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Abstract: This paper takes 50 ETF options in the options market with high transaction complexity 

as the research goal. The Random Forest (RF) model, the Long Short-Term Memory network 

(LSTM) model, and the Support Vector Regression (SVR) model are used to predict 50 ETF price. 

Firstly, the original quantitative investment strategy is taken as the research object, and the 15 min 

trading frequency, which is more in line with the actual trading situation, is used, and then the 

Delta hedging concept of the options is introduced to control the risk of the quantitative investment 

strategy, to achieve the 15 min hedging strategy. Secondly, the final transaction price, buy price, 

highest price, lowest price, volume, historical volatility, and the implied volatility of the time 

segment marked with 50 ETF are the seven key factors affecting the price of 50 ETF. Then, two 

different types of LSTM-SVR models, LSTM-SVR I and LSTM-SVR II, are used to predict the final 

transaction price of the 50 ETF in the next time segment. In LSTM-SVR I model, the output of LSTM 

and seven key factors are combined as the input of SVR model. In LSTM-SVR II model, the hidden 

state vectors of LSTM and seven key factors are combined as the inputs of the SVR model. The 

results of the two LSTM-SVR models are compared with each other, and the better one is applied to 

the trading strategy. Finally, the benefit of the deep learning-based quantitative investment 

strategy, the resilience, and the maximum drawdown are used as indicators to judge the pros and 

cons of the research results. The accuracy and deviations of the LSTM-SVR prediction models are 

compared with those of the LSTM model and those of the RF model. The experimental results show 

that the quantitative investment strategy based on deep learning has higher returns than the 

traditional quantitative investment strategy, the yield curve is more stable, and the anti-fall 

performance is better. 

Keywords: deep learning; quantitative investment strategy; options prediction; long short-term 

memory network; support vector regression; random forest 

 

1. Introduction 

Financial innovation improvement drives the rise of quantitative trading in the Chinese 

financial market. As major parts of the national market economy, the crucial roles stocks, futures, 

and options markets attract an increasing number of researchers for the study of market price 

behavior. Instead of introducing numerous premise assumptions, the adoption of deep learning 

techniques makes it possible to directly hand over rules mining tasks to computers. In this way, the 

study of stocks, futures and options price behavior is essentially a predictive work that is related to 

the future price trend of trading objects in the market. 
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At present, most researches target the stock market [1–3], however, in China, traders can only 

buy stocks first, which means that traders can only hold a long position. Besides, T + 0 trading is also 

forbidden, which means traders cannot sell the amount of stocks they bought within a same day. 

These rules contribute to the particularity of Chinese stock market, which further negatively 

prompts the utilization of prediction based on deep learning in this realm. Therefore, this article 

focuses on an options market with four trading strategies (Long Call, Short Call, Long Put, Short 

Put) where deep learning prediction results can be fully employed, in order to mirror the impact of 

its accuracy on quantitative trading strategies in a straightforward way. 

However, financial markets tend to present tremendous noise, non-stationarity, and 

non-linearity [4–6]. Furthermore, technical indicators of the traditional financial market cannot fully 

reflect the situation, which lead to problems such as greater delay and lower accuracy. Meanwhile, 

conventional econometric equations hardly perform well in analyzing high-dimensional, complex, 

and noisy financial market data. In sharp contrast, deep learning-based data mining models succeed 

in avoiding drawbacks mentioned above, and they are more likely to obtain a more accurate result 

[5]. 

Deep learning models [7] have attracted huge attention from researchers and investors, due to 

their superiority in dealing with extremely complex problems [2,5]. Many high-tech companies, such 

as Microsoft, Baidu, and Google, have already invested heavily in deep learning models, in order to 

take leading positions. 

Financial market prediction is actually a high-dimensional time series forecast, since differences 

always exist between contiguous moments. For time-series forecasting, Passalis et al. [8] proposed a 

novel temporal-aware neural bag-of-features (BoF) model, which is tailored to the needs of 

time-series forecasting by using high frequency limit order book data that captures both 

long-term and short-term behavior in order to handle the complex situation and to improve 

the prediction ability. Researchers have already discussed quite a few econometrical and statistical 

models, such as the Autoregressive Integrated Moving Average (ARIMA) model [9] and the Vector 

Autoregressive (VAR) model [10] etc., in financial time series predictions, but these models cannot 

perfectly fit the financial time series, due to their non-stationarity and nonlinearity. Given these 

characteristics, researchers have subsequently turned to artificial neural networks (ANNs) [11], deep 

learning [6,12], and other models. Results show that these models perform better in reflecting real 

financial situations compared to the linear ones. Based on the structural risk minimization principle, 

Support Vector Machine (SVM) is an approach that involves training of the polynomial or radial 

basis function neural network. Compared with other methods, it has better generalization 

performance [13], which has gained favor from numerous researchers. For instance, Kim [4] and Sun 

[14] took advantage of SVM for financial forecasting, and both achieved good results. However, one 

model approach may ignore other features of the problem, which brings about the multiple models 

approach. Van [15] and Das [16] etc., all combine a variety of models to enhance prediction results by 

exploiting the characteristics of each model. The application of deep learning in financial markets 

not only lowers the difficulty of analysis and forecasting to a large extent, but also introduces new 

investment methods and ideas to investors. 

Based on the above ideas, this paper will adopt the deep learning and support vector machine 

approach, as well as using the specific data (50 ETF options data) to predict the 50 ETF price. During 

the research, the data is preprocessed, which involves the following procedures. First of all, the 

History Volatility (HV) model and the Implied Volatility (IV) model are combined to calculate the 

HV of 50 ETF and the IV of 50 ETF options. Then, they are selected as two input characteristics of the 

deep learning model, and the price prediction model of the 50 ETF options is constructed. 

Afterwards, the question of whether the deep learning shows a higher accuracy rate on this problem 

is studied, as well as whether the quantitative investment strategy can lead to a higher rate of return 

and lower drawdown. 

The experimental results show that compared with the traditional quantitative investment 

strategy, the quantitative investment strategy based on deep learning presents higher returns, a 

more stable yield curve, and better anti-fall performance. Therefore, the quantitative investment 
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strategy based on deep learning has certain reference value for investors when making decisions. 

For the deep learning model, the Long Short-Term Memory (LSTM) that is built in this paper, there 

is still space to improve, and the combined Long Short-Term Memory– Support Vector Regression 

(LSTM-SVR) model improves significantly in prediction accuracy. At the same time, the quantitative 

investment strategy developed in this paper can withstand certain prediction errors, so that the 

quantitative investment strategy based on deep learning in this paper has a better performance in 

the options market. In contrast, in the stock and futures markets, errors are likely to cause huge 

losses. For the stock market, due to the particularity of China's stock market, only T + 1 trading 

transactions can be conducted, and this error may result in a certain amount of loss. With regard to 

the futures market, the loss caused by the error may even lead to a direct burst. Therefore, there is 

still a lot of work that needs to be done in research on quantitative investment strategies based on 

deep learning. 

The innovative points of this paper are as follows: (1) Based on the deep learning model LSTM, 

this paper combines LSTM and SVM to form the LSTM-SVR model. This model can reduce the 

predicted deviation value; that is, improve the accuracy of the prediction, especially during a 

relatively stable period. (2) The quantitative investment strategy designed in this paper introduces 

the concept of hedging, which guarantees Delta neutrality. The experiment proves that hedging 

boosts the quantitative investment strategy performance in terms of profitability and stability. (3) 

The quantitative investment strategy in this paper is conducted every 15 minutes, which is closer to 

the real trading market, so that the back-testing results can be more practical. (4) This paper 

combines the prediction result of the deep learning model LSTM-SVR, which acts as a signal ‘diff’ 

with the quantitative investment strategy to form a quantitative investment strategy based on the 

deep learning model, which exhibits a distinct optimization in terms of both yield and resilience. 

The paper is organized as follows: Section 2 offers a brief review of both the related domestic 

and foreign literature. Section 3 introduces the models and the quantitative investment strategy of 

this paper. Section 4 introduces the experimental simulation. Section 5 analyzes and compares the 

experimental results. Section 6 gives conclusions and prospects. 

2. Literature Review 

Quantitative investment strategies can be currently divided into single model-based research 

and multi-model-based ones. Due to advantages in solving complex and non-linear problems, more 

researches are conducted by adopting deep learning methods. Additionally, multi-model based 

methods can produce higher accuracies than the single-model ones, providing both theoretical and 

practical significance. 

In terms of single models, researchers have proposed a number of instructive studies. 

