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Abstract: Aiming at the current problem that it is difficult to deal with an unknown radar emitter in
the radar emitter identification process, we propose an unknown radar emitter identification method
based on semi-supervised and transfer learning. Firstly, we construct the support vector machine
(SVM) model based on transfer learning, using the information of labeled samples in the source
domain to train in the target domain, which can solve the problem that the training data and the
testing data do not satisfy the same-distribution hypothesis. Then, we design a semi-supervised
co-training algorithm using the information of unlabeled samples to enhance the training effect, which
can solve the problem that insufficient labeled data results in inadequate training of the classifier.
Finally, we combine the transfer learning method with the semi-supervised learning method for the
unknown radar emitter identification task. Simulation experiments show that the proposed method
can effectively identify an unknown radar emitter and still maintain high identification accuracy
within a certain measurement error range.
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1. Introduction

Radar emitter identification is the key link in radar reconnaissance. It extracts the characteristic
parameters and working parameters on the basis of radar signal sorting. Based on these parameters,
we can obtain the information such as the system, use, type and platform of the target radar, and
further deduce the battlefield situation, threat level, activity rule, tactical intention, etc., and provide
important intelligence support for one’s own decision-making [1]. The most commonly used radar
emitter identification method is the pulse described word-based method. As new radar systems are
born, and the radar is becoming more complex, the method is difficult to cope with the complex
electromagnetic environment of modern battlefields. In order to obtain better identification results,
researchers began to extract a variety of new features in the time domain [2], frequency domain [3] and
time-frequency domain [4] for the identification of radar emitters.

With the rise of deep learning techniques, more and more researchers have applied CNN and DBN
in the radar emitter identification task, which achieves good performance. Zhou Z et al. [5] developed a
novel deep architecture for automatic waveform recognition, which outperformed the existing shallow
algorithms and other hand-crafted, feature-based methods. Cain L et al. [6] investigated an application
of convolutional neural networks (CNN) for rapid and accurate classification of electronic warfare
emitters. Sun J et al. [7] proposed a deep learning model named as unidimensional convolutional
neural network (U-CNN) to classify the encoded high-dimension sequences with big data.

Kong M et al. [8] used the CNN deep learning algorithm to identify the radar radiation sources,
which could extract more detailed features of the radar and improve the recognition rate. To cope
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with the complex electromagnetic environment and varied signal styles, Wang X et al. [9] proposed
a novel method based on the energy cumulant of short time Fourier transform and reinforced deep
belief network to gain a higher correct recognition rate for radar emitter intra-pulse signals at a low
signal-to-noise ratio.

In the past battlefields, the types of radar emitters are single and limited, and the above methods
can solve the problem of radar emitter identification well. However, with the increasing number and
variety of radar emitters, many unknown emitters will appear in the future battlefield. As time goes by
and the location changes, the current identification methods will face two problems. First, the training
data and testing data no longer satisfy the same-distribution hypothesis, resulting in a decrease in the
classification performance of the machine learning model. Second, the number of available labeled
samples for unknown emitters is seriously insufficient, which may lead to over-fitting of the machine
learning model.

In recent years, the transfer learning methods [10] and the semi-supervised learning methods [11]
have gained more and more attention. Transfer learning does not require that the training data and
testing data meet the conditions of the same distribution in the model training process, and utilizes the
knowledge in a large number of known samples for training, which is good for cross-domain learning.
However, the transferring of a large amount of irrelevant information will also cause negative transfer,
which reduces the effect of identification. Semi-supervised learning can use the information in a small
number of labeled samples and find patterns from a large number of unlabeled samples, and then
perform classification, avoiding the use of only a small number of labeled samples for training, which
may result in over-fitting. However, as information continues to increase, the training data and testing
data will also not satisfy the same-distribution hypothesis.

In view of the different characteristics of transfer learning and semi-supervised learning, this
paper combines the two methods to propose an unknown radar emitter identification method based
on semi-supervised and transfer learning. Firstly, we construct the support vector machine model
based on transfer learning, using the information of labeled samples in the source domain to train
in the target domain, which can solve the problem that the training data and the testing data do not
satisfy the same-distribution hypothesis. Then we design a semi-supervised, co-training algorithm,
using the information of unlabeled samples to enhance the training effect, which can solve the problem
that insufficient labeled data results in inadequate training of the classifier. Finally, we combine the
transfer learning method with the semi-supervised learning method for the unknown radar emitter
identification task.

