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Abstract: For solving the complex flexible job-shop scheduling problem, an improved genetic
algorithm with adaptive variable neighborhood search (IGA-AVNS) is proposed. The improved
genetic algorithm first uses a hybrid method combining operation sequence (OS) random selection
with machine assignment (MA) hybrid method selection to generate the initial population, and it
then groups the population. Each group uses an improved genetic operation for global search, then
the better solutions from each group are stored in the elite library, and finally, the adaptive local
neighborhood search is used in the elite library for detailed local searches. The simulation experiments
are carried out by three sets of international standard examples. The experimental results show that
the IGA-AVNS algorithm is an effective algorithm for solving flexible job-shop scheduling problems.

Keywords: adaptive; flexible job-shop scheduling problem; improved genetic algorithm; variable
neighborhood search

1. Introduction

Along with the rapid development of modern manufacturing, science, and technology, consumers’
demands are becoming more and more personalized and customized. The production mode of
the manufacturing companies is gradually shifting from continuous, large quantity production to
multi-variety and small quantity production. The flexible job-shop scheduling problem (FJSP) embodies
the flexibility of production, that is, the different operations of each job in FJSP can be processed on
different machines with different processing times. The job can select the machine according to the
actual situation, such as workload and the idle state of the machine. It is more suitable for actual
production practice activities and has certain theoretical and practical value for its research.

The FJSP problem was first proposed by Bruker and Schile in 1990. In recent years, many scholars
have achieved certain results in solving the FJSP problem. Huang et al. [1] proposed the method of
combining multi-objective particle swarm optimization and variable neighborhood search to solve the
FJSP problem effectively. Ning et al. [2] proposed an improved quantum genetic algorithm based on
the earliness/tardiness penalty coefficient. The double penalty coefficient is designed in the algorithm,
and a double-chain coding method was proposed. At last, the standard example demonstrates the
effectiveness of the algorithm. Vilcot et al. [3] used a combination of tabu search (TS) and genetic
algorithm (GA) to optimize the two goals of maximum completion time and cost reduction. A hybrid
non-dominated sorting simulated annealing algorithm for FJSP was proposed by Shivasankaran et al. [4],
in which critical or incapable machines were eliminated by non-dominated sorting for all operations
and simulated annealing was used to search for an optimal solution. Nouri et al. [5] solve the flexible
job-shop problem with a multi-agent model based on mixed-element heuristics. Zhao et al. [6] proposed
a bilevel neighborhood search hybrid algorithm to solve FJSP, which achieved remarkable results.
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Driss et al. [7] proposed a new genetic algorithm (NGA) for FJSP, which used a new chromosome
representation and different crossover and mutation strategies and obtained better experimental results.

Chang et al. [8] proposed a hybrid genetic algorithm (HGA), which used the Taguchi method to
optimize the parameters of the genetic algorithm, and in the paper, a novel coding mechanism was
proposed to solve the problem of invalid work assignment. Yi et al. [9] proposed an effective memetic
algorithm (MA), which combines the local search ability of TS with the global search capability of GA
to provide an effective way to "explore" and "exploit." Wang et al. [10] developed a hybrid evolutionary
algorithm (HEA), which proposed a new operator based on the average Hamming distance to maintain
population diversity, adopted different crossover and mutation strategies, and introduced the critical
path theory and local search process of the preferred strategy to improve the convergence speed.
Li et al. [11] proposed an efficient hybrid algorithm (HA), which combines the genetic algorithm
(GA) and tabu search (TS), and this algorithm uses TS with a good local search ability to mine, which
balances the intensity and diversity of the scheduling.

In view of these, this paper proposes an improved genetic algorithm with an adaptive variable
neighborhood search (IGA-AVNS) for solving FJSP. Genetic algorithm (GA) is characterized by
parallelism, adaptiveness, and self-learning, whose principle is simple, robust, versatile, has good
global search performance, and can quickly find most solutions in the solution space. However, a
single GA has a poor local search capability, so the entire search process is time-consuming and the
efficiency of the algorithm is not high. However, variable neighborhood search (VNS) [12–14] can make
up for the above defects and has a strong local search ability. Variable neighborhood search (VNS)
escapes from local optimization by searching for systematic changes in the neighborhood structure.

