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Abstract: We propose a new iterative greedy algorithm to reconstruct sparse signals in Compressed
Sensing. The algorithm, called Conjugate Gradient Hard Thresholding Pursuit (CGHTP), is a
simple combination of Hard Thresholding Pursuit (HTP) and Conjugate Gradient Iterative Hard
Thresholding (CGIHT). The conjugate gradient method with a fast asymptotic convergence rate is
integrated into the HTP scheme that only uses simple line search, which accelerates the convergence of
the iterative process. Moreover, an adaptive step size selection strategy, which constantly shrinks
the step size until a convergence criterion is met, ensures that the algorithm has a stable and fast
convergence rate without choosing step size. Finally, experiments on both Gaussian-signal and
real-world images demonstrate the advantages of the proposed algorithm in convergence rate and
reconstruction performance.
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1. Introduction

As a new sampling method, Compressed Sensing (CS) has received broad research interest
in signal processing, image processing, biomedical engineering, electronic engineering and other
fields [1–6]. In particular in magnetic resonance image (MRI) processing, CS technology greatly
improves the efficiency of MRI processing (Figure 1). By exploiting the sparse characteristics of
signals, CS can accurately reconstruct sparse signals from significantly fewer samples than required in
the Shannon-Nyquist sampling theorem [7,8].
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Figure 1. Application of Compressed Sensing in Magnetic Resonance Images (MRI) [4].
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Assume that a signal f ∈ RN is s-sparse in some domain ψ. This means f = ψx, and x has at most
s(s� N) nonzero entries. This system can be measured by a sampling matrix Φ ∈ RM×N(M < N):
y = Φ f = Φψx = Ax, where y is called measurement vector, A is the so-called measurement
matrix. The CS model is shown in Figure 2. If Φ is incoherent with ψ, the coefficient vector x can be
reconstructed exactly from a few measurements by solving the undetermined linear system y = Ax
with constraint ‖x‖0 ≤ s, i.e., solving the following `0 norm minimization problem:

min ‖x‖0 s.t. y = Ax. (1)

As a combinatorial optimization problem, the above `0 norm optimization is NP-hard [8]. One way
to solve such problem is to transform it into a `1 norm optimization problem:

min ‖x‖1 s.t. y = Ax. (2)

Since `1 norm-based problem is convex, some methods such as basis pursuit (BP) [7]
and LASSO [9] are usually employed to solve the `1 norm minimization in polynomial time.
The solutions obtained by these algorithms can well approximate the exact solution of (1). However,
their computational complexity is too highly impractical for many applications. As a relaxation of the
`0 norm optimization, the `p norm for CS reconstruction has attracted extensive research interest, and
the problem can be formulated as the following optimization problem:

min ‖x‖p s.t. y = Ax, (3)

where ‖x‖p =

(
N
∑

i=1
|xi|p

)1/p

denotes the `p norm of x. There are many methods have been developed

to solve such problem [10–13]. Many studies have shown that using `p norm for 0 < p < 1 requires
fewer measurements and has much better recovery performance than using `1 norm [14,15]. However,
`p norm leads to a non-convex optimization problem which is difficult to solve efficiently.

y ψΦ x

=
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Figure 2. Compressed Sensing model with s = 4.

Sparse signals can be quickly recovered by these algorithms while the measurement matrix
satisfying the so-called restricted isometry property (RIP) with a constant parameter. A measurement
matrix is said to satisfy the s-order RIP if for any s-sparse signal x ∈ RN

(1− δs) ≤ ‖Ax‖2
2

/
‖x‖2

2 ≤ (1 + δs), (4)

where 0 ≤ δs ≤ 1. Commonly used sampling matrices include Gaussian matrices, random Bernoulli
matrices, partial orthogonal matrices, etc. The measurement matrices consisting of these sampling
matrices and orthogonal basis usually satisfy the RIP condition with a high probability [16].
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The core ideas of this paper include: (1) by combining the steps of HTP and CGIHT in each
iteration, a new algorithm called Conjugate Gradient Hard Thresholding Pursuit (CGHTP) is presented;
(2) by alternatively selecting a search direction from the gradient direction and the conjugate direction
to improve the convergence rate of the iterative procedure; (3) furthermore, an adaptive step size
selection strategy similar to that in normalized iterative hard thresholding (NIHT) is adopted in
CGHTP algorithm, which eliminates the effect of step size on the convergence of HTP algorithm.

