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Abstract: For achieving high-performance control for a particleboard glue mixing and dosing control
system, which is a time-delay system in low frequency working conditions, an improved active
disturbance rejection controller is proposed. In order to reduce overshoot caused by a given large
change between the actual output and expected value of the control object, a tracking differentiator
(TD) is used to arrange the appropriate excesses. Through the first-order approximation of the
time-delay link, the time-delay system is transformed into an output feedback problem with unknown
function. Using the neural network state observer (NNSO), a sliding mode control law is used to
achieve the accurate and fast tracking of the output signal. Finally, the numerical simulation results
verify the effectiveness and feasibility of the proposed method.

Keywords: particleboard glue mixing and dosing system; active disturbance rejection control; neural
network state observer; time-delay system

1. Introduction

In recent years, the use of alternative wood resources in the particleboard industry has increased,
mainly because of the declining potential of forests [1]. Rational use of non-wood raw materials instead
of wood to produce particleboard can improve the utilization rate of forest resources and protect the
ecological environment.

In the production process of particleboard mixing and dosing, the glue is an important link.
The amount of glue directly affects the quality of finished particleboard products; when there is too
much glue the produced particleboard will have high moisture content, which leads to foaming and
reduces production; when the amount of glue is too little, the plasticity of particleboard will decrease,
and then the product quality will decline. In the low frequency working conditions of particleboard
production, the hysteresis and inertia of the motor and pump will greatly affect the control effect of the
system. Therefore, accurate glue flow control is a problem worth studying.

Since the emergence of proportional–integral–derivative (PID) control technology, a large number
of engineering problems have been solved [2,3]. Because of the advantages of simple structure and
high reliability, it still has an overwhelming advantage in engineering applications today and the
production of particleboard is one of them. There are many improvement methods for PID, which
are widely used and have good practical effects. The fractional order control system has attracted
the attention of many scholars [4–6], and some of them have applied it to PID control to enhance
the control effect [5–9]. Reference [7] utilized a fractional order controller to eliminate steady state
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error and enhance the robustness toward plant gain variations and also good disturbance rejection.
However, the main problem is that the passive way to eliminate errors based on error feedback lags
behind the disturbance effect, and may cause system oscillation or serious overshoot because of the
excessive initial control. In order to prevent such situations in particleboard glue mixing and dosing,
the traditional PID control technology still needs to be further improved.

Active disturbance rejection control (ADRC) is proposed by Han and has been widely used in
Reference [10–13]. Tracking differentiator (TD), as a part of it, solves the above problems well. TD has
the function of resisting random noise [14] and can deal with the differential tracking problem of
non-differentiable functions in the classical sense. After the output of the differentiator is obtained,
the fastest synthesis function is designed to arrange the transition process of the closed-loop system.

The stability of the controlled system has always been the goal of scholars. Though feedforward
control can effectively suppress specific disturbances in time, the premise is that the disturbance and
the system structure are known. In the actual production process, the exact model of the system
is difficult to obtain, so the feedforward disturbance rejection effect is not obvious in the complex
disturbance environment. In order to not only solve the problem of model uncertainty, but also solve
the problem of external disturbance of the system, the state observer has been studied by scholars
in recent years [15–19]. Reference [15] proposed a compound controller based on multiple-input
and multiple-output extended-state-observer to solve the difficulties associated with the unmeasured
velocities, unknown disturbances, and uncertain hydrodynamics of the robot. Peng presented a design
method for under-actuated autonomous underwater vehicles, where an extended state observer is
developed to recover the unmeasured velocities as well as to estimate total uncertainty induced by
internal model uncertainty and external disturbance in Reference [16]. Reference [17] studied a novel
predictor-based extended state observer for each follower with relative output information of the
neighboring agents for multiagent systems. In view of this, ADRC regards state observer technology as
its core part so that ADRC can simplify the controlled system into a set of disturbed systems including
external disturbance input, internal disturbance, uncertainty, and un-modeled parts of the system
model, which will be seen as all disturbance and estimated by the observer.

Although this observer can estimate the disturbance for the controller and reduce its influence
on the control effect, it can no longer meet the requirements of scholars for the control accuracy with
the progress of technology [20,21]. Artificial neural networks are mathematical models that mimic
the structure and function of brain neural networks. Because of its powerful learning ability and
adaptability, neural networks are very suitable for approximating unknown functions. This has been
widely applied by scholars to the approximation of unknown uncertainties in linear or nonlinear
control systems [22,23].

Based on the arrangement of the TD and conversion process, the error signal can be tracked after
the conversion process. Using this signal and its differential signal, it can be controlled by nonlinear
states error feed-back (NLSEF) in Reference [24]. However, the traditional control rate does not have
good control effects on system uncertainty, disturbance, and unmolded dynamics. Even if the neural
network state observer (NNSO) is used to compensate for all the uncertainties of the system, it has
certain modeling uncertainty which needs to be improved.

