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Abstract: Multi-Objective Problems (MOPs) are common real-life problems that can be found in
different fields, such as bioinformatics and scheduling. Pareto Optimization (PO) is a popular
method for solving MOPs, which optimizes all objectives simultaneously. It provides an effective
way to evaluate the quality of multi-objective solutions. Swarm Intelligence (SI) methods are
population-based methods that generate multiple solutions to the problem, providing SI methods
suitable for MOP solutions. SI methods have certain drawbacks when applied to MOPs,
such as swarm leader selection and obtaining evenly distributed solutions over solution space.
Whale Optimization Algorithm (WOA) is a recent SI method. In this paper, we propose combining
WOA with Tabu Search (TS) for MOPs (MOWOATS). MOWOATS uses TS to store non-dominated
solutions in elite lists to guide swarm members, which overcomes the swarm leader selection problem.
MOWOATS employs crossover in both intensification and diversification phases to improve diversity
of the population. MOWOATS proposes a new diversification step to eliminate the need for local
search methods. MOWOATS has been tested over different benchmark multi-objective test functions,
such as CEC2009, ZDT, and DTLZ. Results present the efficiency of MOWOATS in finding solutions
near Pareto front and evenly distributed over solution space.

Keywords: Multi-Objective Optimization; Multi-Objective Problems; Pareto Optimization; Swarm
Intelligence; Tabu Search; Whale Optimization Algorithm

1. Introduction

Currently, real-life problems share a common aspect, which have multiple objectives to be
optimized. Problems, such as recommender systems [1], industry [2] and bioinformatics [3] have many
objectives that need to be optimized simultaneously to reach an effective solution. These objectives
are often contradictory, so optimizing one objective deteriorates the degree of optimization of
other objectives. Solving Multi-Objective Problems (MOPs) needs multiple solutions to vary the
degree of optimization of each objective [4]. Choosing the appropriate solution can be specified by a
decision-maker.

Population-based meta-heuristic methods mimic the intelligent behavior of organisms that live
in groups [5]. They use a set of solutions to cover solution space, which makes them suitable
for solving MOPs. Population-based meta-heuristic methods can be simply classified into Swarm
Intelligence (SI) and Evolutionary Algorithmic (EA) methods [6]. SI methods have been first proposed
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to solve MOPs by Schaffer [7]. They represent each solution to the MOP by a swarm member.
They use intelligent intensification and diversification techniques to cover solution space economically.
The quality of solutions is assessed using objective functions of the MOP. To identify best solutions
regarding multiple objectives, a sophisticated method is needed. Pareto Optimization (PO) has been
one of the main techniques used in solving MOPs [8]. It aims to optimize the whole objectives
simultaneously. PO generates a set of best solutions called “non-dominated” solutions or “Pareto Front”
(PF) [8]. These solutions represent the best solutions to the problem, which cannot be further
optimized. Many population-based methods have been combined with PO to solve MOPs, see for
example Non-dominated Sorting Genetic Algorithm (NSGA) [9], NSGA-II [10], Multi-Objective
Particle Swarm Optimization (MOPSO) [11], Multi-Objective Cat Swarm Optimization (MOCSO) [12],
and Multi-Objective Grey Wolf Optimizer (MOGWO) [13], to name a few.

Yet although SI methods presented a good performance in solving MOPs, they have their
own drawbacks. Focusing on methods, such as Particle Swarm Optimization (PSO) and its rivals,
these methods share common drawbacks such as selecting the swarm leader [14], getting trapped
in local optima [15], and obtaining solutions that are not evenly distributed over solution space [15].
These problems result from the lack of mature memory elements, since only a single best solution
within the search space is kept, which limits their capabilities to cover the whole solution space.
Even when those methods use an external archive to store best solutions, they do not use these
solutions to guide swarm members. This limits their ability to search promising regions thoroughly
and increases their probability to get trapped in local optima. Also, PSO and its rivals tend to move
with big steps to explore different regions of the search space without focusing on exploring neighbors
of swarm members, which increases their need to local search methods.

Combining PSO or one of its rivals with mature memory elements can enhance its effectiveness.
Tabu Search (TS) is a well-known single-point meta-heuristic method, proposed by Glover [16]. In TS,
an Elite List (EL) is used to store the best solutions, and a Tabu List (TL) is used to store pre-visited
solutions. These memory elements enable TS to identify promising regions to be searched thoroughly
and remembering pre-visited regions to be avoided.

Whale Optimization Algorithm (WOA) is a recent SI method, proposed by Mirjalili et al. [17].
It mimicked the behavior of the humpback whales to heuristically locate the extreme points of arbitrary
functions. WOA was tested over multiple engineering optimization problems and presented a good
performance [17]. Also, it was successfully used in solving the scheduling problem of a single robot
used to transport raw materials within an intelligent manufacturing system [18]. The WOA is a simple
method as it uses a small number of parameters to control the search process, which makes it a good
candidate for new modifications.

In this paper, we propose combining the WOA [17] with TS for fast computation of almost optimal
solutions of MOPs (MOWOATS). MOWOATS is proposed to find solutions of MOPs that are very near
the true PF of the problems and evenly distributed over the solution space. This comes as a result
from using the mature memory elements of TS to provide a better guidance to swarm members while
covering the solution space. Another technique is proposed to overcome the drawbacks of PSO and its
rivals, which is the new diversification method that is used to improve the coverage of solution space.
MOWOATS uses the crossover operator inspired form Genetic Algorithm (GA) [19] to improve the
diversity of the population. These modifications ensure that MOWOATS can cover solution space and
obtain high-quality solutions for MOPs in real time.

MOWOATS uses EL to store the non-dominated solutions about the search space. Then,
these solutions are used to guide the search by the swarm members to escape from local extreme
points. This technique avoids the MOWOATS to get trapped in local optima as it selects the best
solution randomly each time from solutions stored in EL. To ensure covering the promising regions
in search space, MOWOATS applies a crossover operator among swarm members and solutions in
EL. MOWOATS, too, is a modified diversification step that positions the swarm members in their
vicinity rather than the vicinity of the prey. This technique provides a better coverage of search
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space and eliminates the need to local search methods. The crossover operator is also applied among
swarm members to improve the diversity of the population. The contributions of this paper can be
summarized into:

• Design a simple and hybrid multi-objective optimization algorithm that attains more accurate
solutions than common SI-based optimization heuristics. It uses the EL memory component to
store non-dominated solutions. These solutions are used to guide swarm members during the
search process, which eliminates the need for local search methods.

• A new diversification step is proposed to ensure an effective coverage of search space. The method
ensures the balance between local optima and global optimization.

• Since SI methods need to enhance the diversity of swarm members [7,10], MOWOATS uses a
crossover operator to broaden the diversity of swarm members. Crossover is also used to enhance
the evolution of swarm members by applying it over solutions kept in the EL.

• MOWOATS uses the Pareto dominance criterion to evaluate the solutions. This method allows
MOWOATS to optimize the whole objectives simultaneously and ensures obtaining solutions that
are evenly distributed over solution space.

• MOWOATS is tested over different benchmark multi-objective test functions, such as Zitzler-Deb
Thiele (ZDT) [20] test functions proposed by Zitzler et al., Deb-Thiele-Laumanns Zitzler (DTLZ) [20]
test functions proposed by Deb et al., and CEC2009 test functions proposed by Zhang et al. [21].
The Inverted Generational Distance (IGD) metric [13] is used for the comparison.

