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Abstract: A multicomponent system of k components with independent and identically distributed
random strengths X1, X2, . . .Xk, with each component undergoing random stress, is in working
condition if and only if at least s out of k strengths exceed the subjected stress. Reliability is measured
while strength and stress are obtained through a process following an exponentiated moment-based
exponential distribution with different shape parameters. Reliability is gauged from the samples
using maximum likelihood (ML) on the computed distributions of strength and stress. Asymptotic
estimates of reliability are compared using Monte Carlo simulation. Application to forest data and to
breaking strengths of jute fiber shows the usefulness of the model.

Keywords: exponentiated moment-based exponential distribution; reliability; stress; strength;
maximum likelihood; Monte Carlo simulation

1. Introduction

Dara and Ahmad [1] introduced the moment-based exponential distribution. Hasnain et al. [2]
introduced and studied properties of the exponentiated moment-based exponential distribution.
The cumulative distribution function of the exponentiated moment-based exponential distribution is
as follows:

FX(x;α,β) =
(
1−

(
1 +

x
β

)
e−

x
β

)α
, for x > 0, (1)

and its probability density function is as follows:

fX(x;α,β) =
α xe−

x
β

β2

(
1−

(
1 +

x
β

)
e−

x
β

)α−1

, for x > 0, (2)

where α is the shape parameter and β the scale parameter.
The moment distributions have a wide range of applications in different fields of study. Krumbein

and Pettijohn [3] and Gy [4] examined the relationship between particle diameter and its frequency
using moment distributions. Preston [5] used canonical distributions to characterize the relationship of
land birds in England and Wales, breeding birds in Finland, mammals in the East Indies, and amphibian
and reptiles in the West Indies. Zelen [6] introduced the use of weighted distributions to represent
length-biased sampling in the case of cell kinetics and the early detection of disease. In addition,
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Zelen [7]) used length-biased sampling in the context of the disease screening and scheduling of
patients’ examinations. Brown [8] introduced low-density traffic streams in the context of studying
various aspects of the traffic streams. Warren [9] studied the role of statistical distribution in different
cases related to forestry and forest products. Taillie et al. [10] used weighted distributions in the context
of modelling populations of fish stocks.

Let G be the cumulative distribution function of Y and F be the cumulative distribution
function of X1, X2, . . .Xk. Bhattacharyya and Johnson [11] developed multicomponent reliability
for a stress-strength model as follows:

Rs,k = P(at least s variables among X1, X2, . . .Xk exceed Y)

=
k∑

i=s

(
k
i

)
∞∫
−∞

(1−G(y))i(G(y))k−idF(y),
(3)

where X1, X2, . . . , Xk are independent and identically distributed random variables with cumulative
distribution function F. This system has a common random stress Y. The probability, Rs,k, in Equation
(3) is called reliability in a multicomponent stress-strength model. Enis and Geisser [12] estimated
the probability of Y < X. Downtown [13] extended their results to the normal distribution; Awad
and Gharraf [14] to the Burr distribution; McCool [15] to the Weibull; Nandi and Aich [16] to some
distributions useful in lifetesting (a process done under controlled conditions to determine how and
when a product will fail); Surles and Padgett [17] developed inference for reliability and stress–strength
for a scaled Burr type X distribution;and Raqab and Kundu [18] compared estimators of P(Y < X) for
a Burr type X distribution. Their work was extended by Kundu and Gupta [19] for the exponential
distribution, by Kundu and Gupta [20] for the Weibull distribution, by Raqab et al. [21] for the
three-parameter exponential distribution, and by Kundu and Raqab [22] for the three-parameter
Weibull distribution. Bhattacharyya and Johnson [11] expressed reliability in a multicomponent
stress–strength model, as did Pandey and Uddin [23] with the Burr distribution. Rao and Kantam [24]
estimated reliability in the multicomponent stress–strength model for a log-logistic distribution,
Rao [25] for the exponential distribution, Rao et al. [26] for an inverse Rayleigh distribution, and Rao
et al. [27] for the Burr XII distribution.

