goods distribution with electric
vehicles. This section mainly reviews the very recent developments of the EVRP and its variants.
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Schneider et al. [11] introduced the EVRP with time windows which considers the possibility of
partial recharges at any station. They proposed a hybrid heuristic based on a variable neighborhood
search (VNS) algorithm and a tabu search (TS) heuristic. Felipe et al. [12] exploited constructive
and local search heuristics within a non-deterministic simulated annealing framework to solve an
EVRP with multiple technologies and partial recharges. Sassi et al. [13] proposed an iterated TS
for the mix fleet VRP with heterogeneous electric vehicles. Yang and Sun [14] presented an electric
vehicle battery swap location routing problem that determines the location of battery swap stations
and the routing of electric vehicles under battery driving range limitations. In the problem, vehicles
can stop at battery swap stations to swap their battery for a fully charged battery. They proposed a
four-phase heuristic called SIGALNS (Sweep heuristic, Iterated Greedy, Adaptive Large Neighborhood
Search) and a two-phase TS-modified Clarke and Wright Savings heuristic to solve the problem.
Wen et al. [15] addressed the electric vehicle scheduling problem in which a set of timetabled bus trips
should be carried out by a set of electric vehicles. The vehicles can be recharged fully or partially
at any recharging station. They proposed an ALNS algorithm to solve it. Keskin and Çatay [16]
studied the EVRP with time windows and partial recharging and design an ALNS algorithm to solve
it. Hiermann et al. [6] introduced the electric fleet size and mix VRP with time windows in which the
vehicle is assumed to recharge to full capacity on visit of a recharging station. They solved the problem
using the branch-and-price algorithm and the enhanced ALNS algorithm. Desaulniers et al. [17]
presented four variants of the EVRP based on the allowable times of recharges per route and partial or
full recharges. For each variant, they proposed the branch-price-and-cut algorithm with customized
mono-directional and bidirectional labeling algorithms to solve it. Montoya et al. [18] considered the
EVRP with a nonlinear charging function, which assumes that the battery-charge level is not a linear
function of the charging time. They developed a hybrid meta-heuristic combining an iterated local
search (ILS) and a heuristic concentration method to solve the problem. Schiffer and Walther [19]
introduced a location-routing problem that considers routing of electric vehicles and positioning
decisions for charging stations. Partial recharges are allowed in the problem. They presented an ALNS,
which is improved by local search and labeling algorithms, and devised new penalty functions for
neighborhood evaluation. Hof et al. [20] designed an adaptive VNS algorithm to solve the battery
swap station location-routing problem proposed by Yang and Sun [14]. Zhang et al. [21] devised an
ant colony algorithm to solve the EVRP with recharging stations to minimize energy consumption.
Macrina et al. [22] proposed an ILS heuristic to the mixed fleet vehicle routing problem with partial
battery recharging and time windows in which the fleet is composed of electric and conventional
vehicles. Froger et al. [23] proposed a new model, a heuristic, and an exact labeling algorithm for the
EVRP with nonlinear charging functions.

From the literature review, we can find that differing charge strategies and objectives make the
solution approaches not interchangeable and that problem-specific optimization components must be
designed to accommodate the features of our problem, which motivates us to design a sophisticated
heuristic for solving it.

3. Problem Description

The problem can be defined on a complete directed graph G = (V, A) with a set of nodes
V = {0} ∪ N ∪ F and a set of arcs A = {(i, j) | i, j ∈ V, i 6= j}. Node 0 is the distribution center
(also called the depot), the set N = {1, 2, . . . , |N|} is the set of customers, and the set F = {|N|+1, . . . ,
|N|+|F|} is the set of charging stations. The travel time and distance on arc (i, j) are denoted by tij
and dij, respectively. Each customer i ∈ N has a load qi, which is positive for a pickup request and
negative for a delivery request, a service time ti, and a time window [ai, bi], where ai and bi are the
earliest and latest allowable start service times, respectively. Each customer should be visited exactly
once. A fleet of heterogeneous electric vehicles is available at Node 0. The fleet composes K different
types of vehicles. Each vehicle type k = {1, 2, . . . , |K|} has a maximal load capacity Qk, a maximal
driving range Dk (due to limited battery capacity), a charging time tk

c , a charging cost ck
c per unit of
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time, an acquisition cost ck
f if it visits any customer, and a travel cost ck

v per unit of distance. Each
vehicle departs from Node 0 after a given time a0, serves some customers, and finally ends at Node 0
before a specified time b0. The vehicle capacity Qk must be respected at customer i. While in transit, the
vehicle can return to Node 0 to charge, reload parcels or unload parcels (i.e., multi-trips) if necessary.
The total travel distance of a vehicle after the last charge should not exceed its maximal driving range
Dk. Each vehicle should start the service of a customer within the given time windows. If the vehicle
arrives earlier than ai, a waiting cost proportional to the waiting time is incurred. Meanwhile, when
the vehicle returns to Node 0 to prepare for the next trip (including charging), a given waiting time tw

is spent, which also incurs a waiting cost proportional to the waiting time. The parameter cw is the
cost per unit of waiting time. Each vehicle should go to one of the charging stations before it runs out
of electricity and charge to full capacity in its predefined charging time tk

c [24].
The problem consists of determining a route plan for satisfying customers’ demands while

minimizing the sum of the acquisition costs, travel costs, charging costs, and waiting costs at customers
and the distribution center. It contains four aspects: (1) the vehicle type assigned to each customer;
(2) the visiting sequence of customers; (3) the charging station or distribution center and time chosen
by the vehicle if it needs recharging; and (4) the departure time when the vehicle should first leave the
distribution center.

