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Abstract: The job shop scheduling problem with blocking constraints and total tardiness minimization
represents a challenging combinatorial optimization problem of high relevance in production
planning and logistics. Since general-purpose solution approaches struggle with finding even feasible
solutions, a permutation-based heuristic method is proposed here, and the applicability of basic
scheduling-tailored mechanisms is discussed. The problem is tackled by a local search framework,
which relies on interchange- and shift-based operators. Redundancy and feasibility issues require
advanced transformation and repairing schemes. An analysis of the embedded neighborhoods shows
beneficial modes of implementation on the one hand and structural difficulties caused by the blocking
constraints on the other hand. The applied simulated annealing algorithm generates good solutions
for a wide set of benchmark instances. The computational results especially highlight the capability
of the permutation-based method in constructing feasible schedules of valuable quality for instances
of critical size and support future research on hybrid solution techniques.

Keywords: job shop scheduling; blocking; total tardiness; permutations; repairing scheme; simulated
annealing

1. Introduction

Complex scheduling problems appear in customer-oriented production environments, automated
logistics systems, and railbound transportation as an everyday challenge. The corresponding job
shop setting, where a set of jobs is to be processed by a set of machines according to individual
technological routes, constitutes one of the non-trivial standard models in scheduling research. Even
·simple variants of this discrete optimization problem are proven to be NP-hard, see [1]. While the
classical job shop scheduling problem with infinite buffers and makespan minimization has been a
subject of extensive studies for many decades, see, for instance [2–4], solving instances with additional
real-world conditions, such as the absence of intermediate buffers, given release and due dates of the
jobs and recirculation, newly receives increasing attention.

The blocking job shop problem with total tardiness minimization (BJSPT) is regarded as an
exemplary complex planning situation in this paper. Blocking constraints refer to a lack of intermediate
buffers in the considered system. A job needs to wait on its current machine after processing,
and thus blocks it, until the next required machine is idle. Such situations occur, for instance, in the
manufacturing of huge items, in railbound or pipeline-based production and logistics as well as in
train scheduling environments; see, for instance [5–8]. The consideration of a tardiness-based objective
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implements efficient economic goals like customer satisfaction and schedule reliability as they appear
in most enterprises.

On the one hand, existing computational experiments indicate that exact general-purpose solution
methods have significant difficulties in finding optimal and even feasible solutions for non-classical job
shop instances of practically relevant size; see, for instance [9–11]. On the other hand, the application
of special-purpose heuristics shows a necessity of complicated construction, repairing and guiding
schemes to obtain good solutions; see [12–14]. This work is intended to analyze the capability of
well-known scheduling-tailored heuristic search methods in determining high quality solutions for
complex job shop scheduling problems. Structural reasons for the appearing complexity are detected
and algorithms, which assure the applicability of basic strategies, are proposed.

As a natural foundation, permutations shall be used to represent feasible schedules of BJSPT
instances. Widely applied interchange- and shift-based operators are chosen as transition schemes to
set up neighboring solutions. Combining these ideas causes considerable redundancy and feasibility
issues. A Basic Repair Technique (BRT) is proposed to construct a feasible schedule from any given
permutation, cf. [15,16]. To fit the requirements in generating neighboring solutions, it is extended
to an Advanced Repair Technique (ART), which defines a feasible neighboring schedule from an initial
permutation and a desired interchange, see [15,16].

The resulting distances of solutions in a neighborhood are discussed to shed light onto the
nature of the search space. In addition, different shifting strategies are analyzed with regard to their
advantageousness in the search process. The presented neighborhood structures are embedded in a
simulated annealing (SA) metaheuristic, which is applied to solve a diverse set of benchmark instances.
Beneficial and critical aspects regarding the quality of the schedules found and the search guidance are
pointed out by the computational results.

The remainder of the article is organized as follows. Section 2 summarizes existing work on
complex job shop scheduling problems related to the BJSPT. A theoretical description of the problem
and its notation are given in Section 3. Two variants of permutation-based encodings of schedules
are discussed with regard to redundancy and feasibility in Section 4. Therein, the BRT is introduced
and the distance of two schedules is defined. Section 5 incorporates explanations on the applied
transition schemes, their implementation, and the operating principles of the ART. Furthermore,
the neighborhoods are described and characteristics such as connectivity and solution distance are
analyzed. Computational experiments on solving the BJSPT by an SA algorithm are reported in
Section 6. Finally, Section 7 concludes with the main findings and further research perspectives.

2. Literature Review

A variety of exact and heuristic solution approaches to complex scheduling problems reported in
the literature exist. This section will focus on observations and findings on job shop problems featuring
constraints and optimization criteria similar to the BJSPT.

Exact solution methods are only sparsely applied to job shop problems with blocking constraints
or tardiness-based objective functions. In 2002, Mascis and Pacciarelli [17] present a Branch &
Bound procedure that is enhanced by scheduling-tailored bounds and a special branching technique.
The approach is tested on complex instances with ten machines and ten jobs involving blocking
constraints and makespan minimization. Obtaining proven optimal solutions for the benchmark
problems takes between 20 min and four hours of computation time. Even if technical enhancements
have been achieved and general-purpose mixed-integer programming solvers became more powerful,
the job shop scheduling problem remains one of the hardest combinatorial optimization models. It is
recently shown in [9,11,15,18] that even sophisticated mixed-integer programming solvers, such as
IBM ILOG CPLEX and Gurobi, struggle with finding optimal and even feasible solutions to BJSPT
instances with up to 15 machines processing up to 20 jobs in reasonable computation time.

Table 1 summarizes the heuristic approaches presented for job shop problems involving blocking
constraints and tardiness-based objectives. A reference is stated in the first column, while the second



Algorithms 2019, 12, 242 3 of 28

column specifies whether a job shop problem with blocking constraints (BJSP) or without such
restrictions (JSP) is examined. Column three contains the objective function regarded and the fourth
column displays the maximal size (m, n) of the considered instances, where m denotes the number of
machines and n defines the number of jobs. The last column presents the applied heuristic technique.

For reasons of comparison, the first two works [19,20] mentioned in Table 1 deal with a classical
variant of the problem, namely the job shop problem with makespan minimization. The applied
solution approaches constitute fundamental heuristic methods and the best-known algorithms to solve
instances of the standard job shop setting until today. With the popular (10, 10) instance of Fisher and
Thompson having been open for decades, the size of standard job shop problems, for which good
solutions can be obtained, has grown. However, most of the large instances have never been solved
to optimality, which highlights the significant intricacy of the combinatorial optimization problems
under study.

The following set of studies on JSPs with tardiness-based optimization criteria is intended to show
the variety and the evolution of heuristic solution approaches applied together with the limitations
in solvable problem size. A more comprehensive literature review including details on the types of
instances solved can be found in [21].

In [22], a shifting bottleneck procedure is presented to generate schedules with minimal total
tardiness for JSPs with release dates. The method is tested on a set of benchmark instances of
size (10, 10). A well-known critical path-oriented neighborhood, cf. [2], is discussed with regard
to its applicability to pursue tardiness-based objectives in [23]. The authors tackle JSPs with total
tardiness minimization by Simulated Annealing (SA) and show that a general neighborhood based
on interchanges of adjacent operations on machines leads to better results. A hybrid genetic
algorithm (GA) is proposed for JSPs with recirculation, release dates and various tardiness-based
objective functions in [14]. Even if the procedure is enhanced by a flexible encoding scheme and a
decomposition approach, the results do not significantly support GAs as a favorable solution method.
The computational experiments are conducted on a set of twelve instances with maximum size (8, 50).
In [24], a generalized JSP consisting of a set of operations with general precedence constraints and
required time lags is optimized with regard to total weighted tardiness. The authors apply a tabu
search (TS) approach where neighboring solutions are also constructed by interchanges of adjacent
operations, and the starting times of the operations are calculated based on a network flow. Here,
the instance size of (10, 10) is still critical.

A classical job shop setting involving release dates and minimizing the total weighted tardiness
is considered in [25]. The authors combine a GA with an iterative improvement scheme and discuss
the effect of various search parameters. Computational experiments are conducted on the set of
benchmark instances with up to 15 machines and 30 jobs. The iterative improvement scheme seems
to be a highly beneficial part of the solution approach, since it counteracts the occurring quality
variance of consecutively constructed solutions. The same type of problems has also been tackled by a
hybrid shifting bottleneck procedure including a preemption-allowing relaxation and a TS step in [26].
A more general type of optimization criteria, namely regular objective functions, are considered for
JSPs in [27]. An enhanced local search heuristic with modified interchange-based neighborhoods
is applied. The computational experiments are based on a large set of instances, where the most
promising results are obtained for problems with up to 10 machines and 15 jobs. In [28], the critical
path-based neighborhood introduced in [2] is used together with a block reversion operator in SA.
Numerical results indicate that the combination of transition schemes is beneficial for finding job
shop schedules with minimal total weighted tardiness. This work involves the largest test instances
featuring 10 machines and 50 jobs as well as five machines and 100 jobs. However, these instances
do not constitute a commonly used benchmark set so that no optimal solutions or lower bounds are
known or presented to evaluate the capability of the method.
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Table 1. Overview of existing heuristic solution approaches related to the BJSPT.