For the above problem, some scholars have found that sliding mode control (SMC) can solve it
well [25–27]. As an alternative to the typical robust control scheme, SMC is a typical control method.
The advantage of SMC is that it can overcome the uncertainty of the system and has strong robustness
to disturbance and un-modeled dynamics, especially for the control of nonlinear systems. Some
scholars have studied the comparison of SMC and ADRC [28]. Reference [28] concerned with the
boundary feedback stabilization of a one-dimensional Euler–Bernoulli beam equation with the external
disturbance flowing to the control end, it is shown that the external disturbance can be attenuated in
the sense that the resulting closed-loop system under the extended state feedback tends to any arbitrary
given vicinity of zero as the time goes to infinity. The advantage of SMC is that it can overcome the
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uncertainty of the system, and has strong robustness to interference and unmolded dynamics. This can
make up for the uncertainty of NNSO itself.

Although the stability of the system can be improved through the above analysis, due to the
controlled plant, the particleboard glue mixing and dosing system is a time-delay system in low
frequency working conditions (15 HZ input frequency), and it is often difficult to achieve satisfactory
results. The time delay will bring additional phase lag, and the phase lag will increase with the increase
of frequency. To solve the problem of time-delay, a first-order approximation for the dead time is
used in Reference [29]. In this way, further precise control can be achieved under the low frequency
conditions of the glue application.

Considering that ADRC theory has not been applied in particleboard production, we propose an
improved active disturbance rejection controller for the particleboard glue mixing and dosing system
in this paper. The main contributions of this paper are summarized as follows:

(1) The process of mixing and dosing the glue for particleboard is introduced and so is the composition
of the system. Then we establish the state space equation.

(2) We construct an improved controller using ADRC approach. The improved NNSO is utilized to
observe disturbance for control compensation and estimate the system state variables. To simplify
the controller, the improved TD is used to achieve smooth transmission of differential signals and
realize optimal configuration of closed-loop system transition processes. The SMC is introduced
to improve the robustness for the disturbance not observed by NNSO.

The paper is organized as follows: Section 2 introduces the particleboard glue mixing and dosing
system. In Section 3, an improved ADRC strategy based on sliding mode control is proposed and
proves the asymptotic stability of the proposed control strategy and observer convergence by Lyapunov
analysis. In Section 4, simulation results are shown to verify the effectiveness of the proposed control
method. The conclusion of the paper is shown in Section 5.

2. Process and System Description

The bonding force between particleboards is obtained by the bonding of adhesives, and the
specific surface area of particles is large, so uniform sizing is very important. Particleboard bonding
adhesives belong to thermosetting adhesives, which need heating to achieve curing bonding and the
curing process is irreversible. Therefore, in the process of sizing, the control system must ensure that
there is no overshoot.

The system is divided into two parts: glue mixing and glue dosing. The schematic diagram of
glue mixing system is shown as Figure 1. The volume of various raw materials, include curing agent,
waterproof agent, curing buffer agent, water, and adhesive, is measured by a liquid level detector. The
electronic control throttle valve, that controls itself, is set to the proportion for the system in advance.
When the required material reaches the expected value, the valve will close itself. Then the raw
materials are mixed by gravity flow into the mixing tank. Ball valves are used to control the amount
of raw materials required. According to the formula entered into the system in advance, it controls
the switch by itself to the amount of raw materials transferred to the glue mixing case, and all the
materials are mixed by the agitator in the case. The glue mixing case is divided into two parts, one for
the surface layer of the particleboard and the other for the core layer.

The sketch of the controlled system is shown in Figure 2. It consists of a particleboard supported
device, a glue supported device, and a mixing device. The conveyor chute and the belt weighing
device make up the supported device and all particleboards are supported by it. The screw conveyor
feeds the particleboard into the discharge chute; the weighing sensor measures the weight of the
particleboard; and the rotation speed of the belt weighing device is measured by gyral coder. The glue
supported device consists of a glue control pump and a flowmeter, which the E+H type flowmeter is
chosen. The glue and particleboard are mixed by a mixing device.
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Figure 2. Particleboard glue mixing and dosing system. 

Figure 1. Schematic diagram of glue mixing system. (1. Curing agent; 2. Waterproof agent; 3. Curing
buffer agent; 4. Water; 5. Liquid level detector; 6. Quantitative barrel; 7. Electronic control throttle valve;
8. Feeding tube; 9. Cylinder; 10. Ball valve; 11. Blanking tube; 12. Agitator; 13. Glue mixing case).
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During the process of dosing particleboard, the screw conveyor conveys the particleboard to the
mixing device and through the screw bin and valve B. The instantaneous weighing signal is gathered
by weighing sensor B, which is located on the weighing conveyor belt. When the particleboards are
transported, the instantaneous weight of the glue is calculated on the basis of the amount of the glue
input. Then, in the light of the relationship between the rotation speed and the output of the pump,
we calculate the pump speed.

The essential structure of the particleboard mixing and dosing system is shown in Figure 3.
Glue flow input signal is the desired value of the controller. The ultimate goal of the control system is
to ensure that the output glue flow reaches the desired value. Firstly, we get the glue flow through
the flow sensor. The sensor is an E+H flowmeter as shown in Figure 2. It measures the output glue
flow velocity in the pipe and the input value is compared with it and the obtained error is sent to
the controller. For minimizing the error, the controller continuously tinkers with the frequency of the
converter and, through it, the speed of the squirrel-cage motor is changed and it will result in the
change of the output glue flow. By doing this, the controlled glue supplying pump can be stable.
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Figure 3. The basic structure of the flow control system.