The remainder of the paper is organized as follows. Section 2 reviews related work on iterative
greedy algorithms for CS. Section 3 gives the key ideas and description of the proposed algorithm.
The convergence analysis of the CGHTP algorithm is given in Section 4. Some simulation experiments
to verify the empirical performance of the CGHTP algorithm is carried out in Section 5. Finally,
the conclusion of this paper is presented in Section 6.

Notations: in this paper, ∅ represents an empty set. 〈a, b〉 denotes the inner product of the vector
a and b. Hs(x) denotes an operator that sets all but the largest s absolute value of x. supp(x) is denoted
to take the index set of nonzero entries of x. Let T, T̃ ⊆ {1, 2, · · · , N}. Let xT denote a subvector
consisting of elements extracted from x that indexed by the elements in T. AT denotes a submatrix
that consists of the columns of A with indices i ∈ T. AT denotes the transpose of A. I stands for a unit
matrix whose size depends on the context. In addition, let τ = M/N denote the sampling ratio.

2. Literature Review

In the past decade, a series of iterative greedy algorithms has been proposed to directly solve
Equation (1). These algorithms have been attracting increased attention due to their low algorithm
complexity and good reconstruction performance. According to the support set selection strategy
used in the iteration process, we can roughly classify the family of iterative greedy algorithms into
three categories.

(1) orthogonal matching pursuit (OMP) [17]-based OMP-like algorithms, such as compressive
sampling matching pursuit (CoSaMP), subspace pursuit (SP) [18], regularized orthogonal matching
pursuit (ROMP) [19], generalized orthogonal matching pursuit (GOMP) [20], sparsity adaptive
matching pursuit (SAMP) [21], stabilized orthogonal matching pursuit (SOMP) [22], perturbed block
orthogonal matching pursuit (PBOMP) [23] and forward backward pursuit (FBP) [24]. A common
feature of these algorithms is that in each iteration, a support set is determined to approximate the
correct support set according to the correlation value between the measurement vector y and the
columns of A.

(2) iterative hard thresholding (IHT)-based IHT-like algorithms, such as NIHT, accelerated iterative
hard thresholding (AIHT) [25], conjugate gradient iterative hard thresholding (CGIHT) [26,27]. Unlike
the OMP-like algorithm, the approximate support set for the nth iteration of IHT-like algorithms is
determined by the value of ATy + (I − AT A)xn−1, which is closer to the correct support set than using
the values of ATy [28].

(3) algorithms composed of OMP-like and IHT-like algorithms, such as Hard Thresholding Pursuit
(HTP) [28,29], generalized hard thresholding pursuit (GHTP) [30], `0 regularized HTP [31], Partial
hard thresholding (PHT) [32] and subspace thresholding pursuit (STP) [33]. OMP-like algorithms
use least squares to update sparse coefficients in each iteration, which plays a role in debiasing and
makes it approach the exact solution quickly. However, it is well known that the least squares are
time-consuming, which leads to a high complexity of single iteration. The advantage of IHT-like
algorithms are the simple iteration operation and good support set selection strategy, but it needs more
iterations. By combining the OMP-like algorithm and the IHT-like algorithm, these algorithms absorb
the advantages of the above two kinds of algorithms, and have strong theoretical guarantees and good
empirical performance [29].

Among the above algorithms, CoSaMP and SP do not provide a better theoretical guarantee than
the IHT algorithm, but their empirical performance is better than IHT. The simple combination of
CoSaMP and IHT algorithm lead to the HTP algorithm whose convergence requires fewer number of
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iterations than IHT algorithm. However, the reconstruction performance of HTP is greatly affected by
the step size and an optimal step size is difficult to determine in practical applications, which may
cause the HTP to converge slowly when selecting an inappropriate step size. Furthermore, although
the HTP algorithm only requires a small number of iterations to converge to the exact vector x, it only
uses a single gradient descent direction as the search direction in iterative progress, which may not be
the best choice for general optimization problems. In [26], conjugate gradient method was used to
accelerate the convergence of IHT algorithm due to its fast convergence rate. In this paper, inspired by
the HTP algorithm and CGIHT algorithm, the operations of these two algorithms in each iteration is
combined to take advantage of both.