For a detailed description and mathematical formulation of the proposed problem, interested
readers are referred to similar papers [6,19].

4. Solution Approach

Considering the complexity of the proposed problem, we devise a heuristic approach based on
the ALNS and IP to solve it. The ALNS was first proposed by Ropke and Pisinger [25]. Its basic idea is
to use a leaning mechanism to bias the selection of a variety of removal and insertion operators that
are used to generate new solutions. It has been widely used to solve various variants of VRPs [26–35].
In this paper, we incorporate the features of the proposed problem into the ALNS. Its details are
described in Algorithm 1.

An initial solution s0 is first generated at the beginning of the ALNS. Then, at each iteration,
as on Line 5, a removal and insertion heuristic pair is chosen based on their scores and weights in
previous iterations. On Line 6, a given number of customers are first removed from current solution
scurrent using the chosen removal heuristic and put into the set of removed customers. The locations
of charging stations and depot in the partial solution remain unchanged. Using the corresponding
insertion heuristic, the removed customers are reinserted into the partial solution to generate a new
solution s′. On Lines 7 and 8, solution s′ is first improved by a local search, and then the charging
stations and departure time of all routes are optimized. On Lines 9–17, if s′ is better than current best
infeasible solution sinf

* or current solution scurrent or meets the acceptance criteria, then it replaces
scurrent. Accordingly, the route set Rmodel is updated with new feasible routes in s′. On Lines 18–20,
the current best feasible solution sfea

* is updated. Then, on Lines 21 and 22, the scores and weights
of the selected removal and insertion heuristics are updated, and the penalty coefficients of the
generalized cost function are also updated. The search is repeated until some stopping criterion is
satisfied. The stopping criterion is that the runtime of the ALNS exceeds the given value TALNS. Then,
a set-partitioning mathematical model based on the routes in set Rmodel is constructed and solved by
optimization software. Finally, the solution obtained from the model is outputted as the solution of
the problem.
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Algorithm 1: Solution approach for the proposed problem.

1: generate an initial solution s0

2: sfea
* := s0, sinf

* := s0, scurrent := s0

3: update route set Rmodel with feasible routes of scurrent

4: repeat
5: choose a removal-insertion heuristic pair according to adaptive weights
6: apply selected heuristic pair to scurrent, yielding s′

7: apply local search to s′

8: adjust vehicle type, charging stations, and first departure time of all the routes of s′

9: if s′ is better than sinf
* then

10: sinf
* := s′, scurrent := s′

11: update the route set with feasible routes of scurrent

12: else if s′ is better than scurrent then
13: scurrent := s′

14: update the route set with feasible routes of scurrent

15: else if s′ meets the acceptance criteria then
16: scurrent := s′

17: end if
18: if s′ is feasible and is better than sfea

* then
19: sfea

* := s′

20: end if
21: update scores and weights of selected heuristics
22: update penalty coefficients of generalized cost function
23: until some stopping criterion is satisfied
24: construct the set-partitioning model using routes in Rmodel and solve it
25: update sfea

* with solution of the model
26: return sfea

*

4.1. Construction of Initial Solution

To generate an initial feasible solution, a sequential route construction heuristic is implemented.
At each iteration, using identical unassigned customers, the routes associated with all vehicle types
are created independently. For the construction of a route with respect to a vehicle type, the customer
with the least cost increase is added into the partial route while satisfying all constraints. If one
insertion violates the battery capacity (or driving range limitation), the algorithm attempts to insert the
charging station closest to the customer before or after the customer. The insertion process continues
until no more customers can be added into the route. The vehicle type with the least cost is selected.
The customers in the corresponding route are then removed from the unassigned customer set, and
the next iteration is performed until no unassigned customer is available. The newly generated
routes are further optimized using the labeling algorithm and departure time adjustment heuristic in
Sections 4.8 and 4.9.

4.2. Penalty Functions

Both feasible and infeasible solutions are allowed in the ALNS using a generalized cost function
f gen(s) to evaluate a solution s. In addition to a term f obj(s) denoting the objective value, penalty terms
for time window violations f tw(s), capacity violations f cap(s), and battery capacity violations f batt(s) are
taken into consideration

f gen(s) = f obj(s) + αf tw(s) + βf cap(s) + γf batt(s) (1)

Factors α, β, and γ are used to weight the penalties. They are initialized with (α0, β0, γ0) and
dynamically adjusted between a given lower (αmin, βmin, γmin) and upper bound (αmax, βmax, γmax).
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To achieve a good balance between diversification and intensification, the weights are multiplied by a
factor ω if a penalty occurred in the last iteration, and are divided by ω if no penalty occurred in the
last iteration.

A time window violation occurs at a customer if the vehicle arrives later than the latest allowable
time for starting service which equals the arrival time minus the latest time for starting service. The
total time window violation f tw(s) is the sum of violations of all customers. Because multiple trips
and customers with delivery or pickup requests are allowed in a route, a capacity violation occurs
if the maximal demand loaded by the vehicle exceeds its capacity before returning the depot. The
capacity violation during one trip equals the maximal demand minus the capacity of vehicles. The
total capacity violation f cap(s) is the sum of violations on all trips. A battery capacity violation occurs
at a charging station or the depot if the distance traveled by the vehicle exceeds its battery capacity
after the last charge. The total battery capacity violation f batt(s) is the sum of violations of charging
stations and the depot.