Our major contributions are summarized as follows: (1) Focusing on the actual application
scenarios to study radar emitter identification, and simultaneously solving the problem that training
data and testing data do not satisfy the same-distribution hypothesis and the problem of insufficient
labeled data, which provides a good thinking way for future research in this area; (2) proposing a
method combining support vector machine based on transfer learning with semi-supervised co-training
algorithm; (3) verifying the interaction between the transfer learning method and the semi-supervised
learning method for unknown radar emitter identification task.

2. Relevant Research

2.1. Transfer Learning

Transfer learning refers to learning the knowledge in the source domain Ds, and using in the target
domain Dt that is not the same distribution with Ds but is related to Ds, which makes good the problem
of insufficient training data. Unlike traditional machine learning methods, transfer learning [12] does
not require training data and testing data to satisfy the same-distribution hypothesis. It can discover
and extract knowledge in the source domain Ds that matches the distribution of the target domain Dt

and is useful for identification in the target domain Dt.
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Then it establishes classification models in the target domain Dt, which can make efficient use of
existing labeled samples to avoid re-labeling in the target domain Dt.

From the perspective of transfer methods, transfer learning includes four basic methods:
sample-based transfer [13], feature-based transfer [14], model-based transfer [15] and relationship-based
transfer [16]. The sample-based transfer method refers to producing rules according to certain weights,
and reusing data samples for transfer learning. The feature-based transfer method refers to mutual
transfer by feature transformation, which reduces the gap between the source domain and the
target domain, or transforms the data features of the source domain and the target domain into a
unified feature space, and then utilizes the traditional machine learning methods for identification.
The model-based transfer method refers to finding the parameter information shared between the
source domain and the target domain to implement transferring. The relationship-based transfer
method has a completely different approach from the above three methods, focusing on the similarity
between the source domain samples and target domain samples.

2.2. Semi-Supervised Learning

The commonly used machine learning methods can be divided into three categories: supervised
learning, unsupervised learning and semi-supervised learning. Supervised learning refers to only
using labeled samples for training, and may not obtain a model with high generalization ability in
the case of fewer labeled samples. Unsupervised learning refers to only using unlabeled samples for
training, regardless of labeled samples, which results in a waste of samples. Semi-supervised learning
can process a small number of labeled samples and a large number of unlabeled samples at the same
time, combining the advantages of supervised learning and unsupervised learning.

The four most commonly used algorithms for semi-supervised learning are Self-Training [17],
Co-Training [18], Generative Model [19] and Graph-Based Semi-supervised [20]. The Self-Training
algorithm refers to the use of a self-classifier to continuously generate high-confidence samples for
improving the final classification performance. The Co-Training algorithm refers to separately training
the classifier on two views, which is representative of multi-view learning. The Generative Model-based
method means that the data of different categories meets different distributions, and if its conditional
probability distribution is known, the parameters of the model can be solved. The Graph-Based,
Semi-supervised method refers to passing the label information of labeled samples to unlabeled
samples according to the adjacency relationship in the graph, thereby realizing the classification of the
unlabeled samples.

3. Unknown Radar Emitter Identification Based on Semi-Supervised and Transfer Learning

In this section, we use the support vector machine model as the base classifier. Firstly, we construct
the support vector machine based on transfer learning, and define the calculation index to measure the
transfer ability. Then we study the training effect enhancement method based on the semi-supervised
co-training algorithm. Finally, we combine the transfer learning method with the semi-supervised
learning method for the unknown radar emitter identification task.

3.1. Support Vector Machine Based on Transfer Learning

The support vector machine (SVM) model has the characteristics of simple structure and global
optimization, and is good at solving small sample and nonlinear problems. Therefore, this section
chooses the support vector machine model as the base classifier to perform radar emitter identification.

In the process of constructing the SVM model based on transfer learning, it is necessary to utilize
the data in two domains at the same time, namely source domain Ds and target domain Dt. The data
in source domain Ds refers to the known radar emitters that are detected during non-wartime, and the
data in target domain Dt refers to the emerging radar emitters in wartime.

When the amount of data in source domain Ds is large, noise in source domain Ds affects the use
of the data in target domain Dt.
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In order to better optimize the target equation, this section filters the data with high similarity in
the source domain Ds in the process of transferring the SVM model, and uses the Euclidean distance to
define the distance function σ(Vi

s, D j
t), which can measure the similarity between the source domain

data and the target domain data. Its formula is as follows:

σ(Vi
s, D j

t) = −
1
k

∑
(x j,y j)∈Dt

exp
{
−β ‖ Vi

s − x j ‖
2
2

}
(1)

where Vi
s is the support vector for source domain, β is the importance degree of Vs, (x j, y j) is the sample

in target domain Dt and its real category, ‖ Vi
s − x j ‖

2
2 is the Euclidean distance between Vs and Dt, k is

the number of samples in target domain Dt.
The specific steps of the support vector machine based on transfer learning are shown in

Algorithm 1.