In this paper, we first introduce the idea of the CGHTP algorithm, then analyze the convergence of
the proposed algorithm, and finally validate the proposed algorithm with synthetic experiments and
real-world image reconstruction experiments.

3. Conjugate Gradient Hard Thresholding Pursuit Algorithm

Firstly, we make a simple summary of the HTP algorithm and the CGIHT algorithm to facilitate
an intuitive understanding of the proposed algorithm. The pseudo-codes of HTP and CGIHT are
shown in Algorithms 1 and 2, respectively. In [20], the debiasing step in the OMP-like algorithms and
the estimation step in the IHT-like algorithms are coupled in an algorithm to form the HTP algorithm.
The HTP algorithm has excellent reconstruction performance as well as strong theoretical guarantee in
terms of the RIP. Optimizing search direction in each iteration is the main innovation of HTP algorithm.
It fully considers that in the iterative process, when the subspace determined by the support set is
consistent, the conjugate gradient (CG) method [23] can be employed to accelerate the convergence
rate. Two versions of CGIHT algorithms for CS are provided in [19], one of them, the algorithm
called CGIHT restarted for CS is summarized in Algorithm 2. The iteration procedures of CGIHT and
CGIHT restarted differ in their selection of search directions. CGIHT algorithm uses the conjugate
gradient respect to AT

T A as the search direction in all iteration, while CGIHT restarted determines the
search direction according to whether the support set of the current iteration is equal to that of the
previous iteration.

Inspired by the respective advantages of HTP and CGIHT algorithms, we present the CGHTP
algorithm in this section. A simple block diagram of the CGHTP algorithm can be seen in Figure 3.
The algorithm enters an iterative loop after inputting the initialized data. The loop process updates the
xn and support set Tn in two alternative ways, one of which is the combination of the gradient descent
method and the adaptive step size selection method, and the other is the CG method. The selection
criteria for these two ways is to determine whether the support sets of two adjacent iterations are equal.
If the support set of the previous iteration is equal to that of the current iteration, then the gradient
descent method is used. If not, the CG method is used [34]. All candidate solutions and candidate
support sets obtained through these ways are finally updated by the least square method.

The main characteristic of the proposed CGHTP algorithm is that the support set selection
strategy of HTP is combined with the acceleration strategy of CGIHT restarted algorithm in one
algorithm. The main steps of CGHTP are listed in Algorithm 3. Similar to CGIHT, CGHTP is initialized
with x = 0, T−1 = supp(Hs(ATy)). The main body of CGHTP mainly includes the following
steps. In Step 1), the gradient direction of the cost function ‖y− Axn‖2

2 [16] in the current iteration
is solved to calculate the subsequent step size αn. In Step 2), if x̃n+1 has a different support from
the previous estimate, i.e., Tn 6= Tn−1, similar to the convergence criterion used in NIHT algorithm,
c‖x̃n+1 − xn‖2

2

/
‖A(x̃n+1 − xn)‖2

2 is used to check whether the step size is smaller than it, where c is a
small fixed constant and 0 < c < 1. If this holds, continue to run the next steps. Otherwise the step size
is continuously reduced by looping αn ← αn

/
η until the convergence criterion is met, here 0 < η < 1.

In Step 3), if Tn = Tn−1, the CG direction is used as the search direction. Finally, Step 4) updates xn+1

by solving a least square problem.
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Compared to the HTP algorithm, the CGHTP algorithm provides two search directions in the
iterative process, including the gradient direction gn of the cost function ‖y− Axn‖2

2 and the CG
direction dn. According to whether the support sets of the previous and current iterations are equal,
one of the two directions is selected as the search direction. In addition, then the support set is updated
by solving a least square problem. In addition, CGHTP provides a way to choose the best step size
while ensuring convergence.

The HTP algorithm uses the gradient direction as the search direction, which has a linear
asymptotic convergence rate related to (κ−1)

/
(κ + 1), where κ is the condition number of the matrix

AT
supp(xn)

Asupp(xn). Owing to the superlinear asymptotic convergence speed with a rate given by

(
√

κ−1)
/
(
√

κ + 1) [24], conjugate gradient method has been applied to accelerate the convergence rate
in CGIHT algorithm. CGHTP draws on the advantages of the CGIHT algorithm. If Tn = Tn−1, it means
that the correct support set is identified and the submatrix ATn is no longer changed, CG method
is applied to solve the overdetermined system AT

Tn
ATn xn = AT

Tn
y, and the convergence rate may be

superlinear with a rate given by (
√

κ−1)
/
(
√

κ + 1).

