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Abstract: Many scientific and engineering problems benefit from analytic expressions for eigenvalue
and eigenvector derivatives with respect to the elements of the parent matrix. While there exists
extensive literature on the calculation of these derivatives, which take the form of Jacobian matrices,
there are a variety of deficiencies that have yet to be addressed—including the need for both left
and right eigenvectors, limitations on the matrix structure, and issues with complex eigenvalues and
eigenvectors. This work addresses these deficiencies by proposing a new analytic solution for the
eigenvalue and eigenvector derivatives. The resulting analytic Jacobian matrices are numerically
efficient to compute and are valid for the general complex case. It is further shown that this new
general result collapses to previously known relations for the special cases of real symmetric matrices
and real diagonal matrices. Finally, the new Jacobian expressions are validated using forward finite
differencing and performance is compared with another technique.
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1. Introduction

There are many problems that make use of the eigenvalue or eigenvector of a matrix in their
solution. Because of this, it is often beneficial to be able to calculate the Jacobians of eigenvalues and
eigenvectors with respect to the elements of the matrix from which they were computed. For example,
eigenvalue and eigenvectors are used throughout finite-element analysis (FEA) solutions to vibration
problems, where the goal is often to minimize a structure’s sensitivity to various parameters through
the use of eigenvalue/eigenvector derivatives [1]. As a second example, there are many instances
in which the solution for the optimal estimate of a parameter vector takes the form of an eigenvalue
problem—such as quaternion-based spacecraft attitude estimation [2,3] or ellipse fitting in computer
vision [4]. For these types of problems, it is often important to understand the uncertainty in the
optimal estimate, which requires knowledge of the eigenvector Jacobian. Other examples abound, such
as direction-of-arrival of plane waves [5], epipolar geometry in computer vision [6], pose estimation in
robotics [7], spacecraft optical navigation [8], or infectious disease epidemiology [9]. In all of these
problems, and in many others, it can be useful (or, in some cases, necessary) to have an analytic
expression for the Jacobians of eigenvalues and eigenvectors with respect to the entries in their
parent matrix.

Because of the popularity of problems requiring the calculation of eigenvalues, eigenvectors, and
their Jacobians, much work has already been devoted to these topics. The prior work on eigenvalue and
eigenvector Jacobians can largely be grouped into three basic categories: modal expansion techniques,
direct techniques, and techniques based on Nelson’s method. Modal techniques mimic the idea of
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modal expansion used in FEA, whereby the eigenvector Jacobian is expressed as a linear combination
of the other eigenvectors of the system [10–17]. Direct solutions find the Jacobians through the solution
of a linear system of equations [18–25]. Solutions based on Nelson’s method find the Jacobians by
considering a homogeneous and particular solution [26–33]. Finally, there is a grouping of solutions
that are not easily fit into the above categories [34–39]. For a more thorough discussion of this literature,
see [39].

In light of the extensive literature already available on the topic, it may not be clear why more
work is needed. After careful review, however, a few limitations are apparent with the existing
methods. First, the majority of the above literature only presents solutions for the derivatives of
the eigenvalues and eigenvectors with respect to a single element of the parent matrix. While these
single element derivatives may be assembled to create a Jacobian, their use is cumbersome and the
expressions are not compact. In the literature reviewed by these authors, expressions for the full
Jacobians of the eigenvalues and eigenvectors only appear once and only for the special case of a
symmetric parent matrix [34]. Second, in the majority of the literature, the derivatives are found using
both the left and right eigenvectors of the system or by simultaneously solving a system of equations
for both derivatives at once. While it is straightforward to find both the left and right eigensystems,
calculating the left eigenvector in order to find the Jacobian of the right eigenvector is an unnecessary
extra step that we seek to circumvent. Finally, much of the literature on this topic is only valid when
the parent matrix and its eigenvalues and eigenvectors are real due to the choice of the normalization
of the eigenvectors.

Due to these observed deficiencies, the authors of this paper proposed a new method in [39] that
did not involve the left eigenvector, did not require the simultaneous solution of both the eigenvector
and eigenvalue derivatives, provided the full Jacobian matrices with respect to every element of the
parent matrix, and provided a solution capable of handling any matrix with real or complex elements
and real or complex eigenvalues and eigenvectors. This new method found the eigenvalue Jacobian by
considering the characteristic equation and solved for the eigenvector Jacobian by using the results of
the eigenvalue Jacobian along with the normalization condition for the eigenvector.

While the method introduced in [39] addressed the deficiencies described above, it did produce
some new issues—namely that the calculation of the eigenvalue Jacobian was computationally
expensive. Additionally, the eigenvector Jacobian relied on the computation of the eigenvalue Jacobian,
which could lead to numerical stability issues in large matrices (n > 30).

This paper introduces novel improvements to [39] that address both of these shortcomings.
Specifically, the present work introduces a much simpler solution that addresses all of the original
deficiencies in the eigenvalue and eigenvector derivative literature and also addresses the new issues
associated with the technique in [39]. The simpler solution leads to an efficient, compact, and intuitive
algorithm. The compact results presented for an arbitrary real or complex matrix (with real or
complex eigenvalues and eigenvectors) are found to collapse even further for special cases and
to reveal new insight into the structure of this fascinating problem. Thus, the novel approach for
computing eigenvalue and eigenvector Jacobians introduced in this manuscript is exceedingly general,
is applicable to a wide range of problems, and represents a significant improvement to earlier methods.