The paper is organized as follows. Section 2 presents previous methods proposed to solve MOPs.
Section 3 presents a mathematical description of MOPs and provides a short description for both WOA
and TS algorithms. Section 4 describes the proposed algorithm and explains in detail some of its major
components. Section 5 reports a performance analysis for MOWOATS. Section 6 summarizes the main
points of our work and future work.

2. Related Work

There have been three main methods to solve MOPs. First method converts the MOP into a
single objective one by aggregating the objectives and giving them different weights according to their
importance [22]. Second method orders the objectives according to their importance (lexicographic
approach), and tries to optimize objectives according to their order [22]. Third method is PO,
which optimizes the whole objectives simultaneously [8]. It generates a non-dominated set of solutions
that represent the best solutions to the problem [8]. PO can be used as an effective way to evaluate the
goodness of multi-objective solutions, which is needed for multi-objective optimization methods.

SI methods are population-based meta-heuristic methods, which simulate the behavior of natural
organisms that live into groups in their strategies to cover a large search space economically [5].
SI methods transform the solutions of a MOP into a M-dimensional solution space, trying to cover the
feasible space effectively for finding the best solutions. Since they were first proposed to solve MOPs [7],
many meta-heuristic methods have been proposed to solve MOPs [9,10,23]. One of these is NSGA [9],
an evolutionary algorithm which combines a genetic algorithm with PO to find non-dominated
solutions. Its main goal is to diversify the population over the whole PF. This eliminates the biasness
of resulted non-dominated solutions towards specific regions in the search space. Based on these
ideas, NSGA-II [10], which is an improved version, has become one of the most popular evolutionary
computing techniques for addressing MOPs. The changes included the addition of an EL to store the
best solutions found during the search process. This modification enhanced the quality of generated
non-dominated solutions and reduced the execution time of the algorithm via parallel candidate paths.

An alternative approach to tackle MOPs is to decompose the original difficult problem into simpler
subproblems, and solve them independently but coupling their solutions, in such a way that each
subproblem is optimized by using information from its neighboring ones. This was tested successfully
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by Zhang et al. [23], who used NSGA-II for solving the subproblems and demonstrated better results
over NSGA-II alone in different benchmark tests.

SI methods have been combined with PO to solve MOPs. An example is [11] (MOPSO,
Multi-Objective Particle Swarm Optimization), where the PSO meta-heuristic is employed to explore
the solution space. MOPSO keeps track of the non-dominated solutions during its execution (in an
external archive), and in doing so it exhibits the advantages of using enough memory during the
search process, especially when dealing with MOPs. Some further improvements in the accuracy of
the solutions to MOPs can be achieved by replacing PSO method with other variants of PSO, either for
accuracy or for reducing the time complexity. For instance, using Cat Swarm Optimization as in [12],
or using information from the neighbor particles, as in Quantum-behaved Multi-Objective Particle
Swarm Optimization (MOQPSO) [24], which applies the rules of cultural evolution to control how
swarm members evolve. Here, particles in the swarm depend on the other particles in their vicinity,
and not only on their own previous positions, to determine their next location. This highlights the
importance of performing a local search around the current state so that SI methods can discover better
solutions and ultimately converge to a near optimum point, as [24] shows. Another variation appears
in [14], where the authors propose a different nature-inspired swarm behavior, the Grey Wolf (GW)
social hierarchy, to run the dynamics of the SI-based solver. The paper shows that the multi-objective
solver based on a simulated GW society can find better non-dominated solutions in reduced time,
compared to other SI algorithms.

Since a multi-objective solver can find several PFs simultaneously, some forms of assessing the
relative quality of PFs is usually applied to output a final decision. The hypervolume [25] and the
R2 [26] indicators are two recommended approaches. The work in [15] follows this idea, and presents
a hybrid multi-objective optimization algorithm which combines PSO with R2. It turns out that this
achieves a better performance than using the meta-heuristics alone.

The good search capabilities of the WOA led Kumawat et al. [27] to use it as a multi-objective
optimizer. The method complemented the WOA with an external grid archive to store the best
optimization values, found so far, for each objective. This heuristic achieves high convergence rates
in short number of iterations. However, even though the method exploits the search capabilities of
WOA, it does not propose any enhancements for the WOA search capabilities. Specifically, the memory
element in [27] was used to store non-dominated solutions, but no other solutions are further explored
to add more diversity to the dynamics of the swarm members. Another version of WOA was combined
with the Simulated Annealing (SA) heuristic to be applied for feature selection [28]. The method
used the SA for the intensification phase, which presents the need for WOA for more enhancements.
Another modification was proposed by Abdel-Basset et al. [29]. They proposed combining a local
search strategy with WOA for the permutation flow shop scheduling problem. This clarifies the
correctness of our analysis for the WOA and its need for a local search method.

To sum up, although WOA exhibits a good performance in solving single objective and
multi-objective problems, it still has some drawbacks. First, it is common that only a single best
solution is recorded over the whole search space, thus increasing the probability to fall into convergence
toward a local optimum. Secondly, despite adding an external archive to store multiple best solutions
when solving MOPs, but these solutions are not always used to guide the future evolution of swarm
members. Finally, the WOA diversification technique is not efficient enough, so it was enhanced by
adding a local search strategy as proposed by Abdel-Basset et al. [29].

From previous work, the novelty of the proposed MOWOATS algorithm is emphasized.
The hybridization of WOA and TS for MOPs is new and has not been proposed before.
The next section contains a brief mathematical description of MOPs and gives a presentation about
both TS and WOA and how they can be combined for solving a MOP.
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3. Background

3.1. Multi-Objective Problems

MOPs can be found in multiple fields, such as engineering [27] and bioinformatics [3]. They have
multiple objectives to be optimized. A MOP can be described mathematically over a search space that
consists of n variables as:

Xi
l ≤ Xi ≤ Xu

i ; i = 1, ..., n, (1)

where n is the number of variables, l and u represent the lower and upper bounds of variable i
respectively. A MOP can be described as a set of functions that need to be minimized or maximized.
A mathematical representation of a MOP can be described as:

F = min[ f1, f2, . . . , fo], (2)

where o stands for the number of objective functions in the problem. The constraint functions are
either equalities or inequalities, which can be described as below [4]:

Hi(x) = 0; i = 1, . . . , k, (3)

Gj(x) ≤ 0; j = 1, . . . , m, (4)

where the functions H represent the equality functions, the G functions represent the inequality
functions, and m stands for the number of inequalities. These functions evaluate the quality of solutions
and measure the objective values of each solution.

PO identifies whether a solution y dominates a solution x, if all objectives in y are as good as
in x, and at least one objective in y is better than the same objective in x. This can be described
mathematically according to:

fi(y) ≤ fi(x); ∀i ε[1, o]
fi(y) < fi(x); ∃i ε[1, o],

(5)

where x, y are two different solutions, and o represents the number of objectives. These two rules must
hold to ensure that solution y dominates solution x.