First, divide the entire initial population into a series of subpopulations and optimize each
subpopulation with improved GA. Then the optimization results of each subpopulation form elite
populations and the adaptive local neighborhood search algorithm is used in the elite population
for accurate local search. In this paper, three neighborhood structures are designed to generate the
neighborhood solution and the three neighborhood structures are selected adaptively, that is, the
neighborhood with the best search effect is adaptively selected for searching, which greatly reduces the
search time and improves search efficiency. This makes full use of the characteristics of GA and VNS
search, which not only increases the diversity of the population and prevents the loss of the optimal
solution, but also accelerates the convergence speed and improves the efficiency of the algorithm.

The paper provides the following contributions:
(1) The initial population is generated by the hybrid method, namely 60% global selection by

operation (GSO), 20% tournament selection, and 20% random selection. When the GSO is selected, the
machine with the lowest global load is selected in the optional machine set to process, the workload of
the machine is reduced as much as possible, the optimization time is shortened, and the quality of
the initial solution is guaranteed. The tournament selection and the random selection increase the
diversity of the population and prevent the loss of the optimal solution. The combination of the three
methods to generate the initial population greatly improves the quality of the solution and the speed
of obtaining the optimal solution.

(2) In the crossover process of the improved genetic algorithm, the operation sequence (OS) adopts
the precedence operation crossover (POX) and the improved uniform crossover, and the MA adopts
the single-point crossover. This operation not only ensures the rapid improvement of the search
ability, but also ensures that the generated solution is always feasible; the late mutation of the genetic
algorithm increases the diversity of the population, enhances the local search ability of the algorithm,
and prevents the algorithm from falling into immature convergence.

(3) Adaptive neighborhood search is used for the optimal solution in the elite library. The three
neighborhood structures proposed in this paper are selected adaptively according to the search effect
of different neighborhood structures, so that VNS can adaptively select better neighborhood types
according to the search performance of each neighborhood, instead of using the fixed neighborhood
search, which effectively promotes the competition between neighborhoods, makes the neighborhood
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method with better search performance have a higher probability for further search, thereby improving
the search efficiency and search quality of the algorithm.

(4) Introduce an elite library to store the best individuals. It prevents the loss of the optimal
solution during evolution.

The rest of this article is organized as follows: Section 2 introduces the FJSP data model, and
Section 3 describes the overall flow of the IGA-AVNS algorithm. Section 4 introduces the detailed
implementation of the IGA-AVNS algorithm including encoding and decoding, the generation of initial
solutions, improved genetic operations, and adaptive variable neighborhood search. Section 5 shows
the results of computational studies using the IGA-AVNS algorithm and its comparisons with other
algorithms. Section 6 is the conclusion and direction of future research.

2. Mathematical Model of FJSP

A FJSP problem can be described as follows:
There are n jobs J = (J1, J2, . . . , Jn), which are processed on m different machines M = (M1, M2,

. . . , Mm). Each job Ji contains ni non-preemptable ordered operations, expressed as the operation set
Oi = {Oi,1, Oi,2, . . . , Oi,ni }. L is the total number of operations of all jobs. Each operation Oi, j selects the
machine to be processed from a set of available machines (this paper studies the partial FJSP (P-FJSP),
machine set Mi, j ∈M. If it is a total FJSP (T-FJSP), the machine set Mi, j = M). The processing time of
the operation on different machines ti, j,k (1 ≤ i ≤ n, 1 ≤ j ≤ ni, 1 ≤ k ≤ m) is predefined. The optimization
goal of FJSP is to select the machine Mk from the machine set Mi,j for each operation Oi,j, and determine
the start time sti,j and completion time fti,j of each operation, and minimize the completion time of all
machines, see the Equation (1).

f = min(
n∑

i=1

max( f ti,ni)) (1)

FJSP processing also satisfies the following constraints and assumptions (5 and 6 are assumptions):

• All machines are available at time 0, and each operation can be processed at time 0;
• At a certain time, one operation can only be processed by one machine at a time. Once the

operation is completed, the machine can be used in other operations;
• Once the processing begins, it cannot be interrupted;
• There are no successive constraints on the operations of different jobs, and there are successive

constraints between the operations of the same job;
• The setting time of the machine and the transportation time of the operation are negligible;
• There are no emergencies (such as machine failures, new orders, etc.).