This paper is organized as follows. First, a brief discussion on the analyticity of eigenvector
normalizations is presented. Then, a review of the solution proposed in [39] is presented. Next, these
results are modified to arrive at the new technique, which is efficient to compute and is valid for general
complex matrices. This general result is then shown to collapse to known relations from the literature
for the special cases of real symmetric matrices and real diagonal matrices. The new derivatives are
then validated numerically through comparison with forward finite differencing. Finally, the execution
time on a digital computer is compared for the technique proposed in [39] and for the new technique
proposed this paper.
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2. Existence of Eigenvalue and Eigenvector Jacobians

The standard algebraic eigenvalue problem is defined as

Av = λv, (1)

where A ∈ Cn×n is a n × n square matrix, v ∈ Cn is an eigenvector of the system, and λ ∈ C is
an eigenvalue of the system. As should be apparent, each eigenvalue and eigenvector pair is only
implicitly defined according to

(A− λI) v = 0. (2)

It is well known that eigenvectors corresponding to simple eigenvalues are only unique when a
constraint is placed on their norm (i.e., “length”). In addition, the eigenvector normalization can be
expressed implicitly as

xv− α = 0, (3)

where x is a row vector formed by choosing a column normalization vector and transposition method
and α is a normalization constant. Although the choice of α is arbitrary, we often choose α = 1. These
two implicit vector functions can be combined to form a single implicit vector equation:

f(A, y) =

[
(A− λI) v

xv− α

]
= 0n+1×1, (4)

where y =
[

vT λ
]T

. To determine if eigenvalue and eigenvector derivatives exist with respect to
the elements of A, we must determine if both λ and v can be expressed as an explicit function of A.
The implicit function theorem can be used to test if this is possible.

The implicit function theorem states that as long as the determinant of the Jacobian of f with
respect to y can be found and is nonzero, then y can be expressed as an explicit function of x. Therefore,
consider the Jacobian of f as defined in Equation (4):

J =
∂f
∂y

=

[
A− λI −v
∂

∂v (xv) 0

]
, (5)

where ∂
∂v (xv) will be a n× 1 row vector from the rules of matrix vector calculus. Recognizing the block

structure of the Jacobian, it can be shown that the determinant is given by

|J| = −1 |A− λI|+
∣∣∣∣A− λI + v

[
∂

∂v
(xv)

]∣∣∣∣
=

∣∣∣∣A− λI + v
[

∂

∂v
(xv)

]∣∣∣∣ . (6)

Therefore, in order to evaluate the determinant of the Jacobian, we must evaluate ∂(xv)/∂v for the
specific normalization described by the row vector x. The following subsections discuss two potential
eigenvector normalizations.

2.1. Constraining the Eigenvectors to the Unit Hypersphere

Begin with the most commonly used normalization for the standard eigenvalue/eigenvector
problem, x = vH . Substitution into Equation (3) leads to:

vHv = α → −α + vHv = 0, (7)
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which constrains the eigenvector to lie on the hypersphere of radius α. As usual, the superscript of
H indicates the Hermitian (conjugate) transpose (AH = conj(A)T). Expressing this normalization in
terms of the elements of v gives

− α +
n

∑
k=1

vkvk = −α +
n

∑
k=1

(xk − iyk)(xk + iyk) = −α +
n

∑
k=1

x2
k + y2

k , (8)

where vk = xk + iyk is the kth element of the eigenvector v and • is the complex conjugate of •.
We proceed by attempting to determine the partial derivative of this normalization with respect

to the eigenvector in a domain around the eigenvector. First, since the eigenvector may be complex
requiring a complex partial derivative, we need to check that the normalization equation is analytic
in a region around the eigenvector. This is done by using the Cauchy–Riemann equations. Since the
partial derivative and summation operators are linear, the required partial derivatives for checking the
Cauchy–Riemann equations are

∂

∂xj
Re

[
n

∑
k=1

x2
k + y2

k

]
= 2xj, (9)

∂

∂xj
Im

[
n

∑
k=1

x2
k + y2

k

]
= 0, (10)

and
∂

∂yj
Re

[
n

∑
k=1

x2
k + y2

k

]
= 2yj, (11)

∂

∂yj
Im

[
n

∑
k=1

x2
k + y2

k

]
= 0, (12)

where Re [•] takes the real component of • and Im [•] takes the imaginary component of •. Now, using
the Cauchy–Riemann equations, it is easy to see that this function is differentiable only when xj and yj
are 0 and is analytic nowhere. In addition, this shows that this normalization is only differentiable
when v = 0, which is not generally a valid eigenvector. Therefore, this normalization cannot be
used when the eigenvectors are complex because the normalization is not differentiable or analytic
for valid eigenvectors. We do note, however, that when v ∈ RN there are no issues with using
this normalization.

2.2. Constraining the Eigenvectors to a Hyperplane

Now, consider an eigenvector normalization which constrains the length of the projection of
v onto an arbitrary vector, v0 (so long as vH

0 v 6= 0, where we stress here that v0 is not functionally
dependent on v, λ, or A.) Such a normalization occurs when x = vH

0 and constrains v to lie on a
hyperplane. Therefore, substituting this into Equation (3) leads to:

vH
0 v = α → −α + vH

0 v = 0. (13)

Specifically, note that the eigenvector v is now constrained to lie on a hyperplane tangent to the
hypersphere of radius α/ ‖v‖ at the point v0. Expressing this normalization in the terms of the
elements of v and v0 gives

−α +
n

∑
k=1

v0kvk = −α +
n

∑
k=1

(ak − ibk)(xk + iyk)

= −α +
n

∑
k=1

akxk + bkyk + i(akyk − bkxk), (14)
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where vk is as defined before and v0k = ak + ibk is the kth element of v0.
As before, since we are seeking a complex partial derivative, the Cauchy–Riemann equations are

used to check if the partial derivative of the normalization is analytic in a region around the eigenvector.
The partial derivatives with respect to the components of the jth elements of the eigenvector are

∂

∂xj
Re

[
n

∑
k=1

akxk + bkyk + i(akyk − bkxk)

]
= aj, (15)