Kercheval et al. [17] proposed a framework based on machine learning to acquire the dynamics 

of high-frequency limit-order books in financial equity markets, and to predict the real-time 

metrics automatically. They used multi-class support vector machines to help build a learning 

model for each metric. They found that it is effective to forecast the short-term price by using 

the features from the proposed framework. Fan and Palaniswami [18] studied the stock selection 

problem by using support vector machines (SVM) to identify stocks that are likely to receive excess 

returns and to outperform the market. The total return of the equal-weight stocks portfolio selected 

by SVM over a five-year period was 208%, which remarkably exceeded the benchmark of 71%. They 

found that through a class sensitivity tradeoff, the output of the support vector machine can be 

interpreted as a probability measure and sorted, so that the selected stock can be fixed at the top 

25%. Although traditional SVM can reach good results, it is still necessary to improve the common 

method for better results when dealing with some special problems. Tay and Cao [13] proposed an 

improved model, the C-ascending support vector machine, and applied it for simulating 

non-stationary financial time series. Based on prior knowledge, the dependence between input 

variables and output variables changed over time. Specifically, recent past data can provide more 

important information than distant past data. They exposed that this support vector machine had a 

better prediction ability than the traditional SVM when handling the actual ordered sample data. 
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Cao and Tay [19] studied the application of SVM in financial time series predictions, and compared 

it with the multi-layer back-propagation neural network (BPNN) and the regularized radial basis 

function neural network (RBF). The application feasibility of the support vector machine in financial 

forecasting was studied, and the variation of support vector machine performance with free 

parameters was studied. Introducing the non-stationarity financial time series into the support 

vector machine, they put forward adaptive parameters, which had higher generalization 

performances in financial forecasting. However, for single models, one-sidedness learning features 

still exist; that is, it is impossible to learn the important features comprehensively, resulting in poor 

prediction results. 

Therefore, in order to fully characterize the features, researchers combined two or more models 

to form a hybrid one, for a more outstanding performance. Lin et al [20] proposed an approach 

based on particle swarm optimization for parameter determination and feature selection of the SVM, 

called particle swarm optimization + support vector machine (PSO-SVM). In order to evaluate it, 

multiple common data sets were used to calculate the classification accuracy, where the PSO-SVM 

method was compared with the traditional parameter value grid search method and other methods. 

Results showed that the classification accuracy of this method outperforms other methods, and 

achieves similar results to the GA-SVM method, which illustrates that the PSO-SVM method is 

valuable for parameter determination and feature selection of support vector machines. Das and 

Padhy [16] further improved on the basis of Lin, linking SVM with teaching–learning-based 

optimization (TLBO) which avoids user-specified control parameters that are required in other 

optimization methods. The feasibility and effectiveness of this hybrid model was evaluated by 

predicting the daily closing price of the Commodity Futures Index (COMDEX). They discovered that 

this model is more efficient than the PSO-SVM hybrid model and the standard support vector 

machine model. Hsu [21] designed a hybrid method based on back-propagation neural network 

(BPNN), feature selection technology and genetic programming (GP), using technical indicators to 

solve the stock/future price forecasting problem. By predicting the closing price of the spot monthly 

futures of the Taiwan Stock Exchange's Capital Weighted Index (TAIEX), the feasibility and 

effectiveness of the forecast are verified. In addition, the most important technical indicators can be 

determined by using a feature selection method based on the proposed simulation technique, or a 

preliminary GP prediction model. Liang et al [22] proposed a simple and effective options price 

prediction method based on neural network (NN) and SVR analysis. First, they improved the 

traditional options pricing method to make options prices prediction accessible. Secondly, the use of 

NNs and SVRs further reduced the prediction error of the parametric method. Since the traditional 

method simulated the trend of the actual options price, the prediction error of the nonlinear curve 

simulated in a mixed model of NNs and SVRs in the first stage can be further reduced in the second 

stage. Finally, a lot of experimental research on the Hong Kong options market data proved that 

NNs and SVRs can improve the prediction accuracy. 

With the further development of deep learning, researchers have also applied it into the 

financial forecasting field, where financial time series forecasting problems are also essentially time 

series problems. Considering that the performance of Recurrent Neural Networks (RNN) tend to 

surpass other methods, many researchers have focused their attention on RNN. Tsantekidis et al [23] 

used recurrent neural networks to form a deep learning methodology to forecast the price 

movement in future by using large-scale high-frequency   data on Limit Order Books. Chen et al 

[24] modeled and predicted China stock returns by using LSTM. Compared with the random 

prediction method, the proposed LSTM model showed its power by improving the accuracy of the 

stock returns forecast. Minami [25] proposed a sequential learning model that uses LTSM-RNN 

methods to predict individual stock prices with corporate behavioral event information and 

macroeconomic indices, displaying broad application prospects in stock price forecasting under the 

corporate behavior and corporate publishing variables. Besides, some researchers used other deep 

learning models; Tsantekidis et al. [26] used Convolutional Neural Networks (CNNs) to form a 

deep learning methodology to forecast the price movements of stocks, using as input large-scale, 

high-frequency time-series derived from the order book of financial exchanges. Tsantekidis et al. 
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compared CNNs with other models like SVM and Multilateral Neural Networks to show that 

CNNs had better performance in their situation. However, compared with hybrid models, single 

models are usually unlikely to give a best result. Hence, Sun et al. [6] proposed a hybrid integration 

learning method of the AdaBoost model and the LSTM network to predict financial time series. The 

database was trained by AdaBoost model to obtain training samples, after which each of them was 

predicted by LSTM. Finally, the prediction results of all LSTM predictors were synthesized by the 

AdaBoost model to offer an integrated result. This AdaBoost-LSTM integrated learning method was 

illustrated to be superior to other single prediction models and integrated learning methods. 

In this paper, two different LSTM-SVR models are proposed to forecast the 50 ETF price. 

Through studying the 50 ETF options market in the Chinese options market, this paper aims to 

design a short-strangle quantitative investment strategy based on the historical volatility and the 

implied volatility of 50 ETF underlying goods. The trading frequency is every 15 min (daily trading 

16 times), and the concept of hedging is introduced to keep Delta neutral, so that more stable returns 

can be gained under stable market conditions. Then, the LSTM-SVR hybrid models (LSTM-SVR I 

and LSTM-SVR II) are used to predict the future price of the 50 ETF target, and the accuracy and 

error of the prediction results of these two models are compared in this paper. Results show that the 

LSTM-SVR I model has better performance than the LSTM-SVR II model. Therefore, the results of 

the LSTM-SVR I model are added into trading strategy. The prediction results based on the deep 

learning model LSTM-SVR I are further viewed as an investment signal diff, which is added into the 

quantitative investment strategy in this paper for greater returns and better resilience. 

The following section will introduce the models and the quantitative investment strategy. 

3. Models and Quantitative Investment Strategy 

3.1. Long Short-Term Memory (LSTM) Model 

Sepp Hochreiter and Jurgen Schmidhuber [27] first proposed the LSTM model in 1997. The 

LSTM neural network is a new deep learning neural network based on the Recurrent Neural 

Networks (RNN) model. Therefore, before introducing the LSTM model, we need to introduce the 

RNN model. 

Input layer

Hidden layer

Output layer

Simplified

 

Figure 1. Recurrent Neural Network (RNN) model structure. 

It can be seen from Figure 1 that compared with ANNs, in addition to the input and output 

layer, the RNN model also considers the hidden layer at the next time step. Through the feedback of 

the hidden layer at this time step, the weight of the hidden layer at the next time step is affected. The 

RNN model is often simplified to the right part of Figure 1 for better understanding. In the RNN 

model, the next time +1t  is affected by the current time t . It is worth noting that the weights at 

each time step (including weights from the input layer to the hidden layer and from the hidden layer 

to the output layer) are the same. After the RNN model is expanded according to the time steps, the 

structure of Figure 2 can be obtained: 
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Input layer

Hidden layer

Output layer

Time 1 2 3 4 5

w2 w2 w2 w2

w1 w1 w1 w1w1

w3 w3 w3 w3 w3

 

Figure 2. Recurrent Neural Network expansion structure. 

Where w1 means the weight input from the output layer to hidden layer at the same time. w2 

means the weight input from last hidden layer to next hidden layer at adjacent time points. w3 

means the weight input from the hidden layer to the input layer at the same time. 

After expanding the RNN model, it is possible to analyze and understand its structure in a 

much more clear way. Forward propagation can be calculated according to the time sequence, as 

shown in Figure 3, whereas back-propagation refers to passing the accumulated residuals forward 

and correcting the weights, which start from the last time step, as shown in Figure 4. Therefore, 

back-propagation enables the RNN model to perform end-to-end training. 
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Figure 3. Forward propagation of Recurrent Neural Networks. 
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Figure 4. Back-propagation of Recurrent Neural Networks. 
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The RNN model and its formula in this paper are cited from [28], where b  refers to the value 

calculated by the activation function,   refers to the value calculated by the aggregation, w  

represents the weights connecting different nodes, w  with the subscript k  is associated with the 

output layer, and w  with the subscript h  is associated with the hidden layer, and a function with 

parentheses indicates the activation function. As seen from the above equation, similar to the normal 

neural network, the output layer in the RNN model is also the sum of the product of the hidden 

layers output and its weights. Yet, the difference is that all the calculated values have time nodes t  

as a superscript, which indicates the time t . L  represents the Loss Function, which is the mean 

squared error. The formula of the Loss Function is: 

MSE(y, y�) =
∑ (y� − y�

�)��
���

n
 (4) 

where y� is the actual value and y�
� is the fit value.  