1 ?n nT T −= 1 ?n nT T −=

Conjugate GradientConjugate Gradient

Gradient 

Descent

Gradient 

Descent

Y

N

Adaptively 

select  step size

Adaptively 

select  step size

Update support setUpdate support set nT

Input OutputLSMLSM OutputLSM

Figure 3. Block diagram of CGHTP algorithm. Tn is the support set of x in the nth iteration,
“LSM” denotes least square method.

Algorithm 1 [20] Hard Thresholding Pursuit

Input: A, y, s
Initialization: x0 = 0, T0 = ∅.
for each iteration n ≥ 1 do

1) x̃n = xn−1 + AT(y− Axn−1)
2) Tn = supp(Hs(x̃n))
3) xn = arg minz∈RN{‖y− Az‖2, supp(z) ⊆ Tn}
4) update the residual rn = y− Axn

until the stopping criteria is met
end for

Algorithm 2 [19] Conjugate Gradient Iterative Hard Thresholding restarted for Compressed Sensing

Input: A, y, s
Initialization: x0 = 0, T−1 = ∅, d−1 = 0, T0 = supp(Hs(ATy)).
for each iteration n ≥ 0 do

1) gn = AT(y− Axn) (compute the gradient direction)
2) if Tn 6= Tn−1 then

βn = 0
else

βn = − 〈AgnTn ,Adn−1Tn〉
〈Adn−1Tn ,Adn−1Tn〉

(compute orthogonalization weight)

end
3) dn = gn + βndn−1 (compute conjugate gradient direction)
4) αn = 〈gnTn , gnTn〉

/
〈ATn dnTn , ATn dnTn〉 (compute step size)

5) xn+1 = Hs(xn + αndn), Tn+1 = supp(xn+1)
until the stopping criteria is met

end for
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Algorithm 3 Conjugate Gradient Hard Thresholding Pursuit

Input: A, y, s,
Initialization: x0 = 0, T−1 = ∅, d−1 = 0, T0 = supp(Hs(ATy)).
for each iteration n ≥ 0 do

1) gn = AT(y− Axn) (compute gradient direction)
2) if Tn 6= Tn−1 then

αn = 〈gnTn , gnTn〉
/
〈ATn gnTn , ATn gnTn〉

if αn ≥ c‖x̃n+1 − xn‖2
2

/
‖A(x̃n+1 − xn)‖2

2 then
execute loop αn ← αn/η until (adaptively select step size)
αn < ‖x̃n+1 − xn‖2

2

/
‖A(x̃n+1 − xn)‖2

2

x̃n+1 = Hs(xn + αndn), Tn+1 = supp(x̃n+1)
end

end
3) if Tn = Tn−1 then

βn = − 〈ATn gnTn ,ATn dn−1Tn〉
〈ATn dn−1Tn ,ATn dn−1Tn〉

dn = gn + βndn−1 (compute conjugate gradient direction)
αn = 〈gnTn , gnTn〉

/
〈ATn dnTn , ATn dnTn〉 (compute optimal step size)

x̃n+1 = Hs(xn + αndn), Tn+1 = supp(x̃n+1)
end

4) xn+1 = arg min {‖y− Az‖2, supp(z) ⊆ Tn+1}
end for
Output: xn+1, Tn+1

4. Convergence Analysis of CGHTP

In this section, we analyze the convergence of the proposed algorithms. We give a simple proof
that the CGHTP algorithm converges to the exact solution of (1) after a finite number of iterations
when the measurement matrix A satisfies some conditions.

In Algorithm 3, when Tn 6= Tn−1 and αn ≤ c‖x̃n+1 − xn‖2
2

/
‖A(x̃n+1 − xn)‖2

2, the iterative
process of the CGHTP algorithm is equivalent to the HTP algorithm. Similar to Lemma 3.1 in [20],
we obtain the following lemma:

Lemma 1. The sequences defined by CGHTP eventually periodic.

