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Abstract: This paper introduced a new ensemble learning approach, based on evolutionary fuzzy
cognitive maps (FCMs), artificial neural networks (ANNs), and their hybrid structure (FCM-ANN),
for time series prediction. The main aim of time series forecasting is to obtain reasonably accurate
forecasts of future data from analyzing records of data. In the paper, we proposed an ensemble-based
forecast combination methodology as an alternative approach to forecasting methods for time series
prediction. The ensemble learning technique combines various learning algorithms, including SOGA
(structure optimization genetic algorithm)-based FCMs, RCGA (real coded genetic algorithm)-based
FCMs, efficient and adaptive ANNs architectures, and a hybrid structure of FCM-ANN, recently
proposed for time series forecasting. All ensemble algorithms execute according to the one-step
prediction regime. The particular forecast combination approach was specifically selected due to
the advanced features of each ensemble component, where the findings of this work evinced
the effectiveness of this approach, in terms of prediction accuracy, when compared against other
well-known, independent forecasting approaches, such as ANNs or FCMs, and the long short-term
memory (LSTM) algorithm as well. The suggested ensemble learning approach was applied to three
distribution points that compose the natural gas grid of a Greek region. For the evaluation of the
proposed approach, a real-time series dataset for natural gas prediction was used. We also provided a
detailed discussion on the performance of the individual predictors, the ensemble predictors, and
their combination through two well-known ensemble methods (the average and the error-based)
that are characterized in the literature as particularly accurate and effective. The prediction results
showed the efficacy of the proposed ensemble learning approach, and the comparative analysis
demonstrated enough evidence that the approach could be used effectively to conduct forecasting
based on multivariate time series.

Keywords: fuzzy cognitive maps; neural networks; time series forecasting; ensemble learning;
prediction; machine learning; natural gas

1. Introduction

Time series forecasting is a highly important and dynamic research domain, which has wide
applicability to many diverse scientific fields, ranging from ecological modeling to energy [1],
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finance [2,3], tourism [4,5], and electricity load [6,7]. A summary of applications regarding forecasting
in various areas can be found in a plethora of review papers published in the relevant literature [8–15].
One of the main challenges in the field of time series forecasting is to obtain reasonable and accurate
forecasts of future data from analyzing previous historical data [16]. Following the literature, numerous
research studies show that forecasting accuracy is improved when different models are combined,
while the resulting model seems to outperform all component models [16]. Thus, the combination of
forecasts from different models or algorithms becomes a promising field in the prediction of future data.

Researchers can choose between linear and nonlinear time series forecasting methods, depending
on the nature of the model they are working on. Linear methods, like autoregressive moving average
(ARMA) and autoregressive integrated moving average (ARIMA) [17] are among the methodologies
which have found wide applicability in real-world applications. Traffic [18], energy [19–21], economy [22],
tourism [23], and health [24] are some example fields in which the ARIMA forecasting technique was
used. Considering though that most real-world problems are characterized by a non-linear behavior,
many researchers have investigated the use of non-linear techniques for times series-based forecasting
and prediction. In particular, machine learning and other intelligent methods have been chosen to
address possible nonlinearities in time series modeling, such as nonlinear ARMA time series models,
needing though to tackle the type of nonlinearity that is not usually known. Along with the computing
power growth and the evolution of data management techniques, there has been a growing interest in
the use of advanced artificial intelligence technologies, like artificial neural networks (ANNs) [25] and
fuzzy logic systems for forecasting purposes. ANNs and fuzzy logic systems use more sophisticated
generic model structures having the ability to incorporate the characteristics of complex data and produce
accurate time series models [26], while they also incorporate the advantageous features of nonlinear
modeling and data-based learning capabilities. Moreover, unlike traditional time series methods that
are not able to adequately capture nonlinear patterns of data, neural networks are usually involved in
predicting consumption demand during periods of low or extremely high demand [27]. Among all types
of ANN models, the feed-forward network model with backpropagation training procedure (FFN-BP) is
one of the most commonly used approaches [28].

The technique of combining the predictions of multiple classifiers to produce a single classifier is
referred to as an ensemble [29–32]. Ensemble building has recently attracted much attention among
researchers as an effective method that improves the performance of the resulting model for performing
classification and regression tasks. It has been demonstrated that an ensemble of individual predictors
performs better than a single predictor in the average [33,34], thus achieving better prediction accuracy
than that of the individual predictors. Two popular methods for creating accurate ensembles are
bagging [29] and boosting [35,36]. There are not many research works concerning potency forecasting of
a model in advance, as this is often a difficult task. Trying to avoid the risk of combining models that have
poor performance regarding prediction may result in an overall model with deteriorated forecasting
accuracy. An ensemble model, however, should rather be formed solely from component models that
are rated as adequate, if not good enough, for their forecasting capabilities [37]. Usually, the single
neural network (NN) models are combined to create NNs ensembles, to tackle sampling and modeling
uncertainties that could probably weaken the forecasting accuracy and robustness of component
NN models. Since individual component model could be sensitive under different circumstances,
ensembling them results in more powerful outcomes in the context of a decision-making process.

1.1. Related Literature

In recent years, the natural gas market has progressed greatly in terms of fast development and,
thus, it has become a very competitive area. Undoubtedly, natural gas is among primary energy
sources and has a significant environmental role considering its valuable environmental benefits,
such as low-level emissions of greenhouse gases in comparison with other non-renewable energy
sources [38,39]. Natural gas demand seems to increase considerably due to several socio-economic and
political reasons, while the price and environmental concerns are significant regulatory factors affecting
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natural gas demand. Therefore, the prediction of natural gas consumption, as a time series forecasting
problem, is becoming important in contemporary energy systems, allowing energy policymakers to
apply effective strategies to guarantee sufficient natural gas supplies.

So far, many research papers have tried to give a clear insight regarding natural gas forecasting by
suggesting models for predicting the consumption of this non-renewable energy source. A summary of
natural gas consumption forecasting regarding prediction methods, input variables used for modeling,
as well as prediction area, can be found in many review papers in the relevant literature. Particularly,
there is a thorough literature survey of published papers [38–40] that classifies various models and
techniques that have been recently applied in the field of natural gas forecasting, with respect to the
paradigm that each model/technique is based on, while there has been also an attempt by researchers
to classify all models applied in this area according to their performance characteristics, as well as
to offer some future research directions. The models presented were developed by researchers to
predict natural gas consumption on an hourly, daily, weekly, monthly, or yearly basis, in an attempt to
predict natural gas consumption with an acceptable degree of accuracy. Accurate forecasting of natural
gas consumption can be particularly important for project planning, engineering design, pipeline
operation, gas imports, tariff design, and optimal scheduling of a natural gas supply system [41].

Due to the need for distribution planning, especially in residential areas, the increasing demand for
natural gas, and the restricted natural gas network in many countries, the forecasting of consumption
on a daily and weekly basis seems to be of high importance. In the relevant literature, many
suggestions apply various ANN topologies and methods to support day-ahead natural gas demand
prediction [42–50]. For example, [42] used ANN, while [45] used a combination of ANN forecasters
for predicting gas consumption at a citywide distribution level. For the same distribution level
(citywide), a strategy was proposed in [51] to estimate the forecasting risk by using hourly consumption
data. Having as aim to find the best solution for natural gas consumption, the researchers in [52]
used linear regression with the sliding window technique, while in [53], a univariate artificial bee
colony-based artificial neural network (ANN-ABC) was applied to minimize error in the case of
forecasting day-ahead demand. The researchers in [54] also considered various methods for the
prediction of daily gas consumption, such as the seasonal autoregressive integrated moving average
model with exogenous inputs (SARIMAX), multi-layer perceptron ANN (ANN-MLP), ANN with
radial basis functions (ANN-RBF), and multivariate ordinary least squares (OLS).