∂

∂xj
Im

[
n

∑
k=1

akxk + bkyk + i(akyk − bkxk)

]
=−bj, (16)

and
∂

∂yj
Re

[
n

∑
k=1

akxk + bkyk + i(akyk − bkxk)

]
=bj, (17)

∂

∂yj
Im

[
n

∑
k=1

akxk + bkyk + i(akyk − bkxk)

]
= aj, (18)

which satisfy the Cauchy–Riemann equations for any choice of aj and bj indicating that the
normalization is analytic in all of Cn. Since the Cauchy–Riemann equations are satisfied, the vector
form of the partial derivative of the eigenvector normalization constraint with respect to the eigenvector
is given as

∂

∂v

(
vH

0 v− α
)
= vH

0 (19)

using the rules of matrix vector calculus.
This allows the implicit function theorem to be used to check to see if the eigenvalues and

eigenvectors are guaranteed to be analytic functions of A on some domain centered at their nominal
values. Substituting Equation (19) into Equation (6) gives

|J| =
∣∣∣A− λI + vvH

0

∣∣∣ , (20)

which is guaranteed to be full rank and have a non-zero determinant if λ is a simple eigenvalue
(defined as an eigenvalue with a multiplicity of 1). Therefore, using the implicit function theorem with
this normalization, it is guaranteed that the eigenvectors and eigenvalues are analytic functions of A in
some domain around their nominal values for simple eigenvalues. Due to this, the rest of this paper
will use the normalization vH

0 v = α and the case when the eigenvalue is simple.

3. Previous Work

In [39], the authors of this paper presented a new technique for calculating the eigenvalue and
eigenvector Jacobians. This technique allows the calculation of the full Jacobian matrices for both the
eigenvalues and eigenvectors using just the eigenvalue and eigenvector being considered. Some key
results from this prior work are now reviewed.

Begin with the standard eigenvalue problem

Av = λv, (21)

where λ is a simple eigenvalue of A and v is its corresponding eigenvector. Now, take the partial
derivative of this relation with respect to the vectorized version of the matrix A to get

(A− λI)
∂v

∂Avec
= v

∂λ

∂Avec
− vT ⊗ I, (22)
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where Avec is formed by stacking the columns of A into a column vector and⊗ indicates the Kronecker
product. This results in a single equation with two unknowns, ∂v/∂Avec and ∂λ/∂Avec, and thus
a second equation is needed. As described in [39], the eigenvalue derivative can be calculated by
considering the characteristic equation for the matrix A. The characteristic equation for A can be
expressed using the notation of exterior algebra [40] as

|λI−A| =
n

∑
k=0

λn−k(−1)kTr
[
∧kA

]
= 0, (23)

where n is the dimension of A, |•| indicates the determinant, ∧kA is the kth exterior power of A,
and [41]

Tr
[
∧kA

]
=
|Qk|

k!
(24)

Qk =



Tr [A] k− 1 0 . . . 0

Tr
[
A2
]

Tr [A] k− 2 . . . 0

Tr
[
A3
]

Tr
[
A2
]

Tr [A] . . . 0
...

...
...

. . .
...

Tr
[
Ak
]

Tr
[
Ak−1

]
Tr
[
Ak−2

]
. . . Tr [A]


. (25)

With the above expression for the characteristic equation, the solution for the eigenvalue Jacobian
is easy to find:

∂λ

∂Avec
=

−∑n
k=0 λn−k ∂ck

∂Avec

∑n−1
k=0 ck(n− k)λn−k−1

, (26)

where

ck = (−1)kTr
[
∧kA

]
, (27)

∂ck
∂Avec

=
(−1)k

k
∂ |Qk|
∂Avec

, (28)

∂ |Qk|
∂Avec

= |Qk| vec
(

Q−T
k

)T



vec (I)T

2vec
(

AT
)T

3vec
(
(A2)T

)T

...

kvec
(
(Ak−1)T

)T

01×n2

vec (I)T

2vec
(

AT
)T

...

(k− 1)vec
(
(Ak−1)T

)T

02×n2

...
0(k−1)×n2

vec (I)T



. (29)



Algorithms 2019, 12, 245 7 of 21

Now, with the independent equation for the eigenvalue Jacobian, return to Equation (22) to
solve for the eigenvector Jacobian. While it would appear simple to calculate the derivative of the
eigenvectors directly from Equation (22), remember that the term A− λI is rank deficient (by the
definition of an eigenvalue) and is therefore not invertible. In order to solve this problem, we must
make use of a normalization condition to make the eigenvectors unique. As discussed in the preceding
section (and [34]), it is important to ensure that the normalization chosen makes the eigenvector an
analytic function of A; therefore, choose the normalization

vH
0 v = α, (30)

where v0 is any non-zero vector that is not orthogonal to v and α is any real non-zero scalar value. In
practice, it is usually chosen that numerically v0 ≡ v, as this gives rise to a more intuitive interpretation
(as we discuss later); however, even when this is the case, it is still important to remember that v0 is
not a function of A or v.

In addition to making the eigenvectors analytic, Equation (30) also leads to another important
relation. Consider the derivative of Equation (30) with respect to Avec,

vH
0

∂v
∂Avec

= 01×n2 , (31)

which shows that the normalization vector v0 is orthogonal to the column space of the eigenvector
Jacobian.

Using the above normalization condition and its derivative, perform a rank-one update to the
matrix on the lefthand side of Equation (22) with the so-called null space matrix, N, in order to make
A − λI invertible. This approach is discussed further in [39]. This allows for the solution of the
eigenvector derivative as

∂v
∂Avec

= (A− λI + N)−1
[

v
∂λ

∂Avec
− vT ⊗ I

]
, (32)

where
N = σv0vH

0 (33)

is the Null Space Matrix and σ is a scaling term chosen to make N approximately the same order
as A− λI (it is usually sufficient to let the scale be σ = Tr [A]). Including the Null Space Matrix, as
in Equation (33), is the same as adding a zero vector due to the relation in Equation (31). Note, of
course, that a similar end objective may accomplished by using the pseudoinverse of A− λI instead of
including a Null Space Matrix (an example of this alternative approach may be found in [34]).