Consider a system with k similar components and at least s (1 ≤ s ≤ k) components operating
simultaneously. It undergoes stress Y, which is a random variable with distribution function G. F is
the cumulative distribution function of minimal stresses causing the failure of a component. Then,
the reliability of the system is the function Rs,k given in Equation (3), which is the probability that the
entire system does not fail at a specified time.

By exploring the literature and to the best of our knowledge, there is no work on the estimation of
reliability in a multicomponent stress–strength system for the exponentiated moment-based exponential
distribution. The objective of the paper was to estimate reliability in the multicomponent stress–strength
model with respect to the exponentiated moment-based exponential distribution. We expected that the
proposed method would be more efficient than the existing method.

2. Estimation of Rs,k by Maximum Likelihood

The random variables X and Y are independently distributed. Each follows an exponentiated
moment-based exponential distribution of parameters (α1, β) for X and (α2, β) for Y, where
β is the unknown common scale parameter and the shape parameters α1 and α2 are unknown.
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The multicomponent stress–strength reliability for the exponentiated moment-based exponential
distribution using Equation (3) is as follows:

Rs,k =
k∑

i=s

(
k
i

) 1∫
0
(1− tα1)i(tα1)k−i

α2tα2−1dt, where t = 1−
(
1 + y

β

)
e−

y
β

=
k∑

i=s

(
k
i

) 1∫
0
(1− z)i(z)k−i

α2(z
1
α1 )

α2−1
z

1
α1
−1

α1
dz, where z = tα1

= v
k∑

i=s

(
k
i

) 1∫
0
(1− z)i(z)k−i+v−1dz, where v = α2

α1

= v
k∑

i=s

(
k
i

)
B(i + 1, k− i + v), where B(m, n) is the beta first kind function.

(4)

After simplification, we obtain the following:

Rs,k = v
k∑

i=s

k!
(k− i)!

 i∏
j=0

(k + v− j)


−1

, (5)

since k and i are integers and v = α2
α1

can be obtained in Equations (11) and (12).
Equation (5) is a multicomponent stress–strength reliability of the system.
Let (X1, X2, . . . , Xn) be a random sample of strength variables and (Y1, Y2, . . . , Ym) be a random

sample of stress variables following an exponentiated moment-based exponential distribution with
shape parameters α1 and α2 and common scale parameter β. The log-likelihood associated with the
observed sample is as follows:

L(α1,α2, β) =
n∏

i=1

f (xi,α1,α2)
m∏

j=1

f (y j,α1,α2), (6)

ln L = n lnα1 + m lnα2 − 2(m + n) ln β+
n∑

i=1
ln xi +

m∑
j=1

ln y j −
1
β

n∑
i=1

xi −
1
β

m∑
j=1

y j

+(α1 − 1)
n∑

i=1
ln

(
1−

(
1 + xi

β

)
e−

xi
β

)
+ (α2 − 1)

m∑
j=1

ln
(
1−

(
1 + yi

β

)
e−

yi
β

)
.

(7)

The maximum likelihood estimators α̂1, α̂2, and β̂ are obtained iteratively as a solution of the
following:

∂ lnL
∂α1

= 0 ⇒
n
α1

+
n∑

i=1

ln
(
1−

(
1 +

xi
β

)
e−

xi
β

)
= 0 ⇒ α̂1 =

−n
n∑

i=1
ln

(
1−

(
1 + xi

β

)
e−

xi
β

) , (8)

∂ lnL
∂α2

= 0 ⇒
m
α2

+
m∑

j=1

ln
(
1−

(
1 +

yi

β

)
e−

yi
β

)
= 0 ⇒ α̂2 =

−m
m∑

j=1
ln

(
1−

(
1 + yi

β

)
e−

yi
β

) , (9)

∂ lnL
∂β = 0 ⇒

−2(n+m)
β + 1

β2

n∑
i=1

xi +
1
β2

m∑
j=1

y j − (α1 − 1)
n∑

i=1

x2
i e
−

xi
β(

1−
(
1+

xi
β

)
e
−

xi
β

)
β3

−(α2 − 1)
m∑

j=1

y2
j e
−

yi
β(

1−
(
1+

yi
β

)
e
−

yi
β

)
β3

= 0.