3.2. Tabu Search

TS is a single-point meta-heuristic method, which mimics human thinking [16]. It was first
proposed by Glover [16] as a global optimizer. It uses memory elements, such as EL to store the best
solutions, those that are used to identify promising regions to be searched thoroughly, whereas TL
stores pre-visited regions to ensure avoiding revisiting them in the future. These memory elements
allow TS to explore and exploit search space economically.

The main drawback of TS is its usage of a single point to explore search space, so this technique
is suitable for single objective problems rather than MOPs. Also, a single point does not provide an
effective exploration for search space in real time. TS can be combined with a SI method to use mature
memory elements of TS to enhance search methodology of the SI method.

3.3. Whale Optimization Algorithm

WOA is a recent SI method, proposed by Mirjalili et al. [17]. The method mimics the social
behavior of the humpback whale to ensure a fast exploration of search space. In addition, WOA mimics
the bubble-net technique to ensure an effective exploitation of promising regions. The heuristic has
been tested over multiple optimization and engineering problems and has proved itself as a global
optimizer [17].

Let us describe how the basic algorithm operates. In the intensification phase, the WOA sets the
prey to be the best solution overall the search space

−→
X ∗(t) and swarm members applies the bubble-net
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technique to surround the prey. Mathematically, the helix-shaped path taken by each whale
−→
X (t) to

the prey can be computed as:

−→
D = |−→X ∗(t)−−→X (t)|, (6)

−→
X (t + 1) =

−→
D · ebl · cos(2πl) +

−→
X∗(t), (7)

where b stands for a constant that represents the logarithmic spiral shape, l is a random number in the
range of [−1, 1], and

−→
X∗(t) stands for the best solution. Considering the diversification phase, the WOA

uses two exploration methods to cover search space. These methods simulate the social behavior of
the humpback whale. The first diversification method is based on selecting a random whale

−→
X rand(t)

from the current swarm to be the prey. Then, the swarm members reposition themselves according to:

a = 2− t ∗ (2/Max_Iteration), (8)

A = 2 ∗ a ∗ r− a, (9)

C = 2 ∗ r, (10)
−→
D = |C · −→X rand(t)−

−→
X (t)|. (11)

−→
X (t + 1) =

−→
X rand(t)− A · −→D , (12)

where r represents a random number, C and A are controlling coefficients, t represents the current
iteration number, Max_Iteration represents the maximum number of iterations, and (·) represents
element by element multiplication. The second diversification method was setting the prey to be the
best solution

−→
X ∗(t). Swarm members update their new positions according to:

−→
D = |C · −→X ∗(t)−−→X (t)|. (13)
−→
X (t + 1) =

−→
X ∗(t)− A · −→D . (14)

The choice between the two diversification methods is controlled by the value of A parameter.
In starting iterations (|A| < 1), so WOA focuses on discovering the whole search space by computing
the new positions of swarm members according to Equation (12). The value of |A| decreases with
the increase in number of iterations, which makes WOA computes new positions of swarm members
according to Equation (14). This mechanism improves the search efficiency of WOA by exploring the
whole search space in starting iterations and exploiting promising regions in the final ones.

Choosing between the exploration and the exploitation phases is done randomly according to
the random parameter p. WOA uses a 50% value to provide the balance between intensification and
diversification methods. The following equation describes the selection criteria of WOA [13]:

−→
X (t + 1) =

{ −→
X∗(t)− A · −→D i f p < 0.5,
−→
D · ebl · cos(2πl) +

−→
X∗(t) i f p ≥ 0.5

(15)

where p is a random number in range of [0, 1]. Next section discusses the computational representation
of hybridizing WOA with TS.

4. Methodology

4.1. Multi-Objective Whale Optimization Algorithm combined with Tabu Search (MOWOATS)

MOWOATS is a hybrid algorithm that combines WOA with TS to provide an effective exploration
of search space. As pointed above, a good search method is critical for MOP solvers, since MOPs can
have multiple solutions and need to evaluate several of them according to the situation of the problem.
As expected, MOWOATS transforms the solutions of a MOP into a solution space and tries to find
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the PF solutions to the problem. For this, it combines the search capabilities of the WOA heuristic
with the TS principle, implementing the exploitation phase exactly as proposed in the original WOA
(Equation (7)). Next, we describe the basic search procedure. As already stated, WOA simulates the
hunting technique of humpback whales. It sets the prey to be the best solution overall the search
space. On the other hand, the main difference is MOWOATS chooses the prey

−→
X ∗(t) randomly from

non-dominated solutions stored in EL, which eliminates the possibility of getting trapped in local
optima. Selecting a random non-dominated solution each time improves MOWOATS ability to escape
local optima.

In the exploration phase, MOWOATS proposes a different diversification method, which depends
on repositioning swarm members in their neighborhood instead of the prey’s neighborhood.
This provides a better exploration for search space and eliminates the need for a local search method.
In the first diversification method, MOWOATS selects a random whale

−→
X rand(t) from swarm members

to be the prey. Swarm members reposition themselves according to:

−→
D = |C · −→X rand(t)−

−→
X (t)|. (16)

−→
X (t + 1) =

−→
X (t) + (A/4) · −→D , (17)

where
−→
X (t) represents the position of the current whale. In the second diversification method,

MOWOATS selects a random non-dominated solution from EL to be the prey
−→
X ∗(t). Swarm members

compute their new positions as:

−→
D = |C · −→X ∗(t)−−→X (t)|. (18)

−→
X (t + 1) =

−→
X (t) + (A/4) · −→D . (19)

The algorithm chooses between the two diversification methods according to the value of A
parameter as proposed in the original WOA [13].

The second main modification in MOWOATS to cope with MOPs is changing the selection value
between intensification and diversification phases of p parameter. The original method WOA used
a 50% value to provide balance between the two methods. On the other hand, MOWOATS uses
80% for diversification and 20% for intensification. Because MOPs do not have a single best solution,
MOWOATS tends to increase the probability of diversification to ensure finding non-dominated
solutions that are evenly distributed over solution space. This eliminates the need to use crowd
detection methods to maintain diversity of non-dominated solutions [10]. Also, the usage of PO
ensures covering both concave and convex regions of PF solutions [8,30].

A block diagram of the main steps of the algorithm is given in Figure 1 for reference.

Figure 1. A depiction of MOWOATS framework.
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4.2. The Algorithm and Its Components

This section presents the details of MOWOATS main components, such as intensification by
crossover and diversification by crossover procedures. A complete description of the algorithm is
given at the end of this section.

4.2.1. Intensification by Crossover

The intensification by crossover function (Algorithm 1) aims to improve the quality of solutions
in current swarm S by combining swarm members with a random solution from the EL. The function
merges two solutions according to a crossover operator inspired by GA [19]. This technique is effective
in speeding up the convergence rates, while simultaneously providing a random jump to a test point
possibly not in the neighborhood of the current exploration point. After the procedure stops, it returns
the updated swarm S.

Algorithm 1 Intensification_Crossover(S, EL)

Select η solutions randomly from the swarm S.
for m = 1, . . . , η do

Select a random solution
−→
X rand from EL.

Update α random features in current whale
−→
X m with α features selected from

−→
X rand .

end for
Return the updated swarm S.

4.2.2. Diversification by Crossover

This diversification procedure (Algorithm 2) uses the crossover to generate new and different
solutions. It selects one whale randomly from the current swarm and, for each selected whale,
another whale is randomly chosen to combine them according to the crossover operator [19]. The new
solutions will be generated in a different form that differs from the original ones, with the purpose of
increasing the diversity of swarm members. After the procedure stops, it returns the updated swarm S.

