
algorithms

Article

SVM-Based Multiple Instance Classification via
DC Optimization

Annabella Astorino 1,*,† , Antonio Fuduli 2,†, Giovanni Giallombardo 3,† and
Giovanna Miglionico 3,†

1 Istituto di Calcolo e Reti ad Alte Prestazioni-C.N.R., 87036 Rende (CS), Italy
2 Dipartimento di Matematica e Informatica, Università della Calabria, 87036 Rende (CS), Italy;

antonio.fuduli@unical.it
3 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria,

87036 Rende (CS), Italy; giovanni.giallombardo@unical.it (G.G.); gmiglionico@dimes.unical.it (G.M.)
* Correspondence: annabella.astorino@icar.cnr.it
† These authors contributed equally to this work.

Received: 31 October 2019; Accepted: 20 November 2019; Published: 23 November 2019 ����������
�������

Abstract: A multiple instance learning problem consists of categorizing objects, each represented
as a set (bag) of points. Unlike the supervised classification paradigm, where each point of the
training set is labeled, the labels are only associated with bags, while the labels of the points inside the
bags are unknown. We focus on the binary classification case, where the objective is to discriminate
between positive and negative bags using a separating surface. Adopting a support vector machine
setting at the training level, the problem of minimizing the classification-error function can be
formulated as a nonconvex nonsmooth unconstrained program. We propose a difference-of-convex
(DC) decomposition of the nonconvex function, which we face using an appropriate nonsmooth DC
algorithm. Some of the numerical results on benchmark data sets are reported.

Keywords: multiple instance learning; support vector machine; DC optimization; nonsmooth optimization

1. Introduction

Multiple instance learning (MIL) is a recent machine learning paradigm [1–3], which consists of
classifying sets of points. Each set is called bag, while the points inside the bags are called instances.
The main characteristic of an MIL problem is that in the learning phase the instance labels are hidden
and only the labels of the bags are known.

An MIL seminal paper is [4], where a drug-design problem has been faced. Such a problem
consists of determining whether a drug molecule (bag) is active or non-active. A molecule provides
the desired drug effect (positive label) if, and only if, at least one of its conformations (instances) binds
to the target site. The crucial question is that it is not known a priori which conformation makes the
molecule active.

Some MIL applications are image classification [5–8], drug discovery [9,10], classification of text
documents [11], bankruptcy prediction [12], and speaker identification [13].

For this kind of problems, there are various solutions in the literature that fall into three
different classes: instance-space approaches, bag-space approaches, and embedding-space approaches.
In instance-space approaches, classification is performed at the instance level, finding a separation
surface directly in the instance space, without looking at the global structure of the bags; the label
of each bag is determined as an aggregation of the labels of its corresponding instances. Vice-versa,
in bag-space approaches (for example, see [14–16]), the separation is performed at a global level,
considering the bag as a whole entity. A compromise between these two kinds of approaches is

Algorithms 2019, 12, 249; doi:10.3390/a12120249 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-3439-180X
https://orcid.org/0000-0002-6304-5877
http://www.mdpi.com/1999-4893/12/12/249?type=check_update&version=1
http://dx.doi.org/10.3390/a12120249
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 249 2 of 12

constituted by embedding-space techniques, where each bag is represented by one feature vector and
the classification is consequently performed in the instance space. An example of an embedding-space
approach is presented in [17].

The method we propose uses the instance-space approach and provides a separation hyperplane
for the binary case, where the objective is to discriminate between positive and negative bags. We start
from the standard MIL assumption stating that a bag is positive if, and only if, at least one of its
instances is positive and it is negative whenever all its instances are negative.

Some examples of linear instance-space MIL classifiers can be found in [18–22]. In particular,
in [18], two different models have been proposed. The first one is a mixed-integer nonlinear
optimization problem solved using a heuristic technique based on the block coordinate descent
method [23] and faced in [19] using a Lagrangian relaxation technique. The second model, which will
be the objective of our analysis in the next section, is a nonsmooth nonconvex optimization problem,
solved in [21] using the bundle type method described in [24]. In [20], a semi-proximal support
vector machine (SVM) approach is used, coming from a compromise between the classical SVM [25]
and the proximal approach proposed in [26] for supervised classification. Finally, an optimization
problem with bilinear constraints is analyzed in [22], where each positive bag is expressed as a convex
combination of its instances and a local solution is obtained by solving successive linear programs.

Recently, nonlinear instance-space MIL classifiers have also been proposed in the literature, such
as in [27] and in [28], where a spherical separation approach is adopted: in particular, in the former
a variable neighborhood search method [29] is used, while in the latter a DC (difference of convex)
model is solved using an appropriate DC algorithm [30]. In passing, we stress that many DC models
have been introduced in machine learning, in the supervised [31–35], semisupervised [36,37] and
unsupervised cases [38–40].