In the relevant literature, there are also some research works on neuro-fuzzy methods and genetic
algorithms applied in natural gas demand, as in [41,55–58]. Specifically, a novel hybrid model that
combines the wavelet transform (WT), genetic algorithm (GA), adaptive neuro-fuzzy inference system
(ANFIS), and feed-forward neural network (FFNN) was recently examined in [41] and applied to the
Greek natural gas grid. Moreover, evolutionary fuzzy cognitive maps (FCMs) were recently used for
time series problems modeling and forecasting. FCMs can be understood as recurrent neural networks
inheriting many features from them, such as learning capabilities, which elevate the performance of
FCMs in modeling and prediction and further helped FCMs to gain momentum over recent years [59,60].
The researchers in [61,62] were the first to examine the application of FCMs to time series modeling,
proposing nodes selection criteria in an FCM, which was used to model univariate time series. Further
techniques for simplifying FCMs by removing nodes and weights were investigated, while a dynamic
optimization of the FCM structure was studied in [63] for univariate time series forecasting. Concerning
multivariate interval-valued time series, an evolutionary algorithm for learning fuzzy grey cognitive
maps was developed as a nonlinear predictive model [64]. Taking one step further, the researchers
in [65] and [66] enhanced the evolutionary FCMs with the structure optimization genetic algorithm
(SOGA). These approaches can be used to automatically construct an FCM model after selecting
the crucial concepts and defining the relationships between them by taking into consideration any
available historical data. An example regarding rented bikes’ count prediction was examined, where
SOGA-FCM was compared with the multi-step gradient method (MGM) [67] and the real-coded genetic
algorithm (RCGA) [68]. A two-stage prediction model for multivariate time series prediction, based
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on the efficient capabilities of evolutionary fuzzy cognitive maps (FCMs) and enhanced by structure
optimization algorithms and artificial neural networks (ANNs), was introduced in [69]. Furthermore,
the researchers in [21,60] recently conducted a preliminary study on implementing FCMs with NNs
for natural gas prediction.

1.2. Research Aim and Approach

The purpose of this paper was to propose a new forecast combination approach resulting from
FCMs, ANNs, and hybrid models. This ensemble forecasting method, including the two most
popular ensemble methods, the Average and the Error-based, is based on ANNs, FCMs with learning
capabilities, as well as on a hybrid FCM-ANN model with different configurations, to produce an
accurate non-linear time series model for the prediction of natural gas consumption. A real case
study problem of natural gas consumption in Greece was performed to show the applicability of
the proposed approach. Furthermore, in order to validate the proposed forecasting combination
approach, a comparison analysis between the ensemble methods and an innovative machine learning
technique, the long short-term memory (LSTM) algorithm (which is devoted to time series forecasting),
was conducted, and the results demonstrated enough evidence that the proposed approach could be
used effectively to conduct forecasting based on multivariate time series. The LSTM algorithm, as an
advanced recurrent NN method, was previously used for short-term natural gas demand forecasting
in Greece [70]. In that research paper, LSTM was applied in one day-ahead natural gas consumption,
forecasting for the same three Greek cities, which were also examined in the case study presented in
the current paper. Many similar works can be found in the literature that examine various forecast
combinations in terms of accuracy and error variability but, in the present work, an innovative approach
that combines FCMs, ANNS, and hybrid FCM-ANN models, producing a non-linear time series model
for the prediction of natural gas consumption, was studied exclusively, contributing to the novelty of
the current study. The results demonstrated in a clear way that the proposed approach had attained
better accuracies than other individual models. This study justified the superiority of the selective
ensemble method over combining the important features and capabilities of the models that consist of
the overall approach, making it a useful tool for future work.

The outline of the paper is as follows. Section 2 describes the material and methods of our research
study; Section 2.1 describes the case study problem and refers to the datasets of natural gas demand
that are used, whereas Section 2.2 presents the analyzed approaches for time series forecasting based
on ANNs, FCMs with evolutionary learning algorithms, and their hybrid combinations. The most
widely used ensemble methods for forecasting problems (i.e., the error-based and the simple average
method) are also presented in Section 2.2. In Section 3, the proposed forecasting combination approach
is described. The same Section presents the evaluation criteria, which we have used to analyze the
performance of the analyzed approaches for natural gas prediction. Section 4 presents the results of
simulation analysis for three different Greek cities, as well as the conducted comparative analysis of the
proposed approach with other intelligent techniques. A discussion of the results highlights the main
findings of the proposed ensemble forecasts approach. Section 5 summarizes the main conclusions of
the paper with further discussion and suggestions about future research expansion.

2. Materials and Methods

2.1. Material-Dataset

In the considered case study, three different prediction datasets of natural gas demand, derived
from different districts in Greece, were analyzed from the records of the Hellenic Gas Transmission
System Operator S.A. (www.desfa.gr, DESFA). DESFA company is responsible for the operation,
management, exploitation, and development of the Greek Natural Gas System and its interconnections
in a technically sound and economically viable way. From 2008, DESFA provides historical data of
transmission system operation and natural gas deliveries/off-takes. In this research work, historical

www.desfa.gr
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data with the values of gas consumption for a period of five years, from 2013 to 2017, were used as
initial data to accomplish forecasting. These data were split into training and testing data, where
usually the training data came from the first four years and were used for learning models, whereas
the data of the last year were used for testing the applied artificial intelligence models.

It is crucial for an efficient forecast to properly select the number and types of inputs. Thus,
we emphasized on defining proper input candidates. Six different inputs for time series prediction
were considered. The first three inputs were devoted to month indicator, day indicator, and mean
temperature. Specifically, concerning the calendar indicators, we used one input for months and one
input for days coding. Let m = 1, 2, . . . , 12 be the number of months. We considered the following
matching: January/1, February/2, . . . , December/12. Let l = 1, 2, . . . , 7 be the number of days. The day
type matching was as follows: Monday/1, Tuesday/2, . . . , Sunday/7. The temperature data were
obtained by the nearest to the distribution gas point station. The rest three inputs were the previously
measured values of natural gas demand, for one-day before, two-day before, and the current day.
These six variables were used to form the input pattern of the FCM. The output referred to the total
daily demand for the specific distribution point.

The features that were gathered and used in our study to form the FCM model were enough
and properly selected according to the relevant literature. From a recent literature review regarding
the prediction of natural gas consumption [40], it can be seen that past gas consumption combined
with meteorological data (especially temperature) are the most commonly used input variables for
the prediction of natural gas consumption. A recent study [41] used past consumption, temperature,
months, and days of the week, while in [55], day of week and demand of the same day in the previous
year were used as input variables for natural gas forecasting. Considering the above practices described
in the literature, it can be concluded that the features used in the current work were enough to predict
the consumption of natural gas for the selected areas.

The Greek cities of Thessaloniki, Athens, and Larissa were selected for the conducted simulation
analysis and comparison of the best performing algorithms. These different natural gas consumption
datasets may offer insight into whether the analyzed algorithms perform equally in different locations,
where the energy demand could be completely different for the same days.

2.2. Methods

2.2.1. Fuzzy Cognitive Maps Overview

A fuzzy cognitive map (FCM) is a directed graph in which nodes denote concepts important for the
analyzed problem, and links represent the causal relationships between concepts [71]. It is an effective
tool for modeling decision support systems. FCMs have been applied in many research domains, e.g.,
in business performance analysis [72], strategy planning [73], modeling virtual worlds [74], time series
prediction [69], and adoption of educational software [75].

The FCM model can be used to perform simulations by utilizing its dynamic model. The values
of the concepts change in time as simulation goes on [68]. The new values of the concepts can be
calculated based on the popular dynamic model described as follows [59]:

Xi(t + 1) = F


Xi(t) +

n∑
j = 1
j , i

X j(t)·w j,i


(1)

where Xi(t) is the value of the ith concept at the tth iteration, w j,i is the weight of the connection
(relationship) between the jth concept and the ith concept, t is discrete-time, i. j = 1, 2, . . . , n, n is the
number of concepts, F(x) is the sigmoidal transformation function [58]:
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F(x) =
1

1 + e−cx (2)

where c is a parameter, c > 0. The weights of the relationships show how causal concepts affect one
another. If w j,i > 0, then an increase/decrease in the value of the jth concept will increase/decrease
the value of the ith concept. If w j,i < 0, then an increase/decrease in the value of the jth concept will
decrease/increase the value of the ith concept. If w j,i = 0, there is no causal relationship between the
jth and the ith concepts [74].