Theorem 1. The sequence (xn) generated by CGHTP algorithm converges to x in a finite number of iterations,
where x denotes the exact solution of (1)

The proof of Theorem 1 is partitioned here into two steps. The first step is that when the current
support set is not equal to the previous support set, the orthogonal factor β is equal to 0. At this time,
the CGHTP algorithm reduces to the HTP algorithm, so their convergence is the same. The second
step is that when the two support sets are equal, the step size is related to the orthogonal factor and
the CG direction. Detailed proof is given below.

Proof of Theorem 1. When Tn 6= Tn−1, according to Algorithm 3, x̃n+1 = Hs(xn + αngn) and
Tn+1 = supp(x̃n+1), since xn+1 = arg min {‖y− Az‖2, supp(z) ⊆ Tn+1}, one has

‖y− Axn+1‖2
2 − ‖y− Axn‖2

2 ≤ ‖y− Ax̃n+1‖2
2 − ‖y− Axn‖2

2
= ‖y− Axn + A(xn − x̃n+1)‖2

2 − ‖y− Axn‖2
2

= 2 〈gn, xn − x̃n+1〉+ ‖A(xn − x̃n+1)‖2
2

(5)
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It is clear that x̃n+1 is a better approximation to xn + αngn than xn is, so ‖xn + αngn − x̃n+1‖2
2 ≤

‖αngn‖2
2. By expanding the squares, we can obtain ‖xn − x̃n+1‖2

2 + 2αn 〈xn − x̃n+1, gn〉 ≤ 0,
substituting this into (5), one has

‖y− Axn+1‖2
2 − ‖y− Axn‖2

2 ≤ − 1
αn
‖xn − x̃n+1‖2

2 + ‖A(xn − x̃n+1)‖2
2 (6)

substituting αn ≤ c‖xn − x̃n+1‖2
2

/
‖A(xn − x̃n+1)‖2

2 into inequality (6), one can show that

‖y− Axn+1‖2
2 − ‖y− Axn‖2

2 ≤
(

1− 1
c

)
‖A(xn − x̃n+1)‖2

2 (7)

Since 0 < c < 1, the right side of (7) is less than 0. This implies that the cost function is
nonincreasing when Tn 6= Tn−1, hence it is convergent.

In the case of Tn = Tn−1, for the overdetermined linear system AT
Tn

ATn xn = AT
Tn

y, since AT
Tn

ATn

is a positive definite matrix, CG method for solving such problem has the convergence rate as:

‖xn − x‖AT
Tn ATn

≤ 2(
√

κ − 1√
κ + 1

)n‖x0 − x‖AT
Tn ATn

(8)

where ‖xn − x‖AT
Tn ATn

= (xn − x)T AT
Tn

ATn(xn − x). The submatrix ATn satisfies the RIP condition:

(1− δs) ‖xn − x‖2
2 ≤ ‖ATn(xn − x)‖2

2 ≤ (1 + δs) ‖xn − x‖2
2. It is easy to get that κ ≤ 1+δs

1−δs
. Then (8)

can be rewritten as

‖xn − x‖AT
Tn ATn

≤ 2ρn‖x0 − x‖AT
Tn ATn

(9)

where ρ =
√

1+δs−
√

1−δs√
1+δs+

√
1−δs

< 1. From Lemma 1, since the sequence (xn) is eventually periodic, it must be
eventually constant, which implies that Tn+1 = Tn and xn+1 = xn for n large enough. In summary,
the CGHTP algorithm is convergent.

5. Numerical Experiments and Discussions

In this section, we verify the performance of the proposed algorithm by Gaussian-signal
reconstruction experiments and real-world images reconstruction experiments. This section compares
the reconstruction performance of HTP (with several different step sizes), CGIHT, and CGHTP with
parameter η = 0.9. All experiments are tested in MATLAB R2014b, running on a Windows 10 machine
with Intel I5-7500 CPU 3.4 GHz and 8GB RAM.