The difference between the RNN model and the traditional neural networks model mentioned 

above is that the hidden layer receives the data from the hidden layer of the previous time, which 

can also be reflected in Equation (2). The first summation in Equation (2) represents the result from 

the input layer, which is the same as the traditional neural network, while the second summation 

represents the result from the hidden layer of the previous time. Finally, the result of the activation 

function in Equation (3) is substituted into Equation (1) to calculate the final result through the 

summation process. 

Back-propagation: 

' ' '
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  
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The above formula mainly calculates the cumulative residual in the hidden layer during 

back-propagation. Similar to the forward propagation, the two parts in the second bracket of the 

right part in Equation (5) represent the residual returned by the output layer at present, and the 

residual returned by the hidden layer of the next time step (because it is back-propagated). In order 

to achieve the fastest gradient descent, the two values are derived to correct the weights of each 

node. 

For the RNN model, in the process of minimizing Loss, the Loss Function needs to be derived 

(computing the gradient), since the gradient direction (the direction of the derivation) is the fastest 

direction in which the value of the Loss Function decreases. However, when computing the gradient 

of the Loss Function, Gradient Vanish phenomenon is likely to happen. That is to say in the process 

of finding the minimum value, the gradient function disappears quickly. As a result, the Loss 

Function requires nearly infinite time to approach the minimum value. 

Although simple, the traditional way to solve the Gradient Vanish that replaces the activation is 

still effective. However, a better model architecture can help to significantly correct and optimize 

RNN. Thus, Sepp Hochreiter and Jurgen Schmidhuber [27] proposed the LSTM model. 

In order to solve problems exposed in the RNN model, the LSTM model adds a long-time lag. 

In the structure shown in Figure 5, each memory cell is controlled by three special gates for reading, 

writing and saving functions. These three types of gates are called the forget gate, the output gate 

and that input gate, respectively, which only have weights of 0 and 1 to selectively correct the 

parameters. For example, when the weight of the forget gate is 1, the storage cell stores the content 

information, while when the forget gate has a weight of 0, the storage cell clears the previous 

content. When the weight of the input gate is 1, new information will be sent to the memory cell, 

whereas when the weight is 0, no information will enter the memory cell. When the weight of the 
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output gate is 1, the information stored in the memory cells is accessible to the other parts of the 

LSTM. 

Output 
Gate

Input 
Gate

Forget 
Gate

Cell

h

g

f

f

f

 

Figure 5. Long Short-Term Memory (LSTM) structure. 

For the model shown in Figure 5, the values of the three gates for each memory cell are obtained 

through training. Each black node in Figure 5 represents an associated activation function. The 

commonly used activation function is the sigmoid function. In forward propagation, the calculation 

formula for each department is as follows [29]: 

Input gate: 

1 1

1 1

I H Ct t t t

l il i hl h cl ci h c
w x w b w s  

 
      (8) 

1 1
( )t tb f   (9) 

The subscript L is related to the input gate. According to Equation (8), the input of the input 

gate includes the input of the outer layer and the dashed line from the memory cells, which is 

expressed as the first summation and the third summation part of the right side of the Equation in 

Equation (8). The second part of the summation with H can be seen as part of the input from the 

outer layer, which can either be the result of the interconnection between the memory cells or the 

result of the interconnection between the hidden layers, reflecting the flexibility of LSTM. The 

subscript c is related to the memory cells. 

Forget gate: 

1 1

1 1

I H Ct t t t

i i h h c ci h c
w x w b w s     

 
      (10) 

( )t tb f
 

  (11) 

Inputs associated with the forget gate include: the inputs from the outer layer, the memory cells 

(dashed line) and the input layer. 

Memory cells: 

1

1 1

I Ht t t

c ic i hc hi h
w x w b 

 
    (12) 

1

1
( )t t t t t

c c c
s b s b g a


   (13) 

where ��
� is the network’s cell state at the time t. As can be seen from Equation (12), the inputs 

associated with memory cells include: the general inputs of the outer layer and the input layer. ( )g x  

in Equation (13) represents an activation function, and Equation (13) shows that the memory cells 

connect the product of the forget gate and the previous time state, and the product of the input gate 

and the activation function, which are then summed. 
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Output gate: 
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The output layer shares the same principle of the input layer. 

The final output is: 

( )t t t
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The small black dot above the LSTM structure diagram is another activation function ( )h x . 

Back propagation: 
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Output gate: 

'

1
( ) ( )

Ct t t t

w w c sc
f h s 


   (19) 

Memory cells: 

' 1 1 1 1( )t t t t t t t t t

s w c c s cl l c cw w
b h s b w w w

  
              (20) 

' ( )t t t t

c l c s
b g    (21) 

Final output: 

t

c t

c

L

b


 


 (22) 

t

s t

c

L

s


 


 (23) 

1

1 1

K Gt t t

s ck k cg gk g
w w  

 
     (24) 

In conclusion, the invention of LSTM solves the problem that the weight of the training 

becomes very small due to the disappearance of the gradient when the RNN is back-propagating, 

which further causes that the whole training process to only reach a local optimal solution. Through 

adding three gates (the input gate, output gate, and forget gate), the LSTM solves this problem and 

assists in controlling the error during propagation, which ensures that a gradient explosion will 

never occur, regardless of the diversity of the spread. Therefore, this paper adopts the LSTM model 

for research. 

Based on the data obtained from the database and the data obtained through data processing, 

this paper sorts out input data with seven attributes: the final transaction price within the 50 ETF 

time segment, the purchase price (the highest bid price within the time segment on the market), the 

highest price within the 50 ETF time segment, the lowest price within the 50 ETF time segment, the 

volume within the time segment, the historical volatility (HV) at that time, and the implied volatility 

(IV). These seven features are stored as independent variables in the csv file, and Tensorflow is used 

to build the LSTM cell in Python. Under the Python 3.6 environment, the deep learning model LSTM 

is run with seven features as input data. Under MATLAB, the Random Forest (RF) model proposed 

in paper [30] is built with seven features as input data. Compared with the result of LSTM and the 

result of RF, LSTM shows better performance. Therefore, LSTM is chosen to combine with SVR. At 

the same time, the traditional machine learning model, SVR, is also adopted. Eight features in total, 
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which involve the seven attributes as well as the predicted values obtained by the LSTM model, are 

used as the input data of the SVR model in MATLAB, to form the LSTM-SVR I model. Besides, the 

hidden state vectors from every hidden layers of LSTM are extracted and these hidden vectors with 

seven attributes are combined as input data of the SVR model to form the LSTM-SVR II model. Since 

in this paper the hidden units used in LSTM is 20, and as for the LSTM-SVR II model, there are a 

total of 27 attributes as the inputs of SVR. The support vector regression SVR method in this paper is 

proposed by. 

The following section will introduce quantitative investment strategies. 

3.2. The Support Vector Regression Model 

Different from the traditional SVM proposed in paper [31] used for classification, in this article, 

the SVR model proposed in paper [32] is used as a part of the LSTM-SVR model.  

The difference between the SVR used in this article and the traditional SVM used for 

classification includes the objective function, constraint, and kernel function: 

As for SVC: 

min �
�

�
‖w‖��,     �. �.      ��(��� + �) ≥ 1, ∀� (25) 

where, 
�

�
‖w‖� represents the margin between the two support vectors, ��(��� + �)-1=0 denotes 

the sample on the frontier, and ��  equals 1 or −1. 

As for SVR: 

min �
�

�
‖w‖��,     �. �.      |��(��� + �)| ≤ ε, ∀� (26) 

where, 
�

�
‖w‖� represents the margin between two support vectors,  ��(��� + �)-1=0 means the 

sample on the frontier, ��  equals 1 or −1. 

In the SVR model, if the difference between the prediction value ��  and the real value is less 

than the threshold �, we will not make a penalty on this sample point. 

In the SVR model in this article, RBF (radial basis function) is selected as the kernel function. 

Therefore, there are two significant parameters, c and g. A detailed discussion of c and g is given a 

following section (Section 4.3.2). 