(10)
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From Equations (8) and (9), we obtain the following:

α̂1 =
−n

n∑
i=1

ln
(
1−

(
1 + xi

β̂

)
e
−

xi
β̂

) , (11)

α̂2 =
−m

m∑
j=1

ln
(
1−

(
1 + yi

β̂

)
e
−

yi
β̂

) , (12)

and β̂ is the solution of the following non-linear equation:

g(β) = 0⇔

−2(n+m)
β + 1

β2

n∑
i=1

xi

(
1−e
−

xi
β

)
(
1−

(
1+

xi
β

)
e
−

xi
β

) + n
n∑

k=1
ln

(
1−

(
1+

xi
β

)
e
−

xi
β

) n∑
i=1

x2
i e
−

xi
β(

1−
(
1+

xi
β

)
e
−

xi
β

)
β3
+

1
β2

m∑
j=1

y j

(
1−e
−

yi
β

)
(
1−

(
1+

yi
β

)
e
−

yi
β

) + m
m∑

k=1
ln

(
1−

(
1+

yi
β

)
e
−

yi
β

) n∑
i=1

y2
j e
−

yi
β(

1−
(
1+

yi
β

)
e
−

yi
β

)
β3

= 0,

(13)

where β̂ is a simple iterative solution of the non-linear equation g(β) = 0. With the obtrusion β̂, α̂1 is
obtained from Equation (10) and α̂2 from Equation (11), and the maximum likelihood estimate of Rs,k
is as follows:

R̂s,k = ν̂
k∑

i=s

k!
(k− i)!

 i∏
j=0

(k + ν̂− j)


−1

, where ν̂ =
α̂2

α̂1
. (14)

The variances of the maximum likelihood estimators are the following:

V(α̂1) =

E

−∂2 ln L
∂α2

1

−1

=
α2

1

n
and V(α̂2) =

E

−∂2 ln L
∂α2

2

−1

=
α2

2

m
. (15)

The asymptotic variance of an estimate of Rs,k, which is a function of two independent statistics
α1 andα2, is given by Rao [28]:

V
(
R̂s,k

)
� V(α̂1)

(
∂Rs,k

∂α1

)2

+ V(α̂2)

(
∂Rs,k

∂α2

)2

. (16)

Equation (16) yields the asymptotic variance of R̂s,k:

∂R̂1,3

∂α1
=

3ν̂

α̂1(3 + ν̂)2 and
∂R̂1,3

∂α2
=

−3

α̂1(3 + ν̂)2 . (17)

The derivatives of Rs,k for (s, k) = (1, 3) and (s, k) = (2, 4) are obtained separately:

∂R̂2,4

∂α1
=

12(7 + 2ν̂)

α̂1((3 + ν̂)(4 + ν̂))2 and
∂R̂2,4

∂α2
=

−12(7 + 2ν̂)

α̂1((3 + ν̂)(4 + ν̂))2 . (18)

Thus,

V(R̂1,3) =
9ν̂2

(3 + ν̂)4

(1
n
+

1
m

)
, (19)

V(R̂2,4) =
144ν̂2(2ν̂+ 7)2

((3 + ν̂)(4 + ν̂))4

(1
n
+

1
m

)
. (20)
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Under the usual regularity conditions (Rao, [28]):

as n→∞, m→∞ ,
R̂s,k−Rs,k

V(R̂s,k)
d
→ N(0, 1).