Algorithm 2 Diversification_Crossover(S)

Select η solutions randomly from the swarm S.
for m = 1, . . . , η do

Select a random solution
−→
X rand from the current swarm other than current whale

−→
X m.

Update α random features in the current whale
−→
X m with the α random features selected from

−→
X rand .
end for
Return the updated swarm S.

4.2.3. MOWOATS Algorithm

MOWOATS (see Algorithm 3) starts with setting the main parameters of WOA and an empty EL.
First, a population is generated randomly from the dataset. Objective values are computed according
to the mathematical description of the problem. Then, MOWOATS updates the EL with the best
solutions in the initial population according to Pareto dominance criterion. According to the value of
p, the algorithm chooses whether to apply intensification or diversification on the swarm. Therefore,
it increases the chances of diversification to ensure that generated solutions are uniformly distributed
over PF. Furthermore, the solutions in the EL are used to guide the evolution of the swarm members
during both the intensification and the diversification phases.

In case that the number of iterations without improvement exceeds Max_NonImprove,
MOWOATS applies randomly either Intensi f ication_Crossover procedure (Algorithm 1) or
Diversi f ication_Crossover procedure (Algorithm 2), to prevent getting trapped in local optima. At the
end of the algorithm, the algorithm returns the non-dominated solutions stored in EL.



Algorithms 2019, 12, 261 9 of 20

Algorithm 3 Pseudocode for MOWOATS algorithm

Initialization.

Set of particles in swarm Np, number of features of each object d, empty EL, set Max_NonImprove
to be maximum number of iterations without improvement, and initialize the whale algorithm
parameters.

for i = 1, . . . , Np do

Generate initial solutions randomly from the dataset.

Compute the objective value of current solution according to objective functions that describe
the problem.

Update solutions in EL according to Pareto dominance criterion.
end for
Main Loop.

for t = 1, . . . , MaxIt do
for i = 1, . . . , Np do

Update WOA parameters a, A, C, l, p.

if (p > 0.2) then
if (|A| < 1) then

Select a random whale
−→
X ∗(t) from EL.

Update position of the current whale
−→
X i(t) applying next equation.

−→
D = |C · −→X ∗(t)−−→X (t)|. (20)

−→
X (t + 1) =

−→
X (t) + (A/4) · −→D . (21)

else if (|A| ≥ 1) then
Select a random whale

−→
X rand(t) from current swarm.

Update position of current whale
−→
X i(t) applying next equation.

−→
D = |C · −→X rand(t)−

−→
X (t)|. (22)

−→
X (t + 1) =

−→
X (t) + (A/4) · −→D (23)

end if
else if (p ≤ 0.2) then

Select a random whale
−→
X ∗(t) from EL.

Update position of current whale
−→
X i(t) applying next equation

−→
D = |−→X ∗(t)−−→X (t)|, (24)

−→
X (t + 1) =

−→
D · ebl · cos(2πl) +

−→
X∗(t) (25)

end if
Compute the objective value of current whale

−→
X i(t) according to the objective functions that

describe the problem.
Update solutions in EL according to Pareto dominance criterion.

end for
if (number of iterations without improvement ≥ Max_NonImprove) then

Set τ to a random value.
if (τ < 0.5) then

Apply intensification procedure Intensification_Crossover(S,EL) (Algorithm 1).
else

Apply diversification procedure Diversification_Crossover(S) (Algorithm 2).
end if

end if
end for
Return non-dominated solutions stored in EL
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5. Numerical Experiments

The algorithm was implemented in a virtual machine using a Linux environment (UBUNTU 16.04
distribution). Datasets were stored in files and the code was programmed in Scala [31]. This work
will be extended to run over a Hadoop computing cluster to handle Multi-Objective (MO) Big Data
problems [32]. Working over computing clusters minimizes processing time and permits MOWOATS
to process massive datasets in real time. MOWOATS was tested on a Core-i3 processor and 16 GB of
memory. It was tested over multiple benchmark datasets. Several numerical experiments have been
reported and discussed in this section. We report the main parameter values of MOWOATS method,
and the performance of its main components. In addition, comparisons with different meta-heuristic
methods are presented to show the efficiency of MOWOATS algorithm.

5.1. Parameters Setting

Table 1 presents the values of important parameters used by MOWOATS. These parameters are
used to adjust the performance of the algorithm. The MaxIt parameter controls the maximum number
of iterations. The value of the MaxIt parameter was chosen to be the least value that ensures the stability
of the algorithm. Np parameter represents the number of whales in each swarm. This parameter also
was set to the least value that can maintain the stability of the algorithm. Minimizing the values of MaxIt
and Np parameters contributes to minimize the running time of the algorithm. The Max_NonImprove
parameter stands for the maximum number of iterations without improvement. The Max_NonImprove
value was set after different number of runs to ensure obtaining high-quality solutions by the algorithm.
The max_EL parameter represents the maximum number of non-dominated solutions that can be
stored in EL. This parameter was also set to be as minimum as possible to minimize the time needed
when adding new solutions to the EL as the algorithm needs to loop over all the solutions stored in EL
to eliminate dominated ones.

Table 1. Main Parameter values of MOWOATS.

Parameter Definition Value

MaxIt Maximum number of iterations 1000
Np Population size 100

Max_NonImprove Maximum number of iterations without improvement 15
max_EL Maximum number of solutions stored in elite list 100

MOWOATS starts with a set of random solutions generated from solution space. Then, it applies
both intensification and diversification techniques to explore and exploit search space. After running
the algorithm, if the number of iterations with no improvement equals Max_NonImprove, then either
intensification or diversification by crossover are executed to amplify the diversity of swarm members.
After the number of iterations equals MaxIt, the algorithm terminates and returns the best solutions
stored in EL.

5.2. Results and Discussion

To assess the efficiency of MOWOATS as a multi-objective optimizer, MOWOATS is tested on
multiple benchmark problems, which include both bi-objective and tri-objective problems. We use the
ZDT [20] , DTLZ [20], and CEC2009 [21] benchmark test functions. These test functions are considered
to be examples of the most challenging MOPs, for they generate search spaces with different shapes of
PF, such as convex, non-convex, discontinuous, and multi-modal shapes.

Evaluating the quality of generated solutions is made by comparing them with respect to the
true PF of the problem. There are two main characteristics that can efficiently evaluate the generated
solutions: convergence to the true PF and the distribution of solutions over the solution space. The IGD
metric is used to evaluate both the convergence of solutions to the true PF and the spread of solutions
over solution space [33].
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First, the performance of MOWOATS algorithm is compared with several alternate algorithms:
MOGWO [13], MOPSO, and a Multi-Objective EA based on Decomposition (MOEA/D) over the
CEC2009 test functions according to IGD metric, defined as:

IGD =

√
∑n

i=1 d2
i

n
, (26)

where n represents the number of true PF, di corresponds to the Euclidean distance between the ith
solution in PF and generated solutions from MOWOATS.

Table 2 presents the average, median, standard deviation, worst, and best IGD values computed
from 30 independent runs. Results in Table 2 show the superiority of MOWOATS over those competitor
algorithms for the whole set of test functions, consistently. It reaches high convergence rates to the true
PF for all the functions, and the low values of the standard deviation of the results are a consequence
of the stability of the algorithm.