Reference Problem Objective * Max. Size (m, n) Solution Approach

Nowicki and Smutnicki 2005 [19] JSP Cmax (10, 50), (20, 100) Tabu Search
Balas et al. 2008 [20] JSP Cmax (22, 75) Shifting Bottleneck Procedure

Singer and Pinedo 1999 [22] JSP ∑wiTi (10, 10) Shifting Bottleneck Algorithm
Wang and Wu 2000 [23] JSP ∑Ti (30, 90) Simulated Annealing
Mattfeld and Bierwirth 2004 [14] JSP tardiness-based (8, 50) Genetic Algorithm
De Bontridder 2005 [24] JSP ∑wiTi (10, 10) Tabu Search
Essafi et al. 2008 [25] JSP ∑wiTi (10, 30), (15, 15) Hybrid Genetic Algorithm with Iterated Local Search
Bülbül 2011 [26] JSP ∑wiTi (10, 30), (15, 15) Hybrid Shifting Bottleneck Procedure with Tabu Search
Mati et al. 2011 [27] JSP regular (20, 30), (8, 50) Local Search Heuristic
Zhang and Wu 2011 [28] JSP ∑wiTi (15, 20), (10, 50), (5, 100) Simulated Annealing
Gonzalez et al. 2012 [29] JSP ∑wiTi (10, 30), (15, 20) Hybrid Genetic Algorithm with Tabu Search
Kuhpfahl and Bierwirth 2016 [30] JSP ∑wiTi (10, 30), (15, 15) Local Descent Scheme, Simulated Annealing
Bierwirth and Kuhpfahl 2017 [21] JSP ∑wiTi (10, 30), (15, 15) Greedy Randomized Adaptive Search Procedure

Brizuela et al. 2001 [12] BJSP Cmax (20, 20) Genetic Algorithm
Mati et al. 2001 [8] BJSP Cmax (10, 30) Tabu Search
Mascis and Pacciarelli 2002 [17] BJSP Cmax (10, 30), (15, 20) Greedy Heuristics
Meloni et al. 2004 [31] BJSP Cmax (10, 10) Rollout Metaheuristic
Gröflin and Klinkert 2009 [13] BJSP Cmax (10, 50), (15, 20), (20, 20) Tabu Search
Oddi et al. 2012 [32] BJSP Cmax (10, 30), (15, 15) Iterative Improvement Scheme
AitZai and Boudhar 2013 [33] BJSP Cmax (10, 30), (15, 15) Particle Swarm Optimization
Pranzo and Pacciarelli 2016 [34] BJSP Cmax (10, 30), (15, 20) Iterative Greedy Algorithm
Bürgy 2017 [9] BJSP regular (10, 30), (15, 20), (20, 30) Tabu Search
Dabah et al. 2019 [35] BJSP Cmax (10, 30), (15, 15) Parallel Tabu Search

* Objective Functions: makespan Cmax , total tardiness∑Ti , total weighted tardiness∑wiTi , various regular or tardiness-based objectives.
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A JSP with setup times and total weighted tardiness minimization is tackled by a hybrid heuristic
technique in [29]. A TS method is integrated into a GA to balance intensification and diversification
in the search process. Furthermore, an improvement potential evaluation is applied to guide the
selection of neighboring solutions in the TS. Promising results are found on a widely used set of
benchmark instances. Different neighborhood structures are discussed and analyzed according to
their capability of constructing schedules for a JSP with release dates and total weighted tardiness
minimization in [30]. The experimental results show that the choice of the main metaheuristic method
and the initial solution influence the performance significantly. Complex neighborhood structures
involving several partially critical path-based components yield convincing results for instances with
up to 15 machines and 30 jobs. In [21], an enhanced Greedy Randomized Adaptive Search Procedure
(GRASP) is proposed and tested on the same set of benchmark instances. The applied method involves
a neighborhood structure based on a critical tree, a move evaluation scheme as well as an amplifying
and a path relinking strategy. The comprehensive computational study of Bierwirth and Kuhpfahl [21]
shows that the presented GRASP is able to compete with the most powerful heuristic techniques
tackling JSP instances with total tardiness minimization, namely the GA-based schemes proposed
by Essafi et al. [25] and Gonzalez et al. [29]. Overall, the complexity of the applied methods, which
is required to obtain satisfactory results for instances of still limited size, highlights the occurring
difficulties in guiding a heuristic search scheme based on tardiness-related objective functions.

Considering the second set of studies on BJSPs given in Table 1, an additional feasibility issue
arises and repairing or rescheduling schemes become necessary. The inclusion or exclusion of swaps of
jobs on machines constitutes a significant structural difference with regard to real-world applications
and the applied solution approach, see Section 4.2 for further explanations. Note that almost all
existing solution approaches are dedicated to makespan minimization, even if this does not constitute
the most practically driven objective.

In [12], a BJSP involving up to 20 machines and 20 jobs with swaps is tackled by a GA based on
a permutation encoding. The well-known critical path-oriented transition scheme, cf. [2], is applied
together with a job insertion-based rescheduling method in a TS algorithm in [8]. The authors consider
a real-world application where swaps are not allowed and test their approach on instances with up
to 10 machines and 30 jobs. Different greedy construction heuristics are compared in solving BJSP
instances with and without swaps in [17]. Even for small instances, the considered methods have
significant difficulties in constructing feasible schedules, since the completion of an arbitrary partial
schedule is not always possible. The same issue occurs in [31], where a rollout metaheuristic involving
a scoring function for potential components is applied to BJSP instances of rather small size with and
without swaps.

A connected neighborhood relying on interchanges of adjacent operations and job reinsertion is
presented for the BJSP in [13]. Instances involving setup and transfer times, and thus excluding swaps,
are solved by a TS algorithm with elite solutions storage. Computational experiments are conducted on
a large set of benchmark instances with up to 20 machines and 50 jobs. In [32], an iterative improvement
algorithm incorporating a constraint-based search procedure with relaxation and reconstruction steps
is proposed for the BJSP with swaps. A parallel particle swarm optimization is tested on instances
of the BJSP without swaps in [33] but turns out not to be competitive with the method proposed
in [13] and the following one. In [34], an iterated greedy algorithm, which loops deconstruction and
construction phases, is applied to problems with and without swaps. Computational experiments on
well-known benchmark instances with up to 15 machines and 30 jobs imply that forced diversification
of considered solutions is favorable to solve the BJSP. A study tackling instances with up to 20 machines
and 30 jobs and approaching a wider range of regular objective functions including total tardiness is
reported in [9]. The authors embed a job reinsertion technique initially proposed in [36] in a TS and test
their method on the BJSP with swaps. A parallel TS including the critical path-oriented neighborhood,
cf. [2], and construction heuristics to recover feasibility is presented in [35]. Parallel search trajectories
without communication are set up to increase the number of considered solutions.
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Overall, the most promising approaches to solve BJSP instances proposed by Bürgy [9],
Dabah et al. [35], and Pranzo and Pacciarelli [34] give evidence for focusing on the application
of sophisticated neighborhood and rescheduling structures instead of increasing the complexity of
the search procedure itself. This motivates the following work on evaluating the capability of basic
scheduling-tailored techniques. Furthermore, a study on the interaction of blocking constraints and
tardiness-based optimization criteria will be provided.

3. Problem Description and Benchmark Instances

The BJSPT is defined by a set of machines M = {Mk ∣ k = 1, . . . , m} which are required to
process a set of jobs J = {Ji ∣ i = 1, . . . , n} with individual technological routes. Each job consists of
a set of operations Oi

= {Oi,j ∣ j = 1, . . . , ni}, where operation Oi,j describes the j-th non-preemptive
processing step of job Ji. The overall set of operations is defined by O = ⋃Ji∈J O

i containing nop

elements. Each operation Oi,j requires a specific machine Ma(Oi,j) for a fixed processing time pi,j ∈ Z>0.
The recirculation of jobs is allowed. Furthermore, a release date ri ∈ Z≥0 and a due date di ∈ Z>0 are
given for every job Ji ∈ J .

Blocking constraints are introduced for every pair of operations Oi,j and Oi′,j′ of different jobs
requiring the same machine. Given that Oi,j → Oi′,j′ determines the operation sequence on the
corresponding machine Mk and j ≠ ni holds, the processing of operation Oi′,j′ cannot start before job Ji
has left machine Mk, in other words, the processing of operation Oi,j+1 has started. To account for the
optimization criterion, a tardiness value is determined for every job with Ti = max{0, Ci − di}, where
Ci describes the completion time of the job.

There exist different mathematical formulations of the described problem as a mixed-integer
optimization program. For an overview of applicable sequence-defining variables and comprehensive
studies on advantages and disadvantages of the corresponding models, the reader is referred to [11,15].
According to the well-known three-field notation, cf. for instance [37,38], the BJSPT can be described by

Jm ∣ block, recrc, ri ∣∑Ti.

A feasible schedule is defined by the starting times si,j of all operations Oi,j ∈ O, which fulfill the
processing sequences, the technological routes and the release dates of all jobs as well as the blocking
constraints. Since the minimization of total tardiness constitutes a regular optimization criterion,
it is sufficient to consider semi-active schedules where no operation can be finished earlier without
modifying the order of processing of the operations on the machines, see e.g., [38,39]. Thus, the starting
times of the operations and the operation sequences on the machines constitute uniquely transformable
descriptions of a schedule. If a minimal value of the total tardiness of all jobs ∑Ji∈J Ti is realized,
a feasible schedule is denoted as optimal. Note that, regarding the complexity hierarchies of shop
scheduling problems, see for instance [38,40] for detailed explanations, the BJSPT is harder than the
BJSP with the minimization of the makespan Cmax.

To discuss the characteristics of neighborhood structures and to evaluate their performance,
a diverse set of benchmark instances is used. It is intended to involve instances of different sizes (m, n)
featuring different degrees of inner structure. The set of problems contains train scheduling-inspired
(ts) instances that are generated based on a railway network, distinct train types, routes and speeds,
cf. [11,15], as well as the Lawrence (la) instances which are set up entirely random with ni = m for
Ji ∈ J , cf. [41]. The problems include 5 to 15 machines and 10 to 30 jobs. The precise instance sizes can
be found in Tables 2–4.

