
algorithms

Article

Particle Probability Hypothesis Density Filter Based
on Pairwise Markov Chains

Jiangyi Liu 1, Chunping Wang 1,*, Wei Wang 2 and Zheng Li 3

1 Department of Electronic and optical engineering, Shijiazhuang Campus of Army Engineering University,
Shijiazhuang 050000, China; liujiangyi054@gmail.com

2 China Huayin Ordnance Test Center, Huayin 714200, China; wangwei1809@gmail.com
3 Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100000, China;

lizheng@buaa.edu.cn
* Correspondence: wchp054@gmail.com; Tel.: +86-27-87994237

Received: 2 January 2019; Accepted: 24 January 2019; Published: 31 January 2019
����������
�������

Abstract: Most multi-target tracking filters assume that one target and its observation follow a Hidden
Markov Chain (HMC) model, but the implicit independence assumption of the HMC model is invalid
in many practical applications, and a Pairwise Markov Chain (PMC) model is more universally
suitable than the traditional HMC model. A set of weighted particles is used to approximate the
probability hypothesis density of multi-targets in the framework of the PMC model, and a particle
probability hypothesis density filter based on the PMC model (PF-PMC-PHD) is proposed for the
nonlinear multi-target tracking system. Simulation results show the effectiveness of the PF-PMC-PHD
filter and that the tracking performance of the PF-PMC-PHD filter is superior to the particle PHD
filter based on the HMC model in a scenario where we kept the local physical properties of nonlinear
and Gaussian HMC models while relaxing their independence assumption.

Keywords: Pairwise Markov Chain; probability hypothesis density; particle filter; multi-target
tracking system

1. Introduction

Random Finite Set (RFS) theory has been widely used in the multi-target tracking field.
Unlike traditional solutions of multi-target tracking based on data association, RFS-based solutions
provide a theoretical framework without data association [1,2]. Among RFS-based solutions,
the Probability Hypothesis Density (PHD) filter propagates the first order moment of the posterior
multi-target density [3], which is now widely applied. RFS-based solutions cannot get the analytical
solution directly and the implementations mainly based on numerical approximations, such as Gauss
Mixture (GM) PHD filter [4,5], and on Sequential Monte Carlo (SMC, i.e. particle filter) methods [6,7].

Most multi-target tracking filters, including the classical PHD filter, assume that the targets and the
observations they produce follow the well-known HMC model. The HMC model assumes that the state
of a given target is a Markov Chain (MC): the states of the current moment are determined only by the
states of the previous moment, which have nothing to do with other moments, and the observations of
the current moment is determined only by the states of the current moment. However, the Markovian
and independence assumption implicit in the HMC model may not be satisfied in practical applications,
such as situations of correlated process and measurement noises and situations of colored measurement
noise [8]. In 2000, Pieczynski proposed the PMC model in order to relax the independence assumption
of the HMC model [9–11]; the HMC model is a special PMC model and the PMC model is more
universally suitable than HMC model. In 2013, Petetin and Desbouvries proposed a PHD filter for
targets following the PMC model (PMC-PHD) [11] and proved that the tracking performance of the
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proposed PMC-PHD filter is better than the “classical” PHD filter based on the HMC model under the
situation which relaxed the independence assumptions implicit in the HMC model. The PMC-PHD
filter proposed by Petetin only considers the first order information of the target state, neglecting its
high order information, and leads to the instability of the target number estimation. In view of this
problem, Mahler proposed a Cardinalized Probability Hypothesis Density filter based on the PMC
model (PMC-CPHD), which is developed from the PMC-PHD filter by propagating the cardinality
distribution function of the target simultaneously [12].

The GM implementation of the PMC-PHD filter proposed by Petetin and Desbouvries is
only suitable for the linear Gaussian multi-target tracking system but not to a nonlinear system.
GM implementations of the PHD filter use approximate methods to deal with non-linear problems,
while particle implementations are not affected by linearity and non-linearity. In this paper, a set
of weighted particles is used to approximate the probability hypothesis density of multi-targets in
the framework of the PMC model, the probability hypothesis density of multi-targets is updated
iteratively by predicting and updating the particles in real time to estimate the state of the targets,
and a particle probability hypothesis density filter based on the PMC model (PF-PMC-PHD) is
proposed for the nonlinear multi-target tracking system. The simulation result verifies the effectiveness
of the PF-PMC-PHD filter and shows that the performance of PF-PMC-PHD is better than the
particle implementation of the typical HMC-PHD filter (PF-HMC-PHD) in a scenario where we
kept the local physical properties of nonlinear and Gaussian HMC models while relaxing their
independence assumption.