4.3. Removal Heuristics

This section introduces four removal heuristics. These heuristics take a solution and an integer
q as input. The output is a partial solution where q customers are removed and the order of other
customers and charging stations remains the same. Moreover, the heuristics Shaw removal, worst
removal, and historical knowledge node removal have parameters pShaw, pworst and phistorical that introduce
some randomness in the selection of customers.

4.3.1. Random Removal Heuristic

This simple removal heuristic removes q customers selected randomly from current solution s.
The idea of randomly selecting nodes helps diversify the search.

4.3.2. Shaw Removal Heuristic

The Shaw removal heuristic was first proposed by Shaw. Its general idea is to remove similar
customers, as it can be expected that it is reasonably easy to reshuffle similar customers and create new,
perhaps better, solutions. We use the distance dij between customers i and j to define the relatedness
R(i, j) between the two customers. The lower R(i, j) is, the more similar are the two customers. The
first customer i to be removed from solution s is selected at random. This customer i is added into the
set of removed customers D. Thereafter, at each iteration, one customer i* is randomly selected from
D. An array L containing all visited customers from solution s not in D is constructed. This array is
sorted according to increasing relatedness values R(i*, j). Then, a random number y is chosen from the
interval [0, 1) and customer L[ypshaw|L|] is removed and put into D. This process is repeated until q
customers are removed from solution s.

4.3.3. Worst Removal Heuristic

The worst removal heuristic attempts to remove customers with high cost and insert them at
another position in the solution to obtain a better solution. Given customer i served by some vehicle
in solution s, cost(i, s) = f gen(s) − f gen

−i(s) where f gen
−i(s) is the cost of the partial solution without

customer i. At each iteration, an array L containing all visited customers from solution s not in D is
constructed. This array is sorted according to descending costs. Then, a random number y is chosen
from the interval [0, 1) and customer L[ypworst|L|] is removed and put into D. This process is repeated
until q customers are removed from solution s.

4.3.4. Historical Knowledge Node Removal Heuristic

The historical knowledge node removal heuristic is derived from the one used in Demir et al. [26].
It records the position cost of every customer i, defined as the sum of the distances between its
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preceding and following nodes, and computed as di = di−1,i + di, i+1. At each iteration, the best position
cost di

* is updated to be the minimum of all di found so far. An array L containing all visited customers
from solution s not in D is constructed. This array is sorted according to descending values of the
maximum deviation between current and best position cost (i.e., di − di

*). Then, a random number y is
chosen from the interval [0, 1) and customer L[yphistorical|L|] is removed and put into D. This process
is repeated until q customers are removed from solution s.

4.4. Insertion Heuristics

To repair a partial solution, three insertion heuristics basic greedy insertion, deep greedy insertion, and
regret-k insertion are employed [28]. They try to reinsert the customers removed by removal heuristics
into the partial solution without changing charging stations. Infeasible solutions are accepted by
insertion heuristics.

4.4.1. Basic Greedy Insertion Heuristic

Let ∆ik be the change in the generalized cost function value incurred by inserting customer i into
route k at the position that increases the function value the least. Furthermore, let costi = mink∈K{∆ik}
be the cost of inserting customer i at its best position overall which is also called the minimum cost
position. This basic greedy insertion heuristic inserts customers in the set of removed customers D
following their removal sequence. After one customer has been inserted at its best position, costi
is calculated again and the process is repeated until all removed customers are reinserted into the
partial solution.

4.4.2. Deep Greedy Insertion Heuristic

The difference between this heuristic and the previous one lies in the insertion sequence of
customers in D. In each iteration, the deep greedy insertion heuristic selects customer i having the
minimum global cost (i.e., mini∈D{costi}), and inserts it into its minimum cost position.

4.4.3. Regret-k Insertion Heuristic

Let rik denote the route for which customer i has the kth lowest insertion cost, that is, ∆i,rik ≤ ∆i,rik′
for k ≤ k′. In the regret heuristic, the regret value ci

* is defined as the difference in the cost of inserting
customer i in its best route ri1 and its second-best route ri2, i.e., costi

* = ∆i,ri2 − ∆i,ri1 . In each iteration,
the regret heuristic chooses customer i having the maximum global regret value, i.e., mini∈D{costi

*},
and inserts it into its minimum cost position. Ties are broken by selecting the lowest cost insertion.
The process is repeated until all removed customers are reinserted into the partial solution.

The above technique can be extended naturally to define a class of regret heuristics by computing
the difference in cost of inserting customer i in its best, 2nd best, kth best route, where k is a user-defined
parameter. The resulting heuristic is called the regret-k heuristic. The regret-k heuristic selects customer
i based on maxi∈D{∑k

j=2
(
∆i,rik − ∆i,ri1

)
} and then inserts it in its least cost position. Regret-2, regret-3,

regret-4, and regret-all are used in our ALNS. The regret-all heuristic considers all routes when selecting
customers to be inserted.