3. Flow of the IGA-AVNS

Based on the strong global search ability of the genetic algorithm, the strong local search ability of
the variable neighborhood search, and the characteristics of the FJSP problem, an improved genetic
algorithm (IGA-AVNS) with an adaptive variable neighborhood search is proposed. The operation
steps are as follows. The flow chart is shown in Figure 1.

Step 1: Set the parameters—total iteration number ITER, population size POPSIZE, crossover
probability Pc, mutation probability Pm, etc.;

Step 2: Initialize the population using the method in Section 4.2, generate POPSIZE chromosomes,
evaluate the fitness values of all the individuals, and store the optimal individuals in the elite library,
set the number of cycles—iter = 0;

Step 3: Determine whether the termination criterion (iter > ITER) is satisfied, and if so, output the
optimal solution, S∗, otherwise go to Step 4;
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Step 4: Divide the initial population into N subordinate groups, Si (i = 1, 2, ..., N), and N is
generally taken as POPSIZE

10 . In each Si, genetic operations (selection, crossover, and mutation) are
performed according to Section 4.3. Evaluate the fitness value of each individual in Si, save the best
individual in each Si into the elite library, and replace the original N poor solutions of the elite library;

Step 5: Select the optimal chromosome in the elite library, and do the neighborhood search
according to Section 4.4 to get the new optimal solution S′; if f(S′) < f(S∗), replace S∗ with S′, iter = iter
+ 1, otherwise, S∗ remains unchanged, and go to Step 3.
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4. IGA-AVNS

4.1. Encoding and Decoding

Each solution of FJSP consists of two parts [15]: one is to sort the operations assigned on the
machine, that is, the operation sequence (OS); the other is to assign each operation to a machine set,
that is, machine assignment (MA), which means that the algorithm assigns each operation to the
corresponding machine and calculates its start time and end time. The number in the sequence OS is
the operation index. The order in which each job j appears in the OS represents the processing order of
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each operation of the job. See the OS of the chromosome in Figure 2: 1 2 1 1 2. The first 1 represents
the operation O1,1 the job J1, the first 2 represents the first operation O2,1 of the job J2, the second 1
represents the second operation O1,2 of the job J1, and so on. The processing order of each operation of
this chromosome is:

O1,1 → O2,1 → O1,2 → O1,3 → O2,2

The number in the MA is the machine number. Each number indicates the machine number of the
corresponding operation selected in the optional machine set. See Figure 2, where the first 1 in the
figure indicates the processing machine number of the corresponding operation O1,1 in the optional
machine M = {M1, M3}, that is, M1. MA and OS have the same length, which is equal to the sum of the
operations of all the jobs, that is, L, and the length of the chromosome is 2L. Table 1 is the processing
schedule for the 2 × 4 problem, and Figure 3 is the Gantt chart for solving the problem.

Table 1. Processing time on the 2 × 4 problem.

Jobs Operation M1 M2 M3 M4

J1

O1,1 2 999 3 999

O1,2 5 999 999 2

O1,3 999 3 4 1

J2
O2,1 7 3 9 999

O2,2 3 1 999 6
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Decoding is the process of converting a chromosome code into feasible scheduling. The steps are
as follows:

Step 1: Read each gene of the OS and convert it to the corresponding operation Oi, j;
Step 2: Read each gene on the MA, obtain the processing machine number Mk corresponding to

each operation, and obtain the processing time ti, j,k of each operation from the processing time matrix;
Step 2.1: If the operation Oi, j is the first operation of the job i, process directly from the zero time

on the machine Mk; if the process Oi, j is the first operation of the machine Mk, process from the end time
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of the previous operation Oi−1, j on the machine, Mk. Otherwise, find the idle interval period [St,Et] of
the machine Mk, in which St represents the start time of the time interval, and Et represents the end
time of the time interval. Equation (2) obtains the earliest processing time EST1 of the operation Oi, j;

Step 2.2: Determine whether the appropriate idle interval to process the current operation Oi, j
is found according to (3), and if yes, insert Oi, j into the current time period, otherwise process the
machine Mk at the earliest processing time of EST2 obtained according to Equation (4);

Step 3: Update the processing information of each machine;
Step 4: Determine whether all the genes of the chromosome are decoded, and if yes, end, otherwise,

go to Step 2.