3.3. Quantitative Investment Strategies 

3.3.1. Introduction to the Basics of Options  

According to the paper [33], there are the introductions to basics of options: 

(1) 50 ETF options 

The options used in this article is the Shanghai 50 ETF options. The Shanghai 50 ETF options 

contract is a standardized contract established by the Shanghai Stock Exchange to provide the buyer 

with the right to buy or sell the “Shanghai 50 Trading Open Index Securities Investment Fund” at a 

specific price within a certain period of time. After paying a certain amount of premiums, the buyer 

of the 50 ETF options has the absolute right to decide whether to execute the contract when the 

contract expires. In contrast, the seller of the contract that receives the buyer’s premiums must 

unconditionally obey the buyer's choice within a certain period and fulfill the promise of this 

transaction. 

(2) Strangle options short-term investment strategy 

The basis of the quantitative investment strategy used in this paper is the strangle options 

short-term investment strategy. 

A strangle options investment strategy refers to the sale of a portfolio of options with different 

strike prices but the same maturity date while selling a call options. 

For example, a short strangle options portfolio shown in Table 1 is constructed on one trading 

day (assuming that the strike price of the at-the-money options is 2.65 yuan): 



Algorithms 2019, 12, 35 11 of 35 

Table 1. Example of a strangle options short-sell investment strategy. 

Subject Contract Name 
Buy or 

Sell 
Quantity Options Price 

50 ETF buying 

December 2750 
Sell 1 0.0635 

50 ETF selling 

December 2550 
Sell 1 0.0334 

That is, the sale of a 50 ETF call options expiring in December with a strike price at 2.75 yuan, 

and at the same time, the sale of a 50 ETF put options expiring in December with strike price at 2.55 

yuan. 

For this short options portfolio, the gains chart on the maturity date can be drawn as shown in 

Figure 6: 

 

Figure 6. Short strangle options profit and loss chart. 

As can be seen from Figure 6, theoretically, the benefits of this strategy are limited, whereas the 

potential risks are infinite. When the price of the underlying asset finally falls around the strike 

price, the portfolio can earn profits. On the contrary, when the price of the underlying asset 

eventually changes substantially, the portfolio faces a loss. That is to say, when the expiration date is 

reached, compared with the price at the time of opening the position, if the fluctuation of the 50 ETF 

price is not large, a profit can be obtained; otherwise, it will cause the loss of a large amount of 

money. Overall, this strategy is suitable for a relatively stable market. 

(3) Margin 

During options trading, since this article performs as an options seller who is required to pay 

for the margin at the transaction, to ensure that the seller can perform the options contract when the 

buyer executes the options, attention must be paid to the amount of margin that is needed prevent 

trading troubles that are caused by an insufficient remaining amount (such as the inability to hedge, 

the need for additional margin, etc.) when opening a position and holding a position. The 

maintenance margin used in this paper is calculated as follows: 

1
max ,

2o f f
M p M V p M

 
    

 
 (27) 

where p  denotes the premium, 
f

M  denotes the futures margin, and V  denotes out-of-money 

value of the options, which is divided into two types, namely the out-of-money value c
V  of the call 

options and the out-of-money value 
p
V  of the put options. The corresponding calculation is as 

follows: 
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( ,0)
c
V Max K C U    (28) 

( ,0)
p

V Max C K U    (29) 

where K  is the exercise price of the options contract, C  is the settlement price of the underlying 

futures contract, and U  is the options contract unit. 

(4) Delta hedge 

This article uses the hedging strategy for Delta hedging. 

Delta ( )  refers to the ratio of changes in the price of an options to changes in the price of the 

underlying asset, which is expressed by the following formula: 

f

s


 

  
(30) 

where f  represents the price of the options; s  represents the price of the underlying asset. 

Delta actually represents the slope of the options win–loss chart. Figure 7 shows the win–loss 

chart of an options. The curve represents the relationship between the price of the call options and 

the price of the underlying asset. The straight line is the tangent of the curve at the point (A, B), 

whose slope indicates that the price of the underlying asset is A and the value of Delta when the 

options price is B. 

 

Figure 7. Calculation of Delta. 

The Delta formula for China's options market is as follows: 

The Delta for non-dividend call options is: 

1
( ) ( )call N d   (31) 

2
0

1

ln( ) ( )
2

S
r T

Kd
T





 
  (32) 

where 0
S  represents the price of the options at time 0

t ; T  represents the options term; K  

represents the options strike price; r  represents the risk-free rate of continuous compound interest; 

  represents the volatility of the options; ( )N x  represents the cumulative normal distribution 

function. 

The Delta for non-dividend put options is: 

1
( ) ( )-1put N d   (33) 

According to what is mentioned above, Delta can be understood as the magnitude of the change 

in the options price caused by one unit price change of underlying asset. If the Delta of the entire 

investment strategy portfolio is positive, the decrease of the underlying asset price will bring about 

losses; if the Delta of the entire investment strategy portfolio is negative, the increase of the 
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underlying asset price will lead to losses. Therefore, in order to avoid the loss caused by the 

fluctuation of the price of the target price, the Delta hedge adjustment is performed at each time 

stamp to ensure that the Delta of the strategy combination is 0; that is, the Delta neutrality is 

guaranteed, so that the seller can completely convert premiums into profits on the expiration date, 

which can be understood as earning time value and abandoning the benefits and losses caused by 

the price fluctuations. 

3.3.2. Introduction to Quantitative Investment Strategies 

The logic of the quantitative investment strategy used in this paper is as follows: 

(1) The time series of the IV-HV difference between the implied volatility (IV) and the historical 

volatility (HV) is calculated at 14:55 on the options expiration date. This time series is the IV-HV 

series for 20 trading days prior to the expiration date. 

(2) Sort the IV-HV time series in ascending order and find its 90th percentile as the opening 

threshold, “option_open”. Find the median the IV-HV time series as the regression closing 

threshold, “option_close”. 

(3) Each transaction timestamp calculates the IV-HV value at that moment, and it is compared 

with “option_open”. If it is greater than or equal to “option_open”, the position is opened at the 

amount of 50% of 10 million (considering that the late delta hedge adjustment position will make the 

margin change and try to ensure that there will be no burst; 50% is reserved); that is, using five 

million funds to sell a strangle options portfolio based on the options's maintenance margin. 

Otherwise, do not open the position. 

(4) Under the position circumstance, the Delta hedge adjustment is performed at each 

timestamp to ensure that the Delta of the strangle options portfolio remains neutral. 

(5) The condition of the closing position is that in the case of a position, the IV-HV at that time is 

smaller than or equal to “option_close”, then “returning the position”. Alternatively, when the price 

of the 50 ETF at that time is not within the range of the strike price of the options (less than the strike 

price of the put options or greater than the strike price of the call options), the “stop loss liquidation” 

is performed. Both “returning the position” and “stopping the position” need to be closed with the 

opponent price at the moment. 

(6) If it is an empty position (including closing the position after opening the position or 

opening the position all the time) and it has not reached the next expiration date, continue to judge 

whether each transaction timestamp reaches the opening condition. 

(7) If the position is still held on the expiration date, judge whether the options will be exercised 

at this time. If the price of the 50 ETF underlying asset is greater than the strike price of the call 

options at this time, the call options is exercised (requires the position of the opponent to be closed at 

this time), and the put options will not be exercised (all of the premium when opening the position 

will be the income). If the price of the 50 ETF underlying asset is less than the put options strike price 

at this time, the put options is exercised (the opponent price needs to be used at this time to close the 

position), and the call options will not be exercised (all of the premium when opening the position 

will become the income). If the price of the 50 ETF underlying asset lies between the two options 

strike prices, then the opponent price at that time is required to close the position. 

The experimental simulation process will be described below. 

4. Experimental Simulation 

4.1. Data Acquisition 

The experimental data comes from the database of the quantitative investment department of 

Zheshang options company, which is constructed by the author of this paper. This article selects the 

50 ETF underlying asset and its corresponding 50 ETF options data, starting from 25 February 2015 

to 16 March 2018. This paper chooses information, including the transaction date, transaction time, 

the final transaction price within the time segment of the 50 ETF underlying asset, the purchase price 
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(the highest bid price quoted within the time segment market), the highest price, the lowest price of 

the 50 ETF underlying asset in the time segment and the volume within the time segment. 

All of the data are collected every 15 minutes, and the time stamps are 09:45, 10:00, 10:15, 10:30, 

10:45, 11:00, 11:15, 11:30, 13:15, 13:30, 13:45, 14:00, 14:15, 14:30, 14:45, and 14:55 every day. 

4.2. Data Processing 

This paper combines the HV model and the options IV model to obtain the HV and the IV) for 

each timestamp. According to the data from the database and Hu Jun's formula which is published 

in the book "A Step-by-step Guide of Options Investment" [32], the data is processed. 