Table 2. IGD statistical results for the CEC2009 test functions UF1 to UF10.

UF1 (bi-objective) UF2 (bi-objective)

IGD MOWOATS MOGWO MOPSO MOEA/D MOWOATS MOGWO MOPSO MOEA/D

Average 0.002318 0.1144 0.1370 0.1871 0.002213 0.0582 0.0604 0.1223
Median 0.002299 0.113 0.1317 0.1828 0.0021 0.0577 0.0483 0.1201

STD 0.0001827 0.0195 0.0441 0.0507 0.0004524 0.0073 0.0276 0.0107
Worst 0.002549 0.1577 0.2278 0.2464 0.003084 0.0732 0.1305 0.14369
Best 0.00212 0.0802 0.0899 0.1265 0.001783 0.0498 0.0369 0.1048

UF3 (bi-objective) UF4 (bi-objective)

IGD MOWOATS MOGWO MOPSO MOEA/D MOWOATS MOGWO MOPSO MOEA/D

Average 0.009766 0.2556 0.3139 0.2886 0.001829 0.0586 0.1363 0.0681
Median 0.009917 0.2509 0.3080 0.2892 0.001828 0.0586 0.1343 0.0684

STD 0.0004257 0.0807 0.0447 0.0159 4.0192 × 10−5 0.0004 0.0073 0.0021
Worst 0.01021 0.3678 0.3773 0.3129 0.001894 0.0593 0.1518 0.0703
Best 0.009194 0.1295 0.2564 0.2634 0.001781 0.0579 0.1273 0.0646

UF5 (bi-objective) UF6 (bi-objective)

IGD MOWOATS MOGWO MOPSO MOEA/D MOWOATS MOGWO MOPSO MOEA/D

Average 0.07289 0.7970 2.2023 1.2914 0.01039 0.2793 0.6475 0.6881
Median 0.08149 0.6994 2.1257 1.3376 0.0106 0.2443 0.5507 0.6984

STD 0.03034 0.3785 0.5530 0.1348 0.001497 0.1044 0.2661 0.0553
Worst 0.09776 1.7385 3.0383 1.4674 0.01175 0.5504 1.2428 0.7401
Best 0.01682 0.4679 1.4647 1.1230 0.007643 0.1934 0.3793 0.5524

UF7 (bi-objective) UF8 (tri-objective)

IGD MOWOATS MOGWO MOPSO MOEA/D MOWOATS MOGWO MOPSO MOEA/D

Average 0.002116 0.1603 0.3539 0.4552 0.003607 2.0577 0.5367 NA
Median 0.002123 0.0734 0.3873 0.4377 0.003225 2.3359 0.5364 NA

STD 0.0001523 0.1391 0.2044 0.1898 0.0008838 1.1455 0.1825 NA
Worst 0.002331 0.4014 0.6151 0.677 0.005344 3.8789 0.7964 NA
Best 0.001889 0.0628 0.054 0.029 0.003021 0.4613 0.2453 NA

UF9 (tri-objective) UF10 (tri-objective)

IGD MOWOATS MOGWO MOPSO MOEA/D MOWOATS MOGWO MOPSO MOEA/D

Average 0.001473 0.1917 0.4885 NA 0.005116 3.5945 1.6372 NA
Median 0.001406 0.166 0.4145 NA 0.005558 2.8255 1.5916 NA

STD 0.0002609 0.0925 0.1445 NA 0.0008621 3.4882 0.2988 NA
Worst 0.001814 0.4479 0.7221 NA 0.005628 12.9564 2.1622 NA
Best 0.001133 0.1291 0.3336 NA 0.003464 1.0431× 4 1.22008 NA
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Next, a comparison among MOWOATS, the cultural MOQPSO, and other modified EAs [24] is
presented in Tables 3 and 4 for the following benchmark test functions: bi-objective ZDT, tri-objective
DTLZ, and CEC2009 test problems. Tables 3 and 4 report results computed according to IGD
Equation (26) [24]. Again, the obtained results in Table 3 show that MOWOATS outperforms the other
algorithms for all test functions except UF5, where it reaches only the third best result, just behind MTS
and GDE3. However, the results are far better for the rest test functions, thus giving strong support
to the claim that our algorithm works better for most classes of MOPs. Likewise, results in Table 4
compare MOWOATS to the cultural MOQPSO, and to some EAs according to the IGD metric over
bi-objective ZDT [20], and tri-objective DTLZ [20] test functions. For these benchmarks, our algorithm
has always produced better IGD indices than the others for every test function.

Figure 2 presents the distribution of the obtained solutions from MOWOATS with respect to the
true PF points for some DTLZ test functions. The figure shows the symmetry of the obtained solutions
with respect to the true PF solutions. It also presents the diversity of the obtained solutions over
the whole solution space. This corroborates the low IGD values obtained by MOWOATS. Figure 3
presents a depiction of the solutions obtained from MOWOATS with respect to the true PF solutions
for some ZDT test functions. The figure shows the symmetry of the obtained solutions with respect
to the true PF solutions, too, and it also clarifies the coverage of obtained solutions across the whole
solution space.

Figure 2. A depiction of the generated Pareto Optimal solutions for some DTLZ test functions.
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Table 3. Mean of IGD values for MOWOATS, Cultural MOQPSO, and some population-based algorithms over CEC2009 test problems.

UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8 UF9 UF10

GDE3 5.34 × 10−2 1.20 × 10−2 1.06 × 10−1 2.65 × 10−2 3.93 × 10−2 2.51 × 10−1 2.52 × 10−2 2.49 × 10−1 8.25 × 10−2 4.33 × 10−1

MOEADGM 6.20 × 10−3 6.40 × 10−3 4.90 × 10−2 4.76 × 10−2 1.79 5.56 × 10−1 7.60 × 10−3 2.45 × 10−1 1.88 × 10−1 5.65 × 10−1

MTS 6.46 × 10−3 6.15 × 10−3 5.31 × 10−2 2.36 × 10−2 1.49 × 10−2 5.92 × 10−2 4.08 × 10−2 1.13 × 10−1 1.14 × 10−1 5.53 × 10−1

DMOEA-DD 1.04 × 10−2 6.79 × 10−3 3.34 × 10−2 4.27 × 10−2 3.15 × 10−1 6.67 × 10−2 1.03 × 10−2 6.84 × 10−2 4.90 × 10−2 3.22 × 10−1

NSGA-II-LS 1.15 × 10−2 1.24 × 10−2 1.06 × 10−1 5.84 × 10−2 5.66 × 10−1 3.10 × 10−1 2.13 × 10−2 8.63 × 10−2 7.19 × 10−2 8.45 × 10−1

OWMOsaDE 1.22 × 10−2 8.10 × 10−3 1.03 × 10−1 5.13 × 10−2 4.30 × 10−1 1.92 × 10−1 5.85 × 10−2 9.45 × 10−2 9.83 × 10−2 7.43 × 10−1

Clustering MOEA 2.99 × 10−2 2.28 × 10−2 5.49 × 10−2 5.85 × 10−2 2.47 × 10−1 8.71 × 10−2 2.23 × 10−1 2.38 × 10−1 2.93 × 10−1 4.11 × 10−1