The asymptotic 100(1− α)% confidence interval for Rs,k is as follows:[
R̂s,k ∓Z(1−α/2)

(
V
(
R̂s,k

))1/2
]
. (21)

The asymptotic 100(1− α)% confidence interval for R1,3 is as follows:R̂1,3 ∓Z(1−α/2)
3ν̂

(3 + ν̂)2

(1
n
+

1
m

)1/2
, (22)

where ν̂ = α̂2/α̂1.
The asymptotic 100(1− α)% confidence interval for R2,4 is as follows:R̂2,4 ∓Z(1−α/2)

12ν̂(2ν̂+ 7)

((3 + ν̂)(4 + ν̂))2

(1
n
+

1
m

)1/2
, (23)

where ν̂ = α̂2/α̂1 and Z(1−α/2) is the (1− α/2)th percentile of the standard normal distribution.
The following Algorithm 1 is used for the estimation of Rs,k

Algorithm 1 Estimation of Rs,k

Step 1: For given values of β, α1, α2 using Monte Carlo simulation, generate 10,000 samples such that
X~EMED (α1, β) and Y~EMED (α2,λ).
Step 2: Determine R1,3 and R24 using given parametric values.
Step 3: Find maximum likelihood estimate for α1 and α2 via simulation.
Step 4: Estimate multicomponent stress–strength reliability estimate R1,3 and R24 using maximum likelihood
function for α1 and α2.
Step 5: Compute average bias, average mean squared errors, average length of the confidence interval, and

average coverage probability (ACP)of R1,3 and R24. Where average bias = 1
N

N∑
i=1

(
R̂sk −Rsk

)
and average mean

squared error (MSE) = 1
N

N∑
i=1

(
R̂sk −Rsk

)2

, N = 10,000.

Step 6: Draw a conclusion.

3. Monte Carlo Simulation

In this section, we carry out an extensive Monte Carlo simulation study to compare the
performances of the maximum likelihood (ML) estimates of Rs,k. The comparisons are done based on
point and interval estimations. The simulation study is carried out on 5000 simulated samples from
exponentiated moment-based exponential distributed stress and strength variables for different sample
sizes n = m = 15, 20, 25, 30, 35, 40, 45, and 50 and for the combinations of the following parameters:

(α1,α2) = (2.25, 1.5), (2, 1.5), (1.75, 1.5), (1.5, 1.5), (1.5, 1.75), (1.5, 2), (1.5, 2.25). (24)

We follow Bhattacharyya and Johnson [11] for the simulation procedure. We insert the estimates
of β, α1, α2 into the expression of ν in Equation (5) to obtain the multicomponent value of reliability
for (s, k) = (1, 3) and (s, k) = (2, 4). Tables 1 and 2 present the bias and the mean squared error for the
estimates of reliability. Tables 3 and 4 present the simulated 95% confidence bounds and coverage
probability of Rs,k. In the multicomponent stress–strength model, the true value of reliability using
Equation (5) with the combination of (α1,α2) in Equation (24) for (s, k) = (1, 3) is 0.8182, 0.8000, 0.7778,
0.7500, 0.7200, 0.6923, and 0.6667. For (s, k) = (2, 4), the true value y is successively 0.7013, 0.6737,
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0.6405, 0.6000, 0.5574, 0.5192, and 0.4848. For a fixed α1, the true value of reliability increases as α2

increases. For a fixed α2 and (s, k) = (1, 3) or (s, k) = (2, 4), reliability decreases as α1 increases. The true
value of reliability decreases as ν increases.

Table 1. Bias of the simulated estimates of reliability Rs,k.