The term A− λI is rank deficient with a null space in the direction of v. Additionally, the rank
one Null Space Matrix only contains information in the direction of v0. Thus, because v0 is required to
not be orthogonal to v, the quantity A− λI + N is guaranteed to be full rank. For further discussion of
the use of the Null Space Matrix and its properties, refer to [39].

This concludes the review of the technique proposed in [39] and attention is now turned to the
simplification of these methods.

4. Compact Expressions for Eigenvalue and Eigenvector Jacobians

Using the insights from [39], it is now possible to arrive at a simpler and more efficient solution.
Beginning again with Equation (21), left multiply by vH

0 in order to form a new equation:

vH
0 Av = λvH

0 v. (34)
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Recall that, while it is common to set v0 ≡ v, v0 is not a function of A. Taking the derivative of
Equation (34) leads to

vH
0 A

∂v
∂Avec

+ vT ⊗ vH
0 = vH

0 v
∂λ

∂Avec
+ λvH

0
∂v

∂Avec
(35)

through simple application of the chain rule and identities pertaining to the vectorization of a matrix.
Note again that a superscript of T indicates a standard transpose while a superscript of H indicates the
Hermitian (or conjugate) transpose. Now, recalling Equation (31), the right most term of Equation (35)
vanishes. Thus, after incorporating Equation (30) and a few simple rearrangements, one finds

∂λ

∂Avec
=

vH
0 A ∂v

∂Avec
+ vT ⊗ vH

0

α
, (36)

which expresses the eigenvalue Jacobian as a function of A, v, v0, ∂v/∂Avec, and α.
We now turn our attention to finding a compact expression for the eigenvector Jacobian. Observe

that Equations (22) and (36) create a system of two equations with two unknowns. Therefore,
substituting Equation (36) into Equation (22),

(A− λI)
∂v

∂Avec
=

v
[
vH

0 A ∂v
∂Avec

+ vT ⊗ vH
0

]
α

− vT ⊗ I, (37)

which can be arranged to give[
A− λI−

vvH
0 A
α

]
∂v

∂Avec
=

v(vT ⊗ vH
0 )

α
− vT ⊗ I (38)

as an equation that isolates the eigenvector derivative. This expression can be simplified to[
A− λI−

vvH
0 A
α

]
∂v

∂Avec
= vT ⊗

(
vvH

0
α
− I

)
(39)

by manipulating the Kronecker products.

4.1. Eigenvector Jacobian

The objective is now to solve Equation (39) for ∂v/∂Avec. Unlike the result from [39], there is no
need to incorporate a Null Space Matrix (or to use a pseudoinverse) since the term A− λI− vvH

0 A/α

is already full rank and invertible as long as the eigenvalue under consideration is non-zero. This fact
is straightforward to show by considering the column space of the term A− λI, which will generally
be rank n− 1 (assuming λ is simple and A is full rank). Specifically, A− λI spans Cn−1 with a null
space in the direction of v. Now, consider the column space of the term vvH

0 A/α, which is rank one
and spans only v. Therefore, by adding vvH

0 A/α to A− λI, the resulting column space spans all of Cn,
making the overall term full rank and invertible.

In light of this fact, the solution for the eigenvector Jacobian for a non-zero eigenvalue is given by

∂v
∂Avec

=

[
A− λI−

v(vH
0 A)

α

]−1 [
vT ⊗

(
vvH

0
α
− I

)]
, (40)
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which is a function of only A, λ, v, v0, and α. Additionally, manipulating the Kronecker products
allows for a final form of

∂v
∂Avec

= vT ⊗

(A− λI−
vvH

0 A
α

)−1(
vvH

0
α
− I

) . (41)

In the case where it is necessary to find the eigenvector Jacobians when the eigenvalue is zero, the
Null Space Matrix can be used as discussed in [39] to make the left-hand side invertible, resulting in

∂v
∂Avec

= vT ⊗

(A− λI−
vvH

0 A
α

+ N

)−1(
vvH

0
α
− I

) . (42)

4.2. Eigenvalue Jacobian

Now, consider how the eigenvector Jacobian may be used to find the eigenvalue Jacobian.
Substitute the result of Equation (41) into Equation (36) and collect like terms

∂λ

∂Avec
=

vT

α
⊗

vH
0 A

(
A− λI−

vvH
0 A
α

)−1(
vvH

0
α
− I

)
+ vH

0

 . (43)

For the zero-eigenvalue case, the equivalent expression for the eigenvalue Jacobian becomes

∂λ

∂Avec
=

vT

α
⊗

vH
0 A

(
A− λI−

vvH
0 A
α

+ N

)−1(
vvH

0
α
− I

)
+ vH

0

 . (44)

Focusing on the general case from Equation (43), we observe that further simplification is possible.
Begin simplification by recognizing that the following are true:(

A− λI−
vvH

0 A
α

)
v = (A− λI) v−

(
vvH

0 A
α

)
v

= − 1
α

vvH
0 Av

= −λ

α
vvH

0 v

= −λv (45)

and, therefore, (
A− λI−

vvH
0 A
α

)−1

v = − 1
λ

v. (46)
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Applying this result, the intermediate term in Equation (43) may be simplified

vH
0 A

(
A− λI−

vvH
0 A
α

)−1(
vvH

0
α
− I

)

= −
vH

0 AvvH
0

λα
− vH

0 A

(
A− λI−

vvH
0 A
α

)−1

(47)