The FCM structure is often constructed based on expert knowledge or surveys [74]. We could
also use machine learning algorithms and available historical data to construct the FCM model and
determine the weights of the relationships between the FCM’s concepts.

2.2.2. Fuzzy Cognitive Maps Evolutionary Learning

Evolutionary algorithms are popular techniques for FCMs learning. In this paper, we explored
two effective techniques: the real-coded genetic algorithm (RCGA) [68] and the structure optimization
genetic algorithm (SOGA) [69].

Real-Coded Genetic Algorithm (RCGA)

The RCGA algorithm defines individual in the population as follows [24]:

W′ =
[
w1,2, w1,3, w1,4, . . . , w j,i, . . . , wn,n−1

]T
(3)

where w j,i is the weight of the relationship between the jth concept and the ith concept.
Individual in the population is evaluated with the use of a fitness function based on data error [66]:

f itnessp(MSEtr(l)) =
1

aMSEtr(l) + 1
(4)

where a is a parameter, l is the number of generation, l = 1, . . . ,L, L is the maximum number of
generations, p is the number of individual, p = 1, . . . ,P, P is the population size, and MSEtr(l) is the
data error, described as follows:

MSEtr(l) =
1

Ntr

Ntr∑
t=1

et
2 (5)

where t = 1, . . . ,Ntr, Ntr is the number of training records, and et is the one-step-ahead prediction error
at the tth iteration, described as follows:

et = Z(t) −X(t) (6)

where X(t) is the predicted value of the output concept, and Z(t) is the desired value of the output concept.
When the maximum number of generations L is reached, or the condition (7) is met, which means

that the learning process is successful, then the RCGA stops.

f itnessp(MSEtr(l)) > f itnessmax (7)

where f itnessp(MSEtr(l)) is the fitness function value for the best individual, and f itnessmax is
a parameter.

Structure Optimization Genetic Algorithm (SOGA)

The SOGA algorithm is an extension of the RCGA algorithm [65,66] that allows the decision-maker
to determine the most significant concepts and the relationships between them.
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Individual is evaluated based on the fitness function based on new data error, described as
follows [66]:

MSE′tr(l) = MSEtr(l) + b1
nr

n2 MSEtr(l) + b2
nc

n
MSEtr(l) (8)

where b1, b2 are the parameters of the fitness function, nr is the number of the non-zero relationships,
nc is the number of the concepts in the analyzed model, n is the number of all possible concepts, l is the
number of generation, l = 1, . . . ,L, L is the maximum number of generations.

The fitness function that follows (9) calculates the quality of each population.

f itnessp(MSE′tr(l)) =
1

aMSE′tr(l) + 1
(9)

where α is an experimentally defined parameter, p is the number of the individual, p = 1, . . . ,P, P is the
population size, and MSE′tr(l) is the new error measure.

We could construct a less complex time series prediction model by removing the redundant concepts
and connections between them with the use of a binary vector C and the proposed error function.

The algorithmic steps of the learning and analysis of the FCM in modeling prediction systems
with the use of population-based algorithms (SOGA and RCGA) were analytically presented in [69].

For our experiments, the evolutionary operators, a) ranking selection, b) uniform crossover, and c)
random mutation were used [76,77]. In addition, we applied elite strategy selection, while a probability
of crossover Pc and mutation Pm was assigned to each population.

2.2.3. Artificial Neural Networks

An artificial neural network (ANN) is a collection of artificial neurons organized in the form of
layers [25]. Neurons are connected by weighted connections to form a NN. The most widely used
ANNs in time series prediction are the multilayer perceptrons with an input layer, an output layer, and
a single hidden layer that lies between the input and output layer. The most common structure is an
ANN that uses one or two hidden layers, as a feed-forward neural network with one hidden layer is
able to approximate any continuous function. Supervised learning algorithms and historical data can
be used for the learning process of ANNs. The output of each neuron can be calculated based on the
following formula:

X(t) = F

 m∑
j=1

X j(t)·w j + b

 (10)

where X j(t) is the value of the jth input signal, t = 1, . . . ,Ntr, Ntr is the number of training records,
w j is the synaptic weight, m is the number of input signals, b is the bias, and F is the sigmoid activation
function. Training a neural network needs the values of the connection weights and the biases of the
neurons to be determined. There are many neural network learning algorithms. The most popular
algorithm for ANN learning is the back-propagation method. In this learning method, the weights
change their values according to the learning records until one epoch (an entire learning dataset) is
reached. This method aims to minimize the error function, described as follows [14,78,79]:

MSEtr(l) =
1

2Ntr

Ntr∑
t=1

et
2 (11)

where t = 1, . . . ,Ntr, Ntr is the number of training records, l is the number of epoch, l = 1, . . . ,L, L is the
maximum number of epochs, and et is the one-step-ahead prediction error at the tth iteration, which is
equal to:

et = Z(t) −X(t) (12)

where X(t) is the output value of the ANN, and Z(t) is the desired value.
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The modification of the weights in the back-propagation algorithm can be calculated by the formula:

∆wkj(l) = −γ
∂J(l)
∂wkj(l)

(13)

where ∆wkj(l) is a change of the weight wkj at the lth epoch, γ is a learning coefficient.
Backpropagation algorithm with momentum modifies the weights according to the formula:

∆wkj(l) = −γ
∂J(l)
∂wkj(l)

+ α∆wkj(l− 1) (14)

where α is a momentum parameter.

2.2.4. Hybrid Approach Based on FCMs, SOGA, and ANNs

The hybrid approach for time series prediction is based on FCMs, the SOGA algorithm, and
ANNs [68]. This approach consists of two stages:

1. Construction of the FCM model based on the SOGA algorithm to reduce the concepts that have
no significant influence on data error.

2. Considering the selected concepts (data attributes) as the inputs for the ANN and ANN learning
with the use of backpropagation method with momentum.

This hybrid structure allows the decision-maker to select the most significant concepts for an
FCM model using the SOGA algorithm. These concepts are used as inputs for the ANN model. Such a
hybrid approach aims to find the most accurate model for time series prediction problems.

2.2.5. The Ensemble Forecasting Method

The most intuitive and popular way of forecast aggregation is to linearly combine the constituent
forecasts [80]. There are various methods proposed in the literature for selecting the combining
weights [81]. The most popular and widely used ensemble methods are the error-based and the simple
average [82]. The easiest among them is the simple average in which all forecasts are weighted equally,
often remarkably improving overall forecasting accuracy [82,83].

Considering that Y =
[
y1, y2, y3, . . . , yN

]T
is the actual out-of-sample testing dataset of a time

series and Ŷi =
[
ŷi

1, ŷi
2, . . . , ŷi

n

]T
is the forecast for the ith model, the linear combination of n forecasts

is produced by [15]:

ŷk = w1 ŷ(1)k + w2 ŷ(2)k + . . .+ wn ŷ(n)k =
n∑

i=1

wi ŷ
(i)
k , ∀k = 1, 2, . . . , N (15)

Here, our analysis is based on these most popular ensemble methods. A brief discussion follows
for each one.