5.1. Gaussian-Signal Reconstruction

In this subsection, we construct an M× N random Gaussian matrix as the measurement matrix
Φ with entries drawn independently from Gaussian distribution. In addition, we generate an
s-sparse signal of length N = 256, and each nonzero element of this signal is chosen at random
and drawn from standard Gaussian distribution. Here, we define the subsampling rate as τ = M/N.
In each experiment, we let HTP execute with four different α: α = 1, α = α∗ − 0.5, α = α∗ and
α = α∗ + 0.5, where α∗ denotes the step size with which HTP has the optimal empirical performance.
In all the tests in this section, each experiment is repeated 500 times independently. To evaluate the
performance of the tested algorithms, we use the relative reconstruction error as a criteria to measure
the reconstruction accuracy for sparse signals, where the relative reconstruction error is defined as
‖y− Axn‖2

/
‖y‖2. For all algorithms tested, we set a common stopping criterion: n > 200 or the

relative reconstruction error is less than 10−6.
The first issue to be verified concerns the number of iterations required by the CGHTP algorithm

in comparison with HTP algorithm and CGIHT algorithm. Here we choose the sampling rate τ = 0.5.
For each 1 ≤ s ≤ 80, we compute the average number of iterations of different algorithms and plot
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the curve in Figure 4, where we discriminated between successful reconstructions (mostly occurring
for 1 < s ≤ 40) and unsuccessful reconstructions (mostly occurring for 40 < s ≤ 80). As can be seen
from Figure 4, in the successful case, the CGHTP algorithm requires fewer iterations than the CGIHT
algorithm and HTP algorithm with α∗(in the case α∗ = 3.5). In the unsuccessful case, the number of
iterations of CGHTP algorithm is comparable to that of HTP algorithm with α∗. This is because for the
same measurement matrix Φ, when the sparsity level is small, the space formed by the columns of the
ATn is less correlated, so the condition number of AT

Tn
ATn is small, the advantage of using CG method

is obvious; as the sparsity level increase, the condition number of AT
Tn

ATn becomes larger, which has a
bad influence on the convergence rate of CGHTP. The average time consumed by different algorithms
is shown in Figure 5. It can be seen that CGHTP algorithm requires the least average reconstruction
time than other algorithms, because it requires fewer iterations than other algorithms.
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Figure 4. Number of iterations for HTP with different step size, CGIHT, and CGHTP algorithms.
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Figure 5. Time consumed by HTP with different step size, CGIHT, and CGHTP algorithms.

At the same time, to verify the advantages of the proposed algorithm in convergence speed,
we select a fixed sparse signal and record the relative reconstruction errors of different algorithms
under different number of iterations. As can be seen from Figures 6 and 7, as the number of iterations
increases, the relative reconstruction errors of the signals reconstructed by HTP and CGHTP decrease,
and becomes stable at a certain error value where the convergence is reached. However, the relative
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reconstruction error of CGIHT algorithm decreases very slowly with the increase of iteration times.
Figures 6 and 7 show that the number of iterations for convergence of CGHTP algorithm is smaller
than that of HTP algorithm with an optimal step size and CGIHT algorithm, which reflects that
CGHTP algorithm converges faster than HTP algorithm and CGIHT algorithm. The acceleration
strategy chosen by the gradient descent method and the conjugate gradient method results in a better
performance of the CGHTP algorithm in convergence rate.
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Figure 6. Relative reconstruction error vs. iteration number, (s = 10, M = 120).
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Figure 7. Relative reconstruction error vs. iteration number, (s = 20, M = 80).

The recovery ability of the proposed algorithm is evaluated for different sparsity levels and
different sampling rates. In each experiment, it is recorded as a successful reconstruction if ‖xn − x‖2 <

10−4‖x‖2. Figure 8 describes the exact reconstruction rate of different algorithms with different sparsity
levels at a fixed sampling rate of τ = 0.5 while Figure 9 depicts the recovery performance of these
algorithms at different sampling rates at a fixed sparsity level s = 10. Figures 8 and 9 show that the
CGHTP is outperforms other algorithms. In addition, for the same rate of exact reconstruction, CGHTP
requires fewer samples than other algorithms.
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Figure 8. Exact reconstruction rate vs. sparsity level for a Gaussian signal.
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Figure 9. Exact reconstruction rate vs. sampling rate for a Gaussian signal.