In this work, we propose a DC optimization model providing a linear classifier for binary MIL
problems. The solution method we adopt is the proximal bundle method introduced in [30] for the
minimization of nonsmooth DC functions. The paper is organized as follows. In the next two sections,
we describe, respectively, the DC optimization model and the corresponding nonsmooth solution
algorithm. Finally, in Section 4, we report the results of our numerical experimentation performed on
some data sets drawn from the literature.

2. A DC Decomposition of the SVM-Based MIL

We tackle a binary MIL problem whose objective is to discriminate between m positive bags and k
negative ones using a hyperplane

H(w, b) , {x ∈ Rn | wTx + b = 0},

where w ∈ Rn and b ∈ R. Indicating by J+i , i = 1, . . . , m, the index set of the instances belonging to
the ith positive bag and by J−i , i = 1, . . . , k, the index set of the instances belonging to the ith negative
bag, we recall that, on the basis of the standard MIL assumption, a bag is positive if, and only if, at
least one of its instances is positive and it is negative vice-versa. As a consequence, while a positive
bag is allowed to, possibly, straddle the hyperplane, the negative bags should lie completely on the
negative side.

More formally, indicating by xj ∈ Rn the jth instance of a positive or negative bag, the hyperplane
H(w, b) performs a correct separation if, and only if, the following conditions hold:

wTxj + b ≥ 1, for at least an index j ∈ J+i and for all i = 1, . . . , m

wTxj + b ≤ −1, for all j ∈ J−i and for all i = 1, . . . , k.

Algorithms 2019, 12, 249 3 of 12

As a consequence (see Figures 1 and 2), a positive bag J+i , i = 1, . . . , m, is misclassified if

max
j∈J+i

(wTxj + b) < 1

and a negative one J−i , i = 1, . . . , k, is misclassified if

max
j∈J−i

(wTxj + b) > −1.

side (+1)

side (−1)

wTx + b = 0

wTx + b = 1

wTx + b = −1

J+
i

J+
i is misclassified

side (+1)

side (−1)

wTx + b = 0

wTx + b = 1

wTx + b = −1

J+
i

J+
i is well classified

Figure 1. Positive bag J+i .

side (+1)

side (−1)

wTx + b = 0

wTx + b = 1

wTx + b = −1

J−
i

J−
i is misclassified

side (+1)

side (−1)

wTx + b = 0

wTx + b = 1

wTx + b = −1

J−
i

J−
i is well classified

Figure 2. Negative bag J−i .

Then, we come out with the following error function, already introduced in [18]:

f (w, b) ,
1
2
‖w‖2 + C

[
m

∑
i=1

max{0, 1−max
j∈J+i

(wTxj + b)}+
k

∑
i=1

max{0, 1 + max
j∈J−i

(wTxj + b)}
]

, (1)

where C > 0 represents the trade-off between two objectives: the maximization of the separation
margin, characterizing the classical SVM [25] approach, and the minimization of the classification error.

To minimize function f , we propose a DC decomposition based on the following formula:

max{0, 1− h(y)} = max{1, h(y)} − h(y), (2)

Algorithms 2019, 12, 249 4 of 12

where h is a convex function. By applying Equation (2) to our case, we can write f in the form:

f (w, b) = f1(w, b)− f2(w, b),

where

f1(w, b) ,
1
2
‖w‖2 + C

k

∑
i=1

max{0, 1 + max
j∈J−i

(wTxj + b)}+ C
m

∑
i=1

max{1, max
j∈J+i

(wTxj + b)}

and

f2(w, b) , C
m

∑
i=1

max
j∈J+i

(wTxj + b)

are convex functions. Hence, we come up with the following nonconvex nonsmooth optimization
problem, DC-MIL,

min
w,b

[f1(w, b)− f2(w, b)]. (3)

3. Solving DC-MIL using a Nonsmooth DC Algorithm

We start by recalling some preliminary property of the DC optimization problem, by adopting the
same notation as above. Given the DC optimization problem

min
y

[f1(y)− f2(y)] (4)

where both f1 and f2 are convex nonsmooth functions, we say that a point y∗ is a local minimizer if
f1(y∗)− f2(y∗) is finite and there exists a neighborhood N of y∗ such that

f1(y∗)− f2(y∗) ≤ f1(y)− f2(y), ∀y ∈ N . (5)

Considering that, in general, the Clarke subdifferential calculus cannot be used to compute
subgradients of the DC function since

∂cl f (y) ⊆ ∂ f1(y)− ∂ f2(y), (6)

where ∂cl f (·) denotes Clarke’s subdifferential, different stationary points can be defined for nonsmooth
DC functions. A point y∗ is called inf-stationary for problem Equation (4) if

∅ 6= ∂ f2(y∗) ⊆ ∂ f1(y∗). (7)

Furthermore, a point y∗ is called Clarke stationary for problem Equation (4) if

0 ∈ ∂cl f (y∗), (8)

while, it is called a critical point of f if

∂ f2(y∗) ∩ ∂ f1(y∗) 6= ∅. (9)

Denoting the set of inf-stationary points by Sin f , the set of Clarke stationary points by Scl , and the
set of critical points of the function f by Scr, the following inclusions hold

Sin f ⊆ Scl ⊆ Scr

as shown in (Proposition 3, [30]).