= −
vH

0 vvH
0

α
− vH

0 A

(
A− λI−

vvH
0 A
α

)−1

= −vH
0 − vH

0 A

(
A− λI−

vvH
0 A
α

)−1

, (48)

which, upon substitution into Equation (43), leads to

∂λ

∂Avec
= vT ⊗

− 1
α

vH
0 A

(
A− λI−

vvH
0 A
α

)−1
 , (49)

providing a concise expression for ∂λ/∂Avec only in terms of the right eigenvector and the chosen
normalization convention, vH

0 v = α.
Intuitively, however, we expect the eigenvalue Jacobian to be unrelated to the choice of eigenvector

normalization. Indeed, we find ∂λ/∂Avec to be the same for any choice of v0, so long as vH
0 v 6= 0. We

may show this by rewriting Equation (49) without the use of v0 or α, although doing so does require
consideration of the left eigenvector. Specifically, let w be the left eigenvector corresponding to the
eigenvalue λ (which also has a right eigenvector v),

wHA = λwH , (50)

wH (A− λI) = 0. (51)

Observe, therefore, that

wH

wHv

(
A− λI−

vvH
0 A
α

)

=
1

wHv

[
wH (A− λI)−

wHvvH
0 A

α

]
(52)

= − 1
α

vH
0 A.

Substituting this result into Equation (49) produces the following compact form that is independent of
the choice of eigenvector normalization

∂λ

∂Avec
=

vT ⊗wH

wHv
. (53)

This result leads to a few important observations about the sensitivity of λ to perturbations in A.
First, this demonstrates that the eigenvalue Jacobian from Equation (49) is indeed the same for any
choice of v0 other than vH

0 v ≈ 0. Second, Equation (49) shows the eigenvalue Jacobian in terms of only
the right eigenvector, whereas Equation (53) shows the same eigenvalue Jacobian in terms of both
the right and left eigenvectors. Thus, in cases where only the right eigenvector is known (and it is
not desirable to compute the corresponding left eigenvector), the result of Equation (49) provides a
compact means of computing the eigenvalue Jacobian. Third, and, finally, observe the division by wHv
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on Equation (53). In general, this suggests eigenvalues will be most stable when their corresponding
left and right eigenvectors are colinear (as happens in a Hermitian matrix) and become unstable as the
angle between v and w increases (wHv→ 0).

5. On the Choice of a Normalization Vector

As mentioned earlier, the choice of v0 is arbitrary, so long as vH
0 v 6= 0. While this is true, the choice

of v0 can play an important role in the numerical stability of the system in finite precision computing.
In particular, the closer the normalization vector gets to being orthogonal to the eigenvector, the more
numerically unstable the system becomes. To demonstrate this phenomena consider Figure 1, which
shows the condition number of the term A− λI− vvH

0 A/α normalized by the number of dimensions,
n, as a function of the angle between v0 and v. A higher condition number indicates a more poorly
conditioned matrix prone to issues in finite precision computing.

The samples were generated by producing 10,000 random matrices for each integer value in
degrees for the angle between v0 and v. Figure 1 shows matrices whose elements are real values which
are normally distributed with zero mean and unit variance. In these experiments, the eigenvector,
v, for each matrix is randomly selected. Since v0 and/or v may be complex, the angle between the
vectors is computed using

cos θ =
Re
(
vH

0 v
)

‖v0‖ ‖v‖
. (54)

Third Quartile (Q3)

First Quartile (Q2)

Interquartile
Range (IQR)

Outliers

Data Less Than 
Q3 + 1.5 IQR

Data Greater Than 
Q1 – 1.5 IQR

99th Percetile of 
Data

Figure 1. The condition number of the term A − λI − vvH
0 A/α normalized by the number of

dimensions, n, as a function of the angle between v0 and v. Here, A is a real matrix. The numerical
results are annotated to make the statistics more clearly visible according to the legend in the bottom
right frame. Results are similar for a complex A.

Figure 1 indicates that the probability of poor matrix conditioning is greatest when v0 and v are
nearly orthogonal. Presuming they are are in random directions, as n increases, it becomes highly
probable that v0 and v will be nearly orthogonal.
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Therefore, it is clear that choosing the normalization vector v0 ≡ v (leading to an angle of 0 deg;
or, equivalently, v0 ≡ −v leading to an angle of 180 deg) will ensure the best conditioning for the
system and will usually lead to the most intuitive solution. The worst conditioning occurs as vH

0 v→ 0
(angle of 90 deg). This is why v0 ≡ v is often chosen in practice, unless there is a compelling reason to
choose otherwise.

Note that selecting v0 = v causes the condition number of A− λI− vvH
0 A/α to share many of

the statistical properties of the condition number of A. This is especially true for large values of the
condition number. Edelman [42] developed probability density functions for the condition number of
A normalized by n when the elements of A are real values with zero mean and unit variance,

p (x) =
2x + 4

x3 exp
(
− 2

x
− 2

x2

)
. (55)

Likewise, for the case where A is composed of complex elements with real and imaginary parts which
are each normally distributed with zero mean and unit variance,

p (x) =
8
x3 exp

(
− 4

x2

)
. (56)

Histograms for when v0 = v are overlaid with Edelman’s probability density functions in Figure 2.
These figures show that the probability of large condition numbers occurring are well described by
Edelman’s result. Unfortunately, Edelman’s density function does not work as well for small condition
numbers, but these are of little consequence.

0 4 8 12 16 20 24 28 32 36 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 2. Histograms of the condition number of the term A− λI− vvH
0 A/α normalized by the number

of dimensions, n, compared to Edelman’s probability density function for the condition number of A.
Here, A is a real matrix.