Components
(s, k)

Sample Size
(n,m)

Parameters
(α1,α2)

(2.25,1.5) (2.0,1.5) (1.75,1.5) (1.5,1.5) (1.5,1.75) (1.5,2.0) (1.5,2.25)

(1, 3)

(15,15) 0.0223 0.0148 0.0069 −0.0072 −0.0218 −0.0354 −0.0510
(20,20) 0.0217 0.0147 0.0066 −0.0057 −0.0199 −0.0335 −0.0475
(25,25) 0.0216 0.0147 0.0062 −0.0051 −0.0188 −0.0308 −0.0446
(30,30) 0.0215 0.0146 0.0057 −0.0032 −0.0172 −0.0291 −0.0436
(35,35) 0.0215 0.0133 0.0052 −0.0037 −0.0152 −0.0291 −0.0419
(40,40) 0.0214 0.0132 0.0049 −0.0028 −0.0152 −0.0273 −0.0412
(45,45) 0.0212 0.0125 0.0043 −0.0019 −0.0151 −0.0272 −0.0409
(50,50) 0.0211 0.0123 0.0041 −0.0016 −0.0144 −0.0264 −0.0396

(2, 4)

(15,15) 0.0344 0.0240 0.0125 −0.0062 −0.0251 −0.0409 −0.0581
(20,20) 0.0341 0.0236 0.0121 −0.0052 −0.0237 −0.0401 −0.0559
(25,25) 0.0339 0.0233 0.0118 −0.0051 −0.0231 −0.0376 −0.0533
(30,30) 0.0338 0.0231 0.0115 −0.0027 −0.0214 −0.0360 −0.0528
(35,35) 0.0337 0.0227 0.0111 −0.0037 −0.0192 −0.0364 −0.0512
(40,40) 0.0336 0.0225 0.0107 −0.0027 −0.0194 −0.0344 −0.0508
(45,45) 0.0332 0.0223 0.0102 −0.0016 −0.0194 −0.0349 −0.0507
(50,50) 0.0331 0.0218 0.0101 −0.0013 −0.0187 −0.0337 −0.0493

Table 2. Mean squared error (MSE) of the simulated estimates of reliability Rs,k.

Components
(s, k)

Sample Size
(n,m)

Parameters
(α1,α2)

(2.25,1.5) (2.0,1.5) (1.75,1.5) (1.5,1.5) (1.5,1.75) (1.5,2.0) (1.5,2.25)

(1, 3)

(15,15) 0.0036 0.0041 0.0048 0.0059 0.0076 0.0097 0.0122
(20,20) 0.0027 0.0030 0.0034 0.0042 0.0057 0.0073 0.0092
(25,25) 0.0022 0.0024 0.0027 0.0033 0.0045 0.0058 0.0075
(30,30) 0.0019 0.0021 0.0022 0.0027 0.0036 0.0048 0.0064
(35,35) 0.0017 0.0018 0.0019 0.0023 0.0030 0.0043 0.0056
(40,40) 0.0015 0.0016 0.0016 0.0019 0.0027 0.0036 0.0050
(45,45) 0.0014 0.0014 0.0015 0.0017 0.0024 0.0034 0.0046
(50,50) 0.0013 0.0013 0.0013 0.0015 0.0021 0.0030 0.0041

(2, 4)

(15,15) 0.0085 0.0092 0.0101 0.0114 0.0132 0.0153 0.0173
(20,20) 0.0065 0.0069 0.0074 0.0083 0.0101 0.0118 0.0134
(25,25) 0.0053 0.0056 0.0059 0.0066 0.0081 0.0096 0.0112
(30,30) 0.0047 0.0048 0.0048 0.0054 0.0066 0.0079 0.0097
(35,35) 0.0041 0.0041 0.0042 0.0047 0.0055 0.0071 0.0085
(40,40) 0.0037 0.0036 0.0036 0.0039 0.0050 0.0061 0.0077
(45,45) 0.0034 0.0033 0.0033 0.0036 0.0044 0.0058 0.0071
(50,50) 0.0032 0.0029 0.0030 0.0031 0.0039 0.0050 0.0065
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Table 3. Length of the 95% confidence interval of simulated reliability Rs,k.