• The simple average (AVG) method [82] is an unambiguous technique, which assigns the same weight
to every single forecast. Based on empirical studies in the literature, it has been observed that the
AVG method is robust and able to generate reliable predictions, while it can be characterized as
remarkably accurate and impartial. Being applied in several models, with respect to effectiveness,
the AVG improved the average accuracy when increasing the number of combined single
methods [82]. Comparing the referent method with the weighted combination techniques,
in terms of forecasting performance, the researchers in [84] concluded that a simple average
combination might be more robust than weighted average combinations. In the simple average
combination, the weights can be specified as follows:
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wi =
1
n

, ∀i = 1, 2, . . . , n (16)

• The error-based (EB) method [16] consists of component forecasts, which are given weights that are
inversely proportional to their in-sample forecasting errors. For instance, researchers may give a
higher weight to a model with lower error, while they may assign a less weight value to a model
that presents more error, respectively. In most of the cases, the forecasting error is calculated using
total absolute error statistic, such as the sum of squared error (SSE) [80,83]. The combining weight
for individual prediction is mathematically given by:

wi = e−1
i /

n∑
i=1

e−1
i , ∀i = 1, 2, . . . , n (17)

3. The Proposed Forecast Combination Methodology

In the rest of the paper, we explored a new advanced forecasting approach by introducing a
different split of dataset in the case of daily, weekly, or monthly forecasting, as well as a combination
of forecasts from multiple structurally different models, like ANN and FCM with various efficient
learning algorithms and hybrid configurations of them. Also, the two most popular and usually used
ensemble methods, the AVG and the EB methods, were applied to the ensemble forecasts to improve
the prediction accuracy.

In the described ensemble scheme, the selection of the appropriate validation set, i.e., the selection
of the parameter Nvd and the group size Ntr, is very important. The validation set should reflect the
characteristics of the testing dataset that is practically unknown in advance. As such, in this study,
we set the following process of data split. The data split takes place by removing 15% of the total
dataset N and saving for later use as testing data. The remaining 85% of the dataset is then split again
into an 82/18 ratio, resulting in the following portions: 70% for training and 15% for validation. Also,
the group size Ntr (i.e., the training data) should be appropriately selected so that it is neither too small
nor too large.

Due to the problem nature, as we work with time-series data, the most efficient method for
resampling is the boosting/bootstrapping method [85]. In boosting, resampling is strategically geared
to provide the most informative training data for each consecutive predictor. Therefore, in this
study, an appropriate bootstrapping method was applied, so that the training dataset should have
the same size at each resampling set, and the validation and testing sets should keep the same size
(after excluding the k-values from the in-sample dataset).

The proposed effective forecast combination methodology for time series forecasting, presented
in the paper, includes three main processing steps: data pre-processing to handle missing values,
normalize the collected time-series data, and split the dataset; the various forecasting methods of ANNs,
RCGA-FCMs, SOGA-FCMs, and hybrid SOGA FCM-ANN with their ensembles; and evaluation of the
prediction results, implementing the two most popular and used ensemble methods of simple average
(AVG) and error-based (EB). Figure 1 visually illustrates the suggested methodology.

In the followed approach, data preprocessing included outlier detection and removal, handling
missing data, and data normalization, all of which were in accordance with the principles of Data
Science practices described in corresponding literature. For outlier detection, the Z-score was first
calculated for each sample on the data set (using the standard deviation value that is presented in the
descriptive statistics Tables A1 and A2 in Appendix A). Then, a threshold was specified, and the data
points that lied beyond this threshold were classified as outliers and were removed. Mean imputation
was performed to handle missing values. Specifically, for numerical features, missing values were
replaced by the mean feature value.
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Each dataset was normalized to [0,1] before the forecasting models were applied. The normalized
datasets were taking again their original values, while the testing phase was implemented. The data
normalizations were carried out mathematically, as follows:

y(new)
i =

yi − y(min)

y(max) − y(min)
,∀i = 1, 2, . . . , N (18)

where Y =
[
y1, y2, y3, . . . , yNtrain

]T
is the training dataset, and Y(new) =

[
y(new)

1 , y(new)
1 , . . . , y(new)

N

]T
is

the normalized dataset, y(min) and y(max) are, respectively, the minimum and maximum values of the
training dataset Y.

We selected the Min-Max normalization method [86] as it is one of the most popular and
comprehensible methods, in terms of performance of the examined systems, while several researchers
showed that it produces better (if not equally good) results with high accuracy, compared to the other
normalization methods [87,88]. In [88], the Min-Max was valued as the second-best normalization
method in the backpropagation NN model, justifying our choice to deploy this method for data
normalization. Moreover, since the FCM concepts use values within the range [0,1] for the conducted
simulations and do not deal with real values, the selected method seemed to be proper for our study.
Also, this normalization approach was previously used in [66,69].

Due to our intention to suggest a generic forecasting combination approach (with ANNs, FCMs,
and their hybrid structures) able to be applied in any time series dataset, the following steps are
thoroughly presented and executed.

Step 1. (Split Dataset) We divided the original time series Y =
[
y1, y2, y3, . . . , yN

]T

into the in-sample training dataset Ytr =
[
y1, y2, y3, . . . , yNtr

]T
, the in-sample validation

dataset Yvd =
[
yNtr+1, yNtr+2, yNtr+3, . . . , yNtr+Nvd

]T
, and the out-of-sample testing dataset
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Yts =
[
yNin+1, yNin+2, yNin+3, . . . , yNin+Nts

]T
, so that Nin = Ntr + Nvd is the size of the total in-sample

dataset and Nin + Nts = N, where N is the number of days, or weeks, or months, according to the
short- or long-term prediction based on the time series horizon.

Step 2. (Resampling method/Bootstrapping). Let’s consider k sets as training sets from the whole
dataset every time. For example, in the monthly forecasting, we excluded one month every time from
the initial in-sample dataset, starting from the first month of the time series values, and proceeding
with next month till k = 12, (i.e., this means that 1 to 12 months were excluded from the initial in-sample
dataset). Therefore, k subsets of training data were created and used for training. The remaining values
of the in-sample dataset were used for validation, whereas the testing set remained the same. Figure 2
shows an example of this bootstrapping method for the ensemble SOGA-FCM approach. In particular,
Figure 2a represents the individual forecasters’ prediction values and their average error calculation,
whereas, in Figure 2b, the proposed forecasting combination approach for SOGA-FCM is depicted for
both ensemble methods.
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methods. SOGA, structure optimization genetic algorithm; FCM, fuzzy cognitive map.

If we needed to accomplish daily forecasting, then we preselected the number of days excluded
at each subset k. For the case of simplicity (as in the case of monthly forecasting), we could consider
that one day was excluded at each sub-set from the initial in-sample dataset. The overall approach,
including ANN, FCMs, and hybrid configurations of them, is illustrated in Figure 3. In Figure 3, the
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four ensemble forecasters were produced after the validation process and used for testing through the
proposed approach.
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Step 3. We had n component forecasting models and obtained Ŷ
i
ts =

[
ŷi

Nin+1, ŷi
Nin+2, . . . , ŷi

Nin+Nts

]T

as the forecast of Yts through the ith model.

Step 4. We implemented each model on Ytr and used it to predict Yvd. Let Ŷ
i
vd =[

ŷi
Ntr+1, ŷi

Ntr+2, . . . , ŷi
Ntr+Nvd

]T
be the prediction of Yvd through the ith model.

Step 5. We found the in-sample forecasting error of each model through some suitable error
measures. We used the mean absolute error (MAE) and the mean squared error (MSE). These are
widely popular error statistics [68], and their mathematical formulation is presented below in this
paper. In the present study, we adopted the MSE and MAE to find the in-sample forecasting errors of
the component models.

Step 6. Based on the obtained in-sample forecasting errors, we assigned a score to each component
model as γi =

1
MSE Yvd, Ŷi

vd
, ∀i = 1, 2, . . . , n. The scores are assigned to be inversely proportional to the

respective errors so that a model with a comparatively smaller in-sample error receives more score and
vice versa.

Step 7. We assigned a rank ri ε 1, 2, . . . , n to the ith model, based on its score, so that ri ≥ r j,
if γi ≤ γ j, ∀i, j = 1, 2, . . . , n. The minimum, i.e., the best rank is equal to 1 and the maximum, i.e.,
the worst rank is at most equal to n.

Step 8. We chose a number nr so that 1 ≤ nr ≤ n and let I = i1, i2, . . . , inr be the index set of the nr

component models, whose ranks are in the range [1, nr]. So, we selected a subgroup of nr smallest
ranked component models.