For all instances, job release dates and due dates are generated according to the following terms
in order to create computationally challenging problems. The release dates are restricted to a time
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interval which forces jobs to overlap and the due dates are determined with a tight due date factor,
see [9,11,30]:

ri ∈

⎡
⎢
⎢
⎢
⎢
⎣

0 , 2 ⋅min
Ji∈J

⎧
⎪⎪
⎨
⎪⎪
⎩

ni

∑

j=1
pij

⎫
⎪⎪
⎬
⎪⎪
⎭

⎤
⎥
⎥
⎥
⎥
⎦

and di =

⎡
⎢
⎢
⎢
⎢
⎢

ri +
⎛

⎝

1.2 ⋅
ni

∑

j=1
pij

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎥

for all Ji ∈ J . (1)

4. Representations of a Schedule

The encoding of a schedule is basic to every heuristic solution approach. In contrast to most of the
existing work on BJSPs, the well-known concept of permutation-based representations is used here.
In the following, redundancy and feasibility issues will be discussed and overcome, and a distance
measure for two permutation-based schedules is presented.

4.1. Permutation-Based Encodings

An operation-based representation sop of a schedule, also called permutation, is given as a single list
of all operations. Consider exemplarily

sop
= [Oi,1, Oi′,1, Oi,2, Oi′′,1, Oi,3, Oi′,2, . . .].

The permutation defines the operation sequences on the machines, and the corresponding starting
times of all operation can be determined by a list scheduling algorithm. Note that the processing
sequences of the jobs are easily satisfiable with every operation Oi,j having a higher list index than its
job predecessor Oi,j−1. Furthermore, blocking restrictions can be implemented by list index relations so
that the feasibility of a schedule can be assured with the operation-based representation. However,
when applying the permutation encoding in a heuristic search procedure, redundancy issues need to
be taken into account. Regarding the list sop shown above and assuming that the first two operations
Oi,1 and Oi′,1 require different machines, the given ordering Oi,1 → Oi′,1 and the reverse ordering
Oi′,1 → Oi,1 imply exactly the same schedule. Generally, the following conditions can be identified for
two adjacent operations in the permutation being interchangeable without any effects on the schedule
encoded, cf. [15]:

• The operations belong to different jobs.
• The operations require different machines.
• The operations are not connected by a blocking constraint.
• None of the operations is involved in a swap.

Details on the relation of two operations due to a blocking constraint and the implementation
of swaps are given in the subsequent Sections 4.2 and 4.3. To avoid unnecessary computational
effort caused by treating redundant permutations as different schedules, the application of a unique
representation is desirable.

A second permutation-based encoding of a schedule, namely the machine-based representation sma,
describes the operation sequences on the machines as a nested list of all operations. Consider

sma
= [[Oi,1, Oi′′,1, . . .], [Oi′,1, Oi,2], . . .], [Oi,3, . . .], [Oi′,2, . . .], . . .]

as a general example, where the k-th sublist indicates the operation sequence on machine Mk. It can be
observed that the machine-based representation uniquely encodes these operation sequences and any
modification leads to the creation of a different schedule. However, since the machine-based encoding
does not incorporate any ordering of operations requiring different machines, the given schedule may
be infeasible with regard to blocking constraints. Preliminary computational experiments have shown
that this blocking-related feasibility issue frequently appears when constructing BJSP schedules in
heuristic search methods. Therefore, both representations are simultaneously used here to assure the
uniqueness and the feasibility of the considered schedules.
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As a consequence, the applied permutation-based encodings need to be transformed efficiently
into one another. Taking the general representations given above as examples, the operation-based
encoding features list indices lidx(Oi,j) and required machines Ma(Oi,j) as follows:

sop
= [ Oi,1, Oi′,1, Oi,2, Oi′′,1, Oi,3, Oi′,2, . . .]

lidx(Oi,j): 1 2 3 4 5 6 . . .
Ma(Oi,j): M1 M2 M2 M1 M3 M4 . . .

The transformation sop
→ sma can be performed by considering the operations one by one with

increasing list indices in sop and assigning them to the next idle position in the operation sequence of
the required machine in sma, see [15,16]. As an example, after transferring the first two operations Oi,1
and Oi′,1 from sop to sma, the machine-based representation turns out as sma

= [[Oi,1], [Oi′,1], [], [], . . .].
After transferring all operations given in the permutation sop, the machine-based encoding exactly
corresponds to the nested list shown above.

While performing the transformation sma
→ sop, the redundancy of operation-based encodings

needs to be taken into account. If the machine-based representation sma is constructed from
an operation-based representation sop of a specific schedule, it will be desirable that the reverse
transformation yields exactly the initially given permutation sop instead of a redundant equivalent.
To assure that the resulting list of operations is equivalent or closest possible to an initially given
operation-based representation, the following method is proposed.

Priority-Guided Transformation Scheme sma
→ sop, cf. [15]: In transferring a machine-based

representation sma to a permutation sop′ , the set of candidate operations to be added to the permutation
sop′ next consists of all operations Oi,j in sma, for which the job predecessor Oi,j−1 and the machine

predecessor given in sma either do not exist or are already present in sop′ . Considering the
machine-based representation sma given above and an empty permutation sop′ , the set of candidate
operations to be assigned to the first list index in sop′ contains the operations Oi,1 and Oi′,1. To guarantee
the recreation of the initially given permutation sop, the operation Oi,j with the maximum priority
prio(Oi,j) is chosen among all candidate solutions, whereby

prio(Oi,j) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1
lidx(Oi,j)−lidx′(∗) if lidx′(∗) < lidx(Oi,j),

2 if lidx′(∗) = lidx(Oi,j),

lidx′(∗)− lidx(Oi,j)+ 2 if lidx(Oi,j) < lidx′(∗),

(2)

with lidx(Oi,j) being the list index of the operation in the initially given permutation sop and lidx′(∗)
being the currently considered, idle list index in the newly created list sop′ . Recalling the example
described above, the currently considered index features lidx′(∗) = 1, while prio(Oi,1) = 2 due to
lidx′(∗) = lidx(Oi,1) = 1 and prio(Oi′,1) =

1
2−1 = 1 due to lidx′(∗) = 1 < 2 = lidx(Oi′,1). Thus, sop′

= [Oi,1]

holds after the first iteration, and the set of candidate operations to be assigned to the next idle list index
lidx′(∗) = 2 consists of the operations Oi′′,1 and Oi′,1. Following this method iteratively, the newly
constructed permutation sop′ will be equivalent to the initially given permutation sop from which sma

has been derived.
Given that the considered machine-based representation is feasible with regard to the processing

sequences and the technological routes of the jobs, the priority-guided transformation scheme will
assign exactly one operation to the next idle list index of the new permutation in every iteration and
can never treat an operation more than once. Thus, the method constructs a unique operation-based
representation from a given machine-based representation in a finite number of O(nop ⋅ m) steps,
see [15] for detailed explanations.
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4.2. Involving Swaps

When considering a lack of intermediate buffers in the job shop setting, the moments in which
jobs are transferred from one machine to the next require special attention. The situation where two
or more jobs interchange their occupied machines at the same point in time is called a swap of jobs.
Figure 1 shows an excerpt of a general BJSP instance involving operations of three jobs with unit
processing times on two machines. The Gantt chart in part (a) of the figure illustrates a swap of the
jobs Ji and Ji′ on the machines Mk and Mk′ at time point t̄.

Mk

Mk′

Oi,1 Oi′,2 Oi′′,1

Oi′,1 Oi,2

t̄ Oi,1 Oi,2

Oi′,1 Oi′,2

Oi′′,1

(a) A swap of jobs as a feasible cycle in the BSJP schedule

Mk

Mk′

Oi,1 Oi′′,1 Oi′,2

Oi′,1 Oi,2

t̄ Oi,1 Oi,2

Oi′,1 Oi′,2

Oi′′,1

(b) A blocking-infeasible cycle in the BJSP schedule

Figure 1. Illustration of feasible and infeasible cycles in BJSP schedules.

Dependent on the type of real-world application, swaps are treated as feasible or infeasible in a
BJSP schedule; see, for instance [8,17]. In particular, the implementation of rail-bound systems and
the existence of setup times require their exclusion, cf. [5,6,13,34]. In this work, it is assumed that,
even if jobs cannot be stored between consecutive processing steps, it is possible to move several jobs
simultaneously on the production site. Thus, swaps are treated as feasible here.

Considering the alternative graph representation of a BJSP, initially proposed in [42], reveals
an upcoming issue related to swaps and feasibility. In Figure 1, the corresponding excerpt of the
alternative graph implementing the given operations as nodes and the implied ordering constraints as
arcs is shown on the right next to the Gantt chart. The gray arcs represent the processing sequences of
the jobs, while the black arcs indicate the existing operation sequence and blocking constraints. Taking
the swap situation in part (a) of Figure 1 as an example again and assuming that the operation Oi′,2 is
the last processing step of job Ji′ , the operation sequence Oi,1 → Oi′,2 → Oi′′,1 on machine Mk implies the
solid arcs (Oi,2, Oi′,2) and (Oi′,2, Oi′′,1) in the alternative graph. Equivalently, the operation sequence
Oi′,1 → Oi,2 on machine Mk′ causes a blocking constraint, which is represented by the dashed arc
(Oi′,2, Oi,2). The resulting structure of arcs shows that swaps appear as cycles in the alternative graph
representation of the schedule. These cycles refer to feasible situations, since the underlying blocking
inequalities can simultaneously be fulfilled by an equivalent starting time of all involved operations.