Algorithms 2019, 12, 249 5 of 12

Nonsmooth DC functions have attracted the interest of several researchers, both, from the theoretical
and from the algorithmic viewpoint. Focusing in particular on the algorithmic side, the most relevant
contribution has probably been provided by the methods based on the linearization of function f2

(see, [41] and references therein), where the problem is tackled via successive convexifications of function
f . In the last years, nonsmooth-tailored DC programming has experienced a lot of attention as it
has a lot of practical applications (see [28,42]). In fact, several nonsmooth DC algorithms have been
developed ([30,43–47]).

Here, we adopt the algorithm DCPCA, a bundle-type method introduced in [30] to solve
problem Equation (4), which is based on a model function built by combining two convex piecewise
approximations, each related to one component function. More in details, a simplified version of
DCPCA works as follows:

• It iteratively builds two separate piecewise-affine approximations of the component functions,
grouping the corresponding information in two separate bundles.

• It combines the two convex piecewise-affine approximations and generates a DC piecewise-
affine model.

• The DC (hence, nonconvex) model is locally approximated using an auxiliary quadratic program,
whose solution is used to certify approximate criticality, or to generate a descent search-
direction to be explored via a backtracking line-search approach.

• Whenever no descent is achieved along the search direction, the bundle of the first function is
enriched, thus, obtaining a better model function with this being the fundamental feature of any
cutting plane algorithm.

In fact, the DCPCA is based on constructing a model function as the pointwise maximum of
several concave piecewise-affine pieces. To construct this model, starting from some cutting-plane
ideas, the information coming from the two component functions are kept separate in two bundles.
We denote the stability center by z (i.e., an estimate of the minimizer), and by I and L, the index sets of
the points generated by the algorithm where the information of function f1 and f2 have been evaluated,
respectively. Therefore, we denote the two bundles of information as

B1 = {(g(1)i , α
(1)
i) : i ∈ I}

and
B2 = {(g(2)l , α

(2)
l) : l ∈ L}

where, for every i ∈ I, g(1)i ∈ ∂ f1(yi) with

α
(1)
i = f1(z)−

(
f1(yi) + g(1)Ti (z− yi)

)
,

and, for every l ∈ L, g(2)l ∈ ∂ f2(yl) with

α
(2)
l = f2(z)−

(
f2(yl) + g(2)Tl (z− yl)

)
.

We remark that both component functions, along with their subgradients, could be evaluated at
some iterate-point, and, indeed, we assume that (g(1)(z), 0) ∈ B1 and (g(2)(z), 0) ∈ B2, where g(1)(z) ∈
∂ f1(z) and g(2)(z) ∈ ∂ f2(z).

To approximate the difference function(
f1(z + d)− f2(z + d)

)
−
(

f1(z)− f2(z)
)

Algorithms 2019, 12, 249 6 of 12

at a given iteration k the following nonconvex model function Γk(d) is introduced

Γk(d) , max
i∈I

min
l∈L

{(
g(1)i − g(2)l

)Td− α
(1)
i + α

(2)
l

}
, (10)

which is defined as the maximum of finitely many concave piecewise-affine functions. The model-
function Γk is used to state a sufficient descent condition of the type(

f1(z + d)− f2(z + d)
)
−
(

f1(z)− f2(z)
)
≤ mΓk(d)

where m ∈ (0, 1). The interesting property of such a model-function is that whenever the sufficient
descent is not achieved at points that are close to the stability center, say z + d̄, then an improved
cutting-plane model can be obtained by only updating the bundle of f1 with the appropriate
information related to the point z + d̄. On the other hand, it looks obviously difficult to adopt
the minimization of the model-function Γk as a building block of any algorithm, given its nonconvexity.
In fact, DCPCA does not require the direct minimization of Γk(d), but the search direction can be
obtained by solving the following auxiliary quadratic problem:

min
d∈Rn ,v∈R

v +
1
2
‖d‖2

v ≥ (g(1)i − g(2)l̄)Td− α
(1)
i ∀i ∈ I

QP(I)

where l̄ ∈ L(0) , {l ∈ L : α
(2)
l = 0}. We observe that L(0) 6= ∅ as B2 is assumed to contain the

information about the current stability center. More precisely, DCPCA works by forcing L(0) to be a
singleton, hence by letting g(2)l̄ = g(2)(z). Denoting the unique optimal solution of Equation (QP(I))
by (d̄, v̄), a standard duality argument ensures that

d̄ =−∑
i∈I

λ̄i(g(1)i − g(2)l̄) (11)

v̄ =−
∥∥∥∥∥∑i∈I

λ̄i(g(1)i − g(2)l̄)