The rest of the paper is organized as follows. A brief introduction to the PHD filter based on the
PMC model is given in Section 2. The particle PMC-PHD (PF-PMC-PHD) is given for the nonlinear
multi-target tracking system based on the PMC model in Section 3. The simulation results can be
found in Section 4. The conclusions are in Section 5.

2. PHD Filter Based on the PMC Model

2.1. PMC Model

Let xk ∈ Rm express the state at time k, and the corresponding observation is yk ∈ Rq. The couple
(xk, yk) is a PMC if and only if the joint probability density function (pdf) of (x0:k, y0:k) can be factorized
as follows:

p(x0:k, y0:k) = p(x0, y0)
k

∏
i=1

pi|i−1(xi, yi|xi−1 , yi−1) (1)

where p(x0, y0) is the state distribution at the initial time, and an HMC model is a PMC model
which satisfies {

p(xk|xk−1,yk−1) = p(xk|xk−1 ) = f (xk|xk−1 )

p(yk|xk, xk−1,yk−1) = p(yk|xk ) = g(yk|xk )
(2)

where f (xk|xk−1 ) and g(yk|xk ) are the target Markov transition density and the sensor likelihood
function, respectively.

The defined target motion model follows the PMC model as

(xk, yk) = ϕ
((

xk−1, yk−1
)
, wk

)
(3)

where w1, · · · , wk are independent zero-mean Gaussian noises, and

E(wkwT
k ) = Σk =

[
Σ11

k Σ21
k

T

Σ21
k Σ22

k

]
(4)
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A classical example of Gaussian PMC model can be expressed as [11][
xk
yk

]
=

[
F1

k F2
k

H1
k H2

k

]
︸ ︷︷ ︸

Bk

[
xk−1
yk−1

]
+ wk (5)

2.2. PHD Filter Based on PMC Model

RFS-based solutions consider that at time k, targets and measurements are two RFS: Xk =

{x1, · · · , xn} and Zk = {z1, · · · , zm}, where n and m are random integers which indicate the number
of targets and measurements. The measurements associated to a given state xi is noted yi and defines
the random finite set

.
Xk = {(x1, y1), · · · , (xn, yn)}.

Representing PHD with v(x), the v(x) of the random finite set X is the first order moment of
multi-target density and also the spatial density of the expected number of targets. Directly computing
vk(x) in a PMC seems complicated because xk is not necessarily Markovian; however, we can propagate
a joint intensity vk(x, y) and then obtain the PHD vk(x) as vk(x) =

∫
vk(x, y)dy.

Assuming that there is no spawning (if there is spawning the extension is immediate), according to
the multi-target Bayesian principle, the joint PHD can be propagated through the following prediction
and update formula:

vk|k−1(x, y) =
∫

pS,k(xk−1) fk|k−1(x, y|xk−1, yk−1)×vk−1(xk−1, yk−1)dxk−1dyk−1 + bk(x, y) (6)

vk(x, y) = [1− pD,k(x)]vk|k−1(x, y) + ∑
z∈Zk

pD,k(x)vk|k−1(x, z)δz(y)

κk(z) +
∫

pD,k(x)vk|k−1(x, z)dx
(7)

where pS,k(x) is the probability that a target with state x at time k− 1 still exists at time k; pD,k(x) is the
probability that a target with state x is detected at time k; bk(x, y) is the joint PHD of the birth targets
RFS at time k; κk(z) is the PHD of the clutter measurements RFS at time k; and δz(y) is the Dirac delta
function concentrated at z. Finally remember that vk(x) =

∫
vk(x, y)dy, where the integral w.r.t. y can

reduce to a sum.