AMGA 3.59 × 10−2 1.62 × 10−2 7.00 × 10−2 4.06 × 10−2 9.41 × 10−2 1.29 × 10−1 5.71 × 10−2 1.71 × 10−1 1.89 × 10−1 3.24 × 10−1

MOEP 5.96 × 10−2 1.89 × 10−2 9.90 × 10−2 4.27 × 10−2 2.25 × 10−1 1.03 × 10−1 1.97 × 10−2 4.23 × 10−1 3.42 × 10−1 3.62 × 10−1

OMOEA-II 8.56 × 10−2 3.06 × 10−2 2.71 × 10−1 4.62 × 10−2 1.69 × 10−1 7.34 × 10−2 3.35 × 10−2 1.92 × 10−1 2.32 × 10−1 6.28 × 10−1

Cultural 1.11 × 10−2 2.15 × 10−2 3.75 × 10−2 5.98 × 10−2 1.23 × 10−1 1.66 × 10−1 1.13 × 10−2 1.18 × 10−1 1.16 × 10−1 8.29 × 10−1

MOQPSO
MOWOATS 2.32 × 10−3 2.21 × 10−3 9.77 × 10−3 1.83 × 10−3 7.29 × 10−2 1.04 × 10−2 2.12 × 10−3 3.61 × 10−3 1.47 × 10−3 5.12 × 10−3

Table 4. Mean of IGD values for MOWOATS, Cultural MOQPSO, and some population-based algorithms over (ZDT, DTLZ ) test problems.

F1(ZDT1) F2(ZDT2) F3(ZDT3) F4(ZDT4) F5(ZDT6) F6(DTLZ1) F7(DTLZ2) F8(DTLZ4)

Sigma MOPSO 6.07 × 10−1 5.00 × 10−1 5.50 × 10−1 2.64 × 101 2.88 × 10−3 2.23 × 101 2.84 × 10−1 7.49 × 10−1

Cluster MOPSO 9.03 × 10−3 9.19 × 10−2 2.92 × 10−1 9.89 6.24 × 10−3 1.39 1.43 × 10−1 8.93 × 10−1

MOPSO-CD 1.30 × 10−1 6.60 × 10−3 3.07 × 10−1 1.53 × 101 2.93 × 10−3 2.80 9.86 × 10−2 6.18 × 10−1

MOQPSO 2.17 × 10−2 4.25 × 10−2 1.87 × 10−1 8.81 3.92 × 10−1 1.38 × 101 6.94 × 10−2 1.02 × 10−1

Preference-order 6.94 × 10−3 4.75 × 10−1 1.90 × 10−1 2.08 5.86 × 10−3 1.39 × 101 2.29 × 10−1 2.91 × 10−1

based QPSO
Cultural 6.13 × 10−3 4.87 × 10−3 1.89 × 10−1 5.26 × 10−3 5.38 × 10−3 4.70 × 10−2 6.51 × 10−2 6.70 × 10−2

MOQPSO
MOWOATS 1.30 × 10−3 7.32 × 10−4 2.87 × 10−3 2.85 × 10−4 8.92 × 10−4 3.76 × 10−4 9.73 × 10−4 1.28 × 10−3
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Figure 3. A depiction of the generated Pareto Optimal solutions for some ZDT test functions.

We also conducted a specific comparison of our algorithm with Archive-guided memory to
MPSO (AgMOPSO) [14] just to see the performance gains achievable over an algorithm that, as with
AgMOPSO, applies decomposition of the original problem into subproblems to search the solution
space of a MOP.

The results (IGD metric) are listed in Table 5 for the comparison of MOWOATS against
AgMOPSO, MMOPSO, D2MOPSO, and EAG-MOEA/D, obtained from 30 independent runs [14].
These experiments were performed on tri-objective DTLZ and CEC2009 benchmark test functions.

Table 5. Mean of IGD values for MOWOATS, AgMOPSO, and some population-based algorithms over
(ZDT, DTLZ ) test problems, averaged for 30 different runs.

Problem MOWOATS AgMOPSO MMOPSO D2MOPSO EAG-MOEA/D NSGA-II

ZDT1 mean 1.303 × 10−3 3.701 × 10−3 3.936 × 10−3 1.038 × 10−2 3.757 × 10−3 4.976 × 10−3

std 7.450 × 10−4 2.83 × 10−5 3.4.56 × 10−5 6.07 × 10−3 1.02 × 10−4 1.73 × 10−4

ZDT2 mean 7.318 × 10−4 3.828 × 10−3 2.414 × 10−2 4.904 × 10−1 2.113 × 10−2 5.102 × 10−3

std 2.955 × 10−4 3.15 × 10−5 1.11 × 10−1 2.45 × 10−1 8.19 × 10−2 1.79 × 10−4

ZDT3 mean 2.872 × 10−3 4.367 × 10−3 4.413 × 10−3 1.404 × 10−2 3.142 × 10−2 6.408 × 10−3

std 2.691 × 10−3 5.23 × 10−5 4.28 × 10−5 4.34 × 10−3 3.73 × 10−2 5.41 × 10−3

ZDT4 mean 2.850 × 10−4 7.942 × 10−3 2.342 × 10−2 3.203 2.357 × 10−2 7.654 × 10−3

std 7.729 × 10−5 2.23 × 10−2 4.42 × 10−2 2.06 3.18 × 10−2 2.45 × 10−3

ZDT6 mean 8.922 × 10−4 2.997 × 10−3 3.635 × 10−3 1.423 × 10−2 3.132 × 10−3 9.088 × 10−3

std 3.476 × 10−4 9.51 × 10−5 2.31 × 10−4 8.14 × 10−3 2.13 × 10−4 1.00 × 10−3

DTLZ1 mean 3.760 × 10−4 2.183 × 10−2 2.754 × 10−2 1.515 2.582 × 10−2 2.544 × 10−2

std 2.735 × 10−5 1.229 × 10−4 2.56 × 10−2 2.22 3.14 × 10−3 3.02 × 10−3

DTLZ2 mean 9.731 × 10−4 5.133 × 10−2 6.354 × 10−2 6.078 × 10−2 5.93 × 10−2 6.725 × 10−2

std 7.122 × 10−5 2.50 × 10−4 1.82 × 10−3 1.53 × 10−3 1.73 × 10−3 2.74 × 10−3

DTLZ3 mean 2.242 × 10−3 3.619 × 10−1 1.929 4.505 × 101 1.505 × 10−1 1.525 × 10−1

std 6.181 × 10−4 5.79 × 10−1 1.61 2.49 × 101 1.78 × 10−1 2.52 × 10−1

DTLZ4 mean 1.286 × 10−3 3.304 × 10−2 6.325 × 10−2 6.261 × 10−2 1.872 × 10−1 6.181 × 10−2

std 1.325 × 10−4 4.63 × 10−4 4.55 × 10−3 3.36 × 10−3 1.47 × 10−1 6.24 × 10−3

DTLZ5 mean 4.365 × 10−5 3.868 × 10−3 3.825 × 10−3 6.072 × 10−3 3.876 × 10−3 5.217 × 10−3