In part (b) of Figure 1, a Gantt chart and the corresponding graph-based representation of
infeasible operation sequences are shown as a contrasting example. When trying to determine the
starting times of the operations according to the operation sequences on the machines, an infeasible
cyclic dependency of ordering and blocking constraints occurs at point t̄ as follows:

si′′,1 + pi′′,1 ≤ si′,2 ≤ si,2 ≤ si′′,1.
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It can be observed that such infeasible operation sequences similarly appear as cycles in the
alternative graph representation. Thus, treating swaps as feasible results in a need to differentiate
feasible and infeasible cycles when encoding BJSP schedules by an alternative graph. Following
findings presented in [39] on a weighted graph representation, a simple structural property to contrast
feasible swap cycles from infeasible sequencing cycles can be proposed. An alternative graph represents
a feasible schedule for the BJSP, if all cycles involved do only consist of operations of different jobs
requiring different machines, cf. [15]. The operations forming the cycle and featuring their start of
processing at the same point in time are called a swap group. The given property facilitates the
interchange of two or more jobs on a subset of machines, since it assures that every machine required
by an operation of the swap group is currently occupied by the job predecessor of another operation of
the group. Comparing the cycles in Figure 1, it can be seen that the arcs involved in the feasible swap
cycle in part (a) feature different patterns, since the operations at their heads require different machines.
On the contrary, two of the arcs forming the infeasible cycle in part (b) are solid arcs indicating that the
two involved operations Oi′′,1 and Oi′,2 require the same machine.

Since this work relies on permutation-based encodings of schedules and corresponding feasibility
checking procedures, the concept of swap groups is used to handle feasible cyclic dependencies. In the
previous section, it is already mentioned that relations between operations on different machines
can only be included in the operation-based representation of a schedule. Thus, the appearance of a
swap is implemented in a single list by forming a swap group of operations which is assigned to one
single list index. This list index fulfills the existing processing sequence and blocking constraints of all
involved operations, and indicates that these operations will also feature a common starting time in
the schedule. Considering the small general example given in part (a) of Figure 1, an operation-based
representation of this partial schedule may result in sop

= [. . . , Oi,1, Oi′,1, (Oi,2, Oi′,2), Oi′′,1, . . .].

4.3. Feasibility Guarantee

In the following, the feasibility of a schedule given by its operation-based representation shall be
examined more closely. As mentioned before, the processing sequences of the jobs and the blocking
constraints can be translated to required list index relations of pairs of operations in the permutation.

For two consecutive operations O1,j and O1,j′ of a job J1 with j < j′, the starting time constraint
s1,j + p1,j ≤ s1,j′ has to be fulfilled by a feasible schedule. Since these starting times are derived from the
ordering of the operations in the permutation-based encoding, the required processing sequence can
easily be implemented by assuring lidx(O1,j)+ 1 ≤ lidx(O1,j′). Blocking constraints can be described
using list indices following the same pattern. Assume that, besides the operations O1,j and O1,j′

requiring two machines Mk and Mk′ , respectively, there is another operation O2,j′′ requiring machine
Mk. If O1,j → O2,j′′ is determined as the operation sequence on this machine, the absence of intermediate
buffers causes the starting time constraint s1,j+1 ≤ s2,j′′ . Translating this blocking restriction to a list
index constraint implies that the list index of the job successor of the machine predecessor of an
operation needs to be smaller than the list index of the operation. Formally, for two operations Oi,j
and Oi′,j′ of different jobs requiring the same machine and a given operation sequence Oi,j → Oi′,j′ ,
the following list index relation has to be fulfilled by a feasible permutation:

lidx(Oi,j+1)+ 1 ≤ lidx(Oi′,j′), (3)

provided that the operation Oi,j+1 exists.
This type of list index constraints constitutes the basis of checking and retrieving the feasibility

of a BJSP schedule given by a single list of operations. The proposed method, called the Basic Repair
Technique (BRT), takes any permutation perm, which is feasible with regard to the processing sequences
of the jobs, as input and constructs the operation-based representation sop of a feasible schedule for
the BJSP, cf. [15,16]. Note that the different terms perm and sop both describing an operation-based
encoding of the schedule are only used for reasons of clarification here. Figure 2 outlines the algorithm.
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Figure 2. Schematic outline of the Basic Repair Technique (BRT), cf. [15].

A permutation perm, from which a feasible schedule is to be constructed, is initially given.
The return permutation sop is initialized with an empty list. The basic strategy of the BRT is to iterate
over the list perm, take at least one operation from this list in each iteration and place it in the list sop,
so that all BJSP constraints are satisfied. As long as perm is not empty, the operation Oi,j at the first list
index is considered in the current iteration. If the required machine Ma(Oi,j) is idle, meaning that there
is no other operation blocking it, the function SCHEDULEOP is called on operation Oi,j. This function

• determines and stores the earliest possible starting time of the considered operation,
• removes the operation from perm,
• adds the operation to the next idle list index in sop, and
• sets the status of Ma(Oi,j) to blocked provided that a job successor Oi,j+1 exists.

With this, operation Oi,j is said to be scheduled and the algorithm continues with the next iteration.
In case the required machine Ma(Oi,j) is not idle, meaning that it is blocked by another operation,

the currently considered operation is involved on the right-hand side of a blocking constraint as given
in (3). The operation Oi,j is added to a queue and the operation required at a smaller list index to satisfy
the blocking constraint is determined. The required operation is denoted as Oa,b in the following.
At this point, the BRT proceeds according to one of three different paths indicated in Figure 2.

Case 1: If the operation Oa,b is not involved in the queue and its required machine Ma(Oa,b) is
idle, operation Oa,b and all operations in the queue are scheduled following a last in-first out strategy.
Note that, when Case 1 is singly executed, exactly two operations are transferred from perm to the new
operation-based representation sop.

Case 2→ Case 1: If operation Oa,b is not involved in the queue but its required machine Ma(Oa,b)

is not idle, operation Oa,b is added to the queue and the next required operation to fulfill the occurring
blocking constraint is determined. Operations are added to the queue according to Case 2 until a
required operation with an idle machine is found. Then, Case 1 is executed and all queuing operations
are scheduled. Note that following this path, at least three operations are transferred from perm to sop.

Case 2 → Case 3: Equivalent to the previous path, the operation Oa,b is added to the queue and
the next required operation is determined. Case 2 is executed until an operation already present in the
queue is found. This refers to the situation where a cyclic dependency of blocking constraints exists
and a swap needs to be performed in the schedule. The swap group is defined by all operations in
the queue added in between the two occurrences of the currently considered operation. Following
case 3, all operations of the swap group are scheduled with equivalent starting times and potentially
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remaining operations in the queue are scheduled correspondingly after. Since the smallest possible
swap cycle is formed by two operations, at least two operations are transferred from perm to sop when
this path is executed.

With this, the BRT captures all occurring dependencies in arbitrary permutation-based encodings
of BJSP schedules. The method assures that all blocking constraints are fulfilled by shifting required
operations to positions with smaller list indices and by forming and modifying swap groups. Given
that the number of operations in the problem is finite and the initially given permutation is feasible
with respect to the processing sequences of the jobs, the following proposition holds, cf. [15].

Proposition 1. The Basic Repair Technique (BRT) terminates and constructs an operation-based representation
sop of a feasible schedule for the BJSP.

Proof. It has to be shown that

(1) the resulting permutation sop is feasible with regard to the processing sequences of all jobs Ji ∈ J ,
(2) the resulting permutation sop is feasible with regard to blocking constraints and
(3) every operation Oi,j ∈ O is assigned to a position in the feasible permutation sop exactly once.

An unsatisfied blocking constraint si′,j′ ≤ si,j is detected in the BRT while an operation Oi′,j′−1 is
already scheduled in the feasible partial permutation sop and operation Oi,j is the currently considered
operation, for which Ma(Oi,j) is not idle. The BRT shifts required operation(s), here only operation
Oi′,j′ , to the next idle position lidx′(∗) > lidx′(Oi′,j′−1) and will never affect list indices prior to or
equal to lidx′(Oi′,j′−1). Hence, a given feasible ordering accounting for processing sequences and
technological routes, such as lidx(Oi′,j′−1) < lidx(Oi′,j′), can never be violated by changes in the
operation sequences made to fulfill blocking constraints. (1) is true.

The initially empty permutation sop is expanded iteratively in the BRT. Every time an operation
Oi,j is considered to be assigned to the next idle list index lidx′(∗), unsatisfied blocking constraints are
detected and fulfilled. Accordingly assigning an operation Oi′,j′ to the list index lidx′(∗) in sop prior to
its initially given index lidx(Oi′,j′) in perm may implement a change in the operation sequence on the
concerned machine. This may only cause new blocking constraints referring to the positions of the
job successor Oi′,j′+1 and the machine successor of operation Oi′,j′ . Due to given feasible processing
sequences, affected operations cannot be part of the current partial permutation sop and unsatisfied
blocking constraints do only arise in the remainder of the permutation perm. Thus, it is assured that
the existing partial permutation sop is feasible with regard to blocking constraints in every iteration.
Since this remains true until the BRT terminates, (2) is shown.

The consideration of operations in the BRT follows the ordering given in the initial list perm
starting from the first position. Since the assignment of an operation Oi,j to the next idle list index
lidx′(∗) in sop may only affect constraints that are related to succeeding operations in the initial list
perm, the necessity of a repeated consideration of an operation can never occur, once it is added to the
feasible ordering sop. Therefore, (3) is true.

Considering the remarks on the numbers of operations scheduled in every iteration of the BRT,
it can already be expected that a feasible schedule is determined by the BRT in polynomial time.
In [15], it is shown in detail that the schedule construction takes O(nop ⋅m) steps. Thus, the BRT is an
appropriate basic tool to be applied in heuristic search schemes.

4.4. Distance of Schedules

The distance of feasible solutions is an important measure in analyzing search spaces and
neighborhood structures of discrete optimization problems, cf. [43,44]. When a heuristic search
method is applied, the distance of two consecutively visited solutions refers to the size of the search
step. In such a procedure, the step size may act as a control parameter or observed key measure
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to guide the search. Intensification and diversification are strategically implemented by conducting
smaller or bigger steps to avoid an early entrapment in locally optimal solutions.