In light of the above discussion, we stress again that v0 is not the same as v. These results simply
demonstrate that the best numerical performance is achieved when the values of the arbitrary vector
v0 are set to be the same as v. Consequently, one may wonder how the usual normalization choice
of vHv = α (instead of the vH

0 v = α normalization suggested in this paper) affects the Jacobians.
Observation of the problem geometry reveals that the normalization proposed in Equation (30) (vH

0 v =

α) serves as a good approximation for the usual normalization of vHv = α when A is well conditioned
and the values of v0 are set to that of v. This is because the usual normalization constrains the
eigenvectors to fall on the hypersphere of radius

√
α, while the normalization from Equation (30)
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constrains the perturbed eigenvectors to fall on the hyperplane tangent to the hypersphere of radius
α/ ‖v‖ at v0. Therefore, as long as the perturbation of A leaves the perturbed eigenvector near the
original eigenvector, the proposed normalization approximates the normalization constraining the
eigenvectors to the hypersphere to first order. Furthermore, when v0 is chosen to be v, the difference
between the usual normalization and Equation (30) rarely needs to be considered in practice except in
very rare situations, such as when attempting to numerically verify the analytic expressions as was
done in the “Numerical Validation” section of this paper.

With these observations in mind, additional remarks are necessary regarding the expressions in
the literature that rely on the normalization vHv = α. Recall from our earlier discussion that using
vHv = α does not result in a valid expression for the eigenvector derivatives because the normalization
is not analytic. Despite this, the numerical results produced by these methods will be equivalent to
the numerical results of the expressions developed in this paper when v0 is chosen to be v. While the
expressions for the derivatives are numerically equivalent, the derivatives from the existing literature
are not valid for the normalization employed. This means that that the derivatives in the existing
literature cannot be used to predict the perturbations caused to eigenvectors by perturbations to A
when the eigenvectors are complex. The derivatives and normalization in this paper are valid for all
complex eigenvectors and can be used to predict the perturbation caused to the eigenvectors by the
perturbations to A.

6. Simplified Cases

The goal of the work presented in this paper was to create a compact, efficient, and intuitive
algorithm for the calculation of the Jacobians of an eigenvalue and eigenvector with respect to the
elements of the parent matrix. Now that these expressions have been developed, it is beneficial to
discuss how they simplify as assumptions are placed on the parent matrix. A variety of simplifications
are possible by imposing structure on A and subsequently Equations (41) and (49). This work focuses
on two particularly useful simplifications as a way to gain key insights and show connections with
existing literature.

6.1. Real Symmetric Parent Matrix

The first simplified case considered is when the parent matrix of the eigenvalues and eigenvectors
is real and symmetric. Matrices of this structure frequently appear in practical problems from science
and engineering (for instance, the Davenport solution to Wahba’s Problem [3]). In order to simplify
and to parallel results from the existing literature, it is also necessary to make a choice for v0; therefore,
choose that v0 = v and α = 1. Note that, as discussed previously, this is the choice usually made in
practice, as it leads to the best condition for the calculation of the eigenvector derivative.

To begin the simplifications for the symmetric case consider Equation (38), repeated here for
convenience: [

A− λI− vvTA
] ∂v

∂Avec
= −vT ⊗

(
I− vvT

)
. (57)

Note that the Hermitian transposes have been replaced by standard transposes, since the eigenvalues
and eigenvectors are guaranteed to be real since A is real and symmetric. In addition, note that v0 has
been replaced by v. Now, as discussed before, the coefficient matrix of the eigenvector Jacobian is full
rank (and invertible) as long as the matrix A is full rank and invertible. Making use of the fact that for
an invertible matrix

A+ = A−1, (58)

where A+ is the Moore–Penrose pseudoinverse of A [43], it is possible to write

∂v
∂Avec

= −vT ⊗
[(

A− λI− vvTA
)+ (

I− vvT
)]

. (59)
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From here, it is necessary to further consider the pseudoinverse term. Recognize that the
pseudoinverse term in Equation (59) can be expressed as the addition of a matrix and an outer product(

A− λI− vvTA
)+

=
(

B + cdT
)+

, (60)

where B = A− λI, c = −v, and d = Av = λv. Using the case i identities presented in [44] when A is
real and symmetric, it can be shown that(

A− λI− vvTA
)+

= (A− λI)+ − λ−1vvT . (61)

Substituting this result into Equation (59) yields

∂v
∂Avec

= −vT ⊗
([

(A− λI)+ − λ−1vvT
] [

I− vvT
])

. (62)

Now, expanding the matrix multiplication in the Kronecker product gives

∂v
∂Avec

=− vT ⊗
[
(A− λI)+ − λ−1vvT

− (A− λI)+ vvT + λ−1vvTvvT
]

, (63)

which, when taking into account that for symmetric matrices the pseudoinverse has the same null
space as the matrix itself, simplifies to

∂v
∂Avec

= −vT ⊗ (A− λI)+ , (64)

which is exactly the same result presented in [34].
With the simplified version of the eigenvector derivative in hand, the simplified eigenvalue

Jacobian is trivial to find. To begin, substitute Equation (64) into Equation (36) to obtain

∂λ

∂Avec
= vT ⊗

[
−vTA (A− λI)+

]
+ vT ⊗ vT . (65)

Now, making use of the fact that vTA = λvT for symmetric matrices and the sharing of the null
spaces (the original matrix and its pseudo inverse share the same null space for symmetric matrices),
this reduces to

∂λ

∂Avec
= vT ⊗ vT , (66)

which, again, is exactly the same as that presented in [34]. Note that these expressions do not assume
that the parent matrix is perturbed symmetrically.

Thus, the general eigenvalue and eigenvector Jacobians presented in Equations (41) and (49)
cleanly simplify to the results from [34] for the special case when A is symmetric. This same result can
be achieved by assuming the symmetry of A and enforcing v0 ≡ v in Equations (22) and (36), as was
done in [34].