4.5. Choosing a Removal and Insertion Heuristic

At each iteration, a pair of removal and insertion heuristics is selected from removal and insertion
heuristics to generate new solutions. Each heuristic i has a weight wi and a score πi. The values of
wi and πi are initialized as one and zero, respectively, at the beginning of the ALNS. The score of a
heuristic is updated as follows. If a pair of removal and insertion heuristics finds a new global best
solution, their scores are increased by σ1; if it finds a new solution that has not been accepted before and
is better than the current one, their scores are increased by σ2; if it finds a new non-improving solution
that has not been accepted before but is accepted in current iteration, their scores are increased by σ3.
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The ALNS iterative process consists of a number of segments. Each segment contains 100 iterations.
At the start of each segment, the scores of all the heuristics are set to zero. When one segment ends,
the weight of heuristic i to be used in the next segment is updated as wi = wi(1 − γ) + γπi/θi where
θi is the number of times heuristic i is used during the last segment and γ ∈ [0, 1] is a reaction factor
that controls how quickly the weight adjustment reacts to changes in the effectiveness of the heuristics.
The choice of the removal and insertion heuristics is determined by the well-known roulette-wheel
mechanism. Specifically, given k insertion (or removal) heuristics with weights wi, i ∈ {1, 2, . . . , k},
heuristic j is selected with a probability of wj/ ∑k

i=1 wi. Note that the insertion heuristic is chosen
independently of the removal heuristic (and vice versa).

4.6. Acceptance Criteria

Similar to most literature about the ALNS, we use the acceptance criteria from simulated annealing
to avoid getting trapped in a local minimum. That is, solution s′ is always accepted if it is better than s,
i.e., f gen(s′) ≤ f gen(s); otherwise, solution s′ is accepted with a probability of e-(f gen(s′) - f gen(s))/T, where
T denotes the current temperature. Following Ropke and Pisinger [25], T is initialized as Tstart and is
decreased every iteration using the equation T = T · c, where c ∈ (0, 1) is the cooling rate. Let f gen(s0)
denote the generalized cost function value of the initial solution s0. The initial temperature Tstart equals
-w·f gen(s0)/ln0.5, where w is the initial temperature control parameter.

4.7. Local Search

The local search procedure uses a list of operators, including inter- and intra-route 2-opt, swap,
and relocation [36], to improve the solution generated by removal and insertion heuristics. The
procedure works in a cyclic manner and uses a first improvement strategy. Each operator is explored
until no further improvement is found, after which the next operator is chosen and explored. When the
last operator of the list is explored, the search starts again from the first operator. The iterative process
continues until a local minimum is attained in all operators. Note that the operators are executed
between customers instead of charging stations.

4.8. Labeling Algorithm

The removal and insertion heuristics and local search do not alter the charging stations of routes
in the solution. To obtain the optimal charging stations or intermediate depots for a given sequence of
customers, we first construct an auxiliary graph by adding all charging stations and the depot into
the customer sequence. Taking a customer sequence {0, 1, 2, 3, 4, 5, 0} as an example, its auxiliary
graph is illustrated in Figure 2, where node Ei denotes the charging station and m is the number of
charging stations. We need to find a path with minimal cost that starts at Node 0, visits all customers
and returns to Node 0. Such a problem can be solved by the labeling algorithm [6,37].
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Figure 2. Auxiliary graph in the labeling algorithm.

The label algorithm uses labels to construct a partial path from Node 0 to any customer in the
sequence. The label l =

(
ta
i , qp

i , qd
i , qmax

i , di, f o
i , f a

i , i
)

at node i is defined as: ta
i is the arrival time at node
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i; qp
i and qd

i are the total pickup and delivery demand after the last departure from Node 0, respectively;
qmax

i is the maximal demand after the last departure from Node 0; di is the total travel distance after
the last charge; f o

i is the cost from the starting point to node i; f a
i is the adjustment cost used and

calculated in the dominance rule; and i is the last reached node.
At the starting point 0,

(
ta
0, qp

0 , qd
0, qmax

0 , d0, f o
0 , f a

0 , 0
)

are initialized to zero. When

a label
(

ta
i , qp

i , qd
i , qmax

i , di, f o
i , f a

i , i
)

of customer i is extended to customer j, (m+2) labels(
ta

j , qp
j , qd

j , qmax
j , dj, f o

j , f a
j , j
)

are generated, including one label associated with a path directly traveling
from customers i to j using the extension rule in Algorithm 2, m labels associated with each path going
though one charging station using the extension rule in Algorithm 3, and one label associated with a
path going through the depot using the extension rule in Algorithm 4.

Algorithm 2: Extension rule for directly traveling from customers i to j.

1: ta
j := max{ai, ta

i }+ ts
i + tij

2: if customer j is a delivery node then
3: qd

j := qd
i + qj, qp

j := qp
i

4: end if
5: if customer j is a pickup node then
6: qd

j := qd
i , qp

j := qp
i + qj

7: end if
8: qmax

j := max{qmax
i , qd

j + qp
j }

9: dj := di + dij
10: if j is the depot then
11: f o

j := f o
i + cd·dij + β·max{0, qmax

j + qd
j −Q}+ γ·max{0, dj − D}

12: else
13: f o

j := f o
i + cd·dij + cw·max{0, aj − ta

j }+ α·max{0, ta
j − bj}

14: end if

Algorithm 3: Extension rule considering charging stations between a pair of nodes.

1: ta
j := max{ai, ta

i }+ ts
i + tik + tc + tkj

2: if customer j is a delivery node then
3: qd

j := qd
i + qj, qp

j := qp
i

4: end if
5: if customer j is a pickup node then
6: qd

j := qd
i , qp

j := qp
i + qj

7: end if
8: qmax

j := max{qmax
i , qd

j + qp
j }

9: dk := di + dik, f o
k := f o

i + cc·tc + γ·max{0, dk − D}, dj := dkj
10: if j is the depot then
11: f o

j := f o
k + cd·(dik + dkj) + β·max{0, qmax

j + qd
j −Q}+ γ·max{0, dj − D}

12: else
13: f o

j := f o
k + cd·(dik + dkj) + cw·max{0, aj − ta

j }+ α·max{0, ta
j − bj}

14: end if
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Algorithm 4: Extension rule considering depot between a pair of nodes.