Step 9. Finally, we obtained the weighted linear combination of these selected nr component
forecasts, as follows:

ŷk = wi1 ŷi1
k + wi2 ŷi2

k + . . .+ winr
ŷinr

k =
∑
iεI

wi ŷi
k, ∀i = 1, 2, . . . , n (19)
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Here, wik =
γik∑nr

k=1 γik
is the normalized weight to the selected component model, so that

∑nr
k=1 wik = 1.

Step 10. The simple average method could be also adopted, as an alternative to Step 6–9,
to calculate the forecasted value.

The validation set was used during the training process for updating the algorithm weights
appropriately and, thus, improving its performance and avoiding overfitting. After training the model,
we could run it on the testing data, to verify if it has predicted them correctly and, if it has been so,
to keep hidden the validation set.

The most popular and widely used performance metrics or evaluation criteria for time series
prediction are the following: coefficient of determination (R2), mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
The mathematical equations of all these statistical indicators were described in the study [69]. The
goodness of fit and the performance of the studied models, when they applied to a natural gas
prediction process, were evaluated and compared using two of these five commonly used statistical
indicators, namely, the MSE and the MAE [9]. In particular, the performance of the analyzed approaches
for natural gas prediction was evaluated based on the following criteria:

1. Mean squared error:

MSE =
1
T

T∑
t=1

(Z(t) −X(t))2 (20)

2. Mean absolute error:

MAE =
1
T

T∑
t=1

∣∣∣Z(t) −X(t)
∣∣∣ (21)

where X(t) is the predicted value of the neural gas at the tth iteration, Z(t) is the desired value of the
neural gas at the tth iteration, t = 1, . . . , Nts, and Nts is the number of testing records. The lower values
of the MSE and MAE indicate that the model performance is better with respect to the prediction
accuracy, and the regression line fits the data well.

All the modeling approaches, tests, and evaluations were performed with the use of the ISEMK
(intelligent expert system based on cognitive maps) software tool [66], in which all the algorithms
based on ANNs, FCMs, and their hybrid combinations were developed. C# programming language
has been used for implementing ensemble models and also for developing ISEMK, which incorporates
FCM construction from data and learning, both for RCGA and SOGA implementations [69].

4. Results and Discussion

4.1. Case Study and Datasets

The natural gas consumption datasets that were used in this research work to examine the
applicability and effectiveness of the proposed forecast methodology corresponded to five years
(2013–2017), as described in Section 3. Following the first step of the methodology, we split our dataset
into training, validation, and testing ones. For the convenience of handling properly the dataset,
we defined the data of the first three years as the training dataset (1095 days), the data of the fourth
year as the validation dataset (365 days), and the remaining data (5th year) as the testing dataset
(365 days), which approximately corresponded to 60%, 20%, and 20%, respectively, as presented in
Section 3. Thus, it was easier for our analysis to handle the above values as annual datasets and have a
clearer perception of the whole process.

Out of the three years of the defined training dataset, we used the first two as the initial training
dataset, while the third (3rd) year was used as a dataset reservoir for the bootstrapping procedure.
This year was properly selected to be part of the initial dataset, as for each value of k (the bootstrapping
step), a corresponding number of days/weeks/months was additionally needed to be included in the
training dataset during the bootstrapping process, thus, avoiding any possible data shortage and/or
deterioration that would lead to inaccurate results.
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The proposed forecast combination approach, presented in Section 3, offered generalization
capabilities and, thus, it could be applied in various time-series datasets, for a different number of k,
according to daily, weekly, or monthly prediction. Taking as an example the case of a month-ahead
prediction, for each bootstrapping step k, the training dataset shifted one month ahead, getting one
additional month each time from the reserved third year of the initial training dataset. In this case,
k more months in total were needed for implementing efficiently this approach. If we considered
k = 12, then 12 additional months of the initial dataset needed to be added and reserved. This approach
justified our case where one year (i.e., the third year) was added to the initial training dataset and was
further reserved for serving the purposes of the proposed methodology. Different values of k were also
examined without noticing significant divergences in forecasting, compared to the selected k value.

In the next step, the validation procedure (comprising one year of data) was implemented to
calculate the in-sample forecasting errors (MSE and MAE) for each ensemble forecasting algorithm
(ensemble ANN, ensemble hybrid, ensemble RCGA-FCM, and ensemble SOGA-FCM). The same
process was followed for the testing procedure by considering the data of the last year. The two
examined ensemble forecasting methods, i.e., the simple average (AVG) and the error-based (EB),
were then applied in the calculated validation and testing vectors (Yvd) for each one of the forecast
combined methodology (Yvd-ANN, Yvd-Hybrid, Yvd-RCGA, Yvd-SOGA).

4.2. Case Study Results

In this study, we applied both the AVG and the EB method in two different cases: case (A)
where scores were calculated for individual forecaster of each one of the methods ANN, hybrid,
RCGA-FCM, and SOGA-FCM, and case (B), where scores were calculated for each ensemble forecaster
(ANN ensemble, hybrid ensemble, RCGA-FCM ensemble, and SOGA-FCM ensemble).

Considering case (A), Table 1 shows the calculated errors and scores based on the EB method for
individual forecaster of the two forecasting methods: ANN and hybrid for the city of Athens. The rest
calculated errors and scores, based on the EB method, for individual forecaster for the other two
remaining forecasting methods RCGA-FCM and SOGA-FCM for Athens can be found in Appendix A
of the paper (Table A3). In Appendix A, parts of the corresponding results for the other two examined
cities (Larissa and Thessaloniki) are also presented (Tables A4 and A5).

Table 1. Case (A)-Calculated errors and weights for each ensemble forecaster based on scores for EB
(error-based) method (Athens).

Validation Testing Testing

MAE MSE MAE MSE Weights MAE MSE Weights

ANN1 0.0334 0.0035 0.0350 0.0036 0.2552 Hybrid1 0.0336 0.0034 0.2520

ANN2 0.0354 0.0041 0.0387 0.0043 0 Hybrid2 0.0387 0.0043 0

ANN3 0.0350 0.0037 0.0375 0.0039 0.2442 Hybrid3 0.0363 0.0037 0

ANN4 0.0341 0.0038 0.0365 0.0039 0 Hybrid4 0.0352 0.0035 0

ANN5 0.0335 0.0036 0.0358 0.0037 0.2505 Hybrid5 0.0339 0.0034 0

ANN6 0.0337 0.0039 0.0355 0.0038 0 Hybrid6 0.0348 0.0036 0.2468

ANN7 0.0336 0.0037 0.0362 0.0038 0 Hybrid7 0.0345 0.0035 0.2506

ANN8 0.0340 0.0039 0.0360 0.0039 0 Hybrid8 0.0354 0.0036 0

ANN9 0.0341 0.0039 0.0367 0.0040 0 Hybrid9 0.0349 0.0036 0

ANN10 0.0332 0.0036 0.0355 0.0037 0.2501 Hybrid10 0.0359 0.0038 0

ANN11 0.0338 0.0038 0.0365 0.0039 0 Hybrid11 0.0353 0.0038 0

ANN12 0.0345 0.0038 0.0349 0.0037 0 Hybrid12 0.0347 0.0033 0.2506

AVG 0.0336 0.0037 0.0359 0.0038 AVG 0.0350 0.0036

EB 0.0335 0.0036 0.0358 0.0037 EB 0.0340 0.0034

MSE: Mean Square Error, MAE: Mean Absolute Error.
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Considering case (B), Table 2 presents the calculated weights based on scores for each ensemble
forecaster (ANN (ensemble, hybrid ensemble, RCGA ensemble, and SOGA ensemble) for all three cities.

The calculated weights, based on scores for the EB method, were computed using Equation (17).
According to this equation, the weights of the component forecasts are inversely proportional to their
in-sample forecasting errors, concluding that the model with more error is assigned less weight to it
and vice versa [80]. In this work, as the values of errors were high for certain ensemble forecasters, the
corresponding weights were approximately zero, so they were considered to have a zero value for
further predictions.

Table 2. Case (B)-Calculated weights for each ensemble forecaster based on scores for the EB method.