5.2. Real-World Image Reconstruction

In this subsection, we investigated the performance of CGHTP to reconstruct natural images.
Test images used in experiments consist of four natural images of size 512 × 512, as shown in
Figures 10a, 11a, 12a and 13a respectively. We choose the discrete wavelet transform(DWT) matrix as
the sparse transform basis and the Gaussian random matrix as the measurement matrix. The sparsity
level is set to one sixth of the number of samples, i.e., s = M/6. In all tests, each experiment is repeated
50 times independently and we set an algorithm-stopping criterion: n > 200 or ‖xn − xn−1‖2 <

10−4‖xn‖2. The reconstruction performance of images is usually evaluated by the Peak Signal to Noise
Ratio (PSNR), which is defined as:

PSNRdB = 10log10

(
2552

MSE

)
, (10)

where MSE denotes the mean square error, and it can be calculated by:

MSE =
1
ab

a

∑
i=1

b

∑
j=1

∣∣X(i, j)− X̂(i, j)
∣∣2, (11)
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where the matrices X and X̂ of size a× b represent the original image and the reconstructed image.
Meanwhile, we also consider using relative error (abbreviated as Rerr) to evaluate the quality of image
reconstruction:

Rerr =
∥∥X − X̂

∥∥
2

/∥∥X̂
∥∥

2. (12)

Table 1 shows the average reconstruction PSNR, Rerr, and reconstruction time of four
reconstructed images by different algorithms at different sampling rates. Figures 9–12 visually reflects
the contrast between the original image and the reconstructed image, where subfigure (b–d) represents
the reconstructed images obtained by HTP (α = α∗), CGIHT, and CGHTP, respectively.

It can be seen from Table 1 that the reconstruction performance of different algorithms is different
for four tested images. In terms of reconstruction PSNR value, the lower the sampling rate, the more
obvious the advantage of CGHTP algorithm over HTP algorithm and CGIHT algorithm. Especially
in the case of low sampling rate (T = 0.2), the reconstructed PSNR value of the four tested images
obtained by CGHTP algorithm is about 2 dB higher than that obtained by HTP algorithm with the
best step size. Similarly, the reconstruction relative error of CGHTP is slightly lower than that of other
algorithms. In addition, the average reconstruction time of CGHTP is comparable to that of HTP
algorithm with an optimal step size. Due to the calculation of the step size α and the orthogonal factor β,
the CGHTP algorithm requires slightly more computation than the HTP algorithm by approximately
O(Ns). However, in each iteration, the conjugate direction may be used as the search direction in
CGHTP to accelerate the convergence rate, so they need fewer iterations than the HTP algorithm.
Overall, CGHTP has an empirical performance comparable to the HTP algorithm with an optimal step
size in natural image reconstruction.

(a) Lena (b) 28.256dB (c) 20.603dB (d) 28.467dB

Figure 10. The reconstruction results of the standard test image Lenna at τ = 0.4. (a) original image;
(b) reconstructed by HTP with α∗ = 5.5, (PSNR: 28.256 dB); (c) reconstructed by CGIHT (PSNR:
20.603 dB); (d) reconstructed by CGHTP (PSNR: 28.467 dB).

(a) Pens (b) 24.655dB (c) 18.597dB (d) 25.110dB

Figure 11. The reconstruction results of the standard test image Pens at τ = 0.4. (a) original image;
(b) reconstructed by HTP with α∗ = 5, (PSNR: 24.655 dB); (c) reconstructed by CGIHT (PSNR:
18.597 dB); (d) reconstructed by CGHTP (PSNR: 25.110 dB).
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Table 1. Reconstruction results of Lenna, Pens, Pepper, and Baboon images at different sampling
rates by HTP, CGIHT, and CGHTP. The optimal step size α∗ for reconstructing Lenna, Pens, Pepper
and Baboon images by HTP algorithm are α∗ = 5.5, α∗ = 5, α∗ = 6 and α∗ = 4, respectively.
The abbreviations PSNR and Rerr in the table represent the Peak Signal to Noise Ratio and relative
reconstruction error of the reconstructed image, respectively.

τ = 0.2

PSNR
(unit:dB)

Algorithms HTP HTP(α∗ − 0.5) HTP(α∗) HTP(α∗ + 0.5) CGIHT CGHTP

Lenna 12.814 16.783 18.471 17.516 8.584 21.708
Pens 13.491 14.512 15.450 14.926 9.843 17.471

Pepper 11.092 17.266 18.293 17.566 8.273 20.492
Baboon 10.344 12.605 13.313 12.298 9.120 14.863

Rerr

Lenna 0.877 0.281 0.217 0.244 0.610 0.102
Pens 0.810 0.431 0.330 0.382 0.532 0.225