EST1 = max
{

f ti( j−1), St
}

(2)

EST1 + ti, j,k ≤ Et (3)

EST2 = max
{

f ti( j−1), Ek
}

(4)

f ti( j−1) is the processing completion time of the operation Oi, j−1; Si jk is the starting time of the
operation Oi j on the machine Mk, and Ei jk is the ending time of the operation Oi j on the machine Mk,
Ek is the completion time of the last operation on the machine Mk.

4.2. Population Initialization

The quality of the initial population often affects the convergence speed of the algorithm. It is
both a hope for obtaining the global optimal solution and a wide diversity for the population. To some
extent, the initial population usually affects the performance of the algorithm. Generating high-quality
initial populations is often the key to an algorithm’s success. The initialization process of FJSP includes
operation sequence and the machine assignment. Kacem et al. [16] first proposed the method of
initializing the population (approach by localization, AL) and Pezzella et al. [17] used three scheduling
rules to initialize the operation sequence. A method for GLR (global search, local search and random
search) machine selection was proposed in [18,19], which combines three methods of global selection
(GS), local selection (LS), and random selection (RS). This paper tries to select the machine with the
shortest processing time in the selection stage. It not only considers the workload balance of the
machine but also increases the diversity of the population by adding random selection. The experiment
proves that it has achieved good results. But the method is to start from the first job, which increases
the search time. Based on the above literature research, this paper proposes a method combining OS
random selection with MA hybrid method selection. The MA selection refers to the method by which
an operation selects machines in its optional machine set. The scheduling generated in this way is
feasible. The special steps are as follows:

(1) Random selection: random generation;
(2) Tournament selection: First a certain number of individuals are taken out of the population

and then the best one is selected to enter as the offspring population. The specific steps are as follows:
Step 1: Determine the number of individuals selected each time, generally two individuals.
Step 2: Select an individual randomly from the population (each subject has the same probability

of inclusion) to form a group, and select the individual with the best fitness value to enter the progeny
population according to the fitness value of each individual.

Step 3: Repeat Step 2, and the resulting individuals constitute a new generation population.
(3) Global selection by operation (GSO): Since the OS is randomly coded, each gene in the MA is a

processing machine selected for the process in the OS. So our goal is to select the machine with the
lowest global load for processing in the optional machine set. The specific steps are as follows:
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Step 1: Define a one-dimensional array ML (machine load) to represent the workload of all the
machines. The length of the ML is the number of machines, the initial values are 0, and the array value
corresponds to the total load on the machine [M1, M2, . . . , Mm];

Step 2: For each operation of the OS (record Ok), repeat Step 3–Step 6 until all the operations in
the OS are completed;

Step 3: Find the processing time array OT (order time) of the Ok in the Ok optional processing
machine set;

Step 4: Define a temporary array TT (temporary time), the structure is the same as ML, the initial
values are 0, the value of the corresponding machine in the array OT is added to the corresponding
position of the ML, and the result is stored in the TT;

Step 5: Select the minimum number of machines Mi in TT and store it in the MA;
Step 6: Update ML: the position of Mi in ML equals to the original value plus the value of OT’s

Mi position.
For 2 × 4 P-FJSP in Table 1, the OS is randomly generated: 2 1 1 2 1. First take 2, indicating the

operation O21, and the second time take 1, indicating the operation O11, which is executed sequentially,
and the GSO search process is shown in Figure 4.
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4.3. Improved Genetic Operation

4.3.1. Selection

The MA parts of the chromosome in the initial population are generated by the 60% GSO,
20% tournament selection, and 20% random selection, and the OS parts are all randomly generated.

Tournament selection: Randomly select two individuals from the population. If the generated
random values are less than 0.8, select the better one, otherwise select another one.

After generating the initial population, firstly, evaluate the fitness value, and store the optimal
individuals into the elite library, then divide the entire population into groups, and finally, for each
subpopulation after grouping, perform the crossover according to Section 4.3.2 and perform the
mutation according to Section 4.3.3.
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4.3.2. Crossover

Crossover is the main operation in the genetic algorithm, which determines the global search
ability of the algorithm to a large extent. The crossover of MA and OS is separately conducted in this
paper. The OS sequence selects the POX crossover in (1) and the improved uniform crossover in (2).
The MA sequence selects the improved single-point crossover in selection (3).