Algorithm 1. Support vector machine based on transfer learning

1. Train the initial SVM model in the source domain Ds to get the support vector Vs, and calculate the

similarity distance function σ(Vi
s, D j

t).
2. Add Vs to the source domain data, and add the similarity distance function σ to the objective function of

the SVM model as follows:

min
w

0.5 ‖ w ‖22 +C
k∑

j=1
ε j +

m∑
i=1

σ(Vi
s, D j

t)εi

Where m is the number of samples in source domain Ds, C is the penalty term, w is the weights of
classification hyperplane in the SVM model.

3. Generate new training set D̃ in target domain Dt, and retrain the SVM model. The optimization problem
of the objective function is described with the Lagrangian coefficient as follows:

maxL(α) =
m+k∑
i=1

αi − 0.5
m+k∑
i=1

m+k∑
j=1

αiα jyiy j(xi ∗ x j)

Where xi ∗ x j is the inner product of the vector xi and the vector x j, yi is the real category label of xi, y j is

the real category label of x j, αi and α j are the Lagrangian multipliers, α = (α1,α2, · · · ,αm+k)
T is the

Lagrangian multiplier vector.
4. Solve the above optimization problem and get the optimal solution α∗, which means getting the final

SVM model. Its form is as follows:

f (x) = sign[
m+k∑
j=1

yiα
∗(xi ∗ x j) + yi − εi − (

m+k∑
i=1

α∗xiyi)

T

xi]

3.2. Transfer Ability

The transfer ability can reflect the influencing ability of the samples in source domain Ds on the
target domain Dt. The calculation process involves two important indices: the similarity between
the sample in source domain Ds and the sample in target domain Dt; the consistency between the
prediction result of the sample xi in the classifier f and its real category. Therefore, the calculation
formula of transfer ability is as follows:

αi = σ(Vi
s, D j

t) ∗ f (xi) == yi (2)

where σ(Vi
s, D j

t) is the similarity distance function, f is the SVM classifier trained by the above transfer
learning method, f (xi) is the predicted value of xi in source domain Ds by the classifier f, yi is the
real category label of xi. By calculating the transfer ability, it is helpful to select the samples in source
domain Ds which are related to target domain Dt.
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3.3. Training Effect Enhancement Based on Semi-Supervised Co-Training Algorithm

The transfer learning-based support vector machine can select the appropriate samples from
source domain Ds for the training on target domain Dt, which can improve the final identification
performance. Unlike the above, semi-supervised learning can use the unlabeled samples in target
domain Dt to enhance the final training effect. This section constructs the semi-supervised co-training
algorithm based on the base classifier SVM model. The specific steps are shown in Algorithm 2.

Algorithm 2. Semi-supervised co-training algorithm

1. For the radar emitter identification task, define and construct a feature set x, and divide it into two parts
x1 and x2.

2. Train the base classifier SVM model on the small number of labeled samples in target domain Dt by using
the feature sets x1 and x2 respectively, and obtain the classifiers f1 and f2.

3. For t = 1: N

Perform identification on the unlabeled samples in target domain Dt by using the classifiers f1 and f2,
respectively, and obtain the posterior probabilities of the samples belonging to each emitter category, and
select p samples with the highest confidence for each category;
Add the selected samples to the training set and retrain the classifiers f1 and f2 on the training set.

End

The two feature sets x1 and x2 in the co-training algorithm refer to two views and need to satisfy
sufficient redundancy and conditional independence. Through continuous iterative training, unlabeled
samples in the target domain Dt are available for labeling, which helps to enhance the training effect.

3.4. Combination of Transfer Learning Method and Semi-Supervised Learning Method

This section combines the transfer learning method with the semi-supervised learning method,
while taking advantage of the two methods, which can use useful information in source domain Ds for
cross-domain learning, and can enhance the training effect with unlabeled samples in target domain
Dt. The specific process is shown in Figure 1.Algorithms 2019, 12, x FOR PEER REVIEW 6 of 12 
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The basic idea of the semi-supervised transfer learning algorithm is to first use the small number
of labeled samples in the target domain as training data to train two different classification models,
namely the SVM model based on transfer learning and the semi-supervised co-training model; then we
select some samples from source domain, use the SVM model based on transfer learning to evaluate
the transfer ability of each sample, delete the samples that are not related to the target domain and
obtain candidate sample set. After this we select some unlabeled samples from the target domain, use
the semi-supervised co-training model to evaluate the confidence of each sample, delete the samples
with lower confidence and add the remaining samples to the candidate sample set.