In scheduling research, the distance δ(s, s′) of two feasible schedules s and s′ is commonly
defined by the minimum number of basic operators required to construct one schedule from the
other, cf. [44,45]. Here, the adjacent pairwise interchange (API) of two neighboring operations in the
machine-based representation of a schedule is used as the basic operator. Formally, it can be described
by the introduction of an indicator variable for all pairs of operations Oi,j and Oi′,j′ with i < i′ requiring
the same machine as follows:

hi,j,i′,j′ =

⎧
⎪⎪
⎨
⎪⎪
⎩

1, if an ordering Oi,j → Oi′,j′ or Oi′,j′ → Oi,j in s is reversed in s′,
0, else.

(4)

Consequently, the distance of two schedules is determined by

δ(s, s′) = ∑

Oi,j ,Oi′ ,j′∈ O with

Ma(Oi,j)=Ma(Oi′ ,j′), i<i′

hi,j,i′,j′ . (5)

Note that, when describing the BJSP with a mixed-integer program and implementing the pairwise
ordering of operations with binary variables, the given distance measure is highly related to the
well-known Hamming distance of binary strings, see [15] for further explanations.

5. Neighborhood Structures

In the following, neighborhood structures, which apply interchanges and shifts to the
permutation-based representations of a schedule, are defined. The generation of feasible neighbors
receives special attention, and the connectivity of the neighborhoods when dealing with complex
BJSPT instances is discussed. A statistical analysis of a large set of generated neighboring solutions is
reported to detect critical characteristics of the repairing scheme and the search space in general.

5.1. Introducing Interchange- and Shift-Based Neighborhoods

5.1.1. Transition Schemes and Their Implementation

In line with the findings presented in the literature, intensification and diversification shall both
be realized in a heuristic search procedure by appropriate moves. When solving general sequencing
problems, interchanges and shifts of elements in permutations constitute generic operators which
are widely used, cf. [45,46]. The interchange-based moves applied here to the BJSPT and their
implementation in the permutation-based encodings are defined as follows, see [15,16].

Definition 1. An API move denotes the interchange of two adjacent operations Oi,j and Oi′,j′ of different jobs
requiring the same machine Mk ∈M in the machine-based representation of the schedule. Adjacency is defined
in a strict sense. A pair of operations Oi,j and Oi′,j′ is called adjacent if there is no idle time on machine Mk
between the preceding operation leaving the machine and the start of the processing of the succeeding operation.

Definition 2. A TAPI move denotes an interchange of two adjacent operations Oi,j and Oi′,j′ of different jobs
requiring the same machine Mk ∈M with Oi,j → Oi′,j′ in the machine-based representation of the schedule,
where strict adjacency is given and the job Ji′ is currently tardy.

The limitation to pairs of operations, which are strictly adjacent in a schedule, can be made
without loss of search capability, cf. [15]. An idle time between two consecutively processed operations
of different jobs on a machine may only occur due to
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1. the technological routes of the jobs and the corresponding processing sequences on other
machines or

2. the release date of the job of the succeeding operation.

In the first case, there always exists a sequence of applicable API moves that eliminates the
idle time and enables an interchange of the considered pair of operations. In the second case,
an interchange of the considered pair of operations will only result in postponing the starting time of
the initially preceding operation, since the succeeding operation cannot be processed earlier. If such
a postponement is beneficial, this will also be indicated by an applicable API at another point in the
schedule. Otherwise, postponing the preceding operation can never be advantageous with regard to
total tardiness.

These operators are intended to construct close neighboring solutions with a desired distance
δ(s, s′) = 1. Small steps are supposed to intensify the search and make a heuristic search procedure
nicely tractable towards locally optimal schedules. The advantageousness of restricting the set of
potential API moves based on the objective function value, namely considering only TAPI moves, shall
be closely investigated in the computational experiments. Figure 3 shows all applicable API moves
(solid arrows) and TAPI moves (dashed arrows) for a small BJSPT instance with three machines and
three jobs. It can be observed that, referring to the same schedule, the set of TAPI moves is a subset of
the set of API moves. Note that there is an idle time occurring between three pairs of consecutively
processed operations on the machines M2 and M3, while there is no blocking time on any machine in
the given schedule.

M1

M2

M3

O1,1 O3,2 O2,1

O3,3O1,2

O1,3O3,1 O2,2

t

▼

r1, r2
▼

r3

▲

d1

▲

d2, d3

API moves

TAPI moves

Figure 3. Illustration of applicable API and TAPI moves in a given schedule for the BJSPT

To avoid redundancy in the neighborhood structure on the one hand, API moves are applied to
the machine-based representation of a schedule. To check the feasibility of the constructed neighboring
schedule on the other hand, the applied API move needs to transferred to the operation-based
representation of the schedule, cf. [16]. Since the interchanged operations are not necessarily directly
adjacent in the permutation, this can be done by a left shift or a right shift transformation, respectively.
First, consider the API move O1,1 ↔ O3,2 in the schedule given in Figure 3 and the following
permutation encoding this schedule:

sop
= [O1,1, O3,1, O1,2, O3,2, O1,3, O3,3, O2,1, O2,2].

The API move can be implemented either by shifting operation O1,1 to the right together with its
job successor O1,2 to preserve the processing sequence or by shifting operation O3,2 to the left together
with its job predecessor O3,1. In both cases, the following permutation perm is generated:

perm = [O3,1, O3,2, O1,1, O1,2, O1,3, O3,3, O2,1, O2,2].

It appears that the permutations generated by implementing API moves are infeasible with regard
to blocking constraints. Here, operation O1,1 cannot be scheduled on machine M2, since this machine
is blocked by operation O3,2. Thus, the given list needs to be repaired. After applying the BRT to
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perm, the following feasible neighboring schedule sop′ , which incidentally turns out as a permutation
schedule, is constructed:

sop′
= [O3,1, O3,2, O3,3, O1,1, O1,2, O1,3, O2,1, O2,2].

Considering the second applicable API move O3,2 ↔ O2,1 in the schedule of the (3, 3)-instance
in Figure 3, the left shift of operation O2,1 and the right shift of operation O3,2 in sop generate two
different permutations perm1 and perm2, respectively:

perm1 = [O1,1, O3,1, O1,2, O2,1, O3,2, O1,3, O3,3, O2,2],

perm2 = [O1,1, O3,1, O1,2, O1,3, O2,1, O3,2, O3,3, O2,2].

Applying the BRT to perm1 constructs a feasible neighboring schedule

sop′

1 = [O1,1, O3,1, O1,2, O2,1, (O2,2, O3,2), O1,3, O3,3],

which is displayed in Figure 4. This schedule features a swap of the jobs J2 and J3 on the machine M1

and M3 and two periods of blocking time on the machines M2 and M3 indicated by the curved lines.

M1

M2

M3

O1,1 O3,2O2,1

O3,3O1,2

O1,3O3,1 O2,2

t

▼

r1, r2
▼

r3

▲

d1

▲

d2, d3

Figure 4. Illustration of the feasible neighboring schedule sop′

1 resulting from an API move.

Applying the BRT to perm2 reveals a major difficulty of using permutations, interchange-based
operators, and repairing schemes in solution approaches for BJSPs. After the first three operations

have been added to the partial permutation sop′

2 = [O1,1, O3,1, O1,2], the operation O1,3 is considered.
It requires machine M3, which is blocked by operation O3,1. Thus, the job successor O3,2 must be
scheduled prior to operation O1,3, and the BRT reverts the given API to regain the feasibility of the
schedule. A graphical representation of the critical step is given in Figure 5.

perm2 = [O1,1, O3,1, O1,2, O1,3, O2,1, O3,2, O3,3, O2,2]

☇

Figure 5. Schematic presentation of an API reverted by applying the BRT.

It can easily be seen that the operation sequence given in the first part of the permutation perm2

and the operation sequence resulting from the API cannot be implemented together. Additional
changes in the schedule are necessary to construct a feasible solution involving the desired ordering
O2,1 → O3,2. Preliminary experiments have shown that a reversion occurs in 80 to 90% of all generated
and repaired neighboring schedules. Therefore, an enhanced repairing scheme is required to find
feasible solutions that contain given orderings while featuring as few changes as possible compared to
the initially given ones.

The desired operation sequence can be interpreted as a partial schedule with exactly two elements.
While the decision problem on the existence of a completion of an arbitrarily large partial schedule
is NP-complete for the BJSP, cf. [17], the generation of a feasible schedule with a given ordering of
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exactly two operations is always possible. Nonetheless, the challenging task is to find a structured and
commonly applicable procedure, which returns a feasible neighbor from an initially given schedule
and a desired operation sequence resulting from an API. The subsequent section deals with this issue
in detail.

It is indicated by previous studies on BJSPs that a diversification strategy is beneficial to
reach promising regions of the search space, see [32,34]. Therefore, a randomized and objective
function-oriented transition scheme is defined. It is applied to the operation-based representation of a
schedule and relies on shifts of operations in the permutation as generic operators, see [15,16].

Definition 3. A TJ move is defined by applying random leftward shifts to all operations of a tardy job Ji in the
permutation-based representation of a schedule, while preserving the processing sequence Oi,1 → Oi,2 → ⋯→

Oi,ni of the job.

The resulting permutation might be infeasible with regard to blocking constraints, and the BRT is
used to construct a feasible neighboring schedule. Since a TJ move creates desired partial sequences
for every shifted operation, it is not guaranteed that a solution involving all of these orderings
simultaneously exists. Thus, no fixation can be applied and the BRT is potentially able to revert all
shifts. To avoid neighboring schedules which are equivalent to the initially given ones, sufficiently
large shifts are executed.