(1) POX Crossover: The parent chromosomes after the coding are recorded as P1, P2, . . . , Pn,
and the offspring chromosomes obtained after the crossover are recorded as C1, C2, . . . , Cn (n is the
population). The crossover is as follows:

Step 1: P1 and P2 are sequentially taken out from the parent chromosomes. Copy all the operations
included in job J1 in P1 to C1 in the original order, and copy all the operations contained in job J2 in P2

to C1 in the original order;
Step 2: Copy all the operations included in job J2 in P1 to C2 in the original order, and copy all the

operations of the job J1 in P2 to C2 in the original order;
Step 3: Repeat Step 1–Step 2 in the parent chromosomes until n offspring chromosomes C1, C2,

. . . , Cn are obtained;
(2) Improved uniform crossover: Randomly generate a binary code R, and the length is L. Assign

all genes with a value of 1 corresponding to R in the parent chromosome P1 to the offspring C1, and after
removing the gene copied to C1 in P2, the remaining genes are sequentially assigned to C1. Similarly,
all the genes with a value of 1 corresponding to R in the parent chromosome P2 are assigned to the
offspring C2, and the genes copied to C2 are removed in P1, and the remaining genes are sequentially
assigned to C2.

Since R is randomly generated, the diversity of the population is enhanced, and the search in the
solution space is promoted, making the search more robust.

(3) Improved single-point crossover: Divide all the chromosomes involved in the crossover into n
2

groups, and perform single-point crossover for the two parent chromosomes in each group: randomly
select one crossover point, and exchange the machines assigned by the operations included in the two
parents before the crossover point, which ensures that the chromosomes obtained after the crossover
are all feasible scheduling.

4.3.3. Mutation

(1) Mutation based on OS: Randomly select a chromosome according to the mutation probability
Pm, and select one of the operations. Since the job has a sequence order constraint, firstly, determine
the position of the precursor operation O′f and the subsequent operation O′s of the operation O′, and
then randomly select a position to insert the operation between these two positions, which ensures
that the resulting schedule is a feasible solution.

(2) Mutation based on MA: Select a parent chromosome for the mutation according to the mutation
probability Pm, and select one of the processing operations O′′ . Since each operation can be processed
on multiple machines, each operation has a collection of optional processing machines. Randomly
select a machine in the processing machine of O′′ to complete the mutation.

4.4. Adaptive Variable Neighborhood Search

In order to effectively search in the solution space and obtain high-quality solutions in FJSP, this
paper combines the method of variable neighborhood search proposed in [20–22] and improves it to
obtain the following three different neighborhood structures.

4.4.1. Neighborhood Structure

(1) The VNS1 (for MA sequence) neighborhood generation method is as follows:

• Randomly generate s random numbers, s ∈ [1, M], and M is the total number of operations;
• Randomly select s positions from the chromosome MA;
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• For each corresponding process of s, select the machine with the shortest processing time from
its optional machine set to replace it, and evaluate the new solution. If the machine with the
minimum time has been selected, select the machine with the second shortest machining time.

(2) The VNS2 (for OS) neighborhood generation method is as follows:

• Randomly generate two operations J1 and J2, let the number of J1 < the number of J2, and record
the positions of J1 and J2 in the OS, respectively;

• Place each operation of J1 at the positions corresponding to J2 from left to right, and place each
operation of J2 in the remaining positions.

(3) The VNS3 (for OS) neighborhood generation method is as follows:

• Select t random positions, t ≤ total number of operations;
• Reverse the genes at the t positions in the original OS and reinsert them into the same positions of

the new solution.

4.4.2. Flow of Adaptive Variable Neighborhood Search Algorithm

Different from the previous VNS using a fixed search order, this paper proposes an adaptive
neighborhood selection strategy based on neighborhood search performance. The adaptive strategy is
to learn the validity of each neighborhood search in the current optimization algorithm as the iteration
proceeds. In order to promote effective competition between neighborhoods, the neighborhood method
with a better search strategy has a higher probability to be used for the optimization of the algorithm.
The steps of the adaptive neighborhood search algorithm are as follows and the flow chart is shown in
Figure 5.