Athens Thessaloniki Larissa

Weights based on scores
ANN 0.3320 0.34106 0.3369

Hybrid 0.3357 0.35162 0.3546
RCGA-FCM 0.3323 0 0
SOGA-FCM 0 0.30731 0.3083

ANN: Artificial Neural Network, RCGA-FCM: Real Codded Genetic Algorithm-Fuzzy Cognitive Map, SOGA-FCM:
Structure Optimization Genetic Algorithm-Fuzzy Cognitive Map.

The obtained forecasting results of the individual and combination methods are depicted in
Tables 3–8, respectively, for the three cities. In each of these tables, the best results (i.e., those
associated with the least values of error measures) are presented in bold letters. In Figures 4 and 5,
the forecasting results concerning Thessaloniki and Larissa are visually illustrated for both ensemble
methods (AVG, EB). Moreover, Figure 6 gathers the forecasting results for all three cities considering
the best ensemble method.

Table 3. Calculated errors for individual forecaster based on scores for Athens.

Validation ANN Hybrid RCGA SOGA Ensemble AVG Ensemble EB

MAE 0.0328 0.0333 0.0384 0.0391 0.0336 0.0326
MSE 0.0036 0.0035 0.0036 0.0037 0.0032 0.0032

Testing

MAE 0.0321 0.0328 0.0418 0.0424 0.0345 0.0328
MSE 0.0033 0.0032 0.0038 0.0040 0.0032 0.0031

Table 4. Calculated errors for each ensemble forecaster based on scores for Athens.

Validation ANN
Ensemble

Hybrid
Ensemble

RCGA
Ensemble

SOGA
Ensemble

Ensemble
AVG

Ensemble
EB

MAE 0.0335 0.0330 0.0388 0.0380 0.0337 0.0337
MSE 0.0036 0.0035 0.0036 0.0035 0.0032 0.0032

Testing

MAE 0.0358 0.0340 0.0422 0.0422 0.0352 0.0352
MSE 0.0037 0.0034 0.0038 0.0037 0.0032 0.0032

Table 5. Calculated errors for individual forecaster based on scores for Thessaloniki.

Validation ANN Hybrid RCGA SOGA Ensemble AVG Ensemble EB

MAE 0.0343 0.0341 0.0381 0.0380 0.0347 0.0340
MSE 0.0029 0.0028 0.0032 0.0032 0.0028 0.0027

Testing

MAE 0.0366 0.0381 0.0395 0.0399 0.0371 0.0369
MSE 0.0032 0.0033 0.0035 0.0036 0.0032 0.0031
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Table 6. Calculated errors for each ensemble forecaster based on scores for Thessaloniki.

Validation ANN
Ensemble

Hybrid
Ensemble

RCGA
Ensemble

SOGA
Ensemble

Ensemble
AVG

Ensemble
EB

MAE 0.0363 0.0361 0.0378 0.0374 0.0355 0.0355
MSE 0.0031 0.0031 0.0031 0.0030 0.0028 0.0028

Testing

MAE 0.0393 0.0394 0.0399 0.0391 0.0381 0.0381
MSE 0.0037 0.0037 0.0036 0.0034 0.0034 0.0034

Table 7. Calculated errors for individual forecaster based on scores for Larissa.

Validation ANN Hybrid RCGA SOGA Ensemble AVG Ensemble EB

MAE 0.0322 0.0324 0.0372 0.0365 0.0326 0.0319
MSE 0.0030 0.0028 0.0033 0.0032 0.0027 0.0027

Testing

MAE 0.0412 0.0417 0.0466 0.0468 0.0427 0.0417
MSE 0.0043 0.0041 0.0047 0.0047 0.0040 0.0040

Table 8. Case (B) -Calculated errors for each ensemble forecaster based on scores for Larissa.

Validation ANN
Ensemble

Hybrid
Ensemble

RCGA
Ensemble

SOGA
Ensemble

Ensemble
AVG

Ensemble
EB

MAE 0.0337 0.0332 0.0371 0.0362 0.0329 0.0326
MSE 0.0032 0.0030 0.0032 0.0031 0.0027 0.0026

Testing

MAE 0.0428 0.0417 0.0458 0.0460 0.0426 0.0423
MSE 0.0048 0.0044 0.0045 0.0045 0.0041 0.0040
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Figure 4. Forecasting results for Thessaloniki considering the two ensemble methods (AVG, EB)
based on scores. (a) Validation, (b) Testing. AVG, simple average; EB, error-based.
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Figure 5. Forecasting results for Larissa considering the two ensemble methods (AVG, EB) based on
scores. (a) Validation, (b) Testing.
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Figure 6. Forecasting results for the three cities considering the best ensemble method. (a) Testing all
cities, (b) Testing Athens, (c) Testing Thessaloniki, (d) Testing Larissa.

4.3. Discussion of Results

The following important observations were noticed after careful analysis of Tables and
Figures above.

1. After a thorough analysis of the Tables 3–8, on the basis of examining the MAE and MSE errors,
it could be clearly stated that the EB method presented lower errors concerning the individual
forecasters (ANN, hybrid, RCGA-FCM, and SOGA-FCM) for all three cities (Athens, Thessaloniki,
and Larisa). EB seemed to outperform the AVG method in terms of achieving overall better
forecasting results when applied to individual forecasters (see Figure 6).

2. Considering the ensemble forecasters, it could be seen from the obtained results that none of
the two forecast combination methods had attained consistently better accuracies compared to
each other, as far as the cities of Athens and Thessaloniki were concerned. Specifically, from
Tables 3–6, it was observed that the MAE and MSE values across the two combination methods
were similar for the two cities; however, their errors were lower than those produced by each
separate ensemble forecaster.
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3. Although the AVG and the EB methods performed similarly for Athens and Thessaloniki datasets,
the EB forecast combination technique presented lower MAE and MSE errors than the AVG for
the examined dataset of Larissa (see Figure 5).

The fact that when a forecasting method presented lower MAE and MSE errors than another means
that the accuracy of the results produced with the first method, in terms of predicting consumption,
was higher than the latter forecasting methods examined and compared to, so as the overall performance
of the ensemble method was. Regarding the amount of improvement that was presented when a
forecasting method was applied, slightly better performance of both ensemble forecasting methods
could be noticed, and that constituted strong evidence for the efficiency of the examined method in the
domain of natural gas demand forecasting.

In order to examine the efficiency of the proposed algorithm, a statistical test was conducted to
reveal no statistical significance. Concerning the individual methods, a t-test paired two samples of
mean was previously conducted in [60] for the cities of Thessaly (Larissa, Volos, Trikala, and Karditsa),
for the year 2016, showing that there was no statistical significance among these techniques. In current
work, a t-test paired two samples of mean was also performed, regarding the ensemble methods
(average and error-based) for the examined cities (Athens, Thessaloniki, and Larissa), regarding the
dataset of the same year. The results of the hypothesis tests (Tables A6–A8 in Appendix A) revealed no
statistical significance between these techniques. In all cases, the calculated p-value exceeded 0.05,
so no statistical significance was noticed from the obtained statistical analysis. Therefore, there was
no particular need to conduct a post hoc statistical test, since a post hoc test should only be run
when you have an overall statistically significant difference in group means, according to the relevant
literature [89,90].

Furthermore, for comparison purposes, to show the effectiveness of the proposed forecasting
combination approach of multivariate time series, the experimental analysis was conducted with
a new and well-known effective machine learning technique for time series forecasting, the LSTM
(long short-term memory). LSTM algorithm encloses the characteristics of the advanced recurrent neural
network methods and is mainly applied for time series prediction problems in diverse domains [91].

LSTM was applied in one day-ahead natural gas consumption prediction concerning the
same dataset of the three Greek cities (Athens, Thessaloniki, and Larissa) in [70]. For the LSTM
implementation, one feature of the dataset as a time series was selected. As explained in [70], LSTM
was fed previous values, and, in that case, the time-step was set to be 364 values to predict the next
364. For validation, 20% of random data from the training dataset was used, and for testing, the same
dataset that was used for the ANN, RCGA-FCM, SOGA-FCM, and hybrid FCM-ANN, as well as with
their ensemble structures implementation. In [70], various experiments with different numbers of
units, number of layers, and dropout rates were accomplished. Through the provided experimental
analysis, the best results of LSTM emerged for one layer, 200 units, and dropout rate = 0.2. These
results are gathered in Table 9 for the three cities.