∥∥∥∥∥
2

−∑
i∈I

λ̄iα
(1)
i (12)

where λ̄i ≥ 0, i ∈ I, are the optimal variables of the dual of QP(I), with ∑i∈I λ̄i = 1.
Given that any starting point z = y0, DCPCA returns an approximate critical point z∗ ,

see (Theorem 1, [30]). The following parameters are adopted: the optimality parameter θ > 0,
the subgradient threshold η > 0, the linearization-error threshold ε > 0, the approximate line-search
parameter m ∈ (0, 1), and the step-size reduction parameter σ ∈ (0, 1). In Algorithm 1, we report
an algorithmic scheme of the main iteration, namely of the set of steps where the stability center is
unchanged. An exit from the main iteration is obtained as soon as a stopping criterion is satisfied
or whenever the stability center is updated. To make the presentation clearer, without impairing
convergence properties, we skip the description of some rather technical steps, which are strictly
related to the management of bundle B2. Details can be found in [30].

Algorithms 2019, 12, 249 7 of 12

Algorithm 1 DCPCA Main Iteration

1: Solve QP(I) and obtain (d̄, v̄) . Find the search-direction and the predicted-reduction

2: if |v̄| ≤ θ then . Stopping test

3: set z∗ = z and exit . Return the approximate critical point z∗

4: end if

5: Set t = 1 . Start the line-search

6: if f (z + td̄)− f (z) ≤ mtv̄ then . Descent test

7: set z := z + td̄ . Make a serious step

8: calculate g(1)+ ∈ ∂ f1(z) and g(2)+ ∈ ∂ f2(z) .

9: update α
(1)
i for all i ∈ I and α

(2)
l for all l ∈ L .

10: set B1 = B1 \ {(g(1)i , α
(1)
i) : α

(1)
i > ε, i ∈ I} ∪ {(g(1)+ , 0)} .

11: set B2 = B2 ∪ {(g(2)+ , 0)} .

12: update appropriately I and L, and go to 1 .

13: else if t‖d̄‖ > η then . Closeness test

14: set t = σt and go to 6 . Reduce the step-size and iterate the line-search

15: end if

16: Calculate g(1)+ ∈ ∂ f1(z + td̄) . Make a null step

17: calculate α
(1)
+ = f1(z)− f1(z + td̄) + tg(1)>+ d̄ .

18: set B1 = B1 ∪ {(g(1)+ , α
(1)
+)}, update appropriately I, and go to 1 .

We remark that the stopping condition v̄ ≥ −θ, checked at Step 2 of the DCPCA, is an approximate
θ-criticality condition for z∗. Indeed, taking into account Equation (12), the stopping condition
ensures that ∥∥∥∥∥∑i∈I

λ∗i g(1)i − g(2)l̄

∥∥∥∥∥ ≤ √θ and

∥∥∥∥∥∑i∈I
λ∗i α

(1)
i

∥∥∥∥∥ ≤ √θ,

which in turn implies that g(1)∗ ∈ ∂θ f1(z∗) and g(2)∗ ∈ ∂ f2(z∗) such that

‖g(1)∗ − g(2)∗ ‖2 ≤ θ,

namely, that
dist (∂θ f1(z∗), ∂ f2(z∗)) ≤ θ,

an approximate θ-criticality condition for z∗, see Equation (9).

4. Results

We tested the performance of the algorithm DCPCA applied to the DC-MIL formulation (3)
by adopting two sets of medium- and large-size problems extracted from [18]. The relevant characteristics
of each problem are reported in Tables 1 and 2, where we list the problem dimension n, the number of
instances, and the number of bags.

Algorithms 2019, 12, 249 8 of 12

Table 1. Medium-size test problems.

Data Set Dimension Instances Bags

Elephant 230 1320 200
Fox 230 1320 200

Tiger 230 1220 200
Musk-1 166 476 92
Musk-2 166 6598 102

Table 2. Large-size test problems.