Step 1: Initialize parameters—initial solution S (from elite population), number of iterations
P, the neighborhood structure Nk (k = 1, 2, 3), loop variable i = 1, the success and failure times of
neighborhood search that are expressed as Ns = 0, N f = 0;

Step 2: Judge whether the termination criterion (i > P) is satisfied, and if so, output the optimal
solution S∗, otherwise go to Step 3;

Step 3: If i < P/3, randomly select the neighborhood Nk for the search to get a new solution S′.
Otherwise, calculate the probability ηi according to Equations (5) and (6) (select the larger ηi value),
and select the neighborhood Nk for neighborhood search to obtain a new solution S′;

Step 4: If f(S′) < f(S∗), S∗ = S′, Ns = Ns + 1; otherwise, N f = N f + 1;
Step 5: Update the ηi values of each neighborhood, i = i + 1. Go to Step 2.

ζ = α·
Ns

Ns + N f
(5)

ηi =
ζi∑3

k = 1 ζk
(6)

α =
f (s∗)
f (c)

(7)

The parameter ζ is used to the measure the improvement degree of the chromosome. α denotes
the relative fitness value, f(S∗) is the global optimal solution obtained in the current elite library, f(c) is
the fitness value of the chromosome in the current neighborhood search, and the probability ηi of each
neighborhood is calculated according to ζ in the search process.



Algorithms 2019, 12, 243 10 of 16Algorithms 2019, 12, x FOR PEER REVIEW 10 of 16 

 
Figure 5. The flow chart of the adaptive variable neighborhood search algorithm. 

5. Simulation and Analysis 

The algorithm was written in Python programming language version 3.7.3 and was run on a 
MacBook Pro with a 2.7 GHz processor and 8 GB RAM of APPLE inc. in 2015. Tested by three 
international standard examples, each example runs the IGA-AVNS algorithm 10 times to find the 
minimum value of the completion time. As the difficulty of the FJSP problem is closely related to the 
scale of the problem, the parameters are selected according to the following rules: n is the number of 
jobs, m is the number of machines; number of iterations equal 10 × n × m; population size equals to n 
× m; the crossover probability 𝑝  is 0.8; the mutation probability 𝑝  is 0.1; the number of 
neighborhood cycles p is 10. Initial population generation method: MA—60% GSO, 20% tournament, 
and 20% random; OS—random generation. 

The first set of data are selected from a set of three questions proposed by Kacem et al. [16]. 
Problem 8 × 8 is a P-FJSP that is composed of 8 jobs with 27 operations which can be processed on 8 
machines; problem 10 × 10 is a T-FJSP that consists of 10 jobs with 30 operations that can be processed 
on 10 machines; problem 15 × 10 is a T-FJSP that is comprised of 15 jobs with 56 operations which can 
be performed on 10 machines. The details about Kacem data can be found in [23]. The test results are 
compared with the results obtained by the Kacem method [16], the Xia method [23], the hybrid 
genetic tabu search (HGTS) proposed by Palacios et al. [24], the proposed varibale neighbourhood 
search (PVNS) proposed by Amiri et al. [25], and the Heuristic proposed by Ziae et al. [26]. The 
simulation results are shown in Table 2. Figure 6a is a Gantt chart of the optimal solution for the 
Kacem 8 × 8 problem obtained by the IGA-AVNS.  

Figure 5. The flow chart of the adaptive variable neighborhood search algorithm.

5. Simulation and Analysis

The algorithm was written in Python programming language version 3.7.3 and was run on a
MacBook Pro with a 2.7 GHz processor and 8 GB RAM of APPLE inc. in 2015. Tested by three
international standard examples, each example runs the IGA-AVNS algorithm 10 times to find the
minimum value of the completion time. As the difficulty of the FJSP problem is closely related to the
scale of the problem, the parameters are selected according to the following rules: n is the number of
jobs, m is the number of machines; number of iterations equal 10 × n × m; population size equals to
n × m; the crossover probability pc is 0.8; the mutation probability pm is 0.1; the number of neighborhood
cycles p is 10. Initial population generation method: MA—60% GSO, 20% tournament, and 20%
random; OS—random generation.