std 1.507 × 10−5 8.12 × 10−5 9.45 × 10−5 1.12 × 10−3 8.97 × 10−5 2.69 × 10−4

DTLZ6 mean 1.858 × 10−4 3.670 × 10−3 3.756 × 10−3 1.392 × 10−2 3.730 × 10−3 1.733 × 10−2

std 1.400 × 10−4 1.653 × 10−4 1.57 × 10−4 2.06 × 10−3 1.05 × 10−4 1.38 × 10−2

DTLZ7 mean 2.751 × 10−3 7.712 × 10−2 3.756 × 10−3 8.312 × 10−2 4.100 × 10−1 7.405 × 10−2

std 6.663 × 10−4 4.40 × 10−3 1.57 × 10−4 5.29 × 10−3 2.49 × 10−1 3.00 × 10−3

Here, the results show once again that MOWOATS achieves the best mean and standard deviation
values for all test functions except (ZDT1, ZDT2, ZDT3, ZDT6, DTLZ6, and DTLZ7) test functions.
The second-best standard deviation values are attained by our algorithm for ZDT2 and DTLZ6, and the
third best results for ZDT3 and ZDT6. While not uniformly better, these results indicate that even when
it is not the best, MOWOATS yields results with comparable quality to the best SI-based algorithms
proposed in the literature, and that its variability across the different MOPs is small.
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Another feature which strains the quality of solutions computed by a MOP solver occurs when
the PF exhibits an irregular shape. There have been some works in the literature that address this issue
in particular, such as the Clustering-based Adaptive Multi-Objective EA (CA-MOEA) by Hua et al. [34],
who suggested using a clustering-based method to overcome those problems with irregular PF shapes.
The use of clustering helps to diversify the tentative solutions. We also did an experimental comparison
of this algorithm and other relatives/variants with the ours. MOWOATS is compared with this method
according to IGD metric, computed as [34]:

IGD =
∑
|P|
i=1 d(Pi, P∗)
|P| , (27)

where P represents the true PF solutions, P∗ stands for the optimal solutions generated from the
algorithm, and |P| is the number of the true PF.

Specifically, Table 6 contains a comparison among MOWOATS, CA-MOEA, MOEA/D, EMyO/C,
RVEA*, NSGA-II, and NSGA-III according to IGD metric computed according to Equation (27) [34].
The results confirm that MOWOATS reaches the lowest mean values of the IGD metric for all test
functions, except for DTLZ73, for which it yields the second rank. Therefore, we can confirm that
MOWOATS is able to handle MOPs even if they have solutions with quite irregular solution spaces.

Finally, we compare MOWOATS with hybrid variants of SI-based optimizers that use the
R2 indicator to assess the quality of the solutions regarding the PF. We chose (R2HMOPSO,
R2 indicator combined with MOPSO), R2HMOPSO1, MOEA/D, NSGA-II, dMOPSO , and R2MOPSO
and, as in previous cases, computed the IGD (27) after solving the problems in the benchmarks ZDT
(two objectives) and DTLZ (three-objective functions) [15]. The values appear in Table 7. Please note
that although R2HMOPSO, for instance, uses R2 indicator to improve the diversity of MOPSO,
MOWOATS still gets better results for all test functions. This can be explained by the introduction
of the new diversification step and memory elements in guiding swarm members during the search
process, confirming that both procedures contribute to the improvement of solutions.

From previous discussion, we can see that MOWOATS revealed its superiority over many
enhanced SI methods. This presents the correctness of our analysis for PSO and its rivals regarding
their need for mature memory elements. The new diversification technique employed in MOWOATS
allowed it to cover the whole solution space. It also enhanced its capability to solve MOPs.

MOWOATS results showed that it can find solutions very near the true PF of test functions. Also,
solutions generated from MOWOATS are distributed evenly over the solution space. This presents
the superiority of MOWOATS and qualifies it to be used for real-life MOPs, such as bioinformatics,
engineering, and manufacturing.
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Table 6. A comparison among MOWOATS, CA-MOEA and some multi-objective evolutionary computing methods over ZDT and DTLZ test functions according to
IGD criterion.

PF Shape Problem Obj. MOWOATS CA-MOEA MOEA/D EMyO/C RVEA* NSGA-II NSGA-III

Irregular DTLZ4 3 1.286 × 10−3 5.4805 × 10−3 3.385 × 10−1 5.617 × 10−2 2.942 × 10−1 1.119 × 10−1 1.275 × 10−1

1.325 × 10−4 6.98 × 10−4 3.14 × 10−1 7.04 × 10−4 2.85 × 10−1 1.96 × 10−1 1.78 × 10−1

DTLZ5 3 1.834 × 10−4 4.426 × 10−3 3.369 × 10−2 4.583 × 10−3 6.891 × 10−3 5.754 × 10−3 1.267 × 10−2

1.360 × 10−4 8.96 × 10−5 8.32 × 10−5 6.03 × 10−5 3.91 × 10−4 2.28 × 10−4 1.58 × 10−3

DTLZ6 3 2.038 × 10−4 4.2269 × 10−3 3.381 × 10−2 4.619 × 10−3 7.146 × 10−3 5.891 × 10−3 1.868 × 10−2

1.653 × 10−4 4.09 × 10−5 1.74 × 10−4 1.32 × 10−4 5.55 × 10−4 5.11 × 10−4 3.31 × 10−3

DTLZ7 2 2.751 × 10−3 4.7253 × 10−3 1.631 × 10−1 6.312 × 10−3 4.852 × 10−2 5.324 × 10−3 6.903 × 10−3

1.663 × 10−3 8.78 × 10−5 2.14 × 10−1 3.47 × 10−4 1.35 × 10−1 2.47 × 10−4 1.21 × 10−4

DTLZ7 3 6.314 × 10−2 5.8727 × 10−2 1.416 × 10−1 7.861 × 10−2 8.952 × 10−2 1.263 × 10−1 7.546 × 10−2

5.678 × 10−3 1.41 × 10−3 9.73 × 10−4 6.44 × 10−2 9.04 × 10−2 1.70 × 10−1 2.34 × 10−3

UF6 2 5.970 × 10−2 1.1464 × 10−1 4.468 × 10−1 1.673 × 10−1 3.052 × 10−1 1.643 × 10−1 1.441 × 10−1

5.135 × 10−2 9.11 × 10−2 1.51 × 10−1 1.03 × 10−1 1.45 × 10−1 9.00 × 10−2 8.67 × 10−2

UF9 3 2.885 × 10−2 1.143 × 10−1 2.515 × 10−1 9.055 × 10−2 2.272 × 10−1 2.539 × 10−1 2.016 × 10−1

2.193 × 10−2 0.0427 1.36 × 10−2 3.52 × 10−2 8.32 × 10−2 1.18 × 10−1 8.25 × 10−2

Regular DTLZ1 2 2.065 × 10−5 1.8936 × 10−3 1.811 × 10−3 2.057 × 10−3 1.893 × 10−3 2.231 × 10−3 1.800 × 10−3

5.054 × 10−6 1.80 × 10−5 5.21 × 10−5 7.75 × 10−5 2.76 × 10−5 7.02 × 10−5 2.33 × 10−5

DTLZ1 3 3.760 × 10−4 2.0269 × 10−2 2.060 × 10−2 2.097 × 10−2 2.119 × 10−2 2.728 × 10−2 2.057 × 10−2

2.735 × 10−5 1.23 × 10−4 5.06 × 10−5 3.44 × 10−4 2.27 × 10−4 1.34 × 10−3 1.67 × 10−5