Components
(s, k)

Sample Size
(n,m)

Parameters
(α1,α2)

(2.25,1.5) (2.0,1.5) (1.75,1.5) (1.5,1.5) (1.5,1.75) (1.5,2.0) (1.5,2.25)

(1, 3)

(15,15) 0.1893 0.2122 0.2367 0.2651 0.2915 0.3105 0.3250
(20,20) 0.1643 0.1839 0.2055 0.2307 0.2537 0.2710 0.2837
(25,25) 0.1476 0.1649 0.1838 0.2070 0.2277 0.2429 0.2545
(30,30) 0.1347 0.1509 0.1684 0.1887 0.2080 0.2221 0.2331
(35,35) 0.1250 0.1395 0.1564 0.1752 0.1924 0.2061 0.2161
(40,40) 0.1170 0.1309 0.1462 0.1639 0.1802 0.1927 0.2025
(45,45) 0.1103 0.1234 0.1378 0.1543 0.1701 0.1820 0.1911
(50,50) 0.1048 0.1173 0.1308 0.1464 0.1614 0.1726 0.1813

(2, 4)

(15,15) 0.2907 0.3186 0.3459 0.3732 0.3924 0.3998 0.3993
(20,20) 0.2535 0.2776 0.3020 0.3266 0.3435 0.3510 0.3513
(25,25) 0.2281 0.2495 0.2711 0.2939 0.3094 0.3162 0.3168
(30,30) 0.2086 0.2287 0.2487 0.2688 0.2837 0.2902 0.2910
(35,35) 0.1938 0.2118 0.2312 0.2498 0.2632 0.2696 0.2705
(40,40) 0.1814 0.1988 0.2165 0.2341 0.2467 0.2529 0.2539
(45,45) 0.1712 0.1875 0.2041 0.2207 0.2331 0.2388 0.2399
(50,50) 0.1627 0.1783 0.1939 0.2096 0.2214 0.2270 0.2281

Table 4. Coverage probability of the simulated 95% confidence interval of reliability Rs,k.

Components
(s, k)

Sample Size
(n,m)

Parameters
(α1,α2)

(2.25,1.5) (2.0,1.5) (1.75,1.5) (1.5,1.5) (1.5,1.75) (1.5,2.0) (1.5,2.25)

(1, 3)

(15,15) 0.9375 0.9366 0.9377 0.9414 0.9389 0.9316 0.9264
(20,20) 0.9372 0.9385 0.9436 0.9481 0.9398 0.9349 0.9285
(25,25) 0.9421 0.9418 0.9464 0.9455 0.9374 0.9365 0.9297
(30,30) 0.9381 0.9414 0.9537 0.9532 0.9463 0.9421 0.9350
(35,35) 0.9469 0.9430 0.9473 0.9476 0.9499 0.9426 0.9347
(40,40) 0.9450 0.9473 0.9521 0.9552 0.9474 0.9423 0.9373
(45,45) 0.9444 0.9449 0.9501 0.9536 0.9502 0.9391 0.9448
(50,50) 0.9447 0.9488 0.9513 0.9530 0.9496 0.9477 0.9418

(2, 4)

(15,15) 0.9324 0.9320 0.9348 0.9376 0.9382 0.9302 0.9248
(20,20) 0.9346 0.9406 0.9406 0.9455 0.9371 0.9351 0.9311
(25,25) 0.9413 0.9396 0.9459 0.9448 0.9374 0.9354 0.9286
(30,30) 0.9359 0.9397 0.9531 0.9530 0.9451 0.9410 0.9357
(35,35) 0.9460 0.9406 0.9473 0.9470 0.9481 0.9412 0.9353
(40,40) 0.9431 0.9460 0.9514 0.9553 0.9456 0.9420 0.9383
(45,45) 0.9434 0.9443 0.9493 0.9538 0.9504 0.9392 0.9423
(50,50) 0.9440 0.9485 0.9507 0.9530 0.9480 0.9466 0.9412