5.1.2. Generating Feasible API-Based Neighbors

As mentioned in the previous section, the generation of feasible neighboring schedules for
BJSPs involving a given API-based ordering is a critical issue. Since potentially required additional
changes in the schedule are not contained in the BRT, an Advanced Repair Technique (ART) is proposed,
cf. [15,16]. This method takes the operation-based representation of a schedule s, named perm, and a
desired sequence of two operations Oa,b → Oi′,j′ and returns the operation-based representation sop

of a neighboring schedule s′, which involves the given ordering. All additional APIs necessary to
transform the schedule s into s′ follow a basic rule. Instead of reverting a given pairwise sequence
Oa,b → Oi′,j′ , the initial permutation is adapted by leftward interchanges of an operation of the job Ja

and the repairing scheme is restarted. Figure 6 gives a schematic illustration of the ART in total.
It can be observed in the left part of the chart that the BRT constitutes the foundation of the ART.

The operations are iteratively taken from the list perm, requiring machines are checked for idleness,
and blocking operations are determined, if necessary. The first important difference is indicated by
the ellipsoid node printed in bold face. An operation is defined to be fixed, if it acts as the successor
operation in a given pairwise sequence. The corresponding predecessor is denoted as the associated
operation. In the general example stated above, operation Oi′,j′ is fixed with the associated operation
Oa,b. In case a fixed operation shall be added to the queue and its associated operation is already
scheduled in the feasible permutation sop, no reversion occurs and the procedure continues in the basic
version. In case the associated operation Oa,b is not yet scheduled, the given ordering Oa,b → Oi′,j′

would be reverted by adding operation Oi′,j′ to the queue. To avoid this, the ART follows one of
four modification paths in the gray box, the initial list perm is adapted, and the whole procedure
is restarted.
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Figure 6. Schematic outline of the Advanced Repair Technique (ART), cf. [15].

Figure 7 illustrates the four possible cases of adaptation by means of Gantt charts. Assume that
Oa,b → Oi′,j′ is a given ordering and operation Oi,j, shown in striped pattern, is the operation currently
considered by the ART. Irreversible pairwise sequences are given by bold rightward arrows connecting
adjacent operations on a machine, and the required additional APIs are indicated by leftward arrows
with case-corresponding line patterns, see Figure 6. Let the feasible partial schedule sop already contain
operation Oi′,j′−1 in the cases 1, 2, and 3, and operation Oi′,j′−2 in case 4. The consideration of operation
Oi,j to be scheduled next requires the following blocking constraint to be fulfilled: lidx(Oi′,j′) <

lidx(Oi,j). Since the associated operation Oa,b is not yet included in the list sop, the fixed operation Oi′,j′

cannot be positioned at the next idle list index prior to operation Oi,j. To resolve the situation, the basic
strategy is to shift or interchange the associated operation Oa,b further to the left on its machine, so
that it will be scheduled before the required repairing shift of operation Oi′,j′ occurs in the next run
of the procedure. Therefore, the machine predecessor list of Oa,b excluding operations of job Ja is
determined, see Figure 6, and the adaptation of the initial permutation is conducted according to one
the following cases:

Case 1: If there exists a machine predecessor α(Oa,b), an additional API move is performed and
the ordering Oa,b → α(Oa,b) is defined to be fixed additionally, see part (a) of Figure 7. The API is
implemented in the list perm by a left shift of operation Oa,b.

Case 2: If there exists no machine predecessor of operation Oa,b and there exists no other operation
associated with operation Oi′,j′ , the currently considered operation Oi,j might itself be a job predecessor
Oa,b′ of the associated operation Oa,b. If this is true, an API move is performed with its machine
predecessor Oi′,j′−1, see part (b) of Figure 7. Note that, for this situation to occur, the machine
predecessor necessarily needs to exist and belong to job Ji′ .

Case 3: Assume that there exists no machine predecessor of operation Oa,b and no other operation
associated with operation Oi′,j′ , and, furthermore, the currently considered operation is not a job
predecessor of operation Oa,b. Then, the associated operation is shifted leftward in the permutation
perm to the position prior to the currently considered operation Oi,j, see part (c) of Figure 7. This shift
does not implement an API move but is sufficient to satisfy the given blocking constraint.

Case 4: This situation differs structurally from the other three cases. It involves at least three
machines, and it can only appear with operations of recirculating jobs after one or more additional APIs
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have already been performed. In part (d) of Figure 7, besides the initially given ordering, the pairwise
sequences Oa,b′ → Oi′,j′−1 and Oa,b′′ → Oi′,j′−1 are exemplarily fixed. After the machine predecessor list
of the associated operation Oa,b′ has been determined as empty, a second operation associated with the
fixed operation Oi′,j′−1 can be found, namely operation Oa,b′′ . Dependent on the existence of a machine
predecessor α(Oa,b′′), the ART proceeds according to Cases 1, 2, or 3 with an adaptation of the list
perm. In the depicted Gantt chart, a shift following Case 1 is shown as an example.

Mk

Mk′ α(Oa,b) . . . Oi′,j′Oa,b

Oi′,j′−1 Oi,j

(a) Case 1: Shifting the associated operation
Oa,b in the operation sequence on Ma(Oa,b)

Mk

Mk′ Oi′,j′Oa,b. . .

Oi′,j′−1 Oa,b′

(b) Case 2: Shifting the currently considered operation Oi,j =

Oa,b′ , (b′ < b) in the operation sequence on Ma(Oa,b′)

Mk

Mk′ Oi′,j′Oa,b. . .

Oi′,j′−1 Oi,j
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Figure 7. Adapting the permutation perm in the ART, cf. [15].

After the permutation is adapted according to one of the four cases, the ART is restarted involving
one additionally fixed pairwise sequence. The following observation can be made regarding the
operations moved during adaptation.

Observation 1. While executing the ART, the operation interchanged or shifted leftwards when adapting the
permutation is always the associated operation Oa,b defined by the initially given fixed sequence Oa,b → Oi′,j′ or
one of its job predecessors.

Based on this, arguments indicating the correctness of the ART can be derived as follows, cf. [15]:

Proposition 2. The ART terminates and returns a permutation sop encoding a feasible schedule for the BJSP
involving a predefined ordering Oa,b → Oi′,j′ of two operations of different jobs requiring the same machine.

Proof. It is equivalently assumed here that the initially given list perm is feasible with regard to
the processing sequences of all jobs Ji ∈ J . The ART proceeds like the BRT until there is a fixed
operation Oi′,j′ to be scheduled prior to its associated operation Oa,b. According to Proposition 1,
the BRT terminates and returns a feasible encoding sop of a BJSP schedule from a given permutation.
Consequently, the adaptation of the permutation and the restart of the ART are the only critical aspects
to regard here in detail.

It needs to be shown that

(1) an adaptation does not violate the processing sequences of the jobs,
(2) an adaptation can never be reverted,
(3) the number of possible adaptations is finite and
(4) there exists a sequence of adaptations leading to a feasible schedule for the BJSP including the

predefined pairwise sequence Oa,b → Oi′,j′ .

When an adaptation is performed, an operation of job Ja is shifted leftwards in the permutation.
The processing sequence of this job is the only one potentially affected and it may only get violated,
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if the operation is moved prior to one or more of its job predecessors. This situation is checked during
the adaptation and job predecessors are additionally shifted, if necessary. Thus, (1) is always true.

The set of irreversible orderings is extended by one pairwise sequence in every execution of
the adaptation procedure. Thus, the incorporated BRT mechanisms can never reverse an adaptation.
A consecutively required API or shift can only result from a fixed ordering Oa,b′ → Oc,d with b′ ∈
{1, . . . , b}, where the currently regarded operation Oi,j features a list index prior to lidx(Oa,b′) in perm.
This means that a consecutively required adaptation does always appear at a position prior to the
previous adaptation causing the fixed sequence Oa,b′ → Oc,d. As a consequence, the operation Oa,b′

or one of its job predecessors is moved to a list index smaller than lidx(Oi,j), for which lidx(Oi,j) <

lidx(Oa,b′) < lidx(Oc,d) holds. Thus, an implemented adaptation can never be reverted by an ART
mechanism. (2) is true.

Since the list perm contains a finite number of elements, and the set of shifted operations is
restricted to all operations of a job Ja ∈ J , see Observation 1, and (2) is true, the number of possible
adaptations is finite. (3) holds.

The strategy of the ART can be summarized as shifting the operations of a job Ja iteratively
leftwards in the operation sequences on the required machines. This is repeatedly applied until the
given pairwise sequence is realized in a feasible schedule for the BJSP constructed by BRT mechanisms
only. Following from Observation 1 and statement (2), all moved operations may end up at the
first positions in the operation sequences on their machines in the extreme case. Thus, the job Ja

involving operation Oa,b is scheduled prior to all other jobs involved in the problem and Oa,b → Oi′,j′ is
guaranteed. (4) is shown.

Considering that the total number of operations is given by nop and, furthermore, taking this
measure as a worst case estimate for the number of operations requiring a certain machine, the ART
determines a feasible schedule involving a given pairwise sequence in O ((nop)

4
) steps, cf. [15].

This method enables the usage of APIs as generic operators in neighborhood structures for BJSPs.

5.1.3. Definition of the Neighborhoods

In line with the transition schemes described in the previous section, the examined neighborhoods
are defined as follows:

Definition 4. The API neighborhood of a schedule s is defined as the set of schedules s′, where s′ is a feasible
schedule involving a given API move implemented by a left shift or a right shift.

Definition 5. The TAPI neighborhood of a schedule s is defined as the set of schedules s′, where s′ is a feasible
schedule involving a given TAPI move implemented by left shift or right shift.

Definition 6. The TJ neighborhood of a schedule s is defined as the set of schedules s′, where s′ is a feasible
schedule resulting from a TJ move.