3. PF-PMC-PHD Filter

There are two main methods to implement a PHD filter, one is a particle implementation and the
other is a GM implementation. The GM implementation of the PMC-PHD filter proposed by Petetin
and Desbouvries is only suitable for a linear Gaussian multi-target tracking system. The particle
PMC-PHD (PF-PMC-PHD) is given for the nonlinear multi-target tracking system based on the PMC
model in this paper.

A set of weighted random samples
{

w(i)
k , (x(i)k , y(i)

k )
}L

i=1
are used to approximate the posterior

probability density function of the pair (x, y) as follows:

vk(x, y) ≈
L

∑
i=1

w(i)
k δ((x, y)− (x(i)k , y(i)

k )) (8)

where w(i)
k represents the expected value of the pair with the state (x(i)k , y(i)

k ).
PF-PMC-PHD filter can be summarized as follow.
Step 1: Initialization of particles.

At time k = 0, use L0 particles
{

w(i)
0 , (x(i)0 , y(i)

0 )
}L0

i=1
to represent the prior probability density v0(·)

of pair (x, y), and the particles number is proportional to the number of targets, that is, if there are N̂0

targets, w(i)
0 = N̂0/L0 , the joint PHD function v0(x, y) of pair (x, y) writes as
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v0(x, y) =
L0

∑
i=1

w(i)
0 δ((x, y)− (x(i)0 , y(i)

0 )) (9)

Step 2: Particles prediction.
At time k ≥ 1, the particles (x̃(i)k , ỹ(i)

k ) generating for the surviving targets are sampled from

the proposed importance probability density function qk(·
∣∣∣(x̃(i)k−1, ỹ(i)

k−1), Zk ), i = 1, · · · Lk−1, and the

particles (x̃(i)k , ỹ(i)
k ), i = Lk−1 + 1, · · · Lk−1 + Jk generating for the new birth targets are sampled from

another suggested density function pk(·|Zk ). The corresponding predicted weights are calculated as

w̃(i)
k|k−1 =


w(i)

k−1 ·
φk|k−1

(
(x̃(i)k ,ỹ(i)k ),(x(i)k−1,y(i)k−1)

)
qk((x̃

(i)
k ,ỹ(i)k )

∣∣∣(x(i)k−1,y(i)k−1),Zk )
i = 1, · · · Lk−1

1
Jk
· bk(x̃

(i)
k ,ỹ(i)k )

pk((x̃
(i)
k ,ỹ(i)k )|Zk )

i = Lk−1 + 1, · · · Lk−1 + Jk

(10)

Assuming that there is no spawning,

φk|k−1

(
(x̃(i)k , ỹ(i)

k ), (x(i)k−1, y(i)
k−1)

)
= pS,k(x

(i)
k−1) fk|k−1(x̃

(i)
k , ỹ(i)

k |x
(i)
k−1, y(i)

k−1) (11)

The predicted joint PHD function vk|k−1(x, y) of pair (x, y) writes as

vk|k−1(x, y) =
Lk−1+Jk

∑
i=1

w̃(i)
k|k−1 · δ((x, y)− (x̃(i)k , ỹ(i)

k )) (12)

Step 3: Particles update.
Recalculating the weights of particles using measurements z ∈ Zk from the sensor, and the

posterior probability density function vk(x, y) of pair (x, y) writes as

vk(x, y) = v1
k(x, y) + v2

k(x, y) (13)

v1
k(x, y) =

Lk−1+Jk

∑
i=1

w̃1,(i)
k δ((x, y)− (x̃(i)k , ỹ(i)

k )) (14)

w̃1,(i)
k =

(
1− pD,k(x̃

(i)
k )
)

w̃(i)
k|k−1 (15)

v2
k(x, y) = ∑

z∈Zk

Lk−1+Jk

∑
i=1

w̃2,(i)
k (z)δ(x− x̃(i)k )δz(y) (16)

w̃2,(i)
k (z) =

pD,k(x̃
(i)
k )q(i)k (z) · w̃(i)

k|k−1

κk(z) +
Lk−1+Jk

∑
i=1

pD,k(x̃
(i)
k )q(i)k (z)w̃(i)

k|k−1

(17)

q(i)k (z) = N(z; ỹ(i)
k|k−1; Σ22

k ) (18)

Step 4: Resampling of the particles.
Estimating the number of targets:

N̂k =
Lk−1+Jk

∑
i=1

w̃1,(i)
k + ∑

z∈Zk

Lk−1+Jk

∑
i=1

w̃2,(i)
k (z) (19)



Algorithms 2019, 12, 31 5 of 10

Resampling particles
{

w̃1,(i)
k /N̂k, (x̃1,(i)

k , ỹ1,(i)
k )

}Lk−1+Jk

i=1
∪
{{

w̃2,(i)
k
(
zj
)
/N̂k, (x̃2,(i)

k , zj)
}Lk−1+Jk

i=1

}|Zk |

j=1
,

meanwhile, keeping the value y of particles which represent v2
k(x, y), we will obtain particles{

w(i)
k /N̂k , (x(i)k , y(i)

k )
}Lk

i=1
.

Step 5: Approximation of posterior probability density.
Rewrites the posterior joint PHD vk(x, y) of pair (x, y) as

vk(x, y) =
Lk

∑
i=1

w(i)
k δ((x, y)− (x(i)k , y(i)

k )) (20)

According to vk(x) =
∫

vk(x, y)dy, and
∫

δ(y− y(i)
k )dy = 1, i = 1, · · · Lk−1 + Jk, the posterior

PHD vk(x) of state x writes as

vk(x) =
Lk

∑
i=1

w(i)
k δ(x− x(i)k ) (21)

4. Experimental Simulation

4.1. A Particular Class of Gaussian PMC Model

In order to verify the effectiveness of the proposed PF-PMC-PHD filter and compare the tracking
performance with the particle PHD filter based on the HMC model (PF-HMC-PHD), the experimental
simulation uses a special Gaussian PMC model, with p(xk|xk−1 ) and p(yk|xk ) that are the same
as fk|k−1(xk|xk−1 ) and gk(yk|xk ) of the HMC model while relaxing the independence assumption.
The two models have the same local physical properties, but remember that in general p(xk|xk−1 )

will not be equal to p(xk|xk−1,yk−1) and p(yk|xk ) will not be equal to p(yk|xk, xk−1,yk−1) in the PMC
model, while the HMC model satisfies Equation (2). Suppose that for all k, the HMC model satisfies

p(x0) = N(x0; m0, P0) (22)

fk|k−1(xk

∣∣∣xk−1) = N(xk; Fkxk−1, Qk) (23)

gk(yk|xk ) = N(yk; Hkxk, Rk) (24)

The corresponding Gaussian PMC model can be expressed by the following formula [11]:

p(ξ0) = N

(
ξ0;

[
m0

H0m0

]
,

[
P0 (H0P0)

T

H0P0 R0 + H0P0HT
0

])
(25)

pk|k−1(ξk|ξk−1 ) = N(ξk; Bkξk−1, Σk) (26)

where ξk = (xk, yk) and

Bk =

[
Fk − F2

k Hk−1 F2
k

HkFk − H2
k Hk−1 H2

k

]
, Σk =

[
Σ11

k Σ21
k

T

Σ21
k Σ22

k

]
(27)

Σ11
k = Qk − F2

k Rk−1(F2
k )

T
(28)

Σ21
k = HkQk − H2

k Rk−1

(
F2

k

)T
(29)

Σ22
k = Rk − H2

k Rk−1(H2
k )

T
+ HkQk(Hk)

T (30)
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4.2. Performance Analysis

Let us now analyze quantitatively the tracking performance of the PF-PMC-PHD filter and
PF-HMC-PHD filter in a nonlinear system based on the PMC model. We compute at each time step
the OSPA (Optimal Sub-Patten Assignment) metric and the target number estimation. The OSPA metric
can simultaneously evaluate the target number estimation error and position error of the multi-target
tracking. Let X = {x1, · · · , xm} and X̂ = {x̂1, · · · , x̂n} be two finite sets. Here, X̂ represents the estimated
finite set of the targets and X represents the true finite set of targets. For 1 ≤ p < +∞ and c > 0,
let d(c)(x, x̂) = min(c, ‖x− x̂‖) (‖·‖ is the Euclidean norm), Πn be the set of permutations on {1, 2, · · · , n},
and let π(i) be the ith component of a given permutation π. The OSPA metric is defined by [13]

d
c
p(X, X̂) ,

(
1
n

(
min
π∈Πn

m

∑
i=1

d(c)(xi, x̂π(i))
p + cp(n−m)