The first set of data are selected from a set of three questions proposed by Kacem et al. [16].
Problem 8 × 8 is a P-FJSP that is composed of 8 jobs with 27 operations which can be processed on
8 machines; problem 10 × 10 is a T-FJSP that consists of 10 jobs with 30 operations that can be processed
on 10 machines; problem 15 × 10 is a T-FJSP that is comprised of 15 jobs with 56 operations which can
be performed on 10 machines. The details about Kacem data can be found in [23]. The test results are
compared with the results obtained by the Kacem method [16], the Xia method [23], the hybrid genetic
tabu search (HGTS) proposed by Palacios et al. [24], the proposed varibale neighbourhood search
(PVNS) proposed by Amiri et al. [25], and the Heuristic proposed by Ziae et al. [26]. The simulation
results are shown in Table 2. Figure 6a is a Gantt chart of the optimal solution for the Kacem 8 × 8
problem obtained by the IGA-AVNS.
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Table 2. Comparison with other algorithms on flexible job-shop scheduling problems (FJSPs) from the
Kacem data.

n × m Kacem Xia HGTS PVNS Heuristic IGA-AVNS

8 × 8 15 15 14 14 15 14

10 × 10 7 7 7 7 7 7

15 × 15 24 12 11 12 12 11

HGTS: hybrid genetic tabu search; PVNS: proposed varibale neighbourhood search.
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The second set of data comes from the BRdata (Brandimarte 1993 [27]), which includes 10 problems.
The number of jobs is from 10 to 20, the number of machines is from 4 to 15, and the number of
operations of each problem ranges from 5 to 15. Table 3 lists the results of the algorithm in this paper:

Best heuristic solution x∗: The minimum value of the completion time obtained after 10 times
of operations;

Average value Av(x∗): The average of the completion time obtained after 10 times of operations;
The relative deviation dev1: The equation of the relative deviation between the best heuristic

solution x∗ and the best-known lower bound (LB). The calculation method is shown in Equation (8).
Figure 6b shows the Gantt chart of the best heuristic solution of the BRdata MK01 problem obtained by
the IGA-AVNS algorithm.
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The relative deviation dev2: The equation of relative deviation for the best heuristic solution
obtained by IGA-AVNS and the compared algorithms. The calculation method is shown in Equation
(9). CMour represents the optimal result obtained by IGA-AVNS. CMother represents the best heuristic
solution of the compared algorithms. If the value of dev2 is positive, the solution obtained by the
compared algorithm is better. If the value of dev2 is negative, the solution obtained by the IGA-AVNS
is better.

dev1 =
x∗ − LB

LB
× 100% (8)

dev2= (
CMour −CMother

CMour
) × 100% (9)

Table 4 shows the comparison results between IGA-AVNS and the following algorithms: the
Genetic Algorithm (GA) proposed by Pezzella et al. [17], the Genetic Algorithm Combined with
Tabu Search in a Holonic Multiagent model (GATS + HM) proposed by Nouri et al. [5], the hybrid
evlolutionary agorithm (HEA) proposed by Wang et al. [10], and the neighborhood-based genetic
algorithm (NGA) proposed by Driss et al. [7]. The data in the table are from the corresponding
literature. The parameters used by x∗ and Av(x∗) of IGA-AVNS algorithm are the same as the Kacem
instances. L is the total number of the operations, LB is the best-known lower bound.

Among the 10 problems in the BRdata, for MK01, the NGA obtained the best solution, which
is better than other algorithms; while for the MK03, MK05, and MK08 problems, all the compared
methods obtained the same better solution.

Referring to the value of dev2,compared with GA: IGA-AVNS algorithm is better than GA algorithm
for MK06 and MK10 problems. GA gets a better solution for the MK07 problem; compared with GATS
+ HM algorithm for MK02, MK04, MK06, MK09, and MK10 problems, the solution obtained by the
IGA-AVNS algorithm is better than that obtained by GATS + HM algorithm; compared with the HEA
algorithm for the MK06 problem, HEA gets better solution, and for the MK02 and MK10 problems, the
IGA-AVNS algorithm gets a better solution. For the MK01 problem, the NGA algorithm gets a better
solution than the other algorithms, and for the MK06, MK07, and MK10 problems, the IGA-AVNS
algorithm gets a better solution. In summary, it can be concluded that the IGA-AVNS algorithm is an
effective method for solving FJSP.

Table 3. Simulation results on FJSPs from BRdata.