In Table 9, it is clear that both ensemble forecasting methods can achieve high accuracy in the
predictions of the energy consumption patterns in a day-ahead timescale. Additional exploratory
analysis and investigation of other types of ensemble methods, as well as other types of neural networks,
such as convolutional neural networks (CNNs), could lead to a better insight of the modeling the
particular problem and achieve higher prediction accuracy.
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Table 9. Comparison results with LSTM (long short-term memory) (with best configuration parameters).

Best Ensemble LSTM (Dropout = 0.2)

Case (A) (Individual) Case (B) (Ensemble) 1 layer
Validation ATHENS

MAE 0.0326 0.0337 0.0406
MSE 0.0032 0.0032 0.0039

Testing

MAE 0.0328 0.0352 0.0426
MSE 0.0031 0.0032 0.0041

Validation THESSALONIKI

MAE 0.0340 0.0355 0.0462
MSE 0.0027 0.0028 0.0043

Testing

MAE 0.0369 0.0381 0.0489
MSE 0.0031 0.0034 0.0045

Validation LARISSA

MAE 0.0319 0.0326 0.0373
MSE 0.0027 0.0026 0.0029

Testing

MAE 0.0417 0.0423 0.0462
MSE 0.0040 0.0040 0.0042

5. Conclusions

To sum up, we applied a time series forecasting method for natural gas demand in three Greek
cities, implementing an efficient ensemble forecasting approach through combining ANN, RCGA-FCM,
SOGA-FCM, and hybrid FCM-ANN. The proposed forecasting combination approach incorporates the
two most popular ensemble methods for error calculation in forecasting problems and is deployed
in certain steps offering generalization capabilities. The whole framework seems to be a promising
approach for ensemble time series forecasting that can easily be applied in many scientific domains.
An initial comparison analysis was conducted with benchmark methods of ANN, FCM, and their
different configurations. Next, further comparison analysis was conducted with new promising LSTM
networks previously used for time series prediction.

Through the experimental analysis, two error statistics (MAE, MSE) needed to be calculated
in order to examine the effectiveness of the ensemble learning approach in time series prediction.
The results of this study showed that the examined ensemble approach through designing an ensemble
structure of various ANN, SOGA-FCM models by different learning parameters and their hybrid
structures could significantly improve forecasting. Moreover, obtained results clearly demonstrated
that a relatively higher forecasting accuracy was noticed when the applied ensemble approach was
compared against independent forecasting approaches, such as ANN or FCM, as well as with LSTM.

Future work is devoted to applying the advantageous forecast combination approach to a larger
number of distribution points that compose the natural gas grid of Greek regions (larger and smaller
cities) as well as to investigate a new forecast combination structure of efficient convolutional neural
networks (CNN) and LSTM networks for time series prediction in various application domains.
Furthermore, an extensive comparative analysis with various LSTM structures, as well as with other
advanced machine learning and time series prediction methods, will be conducted in future work.
The presented research work could also contribute to explainability, transparency, and re-traceability
of artificial intelligence (AI) and machine learning systems. These systems are being applied in various
fields, and the decisions being made by them are not always clear due to the use of complicated
algorithms in order to achieve power, performance, and accuracy. The authors with the use of
complicated, but powerful algorithms, such as neural networks and ensemble methods, tried to
describe all the steps and models involved in decision-making process to attain explainability and,
in future, they would further explore ways to make the best-performing methods more transparent,
re-traceable, and understandable, explaining why certain decisions have been made [92].
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Appendix A

Table A1. Descriptive statistics values for real dataset Z(t), forecasting values of AVG and EB methods
for the three cities (validation).

Descriptive
Statistics

Athens Thessaloniki Larissa

Z(t) X(t)AVG X(t) EB Z(t) X(t)AVG X(t) EB Z(t) X(t)AVG X(t) EB

Mean 0.2540 0.2464 0.2464 0.2611 0.2510 0.2510 0.2689 0.2565 0.2575

Median 0.1154 0.1366 0.1366 0.1335 0.1393 0.1394 0.1037 0.1194 0.1211

St.
Deviation 0.2391 0.2203 0.2203 0.2373 0.2228 0.2228 0.2604 0.2429 0.2429

Kurtosis 0.3610 −0.2748 −0.2741 −0.1839 −0.5807 −0.5774 −0.6564 −0.8881 −0.8847

Skewness 1.1605 0.9801 0.9803 0.9328 0.8288 0.8298 0.8112 0.7520 0.7516

Minimum 0.0277 0.0367 0.0367 0.0043 0.0305 0.0304 0.0000 0.0235 0.0239

Maximum 1.0000 0.8429 0.8431 1.0000 0.8442 0.8448 1.0000 0.8361 0.8383

Table A2. Descriptive statistics values for real dataset Z(t), forecasting values of AVG and EB methods
for the three cities (testing).

Descriptive
Statistics

Athens Thessaloniki Larissa

Z(t) X(t)AVG X(t) EB Z(t) X(t)AVG X(t) EB Z(t) X(t)AVG X(t) EB

Mean 0.2479 0.2433 0.2433 0.2588 0.2478 0.2478 0.2456 0.2279 0.2291

Median 0.1225 0.1488 0.1488 0.1179 0.1304 0.1304 0.0695 0.0961 0.0972

St.
Deviation 0.2159 0.2020 0.2021 0.2483 0.2236 0.2237 0.2742 0.2399 0.2404

Kurtosis 0.6658 0.2785 0.2792 0.1755 −0.1254 −0.1219 −0.0113 −0.1588 –0.1502

Skewness 1.2242 1.1138 1.1140 1.1348 1.0469 1.0479 1.1205 1.0900 1.0921

Minimum 0.0000 0.0359 0.0359 0.0079 0.0358 0.0357 0.0000 0.0233 0.0237

Maximum 0.9438 0.8144 0.8144 0.9950 0.8556 0.8562 1.0000 0.8291 0.8310

Table A3. Case (A)-Calculated errors and weights for each ensemble forecaster (RCGA and SOGA-FCM)
based on scores for the EB method (Athens).

Validation Testing Testing

MAE MSE MAE MSE Weights MAE MSE Weights

RCGA1 0.0386 0.0036 0.0425 0.0038 0.2531 SOGA1 0.0435 0.0037 0.2520

RCGA2 0.0391 0.0038 0.0430 0.0039 0 SOGA2 0.0423 0.0038 0.2509

RCGA3 0.0399 0.0039 0.0428 0.0039 0 SOGA3 0.0425 0.0038 0

RCGA4 0.0384 0.0036 0.0419 0.0038 0.2522 SOGA4 0.0449 0.0042 0

RCGA5 0.0389 0.0037 0.0423 0.0039 0 SOGA5 0.0429 0.0040 0

RCGA6 0.0392 0.0036 0.0424 0.0039 0.2472 SOGA6 0.0432 0.0038 0.2494

RCGA7 0.0398 0.0038 0.0434 0.0041 0 SOGA7 0.0421 0.0039 0

RCGA8 0.0386 0.0037 0.0416 0.0039 0 SOGA8 0.0422 0.0039 0

RCGA9 0.0398 0.0036 0.0436 0.0041 0.2472 SOGA9 0.0434 0.0042 0

RCGA10 0.0388 0.0037 0.0417 0.0039 0 SOGA10 0.0422 0.0040 0

RCGA11 0.0393 0.0038 0.0419 0.0039 0 SOGA11 0.0420 0.0038 0.2475

RCGA12 0.0396 0.0037 0.0434 0.0041 0 SOGA12 0.0425 0.0040 0

AVG 0.0385 0.0036 0.0418 0.0038 AVG 0.0422 0.0039

EB 0.0388 0.0036 0.0422 0.0038 EB 0.0422 0.0037
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Table A4. Case (A)-Calculated errors and weights for each ensemble forecaster based on scores for the
EB method (Thessaloniki).