4.2.1. Calculating Historical Volatility 

So far, both the industry and academia have proposed countless ways to estimate historical 

volatility. This article selects the Close-To-Close [32] method. As the name suggests, this volatility 

estimation method uses the closing price to estimate the volatility. Since the standard definition of 

volatility is the square root of the variance of the variable, only based on the definition of the 

unbiased estimate of the variance, the formula for calculating the historical volatility is available: 

2( )
=

1

ix x

N






  (34) 

1
ix x

N
   (35) 

1

log( )t
i

t

P
x

P

  (36) 

where   is the historical volatility; ix is the logarithmic rate of return; x  is the mean of the 

sample's rate of return; N  is the sample size, meaning the number of ix  involved in the 

calculation; tP  is the closing price at time t . The historical volatility used in this paper refers to the 

historical volatility of five previous trading days of the day at present. 

4.2.2. Calculating Implied Volatility 

Implied volatility is the volatility implied by the market price of an options. The most common 

method is to bring the current market price of the options into the Black–Scholes–Merton formula 

[34], and then to calculate the implied volatility in a reverse way. 

The Black–Scholes–Merton formula is one of the most famous and important formulas in 

financial engineering, and it has a major impact on how to price and hedge the options. 

For the non-dividend stock European options (the 50 ETF options in China's options market is 

one of them), the Black–Scholes–Merton formula is as follows: 

Call options: 

   0 1 2    rTC S N d Ke N d   (37) 

Put options: 

   2 0 1    rTP Ke N d S N d     (38) 

In the formula: 

2
0

1

ln( ) ( )
2

S
r T

Kd
T





 
  

(39) 
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2
0

2 1

ln( ) ( )
2

S
r T

Kd d T
T






 
    

(40) 

It should be noted that although 1d  and 2d  seem to be very cumbersome, they do have 

practical meaning. 1d  describes the sensitivity of the options to the stock price (underlying asset), 

and 2d  describes the likelihood that the options will be executed at last. 

In the formula mentioned above, C  represents the European call options price; P  represents 

the European put options price; 0S represents the starting price of the stock (underlying asset); K  

represents the strike price; r  represents the risk-free interest rate of continuous compound interest; 

  represents the volatility; T  represents the term of the options; ( )N x  represents the 

cumulative probability distribution function of the standard normal distribution. 

The deduction process of the implied volatility is as follows: after knowing the call options price 

C , the underlying asset starting price 0S , the strike price K , the continuous compound interest 

risk-free interest rate r , and the options term T , the implied volatility of the options can be 

assumed as 0 . After bringing this into the Black–Scholes–Merton formula, the options price c  

under this implied volatility can be obtained. The term c  is compared with C . Since the options 

price increases along with the increase of volatility, if c C , the volatility is set to be 1 , where 

1 0  . This is brought into formula (34) or (35) to obtain the price of the options under 1 , 

compared with C . In this way, the approximate solution of the implied volatility can be obtained. 

In this paper, the fzero function is directly called in MATLAB to solve the inverse calculation process 

of volatility. 

The experimental results will be analyzed below. 

4.2.3. Normalization and Standardization 

In this paper, normalization and standardization are used as pre-processing steps for 

improving the convergence speed of the program, which means improving the speed for obtaining 

the best solution in gradient descent. Before this pre-processing, different data have different 

magnitudes. After this pre-processing, the process of obtaining the best solution becomes gentler. It 

makes the convergence faster, and it is easier to obtain the best solution. 

In this article, the formulas of normalization and standardization are as follows: 

(1) Normalization: 

Process matrices by mapping row minimum and maximum values to [−1 1] 

Y = (���� − ����) ×
X − ����

���� − ����

+ ���� 
(41) 

where, ����  is the maximum value among the rows, ���� is the minimum value among the rows, 

����  is the maximum value among the columns, and ����  is the minimum value among the 

columns. 

If ���� − ���� = 0, then the data in this row will not change. 

(2) Standardization: 

Process the matrices by mapping each row's means to 0, and deviations to 1. 

( )old
new

std

X X
X

X


  (42) 

2( )

1

i

std

X X
X

N






  (43) 

iX
X

N



 (44) 
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where, Xnew is the data after standardization, Xold is the data before standardization. 

If normalization is not performed, during the gradient descent, the step size for descending in 

the direction of each feature will be the same, because the units of the gradient drop are the same. 

However, the length of each feature varies, due to the difference in orders of magnitude. In 

constrast, after normalization, the descending step size for each attribute during gradient descent 

can correspond to its magnitude. 

4.3. Parameters Determination 

4.3.1. Parameter Determination for LSTM 

The parameters that need to be determined include the number of hidden units of LSTM, 

iteration times, timestep, and batch_size. As for the timestep, the meaning of timestep is the amount 

of data in the previous timestamp that are used to predict the objective in the next timestamp. For 

example, the timestep in this article is 20, which means that the data in the previous 20 timestamps 

are used to predict the objective. Since in this article the trading frequency is every 15 min, 20 

timestamps equals slightly more than a whole trading day. As for batch_size, the meaning of the 

timestep is the amount of data that are input into the LSTM cell to train every time. The batch_size 

value in this article is 60, which is equal to around four trading days. In this article, another 

combination in which the timestep is 16 and the batch_size is 80 is also discussed to make a 

comparison. 

As for the number of hidden units of LSTM and iteration times, theoretically, the bigger the 

values of these two parameters, the better performance of prediction result. However, if the values 

of these two parameters increase, the time for running the code will also increase a lot. To make a 

comparison, there are six situations that have been discussed (Take the prediction of first 2850 data 

for example). Every situation was run eight times to obtain the average results in Table 2: 

Table 2. Results of six different situations. 

Hidden Units Iteration times TimeStep Batch_Size Runningtime Deviation 

20 200 16 80 6 min 0.013833 

20 1000 16 80 16 min 0.013703 

20 2000 16 80 34 min 0.011918 

20 2000 20 60 32 min 0.009551 

60 2000 16 80 1 h 21 min 0.016878 

100 2000 20 60 2 h 27 min 0.012416 

Six different situations are denoted by combination_1 (Hidden units: 20, Iteration times: 200, 

Timestep: 16, Batch size: 80), combination_2 (Hidden units: 20, Iteration times: 1000, Timestep: 16, 

Batch size: 80), combination_3 (Hidden units: 20, Iteration times: 2000, Timestep: 16, Batch size: 80), 

combination_4 (Hidden units: 20, Iteration times: 2000, Timestep: 20, Batch size: 60), combination_5 

(Hidden units: 60, Iteration times: 2000, Timestep: 16, Batch size: 80), and combination_6 (Hidden 

units: 100, Iteration times: 2000, Timestep: 20, Batch size: 60),  

Figure 8 gives the results of different situations. It can be seen from Figure 8 that the general 

performance of combination_4 (Hidden units: 20, Iteration times: 2000, Timestep: 20, Batch size: 60) 

is best because its deviation is the least and the running time is also acceptable. 
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Figure 8. Results of different situations. 

The iteration times are an important parameter that affects the performance. However, when 

the iteration times increase to 2000 from 1000, although the result becomes more similar to the real 

price, the running time is doubled from 16 minutes to 34 minutes. If the iteration is still increased, 

the time cost will be considerable.  

Besides, the number of hidden units is also a significant parameter that affects the 

performance. Increasing the number of hidden units may not result in better prediction 

performance (using combination_3 and combination_5; or using combination_4 and combination_6, 

for example). 

Therefore, in this article, combination_4 (Hidden units: 20, Iteration times: 2000, Timestep: 20, 

Batch size: 60) is used as the parameters of LSTM. 

4.3.2. Parameters Determination for LSTM-SVR 

Since radial basis function (RBF) is selected as the kernel function of SVR in this article, there are 

two significant parameters, c and g. A detailed discussion of c and g is made in the following: 

c is a parameter that is used for penalty if the difference between the prediction value ��  and 

real value exceeds the threshold �. A bigger value of c means a smaller margin. Therefore, a bigger 

value of c will make the training performance better, but it may also cause overfitting. However, if c 

is relative small, it will cause poor prediction performance. 

g (gamma) is the parameter of RBF. A bigger gamma value will cause less support vectors, and 

a smaller gamma will cause more support vectors. The amount of support vectors will have an 

effect on the speed of training and prediction.  

To determine the values of c and g, an exhaustive grid search is used in this article. Take using 

LTSM-SVR I to predict the 8500th data to the 11,300th data as an example. In coarse selection, the 

searching range of c is set from 2₋5 to 210, and the searching range of g is set from 2₋5 to 25. The result 

of coarse selection is given in Figure 9. 
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Figure 9. Result of coarse selection. 

From Figure 9, the best solution for c and g lies in the zone of log� � from 0 to 9, and log� � 

from −2 to 3. 

 

Figure 10. Result of fine selection. 