6.2. Real Diagonal Parent Matrix

The second simplified case considered is a diagonal parent matrix with only real valued elements.
In this case, the eigenvalues of the matrix are simply the diagonal elements of A and the eigenvectors are
the standard basis. While this case is trivial, it leads to some powerful insights into the overall problem.
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6.2.1. Simplified Jacobians for a Diagonal Matrix

To develop the simplified derivatives for a diagonal matrix, begin with the simplified derivatives
for the symmetric case given in Equations (64) and (66). Now, recognizing that the pseudoinverse of a
diagonal matrix is just the reciprocal of the non-zero diagonal elements, the eigenvector derivative
simplifies to

∂vi
∂Avec

= −eT
i ⊗ (A− λI)+

= −
[

0n×(i−1)n (A− λI)+ 0n×(n−i)n

]
, (67)

where

(A− λI)+ = diag
[
(λ1 − λi)

−1, . . . , (λi−1 − λi)
−1, 0,

(λi+1 − λi)
−1 . . . , (λn − λi)

−1
]

(68)

and where ei is the ith standard basis vector and the derivatives presented are for the ith eigenvalue
and eigenvector (at this point, it becomes necessary to distinguish the eigenvalue and eigenvector
being considered). Recall that the pseudoinverse of a non-zero scalar is the reciprocal, while the
pseudoinverse of a zero scalar is 0.

The eigenvalue derivative simplifies similarly:

∂λi
∂Avec

= eT
i ⊗ ei

=
[

01×(i−1)n eT
i 01×(n−i)n

]
. (69)

6.2.2. Perturbation to the Eigenspace of a Diagonal Matrix

With the simplified relationships in hand, it is possible to make some interesting observations
on the perturbation of the eigenspace. (Again, note that it is only assumed that the parent matrix
is diagonal. The perturbation matrix is not constrained to be diagonal.) The first observation is
that to perturb the ith eigenvalue, one must perturb the ith diagonal element of the diagonal parent
matrix, at least to first order. Furthermore, the perturbation to the eigenvalue in this case is exactly the
perturbation to the parent matrix. While this observation should be trivial (since the diagonal elements
are the eigenvalues themselves), it leads to a more interesting observation for the general case as will
be discussed later. This observation can be expressed mathematically as

∆λi = δi (70)

when
∆A = δieieT

i = δivivT
i . (71)

The next observation is that the eigenvector is only perturbed when the ith column of the
parent matrix is perturbed. Furthermore, there is an analytic relationship between the change to
the eigenvector, the eigenvalues, and the perturbation itself. Mathematically, this is expressed as

∆vi = −
n

∑
k=1,k 6=i

δk
λk − λi

ek = −
n

∑
k=1,k 6=i

δk
λk − λi

vk (72)

when

∆A =
n

∑
k=1,k 6=i

δkekeT
i =

n

∑
k=1,k 6=i

δkvkvT
i . (73)
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These relations show that the eigenvector derivative for a diagonal matrix can be expressed as a modal
expansion of the other eigenvectors if the coefficients δk can be calculated (which is quite simple for a
diagonal matrix since the eigenvectors are the standard basis).

6.2.3. Perturbations to the Eigenspace of a Diagonalizable Matrix

Now, reconsider the case when the parent matrix is symmetric (as was done for the previous
section). Since the parent matrix is symmetric, the eigenvectors will form an orthonormal basis for Rn

and the matrix is diagonalizable as
A = VΛVT , (74)

where Λ is a diagonal matrix of the eigenvalues and V is an orthogonal matrix whose columns are the
eigenvectors of A. Substituting this into the standard eigenvalue problem gives

VΛVTvi = λivi,

which can be rewritten as
ΛVTvi = λiVTvi. (75)

Since the columns of V are made up of the orthogonal eigenvectors of A,

VTvi = ei, (76)

which quickly reduces Equation (75) down to the diagonalized eigensystem,

Λei = λiei. (77)

Now, suppose that the matrix A is perturbed by adding a matrix ∆A. In the diagonalized space
this matrix perturbation can be expressed as

∆Λ = VT∆AV, (78)

where ∆Λ is an additive update to Λ. The matrix ∆Λ will not generally be diagonal.
Now that the problem has been diagonalized, the observations described above can be utilized.

Since the eigenvectors in the diagonalized space form the standard basis, it is clear that the matrix ∆Λ

can be decomposed as

∆Λ =
n

∑
i=1

n

∑
k=1

δkiekeT
i , (79)

where

∆Λ =


δ11 δ12 . . . δ1n
δ21 δ22 . . . δ2n
...

...
. . .

...
δn1 δn2 . . . δnn

 (80)

and
δki = vT

k ∆Avi. (81)

Now, analogous to relations in Equations (70) and (72), the perturbations in the diagonalized
space are described by

∆λi = δii, (82)

∆ei = −
n

∑
k=1,k 6=i

δki
λk − λi

ek. (83)
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These perturbations must now be related to perturbations in the original eigenvectors, vi. For an
additive update of the diagonalized eigenvector,

vi + ∆vi = V (ei + ∆ei) . (84)

Thus, it becomes apparent that the update to the original eigenvector is given by

∆vi = V∆ei

= −
n

∑
k=1,k 6=i

δki
λk − λi

vk. (85)

Furthermore, taking the inverse of Equation (78) combined with Equation (79) gives

∆A = V
n

∑
i=1

n

∑
k=1

δkiekeT
i VT

=
n

∑
i=1

n

∑
k=1

δkivkvT
i , (86)

which shows that any perturbation can be expressed as a linear combination of the outer products of
the eigenvectors of any symmetric matrix where the coefficients are found using Equation (81). While
this approach is not efficient, it provides an interesting parallel to the modal expansion techniques
discussed in [10–17] as well as stability theory for eigenvectors [45]. Interestingly, the result arrived at
in Equation (85) is exactly that arrived at in [45] for the symmetric case.