In the following, all neighboring solutions constructible through a given API or TAPI are generally
denoted as API-based neighbors of a schedule. Note that, due to the required repairing schemes,
the actual distances of neighboring schedules are not precisely determined, cf. [15]. The minimum
distance of a schedule and its API-based neighbor is given by 1, and the maximum distance is

theoretically bounded by ∑Mk∈M (
∣Ωk ∣

2 ), where Ωk defines the set of operations requiring machine
Mk. As mentioned in the previous section, schedules in the TJ neighborhood might have a minimum
distance of 0 to the initially given one, while the maximum distance is equivalently restricted by the
structural upper bound. While the leftward shifting strategy applied by the ART in the adaptation of
the permutation is required for the termination of the method, it is not guaranteed that the smallest
number of necessary changes is implemented. To the best of the authors’ knowledge, there does not
yet exist a general neighborhood structure or repairing scheme for BJSP schedules capable of certainly
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constructing the closest possible neighbor for an initial solution and a given change. An empirical
study on the distances resulting for the proposed neighborhoods together with the ART is reported in
the next section.

5.2. Characteristics and Evaluation

5.2.1. Connectivity of the Neighborhoods

A neighborhood is said to be connected, if every existing feasible schedule can be transformed
into every other existing feasible schedule by (repeatedly) applying a given neighbor-defining
operator, see [13,39,45]. Here, the neighbor-defining operators consist of a move and a repairing
scheme. The connectivity of the neighborhood is of significant importance in the application of search
procedures, since it guarantees that the methods are capable of finding optimal solutions. However,
such a structural result can only be interpreted as an indication for the actual performance of a
neighborhood-based heuristic solution approach on practically relevant instances.

Proposition 3. Given general release dates ri ∈ Z≥0 for Ji ∈ J and the minimization of total tardiness as the
optimization criterion, the proposed neighborhoods, namely the API neighborhood, the TAPI neighborhood and
the TJ neighborhood, are not connected.

Proof. Consider API and TAPI moves first. As described in Section 5.1, in a feasible schedule, there
may exist two subsequent operations Oi,j and Oi′,j′ on a machine in the schedule which are considered
as non-adjacent due to an idle time caused by the release date of the succeeding job Ji′ . Such a pair of
operations can never be chosen for an API or a TAPI move in constructing neighboring schedules. Thus,
a schedule involving the ordering Oi′,j′ → Oi,j cannot be reached by applying the neighbor-defining
operators even if it is feasible for the BJSP. Thus, the API and the TAPI neighborhoods are not connected.

Furthermore, regarding the TJ move which shifts all operations of a currently tardy job in the
permutation, the limitation to choosing a job with a strictly positive tardiness value implies that the
neighborhood of feasible schedules with a total tardiness of 0 is empty. Even if optimal solutions
for the BJSPT are found in this case, these schedules are isolated by definition and no other feasible
schedule can be constructed subsequently. Thus, the TJ neighborhood is not connected.

Despite these negative findings on the connectivity of the neighborhoods, the proposed structures
are still supposed to be successfully applicable in a metaheuristic search method for the BJSPT. It can
be expected that extraordinarily widespread release dates, which cause a disjoint partitioning of the
search space, do not occur in practically relevant problems. Furthermore, in most of the cases, it is not
necessary to continue the search once an optimal solution is found.

However, the questions on whether the described API neighborhood is connected for the special
case ri = 0, Ji ∈ J or for a specific combination of release date and processing time ranges remain open.
It is conjectured that the API neighborhood together with the ART feature the connectivity property
for the BJSP without release dates.

5.2.2. Observations on the Interchange-Based Transition Scheme

Besides the general problem solving capability of a metaheuristic involving the proposed
neighborhood structures, the API-based transition schemes shall be evaluated with regard to their
ability to generate small distance and high quality neighbors. Special attention is given to the
differences appearing in using a left shift or a right shift transformation to implement an API in
the operation-based encoding of a schedule. For all API and TAPI neighbors constructed during the
computational experiments, a specific interchange is chosen, left shift and right shift transformation
are performed, and both resulting solutions are evaluated with regard to their distances from the
initially given schedule and their total tardiness values.
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Figure 8 displays the distributions of the distances of API-based neighbors with left shift (LS) and
right shift (RS) transformation for the benchmark instances by boxplots. The range in which 50% of the
distance measures of the neighbors can be found, the so-called interquartile range, is represented by
the box. The black horizontal line indicates the median of the sample. The whiskers plot the minimal
and the maximal distance value which are not more than one and a half interquartile ranges away
from the box.
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Figure 8. Boxplots representing the distribution of the distance measure among neighbors based on
API-moves for the benchmark instances of the BJSPT, cf. [15].

Considering all transitions independent of the direction of implementation, it can be stated
that the distance of neighboring schedules based on a single API is remarkably large for the BJSP.
Evidently, a significant amount of additional adaptations is required to fit a given pairwise sequence to
a feasible schedule. Even if it is not guaranteed that the closest neighbor is generated by the ART, these
results highlight the complexity of the search space caused by blocking constraints. This may lead to
difficulties in the effectiveness and the control of a heuristic search method, since an iterative execution
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of small changes is desirable to systematically explore the set of feasible schedules. Comparing
the directed implementations of APIs, the distances of neighbors constructed using a right shift
transformation are significantly smaller than the measures of neighboring schedules generated by
a left shift transformation. Thus, it is recommendable to implement APIs by a right shift in the
operation-based encoding to support the execution of smaller search steps, cf. [15].

The chart in Figure 9 shows the proportion of APIs for which the neighbors resulting from a left
shift and a right shift transformation are equivalent (EQ). Given that two different schedules arise, it is
displayed to which extent the schedule with a smaller total tardiness value is generated by a left shift
or by a right shift implementation of the API in the operation-based encoding. It can be observed that
the majority of neighboring schedules based on the same API end up to be equivalent after applying
the ART. Regarding the cases where different schedules are constructed, the right shift transformation
clearly outperforms the left shift transformation by means of total tardiness. Since heuristic methods
are intended to require limited computational effort, it is reasonable to implement APIs by right shift
transformation only, cf. [15]. The analysis indicates that the proportion of cases in which the best
possible neighboring schedule is not generated is less than 13%.
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6. Computational Experiments and Results

Finally, the proposed neighborhood structures and repairing schemes are used to solve the
benchmark instances of the BJSPT introduced in Section 3. In line with the findings in the literature,
SA is chosen as a simple and generic local search scheme. The neighborhoods and repairing schemes
can easily be embedded and the method facilitates moves to inferior neighboring solutions. The latter
aspect seems especially promising with regard to the observed ruggedness of the search space of the
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BJSPT. The following computational results give insight to the general capability of permutation-based
procedures in solving the problem under study. Furthermore, the potential change in the performance
when guiding the search scheme by objective function values is observed.

6.1. A Simulated Annealing Algorithm

The metaheuristic framework is implemented in the standard variant, see, for instance [2,38,39],
with a geometric cooling scheme tτ+1 = c ⋅ tτ . Correspondingly, the initial temperature t0, the terminal
temperature T, and the cooling factor c act as the control parameters of the procedure. With regard
to the asymptotic convergence of SA, nop − m neighboring solutions are evaluated for every
temperature level.

Since the probability for a generated neighbor to be accepted as the new current solution depends
on the objective function values of the considered schedules next to the temperature level, the parameter
setting needs to be adjusted according to the magnitude of the total tardiness. Preliminary experiments
indicated the following settings (t0, T, c) as beneficial for the benchmark problems: (20, 0.5, 0.9925)
and (20, 10, 0.999) for the train scheduling-inspired instances and (200, 50, 0.995) for the Lawrence
instances, cf. [15,47]. Dependent on the size of the instances, 11,000 to 84,000 iterations are performed,
cf. [15].

Furthermore, the extent to which the API-based and the randomized shift-based neighborhood
structures are used to include intensification and diversification advantageously has been part of an
initial study. The proposed algorithm applies either the API or the TAPI neighborhood combined with
the TJ neighborhood, respectively. This implies that the effectiveness of an objective function-oriented
guidance can be analyzed, while a random component is always involved. For every generation
of a neighbor, the API-based neighborhood is chosen with a probability of 0.9 and a TJ neighbor is
constructed with a probability of 0.1, cf. [15,47]. If an API is performed, both schedules resulting from
a left shift and a right shift transformation are evaluated, and the superior one becomes the candidate
to represent the next incumbent solution. The created algorithm is called permutation-based simulated
annealing (PSA).

6.2. Numerical Results

The computational experiments are conducted on a notebook featuring an Intel Dual Core i5
processor (2.20 GHz) with 8 GB RAM. Algorithm PSA is implemented in Python 3. Tables 2–4
summarize the numerical results of five independent runs operated for each instance, parameter
setting, and neighborhood structure. The first two columns of each table display the instance and
the corresponding size (m, n). For reasons of comparison, the third column contains the best total
tardiness value obtained by solving the considered problem with the help of IBM ILOG CPLEX 12.8
using a mixed-integer programming (MIP) formulation with pairwise precedence variables, see [15]
for detailed explanations on the model. Objective function values with proven optimality are denoted
by an asterisk. The next pairs of columns show the average total tardiness ∑Ti and the minimal total
tardiness min(∑Ti) obtained for each instance by Algorithm PSA based on the API and the TAPI
neighborhood, respectively. Contrasting the mean total tardiness values reached, the smaller measure
is highlighted by boldface printing.

Generally, it can be stated that Algorithm PSA yields satisfactory results for instances with and
without inner structure especially when being compared to the MIP approach. For instances of
small size and an equivalent number of jobs and machines, such as ts01 to ts05, la02 to la05, la07
and la08, la17, la19 and la20, the method is capable of finding an optimal solution. Even more
important, the algorithm is able to generate medium quality solutions for large problems like la31
to la35, for which a general-purpose method might even struggle in generating feasible schedules.
This gives evidence for the advantageousness of the proposed heuristic approach in solving real-world
production planning instances of critical size.
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Nonetheless, the complex repairing schemes constitute a drawback of the heuristic algorithm
with regard to computation time. PSA requires 2 to 70 min of runtime dependent on the size of the
instances, while the MIP technique is able to solve small instances to optimality in a few seconds, cf. [15].
As indicated by the statistical analysis of the neighborhoods in the previous section, the runtime of PSA
can be improved by implementing APIs by a right shift transformation only. To further overcome these
difficulties, a hybrid method combining heuristic and MIP mechanisms seems promising. Heuristic
methods can be used to generate feasible schedules for large instances quickly, while solving smaller
subproblems by MIP may be a superior improvement strategy towards locally optimal solutions. First,
results following this research direction are presented in [15,18].