In the process of selection training samples, not only must we consider the transfer ability, but we
must assess the confidence of the sample’s category. Then we add the samples satisfying the conditions
to the training set. The above sample selection method is based on the basic assumptions of transfer
learning and semi-supervised learning. By repeating the process, the number of labeled samples in
target domain Dt can be continuously increased.

4. Experiments

4.1. Experiment Settings

4.1.1. Experiment Environment

We build the simulation experiment development environment of Windows7 + Matlab2017b +

Libsvm3.22, where Libsvm3.22 is used to implement the SVM model as the base classifier. Its kernel

function is based on the radial basis function exp(− |x−xi |
2

σ2 ). On this basis we use Matlab to realize the
transfer learning and semi-supervised learning method in this paper.

4.1.2. Experiment Data

We use the characteristic parameters such as pulse amplitude(PA), carrier frequency (CF), pulse
width (PW), pulse repetition interval (PRI) and angle of arrival (AOA) to simulate generating the
emitter data of six system-like radars. For the signal parameters, they are set at the same intermediate
frequency: 10 MHz, and the sampling frequency is 100 MHz. 1000 signal samples are generated using
the above five pulse description words for radar 1, radar 2 and radar 3, respectively, and a total of
3000 signal samples are as known radar emitter data corresponding to the source domain data above.

In addition, 1000 signal samples are generated for radar 4, radar 5 and radar 6, respectively, and a
total of 3000 signal samples are as unknown radar emitter data corresponding to the target domain data
above. The mean values and standard deviations after normalization of the known radar emitter data
and the unknown radar emitter data are significantly different, so they no longer satisfy the assumption
of the same distribution, which can be used to verify the transfer learning and semi-supervised learning
method. The details of the experiment data are shown in Tables 1 and 2.

Table 1. Known radar emitter data.

Known Radar PA CF/MHz PW/µs PRI/µs AOA/◦

radar 1 [6, 16] [2019, 2020] [1.1, 1.3] 400/500/550 [46, 48]
radar 2 [2, 12] [2150, 2250] [0.3, 0.5] 300/350/400 [62, 64]
radar 3 [16, 20] [3121, 3333] [7.1, 7.2] 800/830/860 [66, 68]

Table 2. Unknown radar emitter data.

Unknown
Radar PA CF/MHz PW/µs PRI/µs AOA/◦

radar 4 [12, 14] [2545, 2546] [0.2, 0.4] 710/730/770 [28, 30]
radar 5 [5, 8] [2763, 2773] [0.6, 0.8] 240/280/320 [52, 54]
radar 6 [23, 31] [2855, 3003] [4.7, 4.8] 600/640/660 [48, 50]
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A radar signal sample is written as Wi = [PAi, CFi, PWi, PRIi, AOAi]
T. The distribution of the

specific parameters of the radar is shown in Figure 2, (a) describes the entire data set from the
perspective of parameters PA and AOA, and (b) describes the entire data set from the perspective of
parameters of CF, PW and PRI.
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4.2. Interaction between Transfer Learning Method and Semi-Supervised Learning Method

The experiment uses the known radar emitter data as labeled samples for auxiliary training, and
the unknown radar emitter data as unlabeled samples to be identified. The number of unlabeled
samples and labeled samples can be adjusted to verify the interaction between the transfer learning
method and the semi-supervised learning method.

First, we keep the number of labeled samples unchanged, and adjust the number of unlabeled
samples to verify the impact of the semi-supervised learning method on the transfer learning method.
The results are shown in Figure 3. It can be seen from the experiment results that when the number
of unlabeled samples is zero, that is, we only carry out transfer learning without semi-supervised
learning, the identification accuracy is 11.3% lower than the optimal identification accuracy.