Data Set Dimension Instances Bags

TST1 6668 3224 400
TST2 6842 3344 400
TST3 6568 3246 400
TST4 6626 3391 400
TST7 7037 3367 400
TST9 6982 3300 400

TST10 7073 3453 400

The two-level cross-validation protocol has been used to tune C and to train the classifier.
Before proceeding with the training phase, the model-selection phase is aimed at finding a promising
value of parameter C in the set {2−7, 2−6, . . . , 1, . . . , 26, 27}, using a lower-level cross-validation protocol
on each training set. The selected C value, for each training set, is the one returning the highest average
test-correctness in the model-selection phase.

Choosing a good starting point is a critical phase to ensure good performance for a local
optimization algorithm like DCPCA. For each training set, denoting the barycenter of all the instances
belonging to positive bags by w+ and the barycenter of all the instances belonging to negative bags by
w−, we have selected the starting point (w0, b0) by setting

w0 = w+ − w− (13)

and choosing b0 such that the corresponding hyperplane correctly classifies all the positive bags.
We adopted the Java implementation of algorithm DCPCA by running the computational

experiments on a 3.50 GHz Intel Core i7 computer. We limited the computational budget for every
execution of DCPCA to 500 and 200 evaluations of the objective function for medium-size and large-size
problems, respectively, and we restricted the size of the bundle to 100 elements adopting a restart
strategy, as soon as, the bundle size exceeds the threshold and a new stability center is obtained.
The QP solver of IBM ILOG CPLEX 12.8 has been used to solve quadratic subprograms. The following
set of parameters, according to the notation introduced in [45], has been selected: the optimality
parameter θ = 0.7, the subgradient threshold η = 0.7, the approximate linesearch parameter m = 0.01,
the step-size reduction parameter σ = 0.01, and the linearization-error threshold ε = 0.95.

We compare our DC-MIL approach against the algorithms mi-SVM [18], MI-SVM [18], MICA [22],
MIL-RL [19], and for medium-size problems also against the MICBundle [21] and DC-SMIL [28]. All such
methods have been briefly surveyed in the introduction section.

To analyze the reliability of our approach, in Tables 3 and 4, we report the numerical results
in terms of the percentage test-correctness averaged over 10 folds, with the best performance being
underlined. We remark that some data are not reported in Table 5 as the corresponding results are
obtained by adopting only nonlinear kernels in [18,22]. Moreover, to provide some insight into the
efficiency of DC-MIL, we report in Tables 5 and 6, the average train-correctness (train, %), the average
cpu time (cpu, sec), the average number of function evaluations (nF), and the average number of
subgradient evaluations of the two functions (nG1 and nG2). The reliability results show a good and
balanced performance of the DC-MIL approach equipped with DCPCA, both, for the medium-size

Algorithms 2019, 12, 249 9 of 12

problems, where in one case DC-MIL slightly outperforms the other approaches, and for the large-size
problems. Moreover, we observe that our approach looks strongly efficient as it manages to achieve
high train-correctness in reasonably small execution times even for large-size problems.

Table 3. Average test-correctness (%) for medium-size problems.

Data Set DC-MIL MIL-RL DC-SMIL mi-SVM MI-SVM MICA MICBundle

Elephant 84.0 83.0 84.5 82.2 81.4 80.5 80.5
Fox 57.0 54.5 56.0 58.2 57.8 58.7 58.3

Tiger 84.5 75.0 81.0 78.4 84.0 82.6 79.1
Musk-1 74.5 80.0 76.7 - - - 75.6
Musk-2 74.0 73.0 79.0 - - - 76.8

Underlined means the best performance being.

Table 4. Average test-correctness (%) for large-size problems.

Data Set DC-MIL MIL-RL mi-SVM MI-SVM MICA

TST01 94.3 95.5 93.6 93.9 94.5
TST02 80.0 85.5 78.2 84.5 85.0
TST03 86.5 86.8 87.0 82.2 86.0
TST04 86.0 79.8 82.8 82.4 87.7
TST07 79.8 83.5 81.3 78.0 78.9
TST09 68.3 68.8 67.5 60.2 61.4
TST10 78.0 77.5 79.6 79.5 82.3

Underlined means the best performance being.

Table 5. DC-MIL average efficiency. Medium-size test problems.

Data Set Train Cpu nF nG1 nG2

Elephant 91.0 3.14 500 243 208
Fox 79.9 3.05 500 81 80

Tiger 95.5 2.83 500 237 197
Musk-1 96.9 1.29 500 197 177
Musk-2 93.5 6.52 500 174 167

Table 6. DC-MIL average efficiency. Large-size test problems.