Under low frequency (15 HZ input frequency) conditions during particleboard dosing and mixing,
the controlled system becomes a time-delay system due to the hysteresis and inertia of the motor and
pump. A time-delayed object can be formalized as a transfer function mathematical model as follows.

GP(s) = G0(s)e−τs =
b

sn + an−1sn−1 + · · · a1s + a0
e−τs, (1)

where τ is the pure lag time constant, G0(s) represents the part of the object that does not include the
lag link, b, a0, a1· · · an−1 are object parameters.

For industrial objects with time lag, Equation (1) can be simplified as a first-order inertial link
or a second-order oscillating link and described as a first-order time-delay system (FOPTD) or a
second-order time-delay system (SOPTD), which is represented by Equations (2) and (3) respectively.

GPOPTD(s) =
b

s + a
e−τs, (2)

GSOPTD(s) =
b

s2 + a1s + a0
e−τs, (3)

Most of the time, all the poles of the system are stable when a > 0, a0 > 0, a1 > 0. When a > 0 or
a0 = 0 Equations (2) and (3) become pure integrator with a time-delay link and it is intractable for
controlled system. Furthermore, the control problem of the system will be more challenging if a < 0 or
a0 < 0, a1 < 0 due to the unstable poles.

We choose the controlled objects as shown in Equation (4)

GSOPTD(s) =
0.01578

s2 + 0.276s + 0.01578
e−3.73s (4)

When the time delay e−3.73s is approximately the first order inertial link 1
3.73s+1 , the controlled

object shown in Equation (4) becomes

G0(s) =
0.01578

s2 + 0.276s + 0.01578
·

1
3.73s + 1

(5)
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In order to facilitate the controller design, we transform the representation of the system from
frequency domain to time domain for analysis. Considering the disturbance that the system will suffer
and the system uncertainty, the state space equation is shown in Equation (5)

.
x1 = x2
.
x2 = x3
.
x3 = a(x1, x2, x3) + bu + f (x1, x2, x3, w(t), t)
y = x1

, (6)

where a(x1, x2, x3) = −0.544x3 − 0.09x2 − 0.004x1, b = 0.004, f (x1, x2, x3, w(t), t) = w(t) + ∆a(x)
represents the total disturbance of the system, where w(t) represents the disturbance, ∆a(x) represents
the model uncertainty.

3. Design of the Compound Controller

In this section, we designed an improved ADRC controller for particleboard glue mixing and
dosing system with the low frequency condition. An improved ADRC strategy was designed. Firstly,
the TD was designed to eliminate the noise of the acquired desired signal and track it fast. Secondly,
the NNSO was utilized to estimate the total disturbance and compensate the system model with the
estimation. Finally, the improved sliding mode control law was designed instead of NSLEF to improve
system robustness.

3.1. Designs of the Tracking Differentiator

The TD in traditional ADRC is usually discrete as shown in Equation (7): x1(k + 1) = x1(k) + hx2(k)
x2(k + 1) = x2(k) + h

{
−r2[x1(k) − yd(k)] − 2rx2(k)

} , (7)

where yd is input signal, x1 is the transition process of input signal, and x2 is its differential signal.
h is an integral step that is designed to set the corresponding step size according to the engineering
requirements and the controller capability, r is the adjustable speed factor that adjusts the speed of
excessive processing according to the actual process needs. Thus, we introduce a continuous form of
TD as shown in Equation (8). 

.
x1 = x2
.
x2 = −rsign

[
x1 − yd(t) +

x2 |x2 |
2r

] , (8)

The function of TD is shown in Figure 4. When the input signal of the system has internal
disturbance noise or change uncertainties, TD provides the transition process through the input signal
to realize the smooth processing of the signal, thus ensuring the continuity of the input of the controller
and reducing the negative impact of the disturbance.

As Figure 4 shows we can get a smoother curve for the square wave signal with noise interference
after TD, and differential signals are also obtained which can be transmitted to the controller for control.
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3.2. Neural Network Extend State Observer

3.2.1. Designs of Neural Network State Observer

Then the NNSO is designed for the new system:

.
X̂ = AX̂(t) + BU(t) + f

(
X̂(t)

)
+ L

(
Y(t) −CX̂(t)

)
, (9)

where L ∈ R is observer gain matrix, X̂(t) is state observation, f
(
X̂(t)

)
is total disturbance observation,

and the state error is defined as:
X̃(t) = X(t) − X̂(t), (10)

and we can get the error dynamic equation of observer state as follows

.

X̃ = (A− LC)X̃(t) + f
(
X̃(t)

)
, (11)

where f
(
X̃(t)

)
= f (X(t)) − f

(
X̂(t)

)
. Let L = [L1, L2, · · · , Ln]

T satisfy A − LC Hurwitz condition and
Li = βi/εi, where ε > 0. Equation (12) is an error dynamic equation and can be regarded as a constant
coefficient differential equation with input f

(
X̃(t)

)
to describe a linear system. The solution of this

equation is
.