Pepper 0.642 0.227 0.175 0.206 0.488 0.104
Baboon 0.932 0.644 0.528 0.632 0.874 0.222

Average
Recovery
Time
(unit:second)

Lenna 0.153 0.216 0.223 0.237 17.632 0.216
Pens 0.144 0.197 0.212 0.228 17.537 0.205

Pepper 0.145 0.221 0.240 0.246 17.682 0.231
Baboon 0.140 0.192 0.211 0.196 17.45 0.203

τ = 0.4

PSNR
(unit:dB)

Algorithms HTP HTP(α∗ − 0.5) HTP(α∗) HTP(α∗ + 0.5) CGIHT CGHTP

Lenna 26.943 28.171 28.256 28.139 20.603 28.467
Pens 23.042 24.004 24.655 24.142 18.597 25.110

Pepper 25.604 27.216 28.471 27.318 20.363 28.537
Baboon 17.614 18.237 18.333 18.249 14.621 18.364

Rerr

Lenna 0.021 0.017 0.016 0.017 0.045 0.015
Pens 0.057 0.046 0.042 0.044 0.074 0.040

Pepper 0.029 0.022 0.021 0.022 0.048 0.021
Baboon 0.052 0.047 0.045 0.046 0.104 0.044

Average
Recovery
Time
(unit:second)

Lenna 0.468 0.697 0.998 3.394 23.448 0.813
Pens 0.446 0.556 0.641 0.695 23.454 0.640

Pepper 0.459 0.725 1.110 4.321 23.637 0.812
Baboon 0.409 0.556 0.553 0.599 21.726 0.531

τ = 0.6

PSNR
(unit:dB)

Algorithms HTP HTP(α∗ − 0.5) HTP(α∗) HTP(α∗ + 0.5) CGIHT CGHTP

Lenna 29.924 31.133 31.164 31.145 27.376 31.392
Pens 26.566 27.957 28.319 28.273 24.331 28.633

Pepper 29.207 30.867 31.028 30.891 27.363 31.297
Baboon 19.527 19.544 19.584 19.496 17.351 20.257

Rerr

Lenna 0.013 0.010 0.010 0.010 0.019 0.009
Pens 0.032 0.024 0.023 0.024 0.045 0.022

Pepper 0.016 0.011 0.010 0.011 0.023 0.009
Baboon 0.040 0.039 0.038 0.039 0.048 0.038

Average
Recovery
Time
(unit:second)

Lenna 1.451 22.223 54.121 61.064 102.059 3.064
Pens 1.436 1.823 2.980 19.836 109.281 3.186

Pepper 1.559 24.761 56.593 62.299 94.708 3.140
Baboon 1.342 1.753 1.896 2.135 102.794 1.814
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(a) Pepper (b) 28.471dB (c) 20.363dB (d) 28.537dB

Figure 12. The reconstruction results of the standard test image Pepper at τ = 0.4. (a) original
image; (b) reconstructed by HTP with α∗ = 6, (PSNR: 28.471 dB); (c) reconstructed by CGIHT (PSNR:
20.363 dB); (d) reconstructed by CGHTP (PSNR: 28.537 dB).

(a) Baboon (b) 18.333dB (c) 14.621dB (d) 18.364dB

Figure 13. The reconstruction results of the standard test image Baboon at τ = 0.4. (a) original
image; (b) reconstructed by HTP with α∗ = 4, (PSNR: 18.333 dB); (c) reconstructed by CGIHT (PSNR:
14.621 dB); (d) reconstructed by CGHTP (PSNR: 18.364 dB).

6. Conclusions

In this paper, we introduce a new greedy iterative algorithm, termed CGHTP. Using conjugate
gradient method to accelerate the convergence of the original HTP algorithm is one of the
strong features of the algorithm, which makes the CGHTP algorithm faster than the HTP
algorithm. Reconstruction experiments with Gaussian sparse signals and natural images illustrate
the advantages of the proposed algorithm in convergence rate and reconstruction performance,
especially in the case of low sparsity, CGHTP requires fewer iterations than HTP with the best step
size and CGIHT algorithm. Although the proposed algorithm has better reconstruction performance,
its theoretical guarantee is not very strong, our future works may focus on the research about stronger
theoretical guarantee of this algorithm. In addition, we will study how to apply this method to more
practical applications.
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