Data Set Train Cpu nF nG1 nG2

TST01 100.0 70.22 200 93 91
TST02 94.2 69.87 200 83 82
TST03 99.6 64.77 200 82 81
TST04 93.5 67.58 200 84 83
TST07 99.2 74.11 200 85 84
TST09 94.4 67.99 200 82 81
TST10 91.9 72.24 200 81 80

5. Conclusions

We have considered a multiple instance learning problem consisting of classifying sets instead
of single points. The resulting binary classification problem, addressed by a support vector machine
approach, is formulated as an unconstrained nonsmooth optimization problem for which an original
DC decomposition is presented. The problem is solved by a proximal bundle-type method, specialized
for nonsmooth DC optimization, which is tested on some benchmark datasets against a set of
state-of-the-art approaches. The numerical results in terms of reliability show, on one hand, that there
are no outperforming methods on all the test problems, on the other hand, that our method achieves
comparable performance with other approaches. Moreover, the encouraging results obtained in terms

Algorithms 2019, 12, 249 10 of 12

of efficiency show that there is room for improvement by further investigating the parameter settings
in relation to specific test problems.

Author Contributions: Methodology, A.A., A.F., G.G., G.M.; software, A.A., A.F., G.G., G.M.; writing–review &
editing, A.A., A.F., G.G., G.M.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MIL Multiple instance learning
SVM Support vector machine
DC Difference of convex

References

1. Amores, J. Multiple instance classification: Review, taxonomy and comparative study. Artif. Intell. 2013,
201, 81–105. [CrossRef]

2. Carbonneau, M.; Cheplygina, V.; Granger, E.; Gagnon, G. Multiple instance learning: a survey of problem
characteristics and applications. Pattern Recognit. 2018, 77, 329 – 353. [CrossRef]

3. Herrera, F.; Ventura, S.; Bello, R.; Cornelis, C.; Zafra, A.; Sanchez-Tarrago, D.; Vluymans, S. Multiple Instance
Learning. Foundations and Algorithms; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–233.

4. Dietterich, T.G.; Lathrop, R.H.; Lozano-Pérez, T. Solving the multiple instance problem with axis-parallel
rectangles. Artif. Intell. 1997, 89, 31–71. [CrossRef]

5. Astorino, A.; Fuduli, A.; Gaudioso, M.; Vocaturo, E. Multiple Instance Learning Algorithm for Medical
Image Classification. CEUR Workshop Proceedings 2019. Volume 2400. Available online: http://ceur-ws.org/
Vol-2400/paper-46.pdf (accessed on 25 September 2019).

6. Astorino, A.; Fuduli, A.; Veltri, P.; Vocaturo, E. Melanoma detection by means of multiple instance learning.
Interdiscip. Sci. Comput. Life Sci. 2019. [CrossRef] [PubMed]

7. Astorino, A.; Gaudioso, M.; Fuduli, A.; Vocaturo, E. A multiple instance learning algorithm for color images
classification. In ACM International Conference Proceeding Series; ACM: New York, NY, USA, 2018; pp. 262–266.

8. Quellec, G.; Cazuguel, G.; Cochener, B.; Lamard, M. Multiple-Instance Learning for Medical Image and
Video Analysis. IEEE Rev. Biomed. Eng. 2017, 10, 213–234. [CrossRef] [PubMed]

9. Fu, G.; Nan, X.; Liu, H.; Patel, R.Y.; Daga, P.R.; Chen, Y.; Wilkins, D.E.; Doerksen, R.J. Implementation of
multiple-instance learning in drug activity prediction. BMC Bioinform. 2012, 13. [CrossRef] [PubMed]

10. Zhao, Z.; Fu, G.; Liu, S.; Elokely, K.M.; Doerksen, R.J.; Chen, Y.; Wilkins, D.E. Drug activity prediction using
multiple-instance learning via joint instance and feature selection. BMC BioInform. 2013, 14. [CrossRef]

11. Liu, B.; Xiao, Y.; Hao, Z. A selective multiple instance transfer learning method for text categorization
problems. Knowl.-Based Syst. 2018, 141, 178–187. [CrossRef]

12. Kotsiantis, S.; Kanellopoulos, D. Multi-instance learning for bankruptcy prediction. In Proceedings of the
2008 Third International Conference on Convergence and Hybrid Information Technology, Busan, Korea,
11–13 November 2008; Volume 1, pp. 1007–1012.

13. Briggs, F.; Lakshminarayanan, B.; Neal, L.; Fern, X.Z.; Raich, R.; Hadley, S.J.K.; Hadley, A.S.; Betts, M.G.
Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach. J. Acoust.
Soc. Am. 2012, 131, 4640–4650. [CrossRef]

14. Gärtner, T.; Flach, P.A.; Kowalczyk, A.; Smola, A.J. Multi-instance kernels. In Proceedings of the 19th
International Conference on Machine Learning, Sydney, Australia, 8–12 July 2002; pp. 179–186.