X̃ = e(A−LC)tX̃(0) +
∫ t

0
ee(A−LC)(t−τ)

f
(
X̃(τ)

)
dτ, (12)

The basic idea of NNSO is to use the input and output of the system to observe all states including
the original state variables and disturbances of the system. The core of the ADRC control strategy is to
estimate f (X(t)) and eliminate it. Since the radial basis function (RBF) neural network can approach
the nonlinear function with accuracy, we introduce the neural network to approach f (X(t)), so that
NNSO can accurately observe the total disturbance in the system. The block diagram of the neural
network is shown in Figure 5.
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Therefore, a three-layer RBF neural network is used to approach the interference. The first layer
is the input layer of n neural networks with fixed weight. The second layer is the hidden layer of s
neural networks with a weight of

{
wi j, i = 1, 2, · · · , n, j = 1, 2, · · · , s

}
. The third layer is the output layer,

a linear combination of the output of each neural network. The input-to-output mapping represented
by the RBF neural network is

f (X(t)) =
s∑

j=1

wi jσ j
(
‖x− c j‖,ρ j

)
, i = 1, 2, · · · , n, (13)

where X ∈ Rn is the network input vector, the activation function is an σ(·) Gaussian function for
which the center is

{
c j, j = 1, 2, · · · , s

}
and the width is

{
ρ j, j = 1, 2, · · · , s

}
. The upper bound of the

ideal weight WT of the output layer is ‖W‖F ≤WM. When the output approximates the disturbance, it
can be expressed as

f (X(t)) = WTσ(X), (14)

The real ideal weight is ŴTσ
(
X̂
)

after the neural network learning training, so the observation of
f (X(t)) is

f
(
X̂(t)

)
= ŴTσ

(
X̂
)
, (15)

where ‖σ
(
X̂
)
‖ ≤ σM, the neural network approximation error is

f
(
X̃(t)

)
= WTσ(X) − ŴTσ

(
X̂
)

= WTσ(X) − ŴTσ
(
X̂
)
+ WTσ

(
X̂
)
−WTσ

(
X̂
)

= W̃Tσ(X) +ω(t)
, (16)

where ω(t) = WT
(
σ(X) − σ

(
X̂
))

is bounded approximation error, which satisfies ‖ω(t)‖ ≤ ω
Considering Equations (10) and (16), we get the observer

.
X̂ = AX̂(t) + BU(t) + ŴTσ

(
X̂
)
+ L

(
Y(t) −CX̂(t)

)
, (17)

Ŷ(t) = CX̂(t), (18)
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and the error dynamic equation of observer state is

.

X̃(t) = (A− LC)X̃(t) + W̃Tσ
(
X̂
)
+ω(t), (19)

Ỹ(t) = CX̃(t), (20)

Using the gradient descent calculation method, we define the network learning objective function as

J =
1
2

ỸTỸ, (21)

and the network learn equation is
.

Ŵ = −η

(
∂J
∂Ŵ

)
− κ‖Ỹ‖Ŵ, (22)

where κ > 0, η > 0 is the learning rate of neural network. Differentiating Equation (22) gives

∂J
∂Ŵ

=
∂J

∂Ỹ

∂Ỹ

∂X̃

∂X̃
∂Ŵ

= −ỸTC
∂X̃
∂Ŵ

, (23)

In order to simplify the training algorithm and avoid complex gradient calculation, let
.

X̂(t) = 0,
invoking Equation (20)

∂X̃
∂Ŵ
≈ (A− LC)−1 ∂X̃

∂Ŵ
, (24)

Considering Equations (16), (24) and (25), we get the adaptive law

.
Ŵ = −η

(
X̃TCTC(A− LC)−1

)T
σ
(
X̂
)
− κ‖CX̃‖Ŵ, (25)

3.2.2. Stability Analysis of Neural Network Extend State Observer

For the convenience of the following analysis, the two following lemmas are given:

Lemma 1 [30]. Given a matrix A =
[
ai j

]
, the Frobenius norm is defined as the root of the sum of the squares of

all elements
‖A‖2F ≡

∑
a2

i j = tr(ATA), (26)

it is compatible with the vector 2-norm in that

‖Ax‖2 ≤ ‖A‖F‖x‖2,

Lemma 2 [31]. A mapping H : Lp,c → Lp,e is said to be stable if there exist positive numbers γ and ξ such that
‖(Hu)l‖ ≤ ξ+ γ‖ut‖p for all u ∈ Lp,e and all t ∈ [0,+∞).

Theorem 3.1. The state estimation error approaches zero asymptotically ( lim
t→∞

X̃ = 0), provided

1. γ < λmin(Q)/2λmax(P), where P, Q are positive definite symmetric matrices andλmin andλmax represent
the minimum eigenvalue and the maximum eigenvalue of the matrix respectively,

2. the Lyapunov function (A− LC)TP + P(A− LC) = −Q holds.

Proof. Choose the Lyapunov function for the observer as

Vo =
1
2

X̃TPX̃ +
1
2

tr
(
W̃Tκ−1W̃

)
, (27)
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Differentiate Equation (28) and we get

.
Vo = 1

2

.