)) 1
p

(31)

if m ≤ n and by d
c
p(X, X̂) , d

c
p(X̂, X) if m > n. In our simulations, we set p = 100 and c = 1. Set

Fk =


1 sin ΩT

Ω 0 − 1−cos ΩT
Ω

0 cos ΩT 0 − sin ΩT
0 1−cos ΩT

Ω 1 sin ΩT
Ω

0 sin ΩT 0 cos ΩT

, F2
k =


0.7 0
0 0
0 0.7
0 0

 (32)

Hk =

[
1 0 0 0
0 0 1 0

]
, H2

k =

[
0.1 0
0 0.1

]
(33)

Qk =


25 1 0 0
1 5 0 0
0 0 25 1
0 0 1 5

, Rk =

[
4 0
0 4

]
(34)

We generate uniformly a mean of 10 clutter measurements on the region V = [−2000, 2000]×
[−2000, 2000] with a sampling period of T = 1s and a simulation experiment step of N = 50. There are
4 targets: targets 1 and 2 appear at time k = 1 and targets 3 and 4 appear at time k = 20. We track

the position and velocity of the targets in Cartesian coordinates, xk =
[

px,k,
.
px,k, py,k,

.
py,k

]T
. We set

pS,k = 0.98 and pD,k = 0.9 and select L = 1000 for the particle number of one target. The target
trajectories and measurements of such a scenario is displayed in Figure 1.

2

sin 1 cos1 0 0.7 0
0 cos 0 sin 0 0

,
1 cos sin 0 0.70 1

0 0
0 sin 0 cos

k k

T T

T T
F F

T T

T T

Ω Ω
Ω Ω
Ω Ω

Ω Ω
Ω Ω
Ω Ω

− −   
   −   = =   −
   
   
  

 (32) 

21 0 0 0 0.1 0
,

0 0 1 0 0 0.1k kH H   
= =   
   

 (33) 

25 1 0 0
1 5 0 0
0 0 25 1
0 0 1 5

kQ

 
 
 =
 
 
 

, 
4 0
0 4kR
 

=  
 

 (34) 
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1000L =  for the particle number of one target. The target trajectories and measurements of such a 
scenario is displayed in Figure 1.  

 
Figure 1. The target trajectories and measurements: Trajectories of four targets are represented by 
lines and the measurements taken from the sensor are represented by "Union Jack". 

Figure 2 shows the tracking result of PF-PMC-PHD. The tracking result shows that the 
proposed PF-PMC-PHD filter can effectively achieve the target tracking. 

Figure 1. The target trajectories and measurements: Trajectories of four targets are represented by lines
and the measurements taken from the sensor are represented by “Union Jack”.
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Figure 2 shows the tracking result of PF-PMC-PHD. The tracking result shows that the proposed
PF-PMC-PHD filter can effectively achieve the target tracking.

 
Figure 2. The tracking result of PF-PMC-PHD: Target trajectories are represented by lines, and the 
tracking results are represented by circles. The algorithm can track the targets effectively at most 
times, but there are missed and false alarms at some times. 

Figures 3 and 4 respectively show target number estimations and the OSPA metrics of the PF-
PMC-PHD filter and PF-HMC-PHD filter. The simulation result shows that the tracking 
performance of the PF-PMC-PHD filter is better than that of PF-HMC-PHD filter although the two 
filters share the same 1( )k kp −x x  and ( )k kp y x . This is because the HMC model does not take 

into account the information given by the observation 1k−y  in the case of the given 1k−x  and 1k−y  

and because the uncertainty of the state kx  increases. The target number estimation error of the PF-
HMC-PHD filter is large, and the situation of missing target is serious.  

 
Figure 3. The target number estimations and PF-HMC-PHD (L = 1000): The number estimation of 
PF-PMC-PHD is approximate to the true number when L = 1000, while the number estimation of PF-
HMC-PHD has a large error with the true number. 

Figure 2. The tracking result of PF-PMC-PHD: Target trajectories are represented by lines, and the
tracking results are represented by circles. The algorithm can track the targets effectively at most times,
but there are missed and false alarms at some times.