Problem n × m L LB
IGA-AVNS

PopulationsIterations x* Av(x*) dev1(%)

MK01 10 × 6 55 36 60 600 40 40.1 11

MK02 10 × 6 58 24 60 600 26 27.2 8.3

MK03 15 × 8 150 204 120 1200 204 204 0

MK04 15 × 8 90 48 120 1200 60 61.8 25

MK05 15 × 4 106 168 60 600 173 175.2 2.9

MK06 10 × 15 150 33 150 1500 60 60.08 81.8

MK07 20 × 5 100 133 100 1000 144 144.5 8.3

MK08 20 × 10 225 523 200 2000 523 523 0

MK09 20 × 10 240 299 200 2000 307 307 2.7

MK10 20 × 15 240 165 300 3000 208 209.9 26
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Table 4. Comparison with other algorithms on FJSPs from BRdata.

Problem n × m LB
GA GATS + HM HEA NGA IGA-AVNS

Cm dev2(%) Cm Av(Cm) dev2(%) Cm dev2(%) Cm dev2(%) x* Av(x*)

MK01 10 × 6 36 40 0 40 40.8 0 40 0 37 7.5 40 40.1

MK02 10 × 6 24 26 0 27 27.8 –3.8 27 –3.8 26 0 26 27.2

MK03 15 × 8 204 204 0 204 204.0 0 204 0 204 0 204 204

MK04 15 × 8 48 60 0 64 65.6 –6.7 60 0 60 0 60 61.8

MK05 15 × 4 168 173 0 173 174.8 0 173 0 173 0 173 175.2

MK06 10 × 15 33 63 –5 65 67.0 –8.3 59 1.7 67 –11.7 60 60.08

MK07 20 × 5 133 139 3.47 144 144.0 0 144 0 148 –2.8 144 144.5

MK08 20 × 10 523 523 0 523 523.0 0 523 0 523 0 523 523

MK09 20 × 10 299 311 0 311 311.8 –1.3 307 0 307 0 307 307

MK10 20 × 15 165 212 –1.3 222 224.8 –6.7 209 –0.48 212 –1.9 208 209.9
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The third set of data is the BCdata (Barnes and Chambers 1996) [25]. We select 14 instances of the
dataset considering a number of jobs ranging from 10 to 15 with a number of operations for each job
ranging from 10 to 15, which will be processed on a number of machines ranging from 11 to 18. Table 5
shows the comparison results between the IGA-AVNS and GATS + HM [5] proposed by Nouri et al.

Table 5. Results of the Barnes and Chambers data instances.

Problem n × m LB
GATS + HM IGA-AVNS

x* dev1(%) x* dev1(%) dev2(%)

mt10c1 10 × 11 655 927 41.5 927 41.5 0

mt10cc 10 × 12 655 917 40.0 908 38.6 −0.99

mt10x 10 × 11 655 923 40.9 918 40.2 −0.5

mt10xx 10 × 12 655 918 40.2 918 40.2 0

mt10xxx 10 × 13 655 918 40.2 918 40.2 0

mt10xy 10 × 12 655 908 38.6 905 38.2 −0.3

mt10xyz 10 × 13 655 868 32.5 868 32.5 0

setb4c9 15 × 11 857 927 8.2 914 6.7 −1.42

setb4cc 15 × 12 857 938 9.5 944 10.2 0.6

setb4x 15 × 11 846 944 11.6 926 9.5 −1.9

setb4xx 15 × 12 846 942 11.3 926 9.5 −1.7

setb4xxx 15 × 13 846 949 12.2 926 9.5 −2.42

setb4xy 15 × 12 845 931 10.2 938 11.0 0.75

setb4xyz 15 × 13 838 926 10.5 926 10.5 0

In Table 5, for the value of dev1, the smaller the value, the closer to LB. For the value of dev2,
0 indicates that the two algorithms get the same solution, a positive value indicates that the solution
obtained by GATS + HM is better, and if the value is negative, the solution obtained by IGA-AVNS is
better. It can be seen from these two sets of values that the two algorithms get the same solutions in
5 out of 12 instances, our IGA-AVNS outperforms the GATS + HM in 7 out of 12 instances, and the
GATS + HM only obtains 2 out of 14 better solutions than our IGA-AVNS algorithm. Figure 7 shows
the comparison of dev1 obtained by the two algorithms when solving the BCdata. We can conclude that
IGA-AVNS is better than the GATS + HM algorithm in most cases when solving the BCdata. Therefore,
the feasibility and effectiveness of the IGA-AVNS algorithm for solving the FJSP are further proved.
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