X̃
T

PX̃ + 1
2 X̃TP

.

X̃ + tr
( .

W̃κ−1W̃
)

= 1
2 X̃TQX̃ + X̃TP

[
X̃TPW̃σ

(
X̂
)
+ω(t)

]
+tr

[
W̃TRX̃σT

(
X̂
)
+ W̃T

‖CX̃‖
(
W − W̃

)]
≤ −

1
2‖X̃‖λmin(Q)‖X̃‖+ ‖X̃‖ · ‖P‖

(
‖W̃‖σM +ω

)
+σM‖W̃‖ · ‖R‖ · ‖X̃‖+

(
WM‖W̃‖ − ‖W̃‖

2
)
‖C‖ · ‖X̃‖

, (28)

According Equation (29), when
.

Vo ≤ 0 the inequality holds

‖X̃‖ ≥ (2‖P‖ω) +
(
σM‖P‖+ WM‖C‖+ σM‖R‖2/2

)
/λmin(Q), (29)

Invoking Equation (26), the ideal weight tuning law of RBF neural network is as follows:

.

W̃ + αW̃ = φ(X̃) + αW, (30)

where the bounded function φ(X̃) = η
(
X̃CTC(A− LC)−1

)
σ
(
X̂
)
, α = κ‖CX̃‖. As shown in Equation (30),

the ideal weight tuning equation can be considered as a linear system equation with bounded input
φ(X̃) + αW, and its solution W̃ is obviously bounded.

According to Lemma 1 and Lemma 2, take W̃Tσ
(
X̂
)
+ω(t) as the Ũ(t) and X̃(t) as the output for

Equation (20), and it’s obvious that

‖X̃(t)‖ ≤ a1 + a2‖W̃Tσ
(
X̂
)
+ω(t)‖

2
≤ a1 + a2

(
‖W̃Tσ

(
X̂
)
‖

2
+ ‖ω(t)‖2

)
≤ a1 + a2

(
‖W̃T
‖F‖σ

(
X̂
)
‖

2
+ ‖ω(t)‖2

)
≤ a1 + a2

(
‖W̃T
‖F

√
e−δ(t−τ)σ

(
X̂
)T
σ
(
X̂
)
dτ+ω

)
= a1 + a2

(
‖W̃T
‖F · ‖σ

(
X̂
)
‖

1
√
δ

√

1− e−δt +ω
)

, (31)

where a1 and a2 are positive numbers. It shows that the observer error X̃(t) is bounded, which is
shown in Equation (31). So lim

t→∞
X̃(t)→ 0 and the above-mentioned theoretical analysis shows that the

observation error converges to zero. �

3.3. Designs of Sliding Mode Controller

As the typical robust control scheme’s alternative, SMC is a paradigmatic method and it can deal
with the disturbance not observed by the NNSO to enhance the robustness of the system. For the
system represented in Equation (6), a sliding mode controller is proposed to replace the traditional
NLSEF, which reduces the impact of shocks and then improves the stability of the tracking process [32].

Define the sliding mode surface as

s = c1e + c2
.
e +

..
e, (32)

where c1 > 0, c2 > 0, e = x1 − yd.
The sliding mode control law is designed as

u0 =
1
b
(−kgŝ− r̂− f̂ (x1, x2, x3, w(t), t)), (33)
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where, ŝ = c1ê + c2
.
ê +

..
ê, ê = yd − x̂1,

.
ê =

.
yd − x̂2,

..
ê =

..
yd − x̂3 r̂ = c1

.
ê + c2

..
ê−

...
yd.

The Lyapunov function is designed as

Vs =
1
2

s2, (34)

and its derivative is
.

Vs = s
.
s = s(+bu0 + f (x1, x2, w(t), t) −

...
yd)

= s(c1
.
e + c2

..
e− kgŝ− v̂− f̂ (x1, x2, x3,w(t), t) + f (x1, x2, x3,w(t), t) −

...
yd)

= s(v− v̂ + f̃ (x1, x2, x3,w(t), t)
= −kgs2 + s(ṽ + f̃ (x1, x2, x3,w(t), t) + kgs̃)

, (35)

where f̃ (x1, x2, x3,w(t), t) = f (x1, x2, x3,w(t), t)− f̂ (x1, x2, x3,w(t), t), ṽ = v− v̂ = c1x̃2 + c2x̃3, s̃ = s− ŝ =
c1x̃1 + c2x̃2 + x̃3.

So, ṽ + f̃ (x1, x2, x3,w(t), t) + kgs̃ depends on the NNSO’s observation error of each state. Let Θ ≥∣∣∣∣̃v + f̃ (x1, x2, x3,w(t), t) + kgs̃
∣∣∣∣, and

.
Vs ≤ −kgs2 + 1

2 (s
2 + Θ2)

= −(kg −
1
2 )s

2 + 1
2 Θ2

= −(2kg − 1)Vs +
1
2 Θ2

, (36)

Lemma 3 [33]. For V(t) : [0,∞) ∈ R, the solution of the inequality equation
.