Based on the results of Figure 9, the searching range could be narrowed down. To make a fine 

selection, the searching range of c is set from 20 to 29, and the searching range of g is set from 2₋2 to 

23. Figure 10 gives the result of fine selection. 

From Figure 10, the best solution for c and g lies in the zone where the value of log� � is from 0 

to 2, and log� � is from −2 to −0.5. 

The final result of fine selection is given in Table 3. 

Table 3. Final result of fine selection. 

Cross-validation mean squared error (MSE) 0.00117032 

Cross-validation squared correlation coefficient 0.987437 

Best cross-validation MSE 0.000496649 

Best c 1.23114 

Best g 0.378929 
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Therefore, when predicting the 8500th data to the 11,300th data, c equals 1.23114 and g equals 

0.378929 are used as parameters of the LSTM-SVR model. 

When using LSTM-SVR I to predict first 2850 data, in coarse selection, the searching range of c 

is set from 2−5 to 210, and the searching range of g is set from 2−5 to 25. The result of coarse selection is 

shown in Figure 11. 

 

Figure 11. Result of coarse selection. 

From Figure 11, the best solution for c and g lies in the zone where log� � is from 0 to 9, and 

where log� � is from −2 to 3. 

Based on the results of Figure 11, the searching range could be narrowed down. To make a fine 

selection, the searching range of c is set from 20 to 29, and the searching range of g is set from 2−2 to 

23. Figure 12 gives the results of the fine selection. 

From Figure 12, the best solution for c and g lies in the zone where log� � is around −1 and 

where log� � is from 0 to 10. Since the lines are approximately parallel, the minimum value of c is 

chosen. 

 

Figure 12. Results of fine selection. 

The results of the final selection are given in Table 4: 
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Table 4. Results of the fine selection. 

Cross-validation mean squared error 0.00214727 

Cross-validation squared correlation coefficient 0.980383 

Best cross-validation MSE 0.000388862 

Best c 1 

Best g 0.466516 

Therefore, when predicting the first 2850 data, c equals 1 and g equals 0. 466516 are used as the 

parameters of the LSTM-SVR I model. 

5. Experimental Results and Comparison 

5.1. Analysis of LSTM Model Results 

This paper first uses the first 8499 data as the training set. After 2000 iterations, the trained 

LSTM model is applied to the 8500th data to the 11,300th data for prediction. 

 

Figure 13. Comparison of Long Short-Term Memory (LSTM) prediction results with actual results 

(8500th data to 11,300th data). 

Figure 13 shows the calculation results, where the blue line is the predicted price, and the red 

line is the actual price of the test. (The forecast timestamp is from 11:30 on 28 June 2017 to 10:30 on 14 

March 2018). 

The iteration number is 2000 times, the number of hidden layers is 20, and the parameters of the 

LSTM training model are recorded once every 200 epochs (to prevent the program from crashing; if 

the program crashes, the training can directly follow the last saved model parameters instead of 

starting over, to save time) The overall deviation is 0.0023179110088004246. 

Since the price of the 50 ETF underlying asset is small, a direct calculation error may not be 

obvious, and so this paper calculates the deviation value of each time stamp to obtain Figure 14. The 

deviation value is calculated as: 

=
predict test

deviation

test

Y Y

Y



 (45) 

where Ypredict is the predicted price and Ytest is the original value. 
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Figure 14. Error map of the LSTM prediction results and the actual results (8500th data to 11,300th 

data). 

It can be seen from Figure 14 that the prediction result and the actual error value after 2000 

iterations under the LSTM model is small, and the calculated statistics determines a 73.32% error 

between the predicted data and the actual data is less than 1%. 

In order to gain more prediction, this paper uses the 2850th to the 11,300th data in the original 

data as the training set. After 2000 iterations, the trained LSTM model is applied to the first 2850 data 

for prediction. 

 

Figure 15. Comparison of LSTM prediction results with actual results (first 2850 data). 

Figure 15 shows a graph of the calculation results, with the blue line being the predicted price 

and the red line being the actual price of the test. (The forecast timestamp is from 10:30 on 14 April 

2015 to 13:45 on 12 January 2016). 

From 2000 iterations, the number of hidden layers is 20 layers, and the parameters of the LSTM 

training model are recorded once every 200 generations (to prevent the program from crashing; if 

the program crashes, the training can directly follow the last saved model parameters instead of 

starting over, to save time). The overall deviation value is 0.00903735599521065. As above, since the 

price of the 50 ETF underlying asset is small, the direct calculation error may not be obvious. 

Therefore, the deviation value of each time stamp is calculated according to Formula (45), mentioned 

above. Figure 16 presents the calculation result. 
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Figure 16. Error map of LSTM prediction results and actual results (first 2850 data). 

As can be seen from Figure 16, the calculated statistics found that the change of a 27.7% error 

between the predicted data and the actual data is less than 1%, and that an 89.47% error is less than 

5%. Comparing with the previous prediction, the deviation of the prediction results will increase 

when the market volatility increases. 

It can be drawn from Figures 13–16 that the error between the predicted value and the actual 

value obtained by the LSTM model is relatively stable; although the error will increase when the 

market is unstable, the extent of increase is not so large. 

5.2. Randsom Forest Model Results 

The same data (the first 8499 data) is then used as the training set under the RF model. The 

trained model is applied to the data ranging from the 8500th to the 11,300th. The calculation results 

are given in Figure 17.  

 

Figure 17. Comparison of Random Forest (RF) prediction results with actual results (8500th data to 

11,300th data). 

Figure 17 shows the calculation results, where the blue line is the predicted price, and the red 

line is the actual price of the test (the forecast timestamp is from 11:30 on 28 June 2017 to 10:30 on 14 

March 2018). 

The number of iterations is set to 100. The overall deviation is 0.004752332. 

Since the price of the 50 ETF underlying asset is small, a direct calculation error may not be 

obvious, and the deviation value of each time stamp is calculated using Formula (45). Figure 18 gives 

the results of the deviation value. 



Algorithms 2019, 12, 35 23 of 35 

 

Figure 18. Error map of RF prediction results and actual results (8500th data to 11,300th data). 

It can be seen from Figure 18 that the difference between the prediction result and the actual 

error value after 100 iterations under the RF model is relative small, and that the calculated statistics 

expose that the chance of a 62.78% error between the predicted data and the actual data is less than 

1%. 

In order to gain more predictive power, this paper also uses the 2850th to the 11,300th data in 

the original data as the training set. After 100 iterations, the trained RF model is applied to the first 

2850 data for prediction. 

Figure 19 shows a graph of the calculation results, with the blue line being the predicted price 

and the red line being the actual price of the test (the forecast timestamp is from 10:30 on 14 April 

2015 to 13:45 on 12 January 2016). 

 

Figure 19. Comparison of RF prediction results with actual results (first 2850 data). 

The iteration number is 100 times. The overall deviation value is 0.011889902. As with the 

above, since the price of the 50 ETF underlying asset is small, the direct calculation error may not be 

obvious. Therefore, the deviation value of each time stamp is calculated according to Formula (45), 

as mentioned above. Figure 20 presents the calculation results. 
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Figure 20. Error map of RF prediction results and actual results (first 2850 data). 

As can be seen from Figure 20, the calculated statistics found that the chance of 74.12% error is 

less than 5%. Compared with the previous prediction, the deviation of the prediction results will 

increase when the market volatility increases (the same situation as the result of LSTM). 

It can be drawn from Figures 17–20 that the error between the predicted value and the actual 

value obtained by the RM model is relatively stable; although the error will increase when the 

market is unstable, the increase extent is not so large. However, generally, the prediction 

performance of RF is worse than the prediction performance of LSTM. 

5.3. LSTM-SVR I Model Results 

The same data (the first 8499 data) is then used as the training set under the LSTM-SVR I model. 

The trained model is applied to the data ranging from 8500 to the 11,300. The calculation results are 

given in Figure 21.  

 

Figure 21. Comparison of LSTM-SVR I prediction results with actual results (8500th data to 11,300th 

data). 

The blue curve in Figure 21 is the actual price curve, while the red dotted curve is the predicted 

price curve (the predicted time stamp is from 11:30 on 28 June 2017 to 10:30 on 14 March 2018). 

The overall deviation is 0.00025. As above, since the price of the 50 ETF underlying asset is 

small, the direct calculation error may not be obvious. Therefore, the deviation value of each time 
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stamp is calculated according to Formula (45), as mentioned above. Figure 22 shows the calculation 

results. 

 

Figure 22. Error map of LSTM-SVR I prediction results and actual results (8500th data to 11,300th 

data). 

The data (2850th data to 11,300th data) is then used as a training set to apply to the LSTM-SVR 

model. Afterwards, the trained model predicts the first 2850th data. Figure 23 shows the calculation 

results.  