When the number of unlabeled samples is slowly increasing, the identification accuracy will also
continue to rise, indicating that the unlabeled samples help to make the transfer learning method select
high-similarity samples from the unknown radar emitter data; that is, the semi-supervised learning
method is positively correlated with the transfer learning method, and has not weakened it. As the
number of unlabeled samples increases further, the identification accuracy will gradually stabilize,
indicating that the high-similarity samples in the unknown radar emitter data have been completely
screened out, and the optimal recognition rate can reach 93.6%.
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Secondly, we keep the number of unlabeled samples unchanged, and adjust the number of labeled
samples to verify the impact of the transfer learning method on the semi-supervised learning method.
The results are shown in Figure 4. It can be seen from the experiment results that when the number of
labeled samples is zero, that is, we only carry out semi-supervised learning without transfer learning,
the difference between the maximum identification accuracy and the minimum identification accuracy
in the classification identification results reaches 17.9%, indicating that the use of semi-supervised
learning alone makes the model less stable. When the number of labeled samples is slowly increased,
the difference between the maximum identification accuracy and the minimum identification accuracy
in the classification identification results will continue to drop to 4.3%, indicating that the transfer
learning method helps to make self-correction of the semi-supervised learning method.
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It can be seen from the above experiment results that the semi-supervised and transfer learning
method proposed in this paper can comprehensively utilize the information of unlabeled samples and
labeled samples. When the number of unlabeled samples is greater than 1000, and the number of
labeled samples is greater than 1500, the performance of the model will tend to be stable and achieve
the highest identification accuracy. Therefore, in the following we use 1500 known radar emitter
samples and 1000 unknown radar emitter samples to train the model for contrast experiments.

4.3. Contrast Experiments

In order to further verify the effectiveness of the proposed method, we train the base classifier
SVM model, the SVM model based on transfer learning, the SVM model based on semi-supervised
learning and the SVM model based on semi-supervised and transfer learning respectively to identify
the unknown radar emitter samples. In addition, in order to verify the adaptability of the model to the
measurement error, we introduce an error deviation level test algorithm [21]. The specific experiment
results are shown in Figure 5.

From the contrast experiment results, it can be known that when only using the base classifier SVM
model for identification, the identification accuracy obtained is less than 55%. The main reason is that
the known radar emitter data and the unknown radar emitter data do not satisfy the same-distribution
hypothesis, resulting in an inability to obtain a valid classifier. When using the SVM model based on
semi-supervised and transfer learning for identification, the optimal identification accuracy can be
achieved within a certain measurement error range. Identification accuracy can reach more than 90%
in the measurement error range of 15%, indicating that the method has good noise adaptability, and
is obviously superior to the SVM model based on transfer learning, and the SVM model based on
semi-supervised learning. The main reason is that the semi-supervised and transfer learning can make
full use of sample information to achieve good performance without a lot of iteration.
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The identification accuracy obtained by the SVM model based on transfer learning is slightly
better than that obtained by the SVM model based on semi-supervised learning. The main reason
is that there are not many available training samples in the target domain, which leads to the fact
that only using the semi-supervised learning method cannot enhance the training effect. When the
measurement error is greater than 10%, the identification accuracy of the transfer learning method
and the semi-supervised learning method will be significantly reduced, indicating that their noise
adaptability is not good.
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4.4. Results Discussion

For the radar emitter identification task, deep learning models can often achieve the best results.
Therefore, in this section, we construct the CNN model [6] and the U-CNN model [7] to compare with
our method proposed in this paper. In the two deep learning models, radar pulse description words
are used to represent radar signals, and as input to the model, which is the same as the processing
of our method, so it is appropriate to compare CNN, U-CNN and our method together. The specific
experiment results of different models are shown in Table 3. In the traditional identification scenario,
that is, where we only use the labeled samples in source domain to train the models and then test on
the source domain data, U-CNN can achieve the best performance. Its identification accuracy is up to
98.5%, while the identification accuracy of our method is only 95.3%. In the unknown identification
scenario, that is, wherein we use the labeled samples in source domain and the unlabeled samples in
target domain to train the models and then test on the unknown radar emitters in target domain, the
identification accuracy of CNN and U-CNN decrease sharply. However, our method can still reach
an identification accuracy of 91.6%. The experiment results show that compared with the currently
most popular deep learning models, although our method still has disadvantages in the traditional
identification scenario, it can achieve the best performance when facing unknown radar emitters.

Table 3. Identification accuracy of different models.

Model
Identification Accuracy

Traditional Scenario Unknown Scenario

CNN 98.1% 72.2%
U-CNN 98.5% 76.3%

our method 95.3% 91.6%

5. Conclusions

In the radar emitter identification task, the traditional methods are often difficult to identify
unknown radar emitters. Aiming at the problem, this paper proposes an unknown radar emitter
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identification method based on semi-supervised and transfer learning. The transfer learning method
can solve the problem that the training data and testing data do not satisfy the same-distribution
hypothesis, and the semi-supervised learning method can utilize the information of unlabeled samples
to enhance the final training effect. Simulation experiments show that the proposed method can achieve
an identification accuracy of 91.6% in the measurement error range of 15%, which is 15.3% higher
than the deep learning model in the unknown identification scenario. The next step is to continue to
optimize the model and lighten it for automatic compression, in order to minimize the running time of
our method.
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