V ≤ −αV + f , ∀t ≥ t0 ≥ 0 is

V(t) ≤ e−α(t−t0)V(t0) +

∫ t

t0

e−α(t−τ) f (τ)dτ, (37)

With the lemma 3, let α = 2kg − 1, f = 1
2 Θ2, the solution of the inequality

.
Vs ≤ −(2kg − 1)Vs +

1
2 Θ2 is

Vs(t) ≤ e−α(t−t0)Vs(t0) +
1
2 Θ2

∫ t
t0

e−α(t−τ)dτ

= e−(2kg−1)(t−t0)Vs(t0) −
1

2(2kg−1)Θ2(1− e−α(t−t0))
, (38)

let kg > 1
2 , and we get that

lim
t→∞

Vs(t) ≤
1

2(2kg − 1)
Θ2, (39)

It is known that Vs(t) ≥ 0, so when t→∞

Vs(t) =
1

2(2kg − 1)
Θ2, (40)

the convergence speed depends on the control gain kg.
Considering the closed-loop system of observer and controller, set the Lyapunov function as

V = Vo + Vs, (41)

According to the above analysis, selecting appropriate parameters can ensure the establishment
of

.
V ≤ 0 and make the closed-loop system uniformly ultimately bounded and all the signals converge

to zero.
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4. Simulation Analysis

For the flow dosing stage of the particleboard glue mixing and dosing system, the purpose
of simulation is to verify the effectiveness of the proposed strategy and it is conducted with
Matlab2016a/Simulink. Through a lot of simulation experiments, the optimal controller parameters are
obtained and tested on a GM&D-A type particleboard glue mixing and dosing device as shown in
Figure 6.
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In this simulation experiment, we design the controller using Equation (18) and Equation (33).
Taking external disturbance into account, differential forms of the disturbance are exerted on the
system. In order to make the system output signal track the desired signal more quickly and stably,
the sliding mode controller parameters are chosen as c1= 50, c2= 15, kg = 150. The selection process is
shown in Figure 7.

In Figure 7, Curve Con1 represents the parameter we chosen above. It can be seen that Con1 is the
closest to the desired tracking signal except for Con4, but Con4 has obvious overshoot, which needs to
be avoided in the real process and so it does not meet our requirements. In this process, the curve
will be smoother and more stable as kg increases, but the response time will be slower as shown in
Con5. The response time of the system will increase with the increase of c1 and c2, but the curve will be
unstable and prone to overshoot at the same time as shown in Con4. Through a number of simulation
experiments, we obtained the curve parameter of Con1 and chose it as the design of controller.

The desired glue flow has an amplitude of 10 square signals with random signal interference,
and the disturbance is a compound sine wave. Compared with the traditional ADRC method and
sliding mode control method, the simulation results are shown in the following figures.

In order to verify the effectiveness of the proposed method, we compare the simulation results
with the sliding mode control and traditional ADRC methods. By comparing with the two control
methods, the significance of combining them is illustrated as shown in Figure 8. It can be seen that the
position tracking curve of the proposed method can track the desired position quickly and accurately.
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The simulation results show that the proposed controller can complement ADRC and ensure the
robustness of the controller.
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The time response of NNSO is shown in Figure 9 and so is the performance of the neural network.
NN1 to NN5 represent the response curves under different neural network parameters. The parameters
represented as NN1 are derived by the observer design, which is as follows: β = [3, 3, 1]T, ε = 0.001,
the centers c j =

[
−6 −4 −2 −1 0 1 2 4 6

]
, the widths are given as ρ j = 100, j = 1, 2, 3,

the adaptive gains of the ideal weight are given as η= 3× 102, κ= 6× 102. It is obvious that the total
disturbance can be effectively observed and eliminated by the neural network.
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control (ADRC).

The time response of sliding mode surface is shown in Figure 10. The sliding surface is smooth
and the system is stable.
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Figure 10. Time response of the sliding mode surface.

Through the above results analysis, the disturbance of the system is effectively observed by
NNSO, and then equivalent compensation is introduced into the control law. It can be seen from
the simulation that the observer cannot completely eliminate the disturbance of the system. In this
case, the sliding mode controller is introduced to control the observed disturbance, which greatly
improves the robustness of the system. In order to further prove the anti-disturbance ability of the
proposed method, a strong disturbance signal with larger amplitude is added to the system when
t = 5 s. The response curve is shown in Figures 11 and 12. The signal tracking curve shows that even if
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there is strong interference, the proposed control method can ensure the system recovers quickly to a
stable state. The disturbance observation curve shows that NNSO can observe the disturbance well.
After the disturbance mutation, it can continue to track it quickly and accurately. However, as shown
in Figure 12, the observation error can be smaller in the short time of the disturbance mutation and the
performance of the observer still has some room for improvement.
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Through the analysis of the simulation results, the effectiveness of the proposed method is shown,
including the ability of tracking the desired signals fast and accurately and the robustness to disturbance
and noise.

5. Conclusions

In this paper, the role of glue flow tracking control in the particleboard mixing and dosing system
is studied under the influence of time delays and disturbances such as insertion, pump, channel,
and flow sensor. In the proposed control strategy, TD is used to process the input of noisy signals,



Algorithms 2019, 12, 259 16 of 17

and the NNSO is used to observe the system states and the total disturbance after the first-order
approximation of the time-delay link, and sliding mode is used to further enhance the robustness to
disturbance. Through strict Lyapunov analysis, it is proven that all signals in the closed-loop system
are finally uniformly bounded and the tracking performance is proven. Finally, the advantages of the
controller are further illustrated by numerical simulation experiments.