Table 2. Computational results of Algorithm PSA with (20, 0.5, 0.9925) applied to the train scheduling-
inspired instances, cf. [15].

Inst. (m, n) MIP
API TAPI

∑Ti min(∑Ti) ∑Ti min(∑Ti)
ts01 (11, 10) 138 * 140.0 138 * 142.6 138 *
ts02 (11, 10) 90 * 95.0 91 96.6 90 *
ts03 (11, 10) 72 * 78.8 72 * 84.8 76
ts04 (11, 10) 41 * 41.4 41 * 41.2 41 *
ts05 (11, 10) 71 * 71.2 71 * 71.6 71 *

ts06 (11, 15) 88 * 125.0 108 119.4 109
ts07 (11, 15) 172 * 196.0 184 201.0 192
ts08 (11, 15) 163 * 185.6 163 * 185.6 181
ts09 (11, 15) 153 174.0 160 175.2 161
ts10 (11, 15) 97 * 116.6 107 112.6 108

ts11 (11, 20) 366 409.4 387 411.8 392
ts12 (11, 20) 419 429.2 412 442.4 419
ts13 (11, 20) 452 492.2 472 478.2 445
ts14 (11, 20) 459 500.6 473 508.8 492
ts15 (11, 20) 418 433.2 413 428.2 387

Table 3. Computational results of Algorithm PSA with (20, 10, 0.999) applied to the train scheduling-
inspired instances, cf. [15].

Inst. (m, n) MIP
API TAPI

∑Ti min(∑Ti) ∑Ti min(∑Ti)
ts01 (11, 10) 138 * 140.2 138 * 140.0 138 *
ts02 (11, 10) 90 * 94.6 91 95.2 91
ts03 (11, 10) 72 * 74.2 72 * 74.4 72 *
ts04 (11, 10) 41 * 41.8 41 * 41.0 * 41 *
ts05 (11, 10) 71 * 71.4 71 * 71.0 * 71 *

ts06 (11, 15) 88 * 121.6 107 119.8 111
ts07 (11, 15) 172 * 195.4 189 192.8 185
ts08 (11, 15) 163 * 184.2 179 185.0 181
ts09 (11, 15) 153 178.8 168 177.4 174
ts10 (11, 15) 97 * 114.8 97 * 112.0 105

ts11 (11, 20) 366 406.4 390 401.6 387
ts12 (11, 20) 419 428.2 412 424.6 405
ts13 (11, 20) 452 462.6 448 460.6 447
ts14 (11, 20) 459 462.8 418 495.0 466
ts15 (11, 20) 418 419.4 401 435.0 414

Comparing the API and TAPI neighborhood with regard to solution quality over all instances,
no transition scheme clearly dominates. An advantageousness of guiding the search by current
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total tardiness values cannot be observed. A preliminary performance testing might be beneficial
for every individual application of the API-based neighborhood structures to other BJSPT instances,
since the solution quality reached may dependent on the problems size and structure as well as on
the setting of the metaheuristic framework. It can be remarked that, based on the experiments on
the ts instances with two different parameter settings, the API neighborhood performs better with
lower temperature levels between 20 and 0.5, while the TAPI neighborhood is favorable combined
with higher temperature levels between 20 and 10. This implies that simultaneously applying a strict
limitation of the acceptance of inferior schedules in the search procedure and a restriction of the
possible interchanges based on the objective function value is not reasonable.

Table 4. Computational results of Algorithm PSA with (200, 50, 0.995) applied to the Lawrence
instances, cf. [15].

Inst. (m, n) MIP
API TAPI

∑Ti min(∑Ti) ∑Ti min(∑Ti)
la01 (5, 10) 762 * 787.4 773 783.8 773
la02 (5, 10) 266 * 283.4 266 * 277.6 266 *
la03 (5, 10) 357 * 357.0 * 357 * 357.0 * 357 *
la04 (5, 10) 1165 * 1217.2 1165 * 1284.2 1165 *
la05 (5, 10) 557 * 557.0 * 557 * 557.0 * 557 *

la06 (5, 15) 2516 2790.0 2616 2912.4 2847
la07 (5, 15) 1677 * 1942.2 1869 1904.2 1677 *
la08 (5, 15) 1829 * 2335.0 1905 2129.6 1829 *
la09 (5, 15) 2851 3275.2 3161 3226.6 3131
la10 (5, 15) 1841 * 2178.2 2069 2119.4 2046

la11 (5, 20) 6534 6186.2 5704 5846.4 5253
la12 (5, 20) 5286 5070.0 4859 4997.8 4809
la13 (5, 20) 7737 7850.6 7614 7611.8 7342
la14 (5, 20) 6038 6616.8 5714 6872.4 6459
la15 (5, 20) 7082 7088.6 5626 7153.6 6330

la16 (10, 10) 330 * 395.8 335 360.8 335
la17 (10, 10) 118 * 144.2 120 118.8 118 *
la18 (10, 10) 159 * 229.4 159 * 264.0 235
la19 (10, 10) 243 * 306.6 243 * 301.0 243 *
la20 (10, 10) 42 * 55.6 42 * 42.0 * 42 *

la21 (10, 15) 1956 2847.2 2101 2961.8 2680
la22 (10, 15) 1455 2052.8 1773 2123.0 1988
la23 (10, 15) 3436 3692.6 3506 3746.8 3424
la24 (10, 15) 560 * 966.8 761 724.0 644
la25 (10, 15) 1002 1557.4 1289 1583.0 1390

la26 (10, 20) 7961 9275.8 8475 8600.8 7858
la27 (10, 20) 8915 7588.0 6596 7641.8 6457
la28 (10, 20) 2226 3430.8 2876 3367.6 2849
la29 (10, 20) 2018 2948.0 2432 3099.0 2626
la30 (10, 20) 6655 7621.6 6775 7372.8 6395

la31 (10, 30) 20,957 18,921.8 17,984 18,409.6 17,751
la32 (10, 30) 23150 21,991.4 20,401 21,632.2 20,546
la33 (10, 30) none 22,494.2 19,750 22,913.2 20,553
la34 (10, 30) none 20,282.8 18,633 21,911.8 19,577
la35 (10, 30) none 21,895.0 18,778 21,384.4 20,537

la36 (15, 15) 675 1856.0 1711 1839.0 1599
la37 (15, 15) 1070 1774.2 1621 1835.8 1594
la38 (15, 15) 489 * 760.4 645 745.4 676
la39 (15, 15) 754 1573.0 1391 1850.2 1551
la40 (15, 15) 407 * 1008.6 613 1187.6 912
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Moreover, it can be observed that the mean and the minimal total tardiness values differ
significantly for most of the instances. Especially for problems of larger size, the mean objective
function value often exceeds the minimal one by more than 10%. This aspect numerically emphasizes
the ruggedness of the search space of the BJSPT, which leads to difficulties in the guidance of any
heuristic search method. There seems to be a necessity of developing tailored neighborhood structures
to more efficiently solve job shop problems with practically relevant constraints and objective functions.
Based on these results, the involvement of random and diversifying components in a solution approach
is recommendable together with the performance of several independent runs when using standard
scheduling-tailored mechanisms.

7. Conclusions

In this paper, instances of a complex job shop scheduling problem are solved by a
permutation-based heuristic search method. Two repairing schemes are proposed to facilitate the usage
of well-known list encodings and generic operators for job shop problems with blocking constraints.
In applying interchange- and shifts-based transition schemes, three neighborhoods are defined and
analyzed with regard to structural issues and performance in an SA algorithm.

The computational experiments indicate that the proposed heuristic method using basic
scheduling-tailored operators is capable of finding optimal and near-optimal schedules for small
and medium size instances. Furthermore, it outperforms general-purpose techniques in generating
feasible schedules for problems of large size. This gives evidence to its applicability in decision support
systems for solving problems of practical relevance in production planning and logistics.

It turns out that the implementation of APIs by right shifts in the operation-based representation of
a schedule is favorable compared to other mechanisms with respect to small search steps and solution
quality. This narrows the required computational effort for heuristic search schemes using these types
of operators. The complexity of the problem under study becomes clearly visible in the necessary
enhancements of neighbor-defining moves and the resulting large distances of feasible schedules in
the API-based neighborhoods. This work shows that existing generic scheduling-tailored operators
have limits in their applicability to job shop problems with blocking constraints and tardiness-based
objectives. The development of dedicated heuristic solution approaches, which allow more controllable
search patterns, can be named as an important aspect of future research.

An advantage of guiding the choice of the executed interchanges by the objective function value
is not substantiated by the numerical results. Furthermore, considering the total tardiness values
obtained in several independent runs of the metaheuristic on the same instances, a high variance
in quality of the best schedules found is observed. Thus, the ruggedness of the search space of the
BJSPT and remarkable feasibility issues in the generation of neighboring schedules can be named
as reasons for the ongoing difficulties in solving instances of practically relevant size. However,
the computational results give evidence for hybrid solution approaches as a promising future research
direction to overcome such issues. The combination of a heuristic technique to find feasible schedules
for large instances and a general-purpose MIP method to quickly generate superior neighboring
solutions is expected to be beneficial.

Overall, the proposed permutation-based heuristic can enhance solving capability of complex
job shop scheduling problems. Important insights are gained into advantages and limits of applying
generic operators to BJSPT instances, and future research directions are highlighted.
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