Table 1 shows the decrease of the biases for both cases (s, k) = (1, 3) and (s, k) = (2, 4), when both
samplesizes n and m increase. Table 2 shows the decrease of the mean squared error with the increase
of both sample sizes n and m for (s, k) = (1, 3) and (s, k) = (2, 4). Tables 1 and 2 then show the consistency
of the maximum likelihood estimator of Rs,k. Reliability is biased negatively when α1 ≤ α2. Table 2
shows that the mean squared error decreases as α1 increases for a fixed value of α2 in both cases of
(s, k), and the mean squared error decreases as α2 increases for a fixed α1 in both cases of (s, k).

Table 3 shows that the length of the confidence interval decreases when the sample size increases.
Table 4 shows that the coverage probability is close to 0.95, which we expected. The confidence intervals
perform satisfactorily for all combinations of parameters.

4. Application

4.1. Example with Forest Data

The population study of the interrelated patterns, processes, flora, fauna, and ecosystems in forests
is forest ecology. Logically, trees are an important component of forest research, but the wide variety of
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other life forms and abiotic components in most forests means that other elements, such as wildlife or
soilnutrients, are often the focal point. Thus, forest ecology is a highly diverse and important branch
of ecological study. A forest ecosystem is a natural woodland unit consisting of all plants, animals,
and microorganisms in that area functioning together with all of the non-living physical factors of
the environment. Characteristics and methodological approaches of forest ecology data most often
followcertain distributions, namely canonical distributions in ecology.

We used the forest data and resource assessment of forestry in Vanuatu, 1990–2000, from the
project of the University of Wellington, Victoria, Australia, the Department of Meteorology, and the
Department of Forests. The data are available from Corrigan [29]. Forest loss is presented in Table 5.
We fitted an exponentiated moment-based exponential distribution for each dataset. We used the
Kolmogorov–Smirnov test as a goodness-of-fit test of the exponentiated moment-based exponential
distribution. The Kolmogorov–Smirnov distance between the empirical and the fitted distributions
was 0.23 with a p-value of 0.44 for the first dataset and 0.16 with a p-value of 0.83 for the second dataset.
Therefore, the fit is satisfactory.

Table 5. Statistics of forest loss derived from satellite data analysis of 1990–2000.

Vanuatu Island (Group) Area (Hectare) Loss of Forest (Hectare)

Torres Islands 11.52 45.8
Banks Islands 75.359 56.8

Santo 423.897 1114.4
Maewo 30.39 217
Aoba 40.566 210.4

Pentecost 49.49 249
Malakula 206.756 293.4
Ambrym 73.246 447.4

Epi 53.324 190.3
Efate 97.004 302.5

Erromango 88.874 666
Tanna 56.668 811.6

Aneityum 17.21 73

We found α̂1 = 0.33 and α̂2 = 0.89, R̂1,3 = 0.53 and R̂2,4 = 0.32. The 95% confidence interval for R1,3

was [0.3344, 0.7176] and for R2,4 it was [0.1021, 0.5257].

4.2. Example with Breaking Strength Data

We used the empirical datasets of Xia et al. [30] about the breaking strengths of jute fiber at gauge
lengths of 10 and 20mm. The diameters of jute fibers were measured with an XSP-8CA digital biological
microscope (Shanghai Optical Instrument Factory, Shanghai, China). For the sake of simplicity, we
considered the fibers to be perfectly cylindrical. We tested 20 fiber samples at four gauge lengths (5, 10,
15, and 20 mm). The ultimate cells constrained by the environment break when increasing the tensile
strength applied on the jute filament, until the length of the ultimate cell reaches a minimum load,
which can no longer buildup to its breaking strength measured in megapascal (MPa), and is given
as follows:

Dataset 1 (10 millimeters) MPa: 693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48, 108.94,
50.16, 671.49, 183.16, 257.44, 727.23, 291.27, 101.15, 376.42, 163.40, 141.38, 700.74, 262.90, 353.24, 422.11,
43.93, 590.48, 212.13, 303.90, 506.60, 530.55, 177.25;

Dataset 2 (20 millimeters) MPa: 71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85, 688.16, 662.66,
45.58, 578.62, 756.70, 594.29, 166.49, 99.72, 707.36, 765.14, 187.13, 145.96, 350.70, 547.44, 116.99, 375.81,
581.60, 119.86, 48.01, 200.16, 36.75, 244.53, 83.55.

We fitted an exponentiated moment-based exponential distribution for each dataset. We used the
Kolmogorov–Smirnov test as a goodness-of-fit test of the exponentiated moment-based exponential
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distribution. The Kolmogorov–Smirnov distance between the empirical and the fitted distribution was
0.11 with a p-value = 0.89 for the first dataset and 0.15 with a p-value = 0.47 for the second dataset,
indicating satisfactory fits.

We found α̂1 = 0.77 and α̂2 = 0.76, R̂1,3 = 0.75 and R̂2,4 = 0.60. The 95% confidence interval for R1,3

was [0.6551, 0.8449] and for R2,4 it was [0.4634, 0.7366].

5. Comparison with Existing Distribution

We compared our results with the existing work of Rao et al. [27] at (α1,α2) = (1.5, 1.5) and the
results are displayed in Table 6. They show that average MSEs and average confidence lengths (ACLs)
are lesser than the existing results based on Burr XII distribution. The average coverage probability also
shows better performance than Burr XII distribution. Thus, as compared with Burr XII distribution,
our results based on exponentiated moment-based exponential distribution perform well with respect
to the results of multicomponent stress–strength.

Table 6. Comparison of MSE, the average confidence length (ACL), and 95% average coverage
probability (ACP) at (α1,α2) = (1.5, 1.5) for two distributions. EMED, exponentiated moment-based
exponential distribution.

(s,k) (n,m)
EMED Burr XII Distribution

MSE ACL ACP MSE ACL ACP

(1,3) (15,15) 0.0059 0.2651 0.9264 0.0105 0.3722 0.9403
(20,20) 0.0042 0.2307 0.9331 0.0078 0.3239 0.9430
(25,25) 0.0033 0.2070 0.9305 0.0059 0.2922 0.9470
(30,30) 0.0027 0.1887 0.9382 0.0051 0.2684 0.9380

(2,4) (15,15) 0.0114 0.3732 0.9226 0.0136 0.4247 0.9347
(20,20) 0.0083 0.3266 0.9305 0.0099 0.3730 0.9397
(25,25) 0.0066 0.2939 0.9298 0.0078 0.3367 0.9440
(30,30) 0.0054 0.2688 0.9380 0.0067 0.3086 0.9330

6. Conclusions

We introduced the exponentiated moment-based exponential distribution in the study of
multicomponent stress–strength reliability, when stress and strength variables concern the same
population. We used Monte Carlo simulations to compute large-sample confidence intervals. The larger
the sample size, the smaller the bias and the mean squared error. The average bias is negative when
α1 ≤ α2; otherwise, the bias is positive for (s, k) = (1, 3) and (s, k) = (2, 4). The mean squared error
decreases as α1 increases for a fixed α2 and increases as α2 increases for a fixed α1 for (s, k) = (1, 3) and
(s, k) = (2, 4). The confidence intervals shrink with larger sample sizes and the performance of the
coverage probability is satisfactory.
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Glossary

EMED—Exponentiated moment-based exponential distribution
α—Shape parameter
β—Scale parameter
Rs,k—Multicomponent stress–strength reliability
B(m, n)—Beta first kind function
MSE—Mean squared error
ACP—Average coverage probability
ACL—Average confidence length
ML—Maximum likelihood
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