Furthermore, if the update to A is defined to be ∆A = ∂AijeieT
j , then it becomes possible to find

the derivatives for a perturbation to any element of A as

∂vi
∂Alm

= −
n

∑
k=1,k 6=i

vklvim
λk − λi

vk, (87)

where ∂vi/∂Alm is the partial derivative of the ith eigenvector with respect to the (l, m)th element
of the matrix A, and vab is the bth element of the ath eigenvector of A, which is very similar to
what is done in [10–17]. A similar proof using left eigenvectors can be shown for the case of any
diagonalizable matrix.

In summary, it once again becomes evident that the very general and very efficient expressions
for eigenvalue and eigenvector Jacobians presented in this manuscript may be reduced to a variety of
important special cases presented elsewhere in the literature. In addition, these simplifications provide
powerful insight into the structure and dynamics of the eigenvalue and eigenvector Jacobian problem.

7. Numerical Validation

Forward finite differencing was used to validate the formulation of the new eigenvalue and
eigenvector Jacobians presented in this manuscript. This provides a numerical approximation of the
Jacobians which may be compared with the analytic expressions developed in this paper.

The forward finite differencing was performed by perturbing each element of the parent matrix
individually in order to calculate each element of the Jacobians. The analytic derivatives from
Equations (40) and (49) were then compared with the finite differences and the percent differences
were calculated as

% Difference = 100
‖xnumeric − xanalytic‖

xnumeric
. (88)

This was performed for 5000 randomly generated complex matrices of size 2× 2, 5000 randomly
generated complex matrices of size 3× 3, and 5000 randomly generated complex matrices of size
10× 10. The results for both the eigenvalue and eigenvector derivatives are shown in the histograms
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in Figure 3. Note that, due to finite precision issues, matrices had to be ignored where the smallest
component of the eigenvector derivatives was less than the perturbation size used in the finite
differencing. As can be seen in the figure, the new method performed well in every instance, well
below 0.1% difference for each and every element of the eigenvalue and eigenvector Jacobians. In
addition, the output from the techniques derived in this paper matched to within machine precision
the outputs from [39].

(a) 2× 2 (b) 3× 3 (c) 10× 10
Figure 3. Histograms of percent difference between analytic derivatives computed using Equations (36)
and (40) (eigenvalue derivatives top and eigenvector derivatives bottom) and finite forward differencing
for 5000 randomly generated matrices of each size. The histograms are of the percent difference for
each element of the eigenvalue and eigenvector derivatives (for example, for each n× n matrix there
are n2 eigenvalue derivative elements and n× n2 eigenvector derivative elements). Similar histograms
are presented in [39] for the method discussed in that paper.

8. Comparison of Performance

The primary goal of the derivations presented in this paper was to decrease the computational
complexity of those presented in [39]. An examination of the two formulations indicates that both
techniques are O(n4) due to the n × n by n × n2 multiplication in Equation (40) and the Tr [An]

term in Equation (25) (assuming that the technique used to calculate the determinant is faster than
O(n!), as this is the case in most modern linear algebra libraries). Despite the fact that both these
formulations have the same upper limit on their computational complexity, it should be clear that the
new formulation is much simpler, both in terms of operations performed (the formulation from [39]
has two operations that are of order O(n4) as opposed to one for the formulations proposed here) and
in terms of memory use.

A simulation was run in an attempt to detail the increase in computational efficiency from the
technique in [39] to the technique presented in this paper. The simulation was performed by applying
each technique in turn to 50 randomly generated matrices (the same 50 matrices for each technique) at
matrix sizes varying from 2 to 50. For each run, the computation time of each method was recorded.
Finally, the minimum computation time for each matrix size was chosen for each method, and the
results are shown in Figure 4. As can be seen in the figure, the new method is at minimum an order
of magnitude faster and the distance between the performance of the two methods increases as the
matrix size increases. In addition, note that the new method is less susceptible to numerical precision
issues, as is evidenced by the cut-off of the results for the method from [39].



Algorithms 2019, 12, 245 19 of 21

These simulations were performed by the authors on the campus of West Virginia University
(WVU) in Morgantown, WV in 2016, using an Intel Core i7-3770 processor at 3.4 GHz ,and executed
within the MATLAB programming language (version R2015b).

Matrix Size
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"
Numerical stability
issues past this point
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Figure 4. A plot of minimum computation time versus matrix size for the method from [39] (original
method) and the method proposed in this paper (new method). Note that the method from [39]
encounters numerical stability issues around a matrix size of 35 due to Equation (29). This is why there
is a cut-off in the data.

9. Conclusions

A new formulation is derived for the complete Jacobians of eigenvalues and eigenvectors with
respect to the elements of their parent matrix. The new solution relies on only the eigenvalue and
eigenvector being considered and is valid for any unitary complex eigenvalue/eigenvector pair.
Furthermore, the parent matrix may contain complex entries and need not be symmetric. As a result,
the method presented here is extremely general with applications to finite-element analysis (FEA)
solutions to vibration problems, fitting of an ellipse to scattered data points, quaternion-based attitude
estimation, and a host of other important scientific and engineering problems.

The new eigenvalue and eigenvector Jacobians developed in this manuscript are shown to collapse
to well-known results if the parent matrix is either (1) real and symmetric or (2) real and diagonal.
This new method may also be reinterpreted to gain a deeper understanding of perturbations of
the eigenspace.

Finally, the new eigenvalue and eigenvector Jacobians are validated by comparison with forward
finite differencing. The computational performance speed of this new technique was shown to be
better by a factor of 10 (or greater for large matrices) when compared with the performance of the
technique proposed in [39].
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