1: ta
j := max{ai, ta

i }+ ts
i + ti0 + tw + t0j

2: d0 := di + di0
3: f o

0 := f o
i + cw·tw + β·max{0, qmax

i + qd
i −Q}+ γ·max{0, d0 − D}

4: dj := d0j
5: if customer j is a delivery node then
6: qd

j := qj, qp
j := 0

7: end if
8: if customer j is a pickup node then
9: qd

j := 0, qp
j := qj

10: end if
11: qmax

j := max{0, qd
j + qp

j }
12: f o

j := f o
0 + cd·(di0 + d0j) + cw·max{0, aj − ta

j }+ α·max{0, ta
j − bj}

An exponential number of labels will be generated during the extension process. Therefore, a
dominance rule is essential to remove the labels that cannot lead to optimal paths. The rule is defined
as follows.

Definition 1 (Dominance rule): If two labels l =
(

ta
i , qp

i , qd
i , qmax

i , di, f o
i , f a

i , i
)

and

l′ =
(

ta
i
′, qp

i
′, qd

i
′, qmax

i
′, di

′, f o
i
′, f a

i
′, i
)

end at customer i, then label l dominates l′ if ta
i ≤ ta

i
′,

qmax
i ≤ qmax

i
′, di ≤ di

′, f o
i ≤ f o

i
′, f a

i ≤ f o
i
′, and at least one of the inequalities is strict.

The arrival time of label l is earlier than that of label l′, which does not guarantee that the cost
of the former is smaller than that of the latter during the later extension. Therefore, we adjust the
arrival time of label l to the same as that of label l′, compute the adjustment cost f a

i , and identify the
dominance relationship between the two labels. The adjustment cost f a

i is computed as follows.

f a
i =


f o
i + cw·

(
ta
i
′ − ta

i
)
, ai ≤ ta

i ≤ ta
i
′

f o
i + cw·

(
ta
i
′ − ei

)
, ta

i ≤ ai ≤ ta
i
′

f o
i , ta

i ≤ ta
i
′ ≤ ai

(2)

The notation used in the labeling algorithm is listed as: Li is the set of labels associated with
customer i; li is one label associated with customer i; and vi and ns are the ith node and the number
of customers in the sequence {v0, v1, . . . ,vi, . . . ,vns , vns+1}, where v0 and vns+1 denote depot 0. The
pseudo code of the labeling algorithm is presented as Algorithm 5.

Algorithm 5: Labeling algorithm.

1: L0 := {(0, 0, 0, 0, 0, 0, 0, 0)}
2: for i = 1 to ns+1 do
3: Lvi := ∅
4: end for
5: for i = 1 to ns do
6: for lvi ∈ Lvi do
7: extend lvi to generate lvi+1 using extension rules in Algorithms 2, 3 and 4
8: add lvi+1 into Lvi+1 using dominance rule in Definition 1
9: end do
10: end do
11: return the path corresponding to the least-cost label in Lvns+1
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4.9. Departure Time Adjustment Heuristic

The waiting cost in the objective function depends on the first departure time from the depot. We
devise a departure time adjustment heuristic to compute the optimal departure time for a given route
whose first departure time is zero. The heuristic relies on the difference between the arrival time and
time window of each customer. Taking a route {v0, v1, . . . ,vi, . . . ,vns , vns+1} as an example, where vi
and ns are the ith node and the number of nodes except the starting and ending nodes. The details of
the heuristic are described as Algorithm 6. It first sets the departure time from the depot ta

0 to zero on
Line 1, and then on Lines 2–11 calculates the difference between the arrival time and time window of
each customer vi, i.e., te

vi
max{avi − ta

vi
, 0} and tl

vi
max{bvi − ta

vi
, 0}. The adjustment iterative process

is described on Lines 12–35. In each iteration, the first customer that incurs a waiting cost and the
maximal allowable adjustment time tmin are found on Lines 14–22, and the values of ta

0, te
vi

, and tl
vi

are
updated on Lines 23–33. The iterative process continues until the value of tl

vi
at customer vi is zero.

Algorithm 6: Departure time adjustment heuristic.

1: ta
0 := 0

2: for i = 0 to ns do // initialize te
vi

and tl
vi

3: ta
vi+1

:= ta
vi
+ tvivi+1 , te

vi+1
:= max{avi+1 − ta

vi+1
, 0}, tl

vi+1
:= max{bvi+1 − ta

vi+1
, 0}

4: if vi+1 is a customer node then
5: ta

vi+1
:= ta

vi+1
+ ts

vi+1

6: else if vi+1 is a depot node then
7: ta

vi+1
:= ta

vi+1
+ tw

8: else if vi+1 is a charging station then
9: ta

vi+1
:= ta

vi+1
+ tc

10: end if
11: end for
12: repeat
13: tmin := +∞, imin := 0
14: for i = 0 to ns do
15: if te

vi
> 0 then // find the first customer which incurs waiting cost

16: imin := i
17: break
18: end if
19: if tmin > tl

vi
then // determine the maximal adjustment time

20: tmin := tl
vi

21: end if
22: end for
23: if tmin 6= 0 then // update the first departure time
24: if tmin ≤ te

vimin
then

25: ta
0 := ta

0 + tmin

26: break
27: else
28: for i = 1 to imin do
29: tl

vi
:= tl

vi
− te

vimin

30: end for
31: ta

0 := ta
0 + te

vimin
, te

vimin
:= 0

32: end if
33: end if
34: until tmin = 0
35: return ta

0
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4.10. Set-Partitioning Model