15. Wang, J.; Zucker, J.D. Solving the multiple-instance problem: a lazy learning approach. In Proceedings of
the Seventeenth International Conference on Machine Learning, Stanford, CA, USA, 29 June–2 July 2000;
Morgan Kaufmann: San Francisco, CA, USA, 2000; pp. 1119–1126.

16. Wen, C.; Zhou, M.; Li, Z. Multiple instance learning via bag space construction and ELM. In Proceedings of
the International Society for Optical Engineering, Shanghai, China, 15–17 August 2018; Volume 10836.

http://dx.doi.org/10.1016/j.artint.2013.06.003
http://dx.doi.org/10.1016/j.patcog.2017.10.009
http://dx.doi.org/10.1016/S0004-3702(96)00034-3
http://ceur-ws.org/Vol-2400/paper-46.pdf
http://ceur-ws.org/Vol-2400/paper-46.pdf
http://dx.doi.org/10.1007/s12539-019-00341-y
http://www.ncbi.nlm.nih.gov/pubmed/31292853
http://dx.doi.org/10.1109/RBME.2017.2651164
http://www.ncbi.nlm.nih.gov/pubmed/28092576
http://dx.doi.org/10.1186/1471-2105-13-S15-S3
http://www.ncbi.nlm.nih.gov/pubmed/23046442
http://dx.doi.org/10.1186/1471-2105-14-S14-S16
http://dx.doi.org/10.1016/j.knosys.2017.11.019
http://dx.doi.org/10.1121/1.4707424

Algorithms 2019, 12, 249 11 of 12

17. Wei, X.; Wu, J.; Zhou, Z. Scalable Algorithms for Multi-Instance Learning. IEEE Trans. Neural Netw.
Learn. Syst. 2017, 28, 975–987. [CrossRef]

18. Andrews, S.; Tsochantaridis, I.; Hofmann, T. Support vector machines for multiple-instance learning.
In Advances in Neural Information Processing Systems; Becker, S., Thrun, S., Obermayer, K., Eds.; MIT Press:
Cambridge, UK, 2003; pp. 561–568.

19. Astorino, A.; Fuduli, A.; Gaudioso, M. A Lagrangian relaxation approach for binary multiple instance
classification. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2662–2671. [CrossRef] [PubMed]

20. Avolio, M.; Fuduli, A. A semi-proximal support vector machine approach for binary multiple instance
learning. 2019, submitted.

21. Bergeron, C.; Moore, G.; Zaretzki, J.; Breneman, C.; Bennett, K. Fast bundle algorithm for multiple instance
learning. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1068 – 1079. [CrossRef] [PubMed]

22. Mangasarian, O.; Wild, E. Multiple instance classification via successive linear programming. J. Optim.
Theory Appl. 2008, 137, 555–568. [CrossRef]

23. Tseng, P. Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim.
Theory Appl. 2001, 109, 475–494. [CrossRef]

24. Fuduli, A.; Gaudioso, M.; Giallombardo, G. Minimizing nonconvex nonsmooth functions via cutting planes
and proximity control. SIAM J. Optim. 2004, 14, 743–756. [CrossRef]

25. Vapnik, V. The Nature of the Statistical Learning Theory; Springer: New York, NY, USA, 1995.
26. Fung, G.; Mangasarian, O. Proximal support vector machine classifiers. In Proceedings of the Seventh

ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
26–29 August 2001; Provost, F., Srikant, R., Eds.; ACM: New York, NY, USA, 2001, pp. 77–86.

27. Plastria, F.; Carrizosa, E.; Gordillo, J. Multi-instance classification through spherical separation and VNS.
Comput. Oper. Res. 2014, 52, 326–333. [CrossRef]

28. Gaudioso, M.; Giallombardo, G.; Miglionico, G.; Vocaturo, E. Classification in the multiple instance learning
framework via spherical separation. Soft Comput. 2019. [CrossRef]

29. Hansen, P.; Mladenović, N.; Moreno Pérez, J.A. Variable neighbourhood search: Methods and applications.
4OR 2008, 6, 319–360. [CrossRef]

30. Gaudioso, M.; Giallombardo, G.; Miglionico, G.; Bagirov, A.M. Minimizing nonsmooth DC functions via
successive DC piecewise-affine approximations. J. Glob. Optim. 2018, 71, 37–55. [CrossRef]

31. Astorino, A.; Fuduli, A.; Gaudioso, M. DC models for spherical separation. J. Glob. Optim. 2010, 48, 657–669.
[CrossRef]

32. Astorino, A.; Fuduli, A.; Gaudioso, M. Margin maximization in spherical separation. Comput. Optim. Appl.
2012, 53, 301–322. [CrossRef]

33. Astorino, A.; Gaudioso, M.; Seeger, A. Conic separation of finite sets. I. The homogeneous case.
J. Convex Anal. 2014, 21, 1–28.