Author Contributions: P.W., C.Z., L.Z., and C.W. conceived and designed the experiments, analyzed the data,
and wrote the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kusumah, S.S.; Umemura, K.; Guswenrivo, I.; Yoshimura, T.; Kanayama, K. Utilization of sweet sorghum
bagasse and citric acid for manufacturing of particleboard II: Influences of pressing temperature and time on
particleboard properties. J. Wood Sci. 2017, 63, 161–172. [CrossRef]

2. Meng, Z.; Borja, P.; Ortega, R.; Liu, Z.; Su, H. Pid passivity-based control of port-hamiltonian systems.
IEEE Trans. Autom. Control 2018, 63, 1032–1044.

3. Mahto, T.; Mukherjee, V. Fractional order fuzzy pid controller for wind energy-based hybrid power system
using quasi-oppositional harmony search algorithm. IET Gener. Transm. Distrib. 2017, 11, 3299–3309.
[CrossRef]

4. Li, D.; Ding, P.; Gao, Z. Fractional active disturbance rejection control. ISA Trans. 2016, 62, 109–119. [CrossRef]
5. Li, M.; Li, D.; Wang, J.; Zhao, C. Active disturbance rejection control for fractional-order system. ISA Trans.

2013, 52, 365–374. [CrossRef] [PubMed]
6. Chen, Y.; Vinagre, B.M.; Podlubny, I. Fractional order disturbance observer for robust vibration suppression.

Nonlinear Dyn. 2004, 38, 355–367. [CrossRef]
7. Sondhi, S.; Hote, Y.V. Fractional order PID controller for load frequency control. Energy Convers. Manag.

2014, 85, 343–353. [CrossRef]
8. Li, W.; Hori, Y. Vibration suppression using single neuron-based PI fuzzy controller and fractional-order

disturbance observer. IEEE Trans. Ind. Electron. 2007, 54, 117–126. [CrossRef]
9. David, S.A.; de Sousa, R.V.; Valentim Jr, C.A.; Tabile, R.A.; Machado, J.A.T. Fractional PID controller in an active

image stabilization system for mitigating vibration effects in agricultural tractors. Comput. Electron. Agric.
2016, 131, 1–9. [CrossRef]

10. Ye, Y.; Yue, Z.; Gu, B. Adrc control of a 6-dof parallel manipulator for telescope secondary mirror. J. Instrum.
2017, 12, T03006. [CrossRef]

11. Zhao, C.; Li, D.; Cui, J.; Tian, L. Decentralized low-order adrc design for mimo system with unknown order
and relative degree. Pers. Ubiquitous Comput. 2018, 22, 1–18. [CrossRef]

12. Yang, J.; Cui, H.; Li, S.; Zolotas, A. Optimized active disturbance rejection control for dc-dc buck converters
with uncertainties using a reduced-order gpi observer. IEEE Trans. Circ. Syst. I Regul. Pap. 2018, 65, 832–841.
[CrossRef]

13. Zhang, D.; Duan, H.; Yang, Y. Active disturbance rejection control for small unmanned helicopters via levy
flight-based pigeon-inspired optimization. Aircr. Eng. Aerosp. Technol. 2017, 89, 946–952. [CrossRef]

14. Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2009, 56, 900–906.
[CrossRef]

15. Rongxin, C.; Lepeng, C.; Chenguang, Y.; Mou, C. Correction to extended state observer-based integral sliding
mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans.
Ind. Electron. 2018, 66, 8279–8280.

16. Peng, Z.; Wang, J. Output-feedback path-following control of autonomous underwater vehicles based on
an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48,
535–544. [CrossRef]

17. Wang, C.; Zuo, Z.; Qi, Z.; Ding, Z. Predictor-based extended-state-observer design for consensus of mass
with delays and disturbances. IEEE Trans. Cybern. 2018, 49, 1259–1269. [CrossRef]

http://dx.doi.org/10.1007/s10086-016-1605-0
http://dx.doi.org/10.1049/iet-gtd.2016.1975
http://dx.doi.org/10.1016/j.isatra.2016.01.022
http://dx.doi.org/10.1016/j.isatra.2013.01.001
http://www.ncbi.nlm.nih.gov/pubmed/23395407
http://dx.doi.org/10.1007/s11071-004-3766-4
http://dx.doi.org/10.1016/j.enconman.2014.05.091
http://dx.doi.org/10.1109/TIE.2006.888771
http://dx.doi.org/10.1016/j.compag.2016.11.001
http://dx.doi.org/10.1088/1748-0221/12/03/T03006
http://dx.doi.org/10.1007/s00779-018-1158-x
http://dx.doi.org/10.1109/TCSI.2017.2725386
http://dx.doi.org/10.1108/AEAT-05-2016-0065
http://dx.doi.org/10.1109/TIE.2008.2011621
http://dx.doi.org/10.1109/TSMC.2017.2697447
http://dx.doi.org/10.1109/TCYB.2018.2799798