The set Rmodel is populated during the iterations of the ALNS using feasible routes of the local
optimum at each iteration. When adding the routes in Rmodel, we check their feasibility and remove
the routes with the same set of customers and larger route costs. After the iterative process of the
ALNS, we use the set Rmodel to construct a set-partitioning model as follows.

min ∑r∈Rmodel
cr·xr (3)

s.t. ∑r∈Rmodel
∝ri ·xr = 1∀i ∈ N (4)

xr = {0, 1} ∀r ∈ Rmodel (5)

where cr is the route cost of route r; αri is 1 if customer i is visited by route r and otherwise 0; and xr is
a 0–1 decision variable that is 1 if route r is selected in the optimal solution and otherwise 0. When
the travel time and distance between two customers respect the triangle inequality, the “=“ in the
constraints in Equation (4) can be replaced by “≥” (i.e., the set-covering model).

We solve such a model using optimization software and expect that some better solutions missed
by the ALNS can be found. To reduce the runtime of solving the model, the best solution obtained by
the ALNS is used as an initial solution of the model. Meanwhile, the optimization software continues
until the optimal solution of the model is obtained or the maximal runtime exceeds the predefined
time TIP.

5. Computational Experiments

In this section, we first introduce the construction of test instances from real-world data provided
by a logistics company in Wuhan, China. Then, we report the values of major parameters in the
proposed algorithm. Finally, we validate the effectiveness of the proposed algorithm by testing the
instances. The algorithm was coded in C++ language. The mathematical model was solved by IBM
ILOG CPLEX 12.6.3. All experiments were run on a computer with Intel Xeon E5-1620 V4 3.50 GHz
CPU and 32 GB RAM under Windows 10 operating system.

5.1. Construction of Test Instances

The test instances were obtained from real-life data provided by a logistics company in Wuhan,
China. The company uses two types of electric vehicles to provide logistics services for customers.
The details of electric vehicles are listed in Table 1. The company also has detailed information about
customers and charging stations, such as their locations. To generate the instances, we randomly
selected approximately 100 customers and 10 charging stations around a distribution center. The
loading or unloading time (ti) at each customer is 20 min. If a vehicle returns to the distribution
center, it must wait 40 min (tw) to prepare for the next trip. The waiting cost per minute (cw) is 0.5.
Twenty instances were generated to validate the effectiveness of the proposed algorithm. Instances are
represented in the following format: R1 indicates the first instance in the set.

Table 1. Parameters of electric vehicles.

Type
Load

Capacity Qk

(Ton)

Range Dk

(Kilometer)

Charging
Time tk

c
(Minute)

Charging Cost
per Minute ck

c
(Yuan)

Acquisition
Cost ck

f
(Yuan)

Travel Cost per
Kilometer ck

v
(Yuan)

1 2.0 100 30 1.5 200 10
2 2.5 150 30 1.5 400 12
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5.2. Parameter Settings

The parameters of the proposed algorithm are listed in Table 2. To set all parameters, each
parameter in turn took several values, while the others were fixed. We ran the proposed algorithm
10 times for each parameter setting, and the parameter setting producing the best average results was
selected. Table 2 also shows the best parameter setting for the proposed algorithm.

Table 2. Values for the parameters of the proposed algorithm after the tuning phase.

Parameter Meaning Value

TALNS Defines the runtime (seconds) of the ALNS stage 600

(α0, β0, γ0) Defines the initial penalty weights of time window,
capacity, and battery capacity violations (100.0, 100.0, 100.0)

(αmin, βmin, γmin) Defines the minimal penalty weights of time window,
capacity, and battery capacity violations (0.001, 0.1, 0.001)

(αmax, βmax, γmax) Defines the maximal penalty weights of time window,
capacity, and battery capacity violations (10,000.0, 1,000,000.0, 1000.0)

ω Adjusts the penalty weights of violations 1.25

σ1
Defines the score if a pair of removal and insertion

heuristics finds a new global best solution 33

σ2

Defines the score if a pair of removal and insertion
heuristics finds a new solution that has not been accepted

before and is better than the current one
9

σ3

Defines the score if a pair of removal and insertion
heuristics finds a new non-improving solution that has not
been accepted before but is accepted in current iteration

13

γ
Controls how quickly the weight adjustment reacts to

changes in the effectiveness of the heuristics 0.1

q Defines the number of customers removed at each iteration [0.1|N|, 0.4|N|]
pShaw Determines the degree of randomization in Shaw removal 3
pworst Determines the degree of randomization in worst removal 3

phistorical
Determines the degree of randomization in historical

knowledge node removal 5

c Defines the cooling rate in the simulated annealing 0.99975
w Defines the initial temperature control parameter 0.0005

TIP Defines the runtime (seconds) of the IP stage 180

According to a series of preliminary experiments, the number of customers removed by removal
heuristics (q) had the largest influence on the performance of the proposed algorithm. To give a
sensitivity analysis to this parameter, six different intervals were tested: [0.05|N|, 0.25|N|], [0.1|N|,
0.3|N|], [0.05|N|, 0.35|N|], [0.1|N|, 0.4|N|], [0.15|N|, 0.35|N|], and [0.15|N|, 0.45|N|]. At each
iteration of the ALNS, q was selected uniformly at random in corresponding interval. Table 3 shows
the average of the objective function value of all instances in different intervals. The results prove that
[0.1|N|, 0.4|N|] was among the best of all intervals.