34. Astorino, A.; Gaudioso, M.; Seeger, A. Conic separation of finite sets. II. The non-homogeneous case.
J. Convex Anal. 2014, 21, 819–831.

35. Le Thi, H.A.; Le, H.M.; Pham Dinh, T.; Van Huynh, N. Binary classification via spherical separator by DC
programming and DCA. J. Glob. Optim. 2013, 56, 1393–1407. [CrossRef]

36. Astorino, A.; Fuduli, A. Semisupervised spherical separation. Appl. Math. Model. 2015, 39, 6351–6358.
[CrossRef]

37. Wang, J.; Shen, X.; Pan, W. On efficient large margin semisupervised learning: Method and theory. J. Mach.
Learn. Res. 2009, 10, 719–742.

38. Bagirov, A.M.; Taheri, S.; Ugon, J. Nonsmooth DC programming approach to the minimum sum-of-squares
clustering problems. Pattern Recognit. 2016, 53, 12–24. [CrossRef]

39. Karmitsa, N.; Bagirov, A.M.; Taheri, S. New diagonal bundle method for clustering problems in large data
sets. Eur. J. Oper. Res. 2017, 263, 367 – 379. [CrossRef]

40. Khalaf, W.; Astorino, A.; D’Alessandro, P.; Gaudioso, M. A DC optimization-based clustering technique for
edge detection. Optim. Lett. 2017, 11, 627–640. [CrossRef]

41. Le Thi, H.; Pham Dinh, T. The DC (difference of convex functions) programming and DCA revisited with
DC models of real world nonconvex optimization problems. J. Glob. Optim. 2005, 133, 23–46.

42. Astorino, A.; Miglionico, G. Optimizing sensor cover energy via DC programming. Optim. Lett. 2016,
10, 355–368. [CrossRef]

http://dx.doi.org/10.1109/TNNLS.2016.2519102
http://dx.doi.org/10.1109/TNNLS.2018.2885852
http://www.ncbi.nlm.nih.gov/pubmed/30624231
http://dx.doi.org/10.1109/TPAMI.2011.194
http://www.ncbi.nlm.nih.gov/pubmed/21987558
http://dx.doi.org/10.1007/s10957-007-9343-5
http://dx.doi.org/10.1023/A:1017501703105
http://dx.doi.org/10.1137/S1052623402411459
http://dx.doi.org/10.1016/j.cor.2013.05.009
http://dx.doi.org/10.1007/s00500-019-04255-1
http://dx.doi.org/10.1007/s10288-008-0089-1
http://dx.doi.org/10.1007/s10898-017-0568-z
http://dx.doi.org/10.1007/s10898-010-9558-0
http://dx.doi.org/10.1007/s10589-012-9486-7
http://dx.doi.org/10.1007/s10898-012-9859-6
http://dx.doi.org/10.1016/j.apm.2015.01.044
http://dx.doi.org/10.1016/j.patcog.2015.11.011
http://dx.doi.org/10.1016/j.ejor.2017.06.010
http://dx.doi.org/10.1007/s11590-016-1031-7
http://dx.doi.org/10.1007/s11590-014-0778-y

Algorithms 2019, 12, 249 12 of 12

43. De Oliveira, W. Proximal bundle methods for nonsmooth DC programming. J. Glob. Optim. 2019, 75, 523–563.
[CrossRef]

44. De Oliveira, W.; Tcheou, M.P. An inertial algorithm for DC programming. Set-Valued Var. Anal. 2019,
27, 895–919. [CrossRef]

45. Gaudioso, M.; Giallombardo, G.; Miglionico, G. Minimizing piecewise-concave functions over polytopes.
Math. Oper. Res. 2018, 43, 580–597. [CrossRef]

46. Joki, K.; Bagirov, A.M.; Karmitsa, N.; Mäkelä, M.M. A proximal bundle method for nonsmooth DC
optimization utilizing nonconvex cutting planes. J. Glob. Optim. 2017, 68, 501–535. [CrossRef]

47. Joki, K.; Bagirov, A.M.; Karmitsa, N.; Mäkelä, M.M.; Taheri, S. Double bundle method for finding Clarke
stationary points in nonsmooth DC programming. Siam J. Optim. 2018, 28, 1892–1919. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10898-019-00755-4
http://dx.doi.org/10.1007/s11228-018-0497-0
http://dx.doi.org/10.1287/moor.2017.0873
http://dx.doi.org/10.1007/s10898-016-0488-3
http://dx.doi.org/10.1137/16M1115733
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A DC Decomposition of the SVM-Based MIL
	Solving DC-MIL using a Nonsmooth DC Algorithm
	Results
	Conclusions
	References