 

Figure 23. Comparison of LSTM-SVR I prediction results with actual results (first 2850 data). 

As can be seen from Figure 23, the blue curve is the actual price curve, and the red dotted curve 

is the predicted price curve (the predicted time stamp is from 10:30 on 14 April 2015). It is divided 

into 13:45 on 12 January 2016). 

The overall deviation is 0.0023. As above, since the price of the 50 ETF underlying asset is small, 

the direct calculation error may not be obvious. Therefore, the deviation value of each time stamp is 

calculated according to Formula (45), as mentioned above. Figure 24 gives the calculation results. 
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Figure 24. Error map of LSTM-SVR I prediction results and actual results (first 2850 data). 

It can be seen from Figures 21–24 that under the LSTM-SVR I model, there is a very small error 

between the prediction result and the actual result when the market is stable. However, when the 

market fluctuates heavily, the error predicted by the LSTM-SVR I model will increase sharply, and 

the magnitude of the surge is also very large. After eight experiments, this phenomenon still exists. 

5.4. LSTM-SVR II Model Results 

The same data (the first 8499 data) is then used as the training set under the LSTM-SVR II 

model. The trained model is applied to the data ranging from 8500 to 11,300. The calculated results 

are given in Figure 25.  

 

Figure 25. Comparison of LSTM-SVR II prediction results with actual results (8500th data to 11,300th 

data). 

The blue curve in Figure 25 is the actual price curve while the red dotted curve is predicted 

price curve (the predicted time stamp is from 11:30 on 28 June 2017 to 10:30 on 14 March 2018). 

The overall deviation is 0.00062389. As above, since the price of the 50 ETF underlying asset is 

small, the direct calculation error may not be obvious. Therefore, the deviation value of each time 

stamp is calculated according to Formula (45), as mentioned above. Figure 26 shows the calculated 

results: 
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Figure 26. LSTM-SVR II prediction results and actual results error map (8500th data to 11,300th data). 

The data (2850th data to 11,300th data) is then used as a training set to apply to the LSTM-SVR 

II model. Afterwards, the trained model predicts the first 2850th data. Figure 27 shows the calculated 

results.  

 

Figure 27. Comparison of LSTM-SVR II prediction results with actual results (first 2850 data). 

As can be seen from Figure 27, the blue curve is the actual price curve, and the red dotted curve 

is the predicted price curve (the predicted time stamp is from 10:30 on 14 April 2015; it is divided 

into 13:45 on 12 January 2016). 

The overall deviation is 0.00552. As above, since the price of the 50 ETF underlying asset is 

small, the direct calculation error may not be obvious. Therefore, the deviation value of each time 

stamp is calculated according to Formula (45), as mentioned above. Figure 28 gives the calculation 

result: 
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Figure 28. Error map of LSTM-SVR II prediction results and actual results (first 2850 data). 

It can be seen from Figures 25–28 that under the LSTM-SVR II model, there is a relatively larger 

degree of error than the LSTM-SVR I model. In both of the two situations, the performance of 

LSTM-SVR II is worse than LSTM-SVR I. 

5.5. Comparison of LSTM Model, RF Model, and LSTM-SVR Model Results 

Table 5 shows the deviation values of LSTM and RF over different time periods (20170628 

(11:30)–20180314 (10:30) and 20150414 (10:30)–20160112 (13:45)). It can be seen from Table 5 that 

LSTM model shows a better performance in both of the two situations. Therefore, this is the reason 

for why the LSTM model is used in combination with SVR. 

Table 5. Comparison table of deviation values predicted by the LSTM model and the LSTM-SVR 

model over two time periods. 

 LSTM (Deviation) RF (Deviation) 

20170628 (11:30) 

–20180314 (10:30) 
0.00232 0.00475 

20150414 (10:30) 

–20160112 (13:45) 
0.00903 0.01189 

Table 6. Comparison table of the deviation values predicted by the LSTM-SVR I and LSTM-SVR II 

models (different input vectors) over two time periods. 

 
LSTM-SVR I (Deviation, 

Only Using Output) 

LSTM-SVR II (Deviation, 

Using Hidden State Vector) 

20170628(11:30) 

−20180314(10:30) 
0.00025  0.00062  

20150414(10:30) 

−20160112(13:45) 
0.0023 0.00552 

Table 6 shows the deviation value of LSTM-SVR I and LSTM-SVR II in different time periods ( 

20170628 (11:30)–20180314(10:30) and 20150414 (10:30)–20160112 (13:45)).From Table 6, compared to 

the results of the LSTM-SVR I model and the LSTM-SVR II model, the LSTM-SVR I model (only 

using the output of LSTM and combining with seven attributes as the input of SVR) has a better 

performance, both in the stable situation (20170628 (11:30)–20180314 (10:30)) and the relative 
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unstable situation (20150414 (10:30)–20160112(13:45)). Therefore, the results of the LSTM-SVR I 

model are added into the trading strategy.  

As can be seen from Table 6, when the LSTM-SVR (LSTM-SVR I and LSTM-SVR II) models 

predict the 8500th data to the 11300th data (11:30 on 28 June 2017 to 10:30 on 14 March 2018), their 

accuracies are much higher than the LSTM model and the RF model, which indicates that the 

combined models greatly improve the accuracy of the prediction. Nevertheless, when the 

LSTM-SVR models predict the first 2850 data (10:30 on 14 April 2015 to 13:45 on 12 January 2016), the 

orders of magnitude of deviation rise from 10��  to  10��, and the deviations at this time are 

improved compared with the LSTM model, although their extent is not as good as in the relatively 

stable market period (10:30 on 28 June 2017 to 10:30 on 14 March 2018). This result happens after 

eight experiments. Therefore, it can be inferred that the LSTM-SVR models can improve accuracy to 

a large extent, compared with the LSTM model and the RF model, under a relatively stable 

environment. Although the LSTM-SVR models can obtain highly accurate prediction data under 

these circumstances, when the market fluctuates, the error rate increases relatively rapidly. As a 

result, it can be concluded that the prediction stability of the LSTM-SVR models still needs to be 

improved. 

The experiment in this paper used a laptop with an i5 processor, 2.8 GHz CPU clock speed, 8 

GB memory, and dual-core four-thread. However, after running the model multiple times and 

comparing the running times of the two models, the average time required to run the SVR model for 

prediction was 110.45 s, while the LSTM model running 2000 iterations had an average running time 

of about 39 min and 31 s. The difference in terms of the running times between two types of models 

is very large. The time required for the LSTM model is much longer than that of the SVR model and 

the RF model. Hence, the long running time of the deep learning models LSTM and LSTM-SVR is 

also an aspect that needs to be improved. 

5.6. Initial Quantitative Investment Strategy Results 

This paper first runs the traditional quantitative investment strategy and compares the results 

at different trading frequencies. Figure 29 shows the calculation results (twice-daily trading 

frequency and daily trading frequency at 16 times): 

 

Figure 29. Twice-daily trading frequency (10:30 and 14:55). 

As can be seen from Figure 29 (twice), the opening date is March 26, 2015, while in Figure 30 (16 

times), the opening date is 23 April 2015, so that there is a subtle distinction on the 50 ETF net value 

curve. Combined with the above figure, it can be concluded that this trading investment strategy can 

outperform the 50 ETF index, so that in terms of the quantitative investment strategy itself, it can be 

considered as an investment product for investors, and it has certain research value. 
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Figure 30. Daily trading frequency of 16 times (15 min). 

Comparing Figure 29 with Figure 30, after increasing the trading frequency, although the yield 

rate may be lower than that of the low-frequency trading, due to the forced liquidation in the options 

market, at a low hedging frequency, if the price fluctuates violently in the market, it is likely that the 

trader's trading account has been forced to close by the exchange, which cannot be reflected in the 

gain chart. Therefore, the trading frequency needs to be enhanced, and judgment on whether there is 

a burst or not should be made in as many cases as possible. Accordingly, the win–loss chart shown 

in Figure 30 (16 times) with a high transaction frequency is more realistic and practical for trading 

guidance. 

From Figure 30 (16 times), it can be found that the entire quantitative investment strategy 

exhibits a huge loss when the price of the 50 ETF underlying asset plummets or rockets (i.e., the price 

fluctuates greatly). Therefore, if the deep learning model can accurately predict the 50 ETF price of 

the next time segment, it will theoretically play a role in avoiding losses in advance. If the losses can 

be avoided more effectively, the profitability of the quantitative investment strategy will be 

considerable. 