Figures 3 and 4 respectively show target number estimations and the OSPA metrics of the
PF-PMC-PHD filter and PF-HMC-PHD filter. The simulation result shows that the tracking
performance of the PF-PMC-PHD filter is better than that of PF-HMC-PHD filter although the two filters
share the same p(xk|xk−1 ) and p(yk|xk ). This is because the HMC model does not take into account
the information given by the observation yk−1 in the case of the given xk−1 and yk−1 and because the
uncertainty of the state xk increases. The target number estimation error of the PF-HMC-PHD filter is
large, and the situation of missing target is serious.

 
Figure 2. The tracking result of PF-PMC-PHD: Target trajectories are represented by lines, and the 
tracking results are represented by circles. The algorithm can track the targets effectively at most 
times, but there are missed and false alarms at some times. 

Figures 3 and 4 respectively show target number estimations and the OSPA metrics of the PF-
PMC-PHD filter and PF-HMC-PHD filter. The simulation result shows that the tracking 
performance of the PF-PMC-PHD filter is better than that of PF-HMC-PHD filter although the two 
filters share the same 1( )k kp −x x  and ( )k kp y x . This is because the HMC model does not take 

into account the information given by the observation 1k−y  in the case of the given 1k−x  and 1k−y  

and because the uncertainty of the state kx  increases. The target number estimation error of the PF-
HMC-PHD filter is large, and the situation of missing target is serious.  

 
Figure 3. The target number estimations and PF-HMC-PHD (L = 1000): The number estimation of 
PF-PMC-PHD is approximate to the true number when L = 1000, while the number estimation of PF-
HMC-PHD has a large error with the true number. 

Figure 3. The target number estimations and PF-HMC-PHD (L = 1000): The number estimation of
PF-PMC-PHD is approximate to the true number when L = 1000, while the number estimation of
PF-HMC-PHD has a large error with the true number.
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Figure 4. The OSPA metrics of PF-PMC-PHD and PF-HMC-PHD (L = 1000): The OSPA distance of 
PF-PMC-PHD is smaller to that of PF-HMC-PHD. 

In order to verify the effect of the particle number for each target on the tracking performance 
of PF-PMC-PHD filtering and PF-HMC-PHD filtering, change the value of L. Figures 5 and 6 
respectively show the target number estimations and the OSPA metrics of the PF-PMC-PHD filter 
and PF-HMC-PHD filter when L = 500, and Figures 7 and 8 respectively show the target number 
estimations and the OSPA metrics of the PF-PMC-PHD filter and PF-HMC-PHD filter when L = 
2000. The tracking performance of the PF-PMC-PHD filter and PF-HMC-PHD filter improve 
gradually with the increase of the L value. This is because with the increase of the particle number, 
the particle PHD filter is more close to the real PHD. 

 
Figure 5. The target number estimations of PF-PMC-PHD and PF-HMC-PHD (L = 500): The target 
number estimations of the two filters are smaller than the true number when L = 500, and the error 
of PF-HMC-PHD is larger than that of PF-PMC-PHD. 

Figure 4. The OSPA metrics of PF-PMC-PHD and PF-HMC-PHD (L = 1000): The OSPA distance of
PF-PMC-PHD is smaller to that of PF-HMC-PHD.

In order to verify the effect of the particle number for each target on the tracking performance
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5. Conclusions

The Pairwise Markov Chain (PMC) model is more universally suitable than the traditional Hidden
Markov Chain (HMC) model. A PF-PMC-PHD filter is proposed for a nonlinear multi-target tracking
system based on the PMC model. The simulation result proves the effectiveness of the filter when the
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particle number for one target is more than 1000, and the tracking accuracy needs to be improved when
the particles number for one target is small. The simulation result also shows that the performance
of the PF-PMC-PHD filter is better than the traditional PF-HMC-PHD filter in a scenario where we
kept the local physical properties of the nonlinear and Gaussian HMC models while relaxing their
independence assumption.

In order to verify the superiority of the PF-PMC-PHD filter over PF-HMC-PHD filter, this paper
adopts a certain and known PMC model. But in practical applications, the PMC model is generally
unknown and uncertain, and further studies in these complex situations are needed [14,15].
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