DTLZ2 2 1.244 × 10−4 4.2168 × 10−3 3.966 × 10−3 4.473 × 10−3 4.133 × 10−3 5.032 × 10−3 3.969 × 10−3

5.449 × 10−5 6.48 × 10−5 2.95 × 10−7 6.54 × 10−5 3.06 × 10−5 1.84 × 10−4 6.95 × 10−6

DTLZ2 3 9.731 × 10−4 5.3461 × 10−2 5.447 × 10−2 5.640 × 10−2 5.534 × 10−2 6.887 × 10−2 5.448 × 10−2

7.122 × 10−5 3.21 × 10−4 2.75 × 10−6 5.65 × 10−4 3.65 × 10−4 2.73 × 10−3 1.43 × 10−5

DTLZ3 2 2.406 × 10−4 4.7153 × 10−3 4.391 × 10−3 4.950 × 10−3 4.345 × 10−3 5.193 × 10−3 4.195 × 10−3

1.010 × 10−4 4.17 × 10−4 4.61 × 10−4 1.23 × 10−3 2.12 × 10−4 2.63 × 10−4 2.74 × 10−4

DTLZ3 3 7.847 × 10−3 5.7776 × 10−2 5.487 × 10−2 5.611 × 10−2 5.548 × 10−2 6.836 × 10−2 5.4833 × 10−2

2.989 × 10−3 4.00 × 10−3 7.43 × 10−4 7.69 × 10−4 5.92 × 10−4 3.97 × 10−3 2.84 × 10−4

DTLZ4 2 2.374 × 10−4 4.1222 × 10−3 3.362 × 10−1 4.497 × 10−3 7.793 × 10−2 7.879 × 10−2 3.983 × 10−3

1.531 × 10−4 1.65 × 10−1 3.77 × 10−1 9.98 × 10−5 2.27 × 10−1 2.27 × 10−1 5.48 × 10−5

DTLZ5 2 6.643 × 10−4 4.2387 × 10−3 3.385 × 10−3 4.461 × 10−3 4.132 × 10−3 5.128 × 10−3 3.968 × 10−3

2.612 × 10−4 3.08 × 10−3 3.14 × 10−1 9.99 × 10−5 5.18 × 10−5 1.77 × 10−4 1.22 × 10−6

DTLZ6 2 2.752 × 10−4 4.2160 × 10−3 3.966 × 10−3 4.434 × 10−3 4.060 × 10−3 5.730 × 10−3 3.966 × 10−3

7.603 × 10−5 2.17 × 10−5 4.66 × 10−7 8.91 × 10−5 3.57 × 10−5 3.08 × 10−4 4.74 × 10−4
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Table 7. IGD statistical results for the ZDT and DTLZ test functions.

Problem MOWOATS R2HMOPSO R2HMOPSO1 MOEA/D NSGA-II dMOPSO R2MOPSO

ZDT1 mean 1.849 × 10−3 3.904 × 10−3 3.943 × 10−3 7.544 × 10−3 4.929 × 10−3 3.899 × 10−3 3.928 × 10−3

std 2.648 × 10−3 6.209 × 10−5 8.593 × 10−5 8.473 × 10−4 2.043 × 10−4 3.839 × 10−5 1.091 × 10−4

ZDT2 mean 8.951 × 10−4 3.834 × 10−3 2.260 × 10−1 2.503 × 10−2 4.900 × 10−3 6.442 × 10−2 3.825 × 10−3

std 1.549 × 10−3 4.907 × 10−6 2.969 × 10−1 1.104 × 10−1 2.074 × 10−4 1.849 × 10−1 3.336 × 10−5

ZDT3 mean 5.586 × 10−3 6.123 × 10−2 8.460 × 10−3 1.212 × 10−2 7.254 × 10−3 1.064 × 10−2 1.017 × 10−2

std 3.631 × 10−3 1.583 × 10−1 6.058 × 10−4 5.585 × 10−3 7.634 × 10−3 7.098 × 10−4 6.508 × 10−4

ZDT4 mean 9.756 × 10−5 4.518 × 10−3 5.093 × 10−1 2.452 × 10−1 8.420 × 10−3 5.972 8.374 × 10−2

std 4.180 × 10−5 3.733 × 10−3 2.356 × 10−1 1.571 × 10−1 2.731 × 10−3 4.477 9.787 × 10−2

ZDT6 mean 9.519 × 10−4 1.888 × 10−3 1.868 × 10−3 1.892 × 10−3 2.696 × 10−3 1.879 × 10−3 1.865 × 10−3

std 6.917 × 10−4 4.334 × 10−5 2.227 × 10−5 1.179 × 10−5 4.111 × 10−5 8.549 × 10−6 3.484 × 10−5

DTLZ1 mean 3.760 × 10−4 1.994 × 10−2 1.724 1.842 × 10−2 1.935 × 10−2 1.529 × 101 1.745 × 101

std 2.735 × 10−5 2.080 × 10−3 9.906 × 10−1 4.773 × 10−4 6.011 × 10−4 1.180 × 101 3.133
DTLZ2 mean 9.731 × 10−4 4.368 × 10−2 5.555 × 10−2 4.597 × 10−2 5.315 × 10−2 4.716 × 10−2 2.250 × 10−1

std 7.122 × 10−5 1.203 × 10−3 3.302 × 10−3 1.218 × 10−3 2.373 × 10−3 1.489 × 10−3 1.526 × 10−2

DTLZ4 mean 1.286 × 10−3 5.198 × 10−2 2.505 × 10−1 5.160 × 10−2 5.417 × 10−2 1.175 × 10−1 4.343 × 10−1

std 1.325 × 10−4 2.011 × 10−3 1.262 × 10−1 1.948 × 10−3 1.727 × 10−3 7.627 × 10−2 5.111 × 10−2

DTLZ7 mean 6.314 × 10−2 7.036 × 10−2 6.459 × 10−2 1.271 × 10−1 7.129 × 10−2 1.265 × 10−1 8.729 × 10−2

std 5.678 × 10−3 8.439 × 10−3 9.521 × 10−3 5.106 × 10−3 5.101 × 10−2 6.728 × 10−3 8.431 × 10−3
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6. Conclusions and Future Work

MOWOATS is a modified hybrid population-based algorithm, useful to solve Multi-Objective
Problems (MOPs). It merges the Whale Optimization Algorithm (WOA) with Tabu Search (TS)
method, and enhances the diversification capability of WOA by embedding a new diversification step.
MOWOATS stores the non-dominated set of solutions in an Elite List to use them in the crossover
of swarm members and in guiding how swarm members shift their state. These modifications have
experimentally proven themselves to be very efficient in producing high-quality solutions to MOPs.
Our results, obtained after extensive tests over diverse benchmark sets, show that MOWOATS attains
more accurate results than many other evolutionary and SI-based methods. We also have observed
a fast convergence to the true Pareto front solutions, and checked that the distribution of solutions
generated from MOWOATS is highly concentrated around its mean. Overall MOWOATS seems to be a
good computational procedure to solve complex MOPs. In the future, we intend to extend it to solve
multi-objective real-life Big Data problems by adapting it and running it over computing clusters.
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