Algorithms 2019, 12, 259 17 of 17

18. Hua, C.C.; Wang, K.; Chen, J.N.; You, X. Tracking differentiator and extended state observer-based nonsingular
fast terminal sliding mode attitude control for a quadrotor. Nonlinear Dyn. 2018, 94, 1–12. [CrossRef]

19. Liu, Z.; Wang, Y.; Liu, S.; Li, Z.; Zhang, H.; Zhang, Z. An approach to suppress low-frequency oscillation by
combining extended state observer with model predictive control of emus rectifier. IEEE Trans. Power Electron.
2019. Available online: https://www.researchgate.net/publication/330432768 (accessed on 2 December 2019).
[CrossRef]

20. Liu, Y.J.; Tong, S.; Li, D.J.; Gao, Y. Fuzzy adaptive control with state observer for a class of nonlinear
discrete-time systems with input constraint. IEEE Trans. Fuzzy Syst. 2015, 24, 1147–1158. [CrossRef]

21. Sanz, R.; Garcia, P.; Fridman, E.; Albertos, P. Rejection of mismatched disturbances for systems with input
delay via a predictive extended state observer. Int. J. Robust Nonlinear Control 2018, 28, 2457–2467. [CrossRef]

22. Long, L.; Si, T. Small-gain technique-based adaptive NN control for switched pure-feedback nonlinear
systems. IEEE Trans. Cybern. 2018, 49, 1873–1884. [CrossRef] [PubMed]

23. Zhang, Y.; Liu, Y.; Liu, L. Adaptive Finite-Time NN Control for 3-DOF Active Suspension Systems with
Displacement Constraints. IEEE Access 2019, 7, 13577–13588. [CrossRef]

24. Xing, H.L.; Jeon, J.H.; Park, K.C.; Oh, I.K. Active disturbance rejection control for precise position tracking of
ionic polymer–metal composite actuators. IEEE/ASME Trans. Mechatron. 2011, 18, 86–95. [CrossRef]

25. Li, R.G.; Wu, H.N. Secure communication on fractional-order chaotic systems via adaptive sliding mode
control with teaching–learning–feedback-based optimization. Nonlinear Dyn. 2019, 95, 1221–1243. [CrossRef]

26. Yang, Q.; Saeedifard, M.; Perez, M.A. Sliding mode control of the modular multilevel converter. IEEE Trans.
Ind. Electron. 2018, 66, 887–897. [CrossRef]

27. Karami-Mollaee, A.; Tirandaz, H.; Barambones, O. On dynamic sliding mode control of nonlinear
fractional-order systems using sliding observer. Nonlinear Dyn. 2018, 92, 1379–1393. [CrossRef]

28. Guo, B.Z.; Jin, F.F. The active disturbance rejection and sliding mode control approach to the stabilization
of the Euler–Bernoulli beam equation with boundary input disturbance. Automatica 2013, 49, 2911–2918.
[CrossRef]

29. Shilin, A.A.; Bukreev, V.G. Linearization of a heat-transfer system model with approximation of transport
time delay. Therm. Eng. 2014, 61, 741–746. [CrossRef]

30. Ge, S.S.; Hang, C.C.; Lee, T.H.; Zhang, T. Stable Adaptive Neural Network Control; Springer Science Business
Media: Berlin, Germany, 2013; Volume 13.

31. Miroslav, K.; Kanellakopoulos, I.; Petar, V. Nonlinear and Adaptive Control Design; Wiley: New York, NY,
USA, 1995.

32. Dong, Q.; Yongkai, L.; Zhang, Y.; Gao, S.; Chen, T. Improved adrc with ilc control of a ccd-based tracking
loop for fast steering mirror system. IEEE Photonics J. 2018, 10, 1–14. [CrossRef]

33. Ioannou, P.A.; Sun, J. Robust Adaptive Control; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11071-018-4362-3
https://www.researchgate.net/publication/330432768
http://dx.doi.org/10.1109/TPEL.2019.2893491
http://dx.doi.org/10.1109/TFUZZ.2015.2505088
http://dx.doi.org/10.1002/rnc.4027
http://dx.doi.org/10.1109/TCYB.2018.2815714
http://www.ncbi.nlm.nih.gov/pubmed/29993851
http://dx.doi.org/10.1109/ACCESS.2019.2891724
http://dx.doi.org/10.1109/TMECH.2011.2163524
http://dx.doi.org/10.1007/s11071-018-4625-z
http://dx.doi.org/10.1109/TIE.2018.2818657
http://dx.doi.org/10.1007/s11071-018-4133-1
http://dx.doi.org/10.1016/j.automatica.2013.06.018
http://dx.doi.org/10.1134/S0040601514100115
http://dx.doi.org/10.1109/JPHOT.2018.2846287
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Process and System Description 
	Design of the Compound Controller 
	Designs of the Tracking Differentiator 
	Neural Network Extend State Observer 
	Designs of Neural Network State Observer 
	Stability Analysis of Neural Network Extend State Observer 

	Designs of Sliding Mode Controller 

	Simulation Analysis 
	Conclusions 
	References