Table 3. Parameter settings for q.

q [0.05|N|,
0.25|N|]

[0.1|N|,
0.3|N|]

[0.05|N|,
0.35|N|]

[0.1|N|,
0.4|N|]

[0.15|N|,
0.35|N|],

[0.15|N|,
0.45|N|]

Avg. Obj. 12,690.22 12,632.71 12,528.81 12,378.87 12,430.25 12,462.68

5.3. Performance Analysis of ALNS

In the proposed algorithm, the best solution obtained by the ALNS is further improved by
set-partitioning-based integer programming. To validate the effectiveness of such an algorithm design,
we compared the results only using the ALNS with those improved by integer programming (IP).
Meanwhile, in the original framework of ALNS, the local search component does not exist. Therefore,
we also tested the original ALNS without using the improvement strategies. For each instance, we
ran the algorithms ten times. In Table 4, the column “Customers” presents the number of customers
included in the instance; the column “Charging Stations” denotes the number of charging stations
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that can be used in the instance; and the columns “Min”, “Avg”, and “Std” are the minimal, average,
and standard deviation, respectively, of objective function values in ten runs. The column “Original
ALNS” lists the results of instances obtained by the original ALNS; sub-columns “ALNS” and “IP” in
the column “Proposed Algorithm” report the results of instances obtained by the ALNS and improved
by the IP, respectively; and the column “Gap” is the relative gap of the minimal objective function
value obtained by the corresponding algorithm and proposed algorithm.

From the results listed in Table 4, for all instances, the minimal and average of the objective
function values (i.e., total operational cost) obtained by the original ALNS was greater than that found
by our proposed algorithm; their average relative gap reached 0.82%. Meanwhile, the average standard
deviation of the objective function values obtained by the original ALNS was also larger than that
obtained by the proposed algorithm. These results demonstrate the effectiveness of the improved
strategies (i.e., the local search component and the IP component) used in the proposed algorithm.

For all instances, in the proposed algorithm, the minimal and average of the total operational cost
obtained by the ALNS was not smaller than that improved by the IP; the relative gap between the
two algorithm components in the proposed algorithm was between 0% (R7 and R9) and 1.49% (R6),
and the average relative gap was 0.40%. These results underline the necessity of the IP components
employed in the proposed algorithm.

The runtime for both the original ALNS and the ALNS phase in the proposed algorithm was 600 s.
The runtime for solving the set-partitioning model by CPLPEX varied between 0.48 (R9) and 180 s
(the maximal runtime set for solving the model, R12), meaning that CPLEX did not solve the model
optimally for all test runs. According to our experiments, if CPLEX solved the model to optimality, it
might take several hours without improving the solution obtained in the current runtime setting.

As shown in Table 1, the acquisition cost and travel cost per kilometer of type-2 vehicles are larger
than that of type-1 vehicles. If all demands of customers do not exceed the capacity of type-1 vehicles,
customers are always visited by type-1 vehicles according to our experiments. Taking the best solution
of R1 as an example, it uses 10 type-1 vehicles, charges six times, waits 509 min, and travels 949.707 km.
Then, the total acquisition cost is 2000 Yuan, the total charging cost is 270 Yuan, the total waiting cost
is 254.5 Yuan, and the total travel cost is 9497.07 Yuan. As shown in Figure 3, the total travel cost is
79% of the total operational cost, indicating that designing reasonable visiting routes is essential for
companies to save operational cost.
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Table 4. Results of instances obtained by the proposed algorithm.

Instance Customers Charging
Stations

Original ALNS Proposed Algorithm

Min Avg Std Gap (%) ALNS IP

Min Avg Std Gap (%) Min Avg Std CPU (s)

R1 110 10 12,148.00 12,197.20 29.73 1.05 12,042.60 12,068.10 16.03 0.17 12,021.57 12,026.50 8.11 10.76
R2 101 10 12,721.60 12,800.00 67.41 1.11 12,598.90 12,652.00 33.84 0.14 12,581.40 12,586.40 10.02 15.92
R3 110 6 8701.49 8861.23 64.58 0.68 8661.04 8717.05 24.27 0.22 8642.34 8650.05 9.38 2.22
R4 108 7 11,019.90 11,062.30 35.32 0.61 11,044.80 11,054.50 8.50 0.84 10,952.90 11,009.10 26.29 103.35
R5 103 8 13,875.60 13,924.10 40.16 2.56 13,612.40 13,674.30 37.84 0.61 13,529.20 13,597.30 49.17 178.07
R6 104 5 13,104.30 13,169.20 55.72 2.02 13,037.00 13,082.50 31.53 1.49 12,845.00 12,915.80 41.21 167.13
R7 100 8 10,811.90 10,852.90 27.75 0.62 10,745.00 10,785.40 25.71 0.00 10,745.00 10771.00 16.16 154.25
R8 106 6 12,988.90 13,081.80 41.85 1.87 12,781.00 12,815.70 20.48 0.24 12,750.30 12,787.30 29.80 180.18
R9 108 3 7915.11 8035.10 76.09 0.04 7912.21 7912.74 0.85 0.00 7912.21 7912.21 0.00 0.48