Validation Testing Testing

MAE MSE MAE MSE Weights MAE MSE Weights

Hybrid1 0.0356 0.0030 0.0390 0.0036 0.2565 SOGA1 0.0414 0.0040 0

Hybrid2 0.0381 0.0036 0.0409 0.0042 0 SOGA2 0.0417 0.0040 0

Hybrid3 0.0371 0.0032 0.0398 0.0039 0.2422 SOGA 3 0.0394 0.0034 0

Hybrid4 0.0376 0.0032 0.0403 0.0039 0 SOGA 4 0.0406 0.0038 0

Hybrid5 0.0373 0.0032 0.0401 0.0040 0 SOGA 5 0.0388 0.0033 0.2541

Hybrid6 0.0375 0.0033 0.0403 0.0040 0 SOGA 6 0.0413 0.0038 0

Hybrid7 0.0378 0.0033 0.0405 0.0040 0 SOGA 7 0.0415 0.0039 0

Hybrid8 0.0373 0.0032 0.0402 0.0040 0 SOGA 8 0.0399 0.0036 0

Hybrid9 0.0378 0.0034 0.0407 0.0041 0 SOGA 9 0.0392 0.0035 0.2448

Hybrid10 0.0371 0.0032 0.0397 0.0039 0.2410 SOGA10 0.0400 0.0037 0

Hybrid11 0.0370 0.0033 0.0402 0.0040 0 SOGA11 0.0403 0.0036 0.2439

Hybrid12 0.0364 0.0030 0.0406 0.0036 0.2601 SOGA12 0.0397 0.0034 0.2569

AVG 0.0369 0.0032 0.0398 0.0039 AVG 0.0398 0.0036

EB 0.0361 0.0031 0.0394 0.0037 EB 0.0391 0.0034

Table A5. Case (A)-Calculated errors and weights for each ensemble forecaster based on scores for the
EB method (Larissa).

Validation Testing Testing

MAE MSE MAE MSE Weights MAE MSE Weights

ANN1 0.0339 0.0032 0.0425 0.0047 0.2511 Hybrid1 0.0411 0.0043 0.2531

ANN2 0.0353 0.0036 0.0438 0.0052 0 Hybrid2 0.0435 0.0051 0

ANN3 0.0343 0.0033 0.0433 0.0050 0 Hybrid3 0.0418 0.0045 0.2472

ANN4 0.0347 0.0033 0.0429 0.0049 0 Hybrid4 0.0424 0.0048 0

ANN5 0.0353 0.0035 0.0436 0.0051 0 Hybrid5 0.0436 0.0051 0

ANN6 0.0352 0.0035 0.0432 0.0049 0 Hybrid6 0.0436 0.0051 0

ANN7 0.0354 0.0035 0.0441 0.0053 0 Hybrid7 0.0434 0.0050 0

ANN8 0.0348 0.0033 0.0427 0.0049 0 Hybrid8 0.0425 0.0047 0.2398

ANN9 0.0351 0.0035 0.0439 0.0052 0 Hybrid9 0.0423 0.0047 0

ANN10 0.0343 0.0033 0.0431 0.0049 0.2406 Hybrid10 0.0432 0.0050 0

ANN11 0.0342 0.0032 0.0436 0.0049 0.2472 Hybrid11 0.0444 0.0053 0

ANN12 0.0331 0.0031 0.0428 0.0047 0.2610 Hybrid12 0.0426 0.0043 0.2597

AVG 0.0345 0.0033 0.0431 0.0049 AVG 0.0427 0.0048

EB 0.0337 0.0032 0.0428 0.0048 EB 0.0417 0.0044

Table A6. t-Test: Paired Two Sample for Means between the ensemble methods (AVG and EB) (Athens).

X(t) AVG Athens X(t) EB Athens

Mean 0.243342155 0.243346733

Variance 0.040822427 0.040826581

Observations 196 196

Pearson Correlation 0.99999997

Hypothesized Mean Difference 0

df 195

t Stat –1.278099814

P(T<=t) one-tail 0.101366761

t Critical one-tail 1.65270531

P(T<=t) two-tail 0.202733521

t Critical two-tail 1.972204051
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Table A7. t-Test: Paired Two Sample for Means between the ensemble methods (AVG and EB) (Thessaloniki).

X(t) AVG X(t) EB

Mean 0.247811356 0.247811056

Variance 0.050004776 0.050032786

Observations 365 365

Pearson Correlation 0.999999788

Hypothesized Mean Difference 0

df 364

t Stat 0.036242052

P(T<=t) one-tail 0.485554611

t Critical one-tail 1.649050545

P(T<=t) two-tail 0.971109222

t Critical two-tail 1.966502569

Table A8. t-Test: Paired Two Sample for Means between the ensemble methods (AVG and EB) (Larissa).

X(t) AVG Larisa X(t) EB Larisa

Mean 0.227903242 0.229120614

Variance 0.057542802 0.05781177

Observations 365 365

Pearson Correlation 0.999972455

Hypothesized Mean Difference 0

df 364

t Stat –12.44788062

P(T<=t) one-tail 3.52722E-30

t Critical one-tail 1.649050545

P(T<=t) two-tail 7.05444E-30

t Critical two-tail 1.966502569
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54. Taşpınar, F.; Çelebi, N.; Tutkun, N. Forecasting of daily natural gas consumption on regional basis in Turkey
using various computational methods. Energy Build. 2013, 56, 23–31. [CrossRef]

55. Azadeh, A.; Asadzadeh, S.M.; Ghanbari, A. An adaptive network-based fuzzy inference system for short-term
natural gas demand estimation: Uncertain and complex environments. Energy Policy 2010, 38, 1529–1536.
[CrossRef]

56. Behrouznia, A.; Saberi, M.; Azadeh, A.; Asadzadeh, S.M.; Pazhoheshfar, P. An adaptive network based fuzzy
inference system-fuzzy data envelopment analysis for gas consumption forecasting and analysis: The case of
South America. In Proceedings of the 2010 International Conference on Intelligent and Advanced Systems
(ICIAS), Manila, Philippines, 15–17 June 2010; pp. 1–6.

http://dx.doi.org/10.1007/BF00116037
http://dx.doi.org/10.1016/j.neucom.2014.09.028
http://dx.doi.org/10.1115/1.4041413
http://dx.doi.org/10.1080/00908310490256626
http://dx.doi.org/10.1007/s12667-014-0128-2
http://dx.doi.org/10.1109/72.839015
http://dx.doi.org/10.1016/j.apenergy.2011.11.003
http://dx.doi.org/10.1016/j.energy.2015.03.084
http://dx.doi.org/10.1016/j.apenergy.2014.04.102
http://dx.doi.org/10.3390/en10060781
http://dx.doi.org/10.1016/j.enbuild.2012.10.023
http://dx.doi.org/10.1016/j.enpol.2009.11.036


Algorithms 2019, 12, 235 26 of 27

57. Viet, N.H.; Mandziuk, J. Neural and fuzzy neural networks for natural gas prediction consumption.
In Proceedings of the 13th IEEE Workshop on Neural Networks for Signal Processing (NNSP 2003), Toulouse,
France, 17–19 September 2003; pp. 759–768.

58. Yu, F.; Xu, X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and
improved BP neural network. Appl. Energy 2014, 134, 102–113. [CrossRef]

59. Papageorgiou, E.I. Fuzzy Cognitive Maps for Applied Sciences and Engineering from Fundamentals to Extensions
and Learning Algorithms; Intelligent Systems Reference Library, Springer: Heidelberg, Germany, 2014.

60. Poczeta, K.; Papageorgiou, E.I. Implementing fuzzy cognitive maps with neural networks for natural gas
prediction. In Proceedings of the 30th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2018), Volos, Greece, 5–7 November 2018; pp. 1026–1032.

61. Homenda, W.; Jastrzebska, A.; Pedrycz, W. Modeling time series with fuzzy cognitive maps. In Proceedings
of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 6–11 July 2014;
pp. 2055–2062.
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