5.7. Quantitative Investment Strategy Results Based on Deep Learning 

Based on the deep learning method, this paper predicts the timestamp from 11:30 on 28 June 

2017 to 10:30 on 14 March 2018, which is viewed as a diff signal to combine with the quantitative 

investment strategy. This paper tests four cases: having signal but no hedging (SNH), no hedging or 

signal (NHS), having hedging but no signal (HNS), and having hedging and signal (HS). The 

following results are obtained (the starting date of the gain line chart is from 9:45 on 29 June 2017 to 

13:45 on 14 March 2018. The horizontal axis from 2227 to 2333 reflects a dive during 2 February 2018 

to 13 February 2018, during which the price of the 50 ETF underlying asset plummeted). Figure 31 

shows the calculated results: 

  

Figure 31. Four strategic income line graphs (25% after forecasting). 
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Table 7 discusses the benefits of the four strategies, and Figure 32 shows the comparison result. 

Table 7. Comparison of four strategic situations. 

 SNH NHS HS HNS 

Maximum returns  576,767.6  484,294  493,478.8 511,736.6 

Minimum returns  −116,804.2  −393,156.8  −61,717.6 −143,753.8  

Maximum drawdown 362,872.8  877,450.8  2,352,84.4 655,490.4 

Final returns 258,675.6  −15,720.4  464,496 219,288. 

(1) As can be seen from Figure 32 and Table 7, hedging can provide greater support in terms of 

defensibility and stability in the quantitative investment process. When the signal diff based on the 

deep learning model LSTM-SVR I model is not added, the traditional quantitative investment 

strategy with hedging can avoid the plunge (the lowest return is much higher than the traditional 

quantitative investment strategy without hedging) and it performs better in stability (the maximum 

drawdown is much lower than the traditional quantitative investment strategy without hedging). In 

the case of diff signals based on deep learning, there is also a quantitative investment strategy based 

on deep learning with hedging to avoid a plunge (the lowest return is much higher than the 

unhedged quantitative investment strategy), and the stability is better (the maximum drawdown is 

much lower than the non-hedging quantitative investment strategy). 

 

Figure 32. Comparison of four strategic situation column charts (25% after forecasting). 

(2) As can be seen from Figure 32 and Table 7, the quantitative investment strategy based on the 

deep learning model generally performs better. After adding the deep learning model based on the 

LSTM-SVR I model, the quantitative investment strategy performs optimally when it has a hedge, 

and contains a deep learning diff signal (HS). However, the highest yield when there is a hedging 

and deep learning diff signal (HS) is slightly lower than that with a hedging but no deep learning diff 

signal (HNS). However, with hedging and deep learning diff signals (HS), the maximum withdrawal 

is significantly lower than the case with a hedging but without deep learning diff signals (HNS). It 

explains that after adding the diff signal based on deep learning prediction, the defensibility of the 

quantitative investment strategy is significantly enhanced. 

Figure 33 separately compares the presence and absence of signals in the case of hedging. It is 

more obvious that the quantitative investment strategy based on deep learning is more defensive. By 

adding a diff signal based on deep learning predictions, losses can be avoided to a great extent. The 

amount of losses avoided at this stage is around 2541.291 yuan, accounting for 25.4% of the initial 

total investment amount, which theoretically contributes to a 25.4% increase in yield. 
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Figure 33. Comparison of the signal strategy with or without a line chart (25% after forecasting). 

This paper combines the forecast time stamp from 10:45 on 24 April 2015 to 14:00 on 12 January 

2016 with the quantitative investment strategy as a “diff” signal. This article tested two cases: a 

hedging without a "diff" signal and a hedging with a diff signal. Figure 21 shows the results (the 

starting and ending date of the yield line chart is from 10:30 on 24 April 2015 to 09:45 on 4 January 

2016). As can be seen from Figure 34, the diff signal based on deep learning prediction helps to avoid 

a large amount of losses. At this stage, the losses avoided is about 4311.896 yuan, accounting for 

43.1% of the initial total principal, which is theoretically increased by 43.1% in yield. 

 

Figure 34. Comparison of the signal strategy with or without a line chart (predicting the top 25% of 

the data). 

In summary, this paper has tested two trading cases. The first case: The LSTM-SVR I model is 

trained with the first 8500 data as the training set, and then the trained model is used to predict the 

8500th to 11,300th data. Afterwards, the prediction result is combed as the deep learning model 

signal diff into the quantitative investment strategy. The second case: The 2850th to 11,300th data are 

used as the training set to train the LSTM-SVR I model, and then the trained model is used to predict 

the first 2850 data. The prediction results are then added to the quantitative investment strategy as 

the deep learning model signal diff. In both cases, the recoverable losses were 25.4% and 43.1%, 

respectively. Furthermore, the cumulative recoverable loss was 68.5%. That is to say, theoretically 

applying the deep learning quantitative investment strategy to these two periods can bring about a 

68.5% enhancement in the final return. Considering that the whole time span is roughly three years, 

based on deep learning, the quantitative investment strategy can increase the average annual yield 

by at least 20%. 
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6. Conclusions and Prospects 

The quantitative investment strategy designed in this paper has particular research value. The 

introduction of the hedging concept facilitates its stability. Furthermore, the 15 min trading 

frequency in a day is much closer to the facts, contributing to a more practical backtesting result. 

Adopting the strangle quantitative investment strategy based on the 50TF ETF historical volatility 

and the 50TF ETF options implied volatility; the net value of this strategy slumps, with the price of 

the 50 ETF underlying asset fluctuating violently under the 15 min trading frequency. However, it 

can still outperform the 50 ETF index. Therefore, the strangle quantitative investment strategy based 

on the 50 ETF underlying asset historical volatility and the 50 ETF options implied volatility has a 

certain research value in terms of the strategy itself. At the same time, it is confirmed that 

introducing the concept of hedging will prompt the quantitative investment strategy to be more 

defensive and stable. 

Before combining the deep learning method and quantitative investment strategies, the deep 

learning model LSTM, RF and the combined models LSTM-SVRs (LSTM-SVR I and LSTM-SVR II) 

are used to predict the price of the 50 ETF underlying asset for two time periods, which are: 11:30 on 

28 June 2017 to 10:30 on 14 March 2018, and 10:30 on 14 April 2015 to 13:45 on 12 January 2016. 

Before using the model to predict the data within a certain time period, this paper first employs the 

remaining data as the training set to train the model, which is in accordance with the requirement 

that 75% of the data should be used as the training set and 25% of the data ought to be the prediction 

set. After eight experiments, the comparison between RF model and LSTM model for two time 

periods reveals that the performance of LSTM model is generally better than RF model. Therefore, 

the chosen LSTM model is compared with LSTM-SVRs to see whether there is an improvement. 

After eight experiments, the deviation of the combined models LSTM-SVR (LSTM-SVR I and 

LSTM-SVR II) in forecasting data from 10:30 on 28 June 2017 to 10:30 on 14 March 2018, are lower 

than the LSTM model. In other words, comparing with LSTM model, there is a more significant 

improvement in accuracy in LSTM-SVR I and LSTM-SVR II. However, when the LSTM-SVR 

(LSTM-SVR I and LSTM-SVR II) models predict data from 10:30 on 14 April 2015 to 13:45 on 12 

January 2016, the deviation increases sharply. At this time, although the deviation of the LSTM-SVR 

model still a little prior to the LSTM model, compared with the prediction result from 10:30 on 28 

June 2017 to 10:30 on 14 March 2018, the extent of optimization has plummeted greatly. Therefore, it 

can be inferred that the prediction stability of the LSTM-SVR models calls for further improvement, 

but that the accuracy of the LSTM-SVR models are much higher than that of the LSTM model when 

predicting a relatively stable market. This paper also compares two different ways to form the 

LSTM-SVR model. LSTM-SVR I combines the output of LSTM and seven key factors as the input of 

SVR. The other kind of LSTM-SVR II combines the hidden state vectors of LSTM and seven key 

factors as the inputs of SVR. In this paper, the performance of LSTM-SVR I is better than the 

performance of LSTM-SVR II. As for the reason, it might be related to the input attributes of 

LSTM-SVR II containing every hidden state vector in every hidden layer (a total 20 hidden layers), 

and the many vectors might be considered as redundant, resulting in worse performance. This paper 

finds that compared with traditional quantitative investment strategies, quantitative investment 

strategies based on deep learning models can bring higher returns, and better defensibility and 

stability. 

Using the prediction result of the two time periods mentioned above (10:30 on 28 June 2017 to 

10:30 on 14 March 2018 and 10:30 on 14 April 2015 to 13:00 on 12 January 2016) as signals to backtest, 

the quantitative investment strategy with deep learning signals can avoid losses of 2,541,291 yuan 

and 4,311,896 yuan, respectively, compared to the traditional quantitative investment strategy 

without them, which means that in theory, yields can be increased by 25.4% and 43.1%, respectively. 

In addition, according to the yield curve, the quantitative investment strategy combined with the 

deep learning model also exhibits better defensibility. 
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