R10 109 14 15,605.50 15,781.00 95.17 1.93 15,408.40 15,499.00 83.30 0.64 15,310.40 15,329.60 21.02 37.68
R11 101 3 9796.08 9799.66 16.05 0.26 9781.13 9790.26 10.20 0.11 9770.27 9770.27 0.00 20.47
R12 108 12 14,473.60 14,527.40 62.52 0.31 14,527.70 14,595.60 49.64 0.69 14,428.20 14,514.00 55.70 180.00
R13 105 12 17,829.80 17,838.40 59.05 0.54 17,754.20 17,839.50 46.77 0.12 17,733.80 17,735.10 2.35 160.58
R14 104 4 11,264.20 11,323.50 36.30 0.60 11,227.00 11,256.40 17.48 0.26 11,197.50 11,232.80 24.46 158.90
R15 106 14 14,193.30 14,284.20 52.38 0.16 14,181.80 14,208.80 22.12 0.08 14,170.40 14,174.90 5.90 29.19
R16 111 5 12,090.80 12,166.10 43.69 0.07 12,159.40 12,187.90 16.64 0.63 12,082.80 12,149.30 31.25 149.33
R17 108 7 10,975.00 11,058.50 39.45 0.20 11,045.90 11,058.40 8.05 0.85 10,952.90 11,010.60 27.03 107.51
R18 101 11 16,234.00 16,296.60 49.25 0.33 16,273.70 16,367.00 63.17 0.57 16,180.90 16,199.80 22.18 12.76
R19 103 10 11,245.70 11,326.30 44.73 0.80 11,188.90 11,212.80 10.57 0.29 11,156.10 11,179.80 16.45 3.97
R20 110 10 12,108.40 12,191.80 55.30 0.72 12,034.60 12,058.70 15.76 0.11 12,021.60 12,025.50 6.32 8.55
Avg - - 12,455.16 12,528.86 49.62 0.82 12,400.88 12,441.83 27.14 0.40 12,349.24 12,378.87 20.14 84.07
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5.4. Comparison with Company’s Algorithm

The logistics company uses optimization software developed by a consulting company to address
the proposed EVRP. To further demonstrate the performance of our algorithm, we compared the results
obtained by it with that by optimization software. Due to the confidentiality agreement, the core
algorithm embedded in the software cannot be described in detail. The results of instances obtained
by the software and the ALNS are listed in Table 5. In the table, the column “Customers” presents the
number of customers included in the instance; the column “Charging Stations” denotes the number
of charging stations that can be used in the instance; the column “Company’s Algorithm” shows the
results of instances obtained by the software; the column “Proposed Algorithm” lists the best results of
instances obtained by our algorithm; and the column “Gap” demonstrates the relative gap between
the software and our algorithm and equals (Proposed Algorithm − Company’s Algorithm)/Proposed
Algorithm × 100%.

Table 5. Results of instances obtained by company’s algorithm and the proposed algorithm.

Instance Customers Charging Company’s Algorithm Proposed Algorithm Gap (%)

R1 110 10 13,035.38 12,021.57 8.43
R2 101 10 13,828.70 12,581.40 9.91
R3 110 6 9328.13 8642.34 7.94
R4 108 7 11,653.22 10,952.90 6.39
R5 103 8 14,400.21 13,529.20 6.44
R6 104 5 13,421.89 12,845.00 4.49
R7 100 8 11,689.32 10,745.00 8.79
R8 106 6 13,872.90 12,750.30 8.80
R9 108 3 8654.32 7912.21 9.38

R10 109 14 16,287.23 15,310.40 6.38
R11 101 3 10,532.45 9770.27 7.80
R12 108 12 15,321.65 14,428.20 6.19
R13 105 12 18,632.21 17,733.80 5.07
R14 104 4 12,123.22 11,197.50 8.27
R15 106 14 15,321.22 14,170.40 8.12
R16 111 5 13,140.23 12,082.80 8.75
R17 108 7 11,823.12 10,952.90 7.95
R18 101 11 17,019.22 16,180.90 5.18
R19 103 10 11,992.23 11,156.10 7.49
R20 110 10 13,056.98 12,021.60 8.61
Avg - - 13,256.69 12,349.24 7.52

Table 5 shows that for all instances the proposed algorithm outperformed the optimization
software used in the company. The minimal and maximal relative gaps between the two approaches
were 4.49% (R6) and 9.91% (R2), respectively, and the average relative gap was 7.52%, indicating that
using our algorithm could save 7.52% of operational cost. We showed the solutions obtained by our
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algorithm to the managers in the company, and they were very satisfied with these solutions, which
can be directly used in practice. These results clearly show the effectiveness of our proposed algorithm.

6. Conclusions and Future Research Works

This paper develops a heuristic approach to solve a real-world EVRP proposed by a logistics
company in Wuhan, China. In the approach, the ALNS is followed by solving a set-partitioning
mathematical model that strengthens its effectiveness. Meanwhile, to reduce charging costs and
waiting costs, two problem-specific heuristics, including the charging station adjustment heuristic and
the departure time adjustment heuristic, are devised. The performance of the proposed algorithm
was validated by 20 test instances generated from real-world data. The contributions of this paper
are summarized as follows. First, this paper investigates a new variant of VRPs that originates from
a real-world application and combines the features of different VRPs. Second, an efficient approach
based on the ALNS and IP is developed to solve it. In the approach, a charging station adjustment
heuristic and a departure time adjustment heuristic are devised to accommodate the features of the
proposed problem. Third, the superiority of the proposed approach over the original ALNS is validated
through computational experiments.

This work also offers several directions for future research. First, different charge strategies,
such as allowing partial charges, will be included in the proposed problem. Second, different charge
techniques, such as different charging modes, will be considered in the proposed problem. Finally,
different meta-heuristics, such as the genetic algorithm [38] and the VNS [39], will be developed to
enrich the solution approaches to the proposed problem.
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