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Abstract: A complex neutrosophic set is a useful model to handle indeterminate situations with a
periodic nature. This is characterized by truth, indeterminacy, and falsity degrees which are the
combination of real-valued amplitude terms and complex-valued phase terms. Hypergraphs are
objects that enable us to dig out invisible connections between the underlying structures of complex
systems such as those leading to sustainable development. In this paper, we apply the most fruitful
concept of complex neutrosophic sets to theory of hypergraphs. We define complex neutrosophic
hypergraphs and discuss their certain properties including lower truncation, upper truncation,
and transition levels. Furthermore, we define T-related complex neutrosophic hypergraphs and
properties of minimal transversals of complex neutrosophic hypergraphs. Finally, we represent the
modeling of certain social networks with intersecting communities through the score functions and
choice values of complex neutrosophic hypergraphs. We also give a brief comparison of our proposed
model with other existing models.

Keywords: complex neutrosophic hypergraphs; T-related complex neutrosophic hypergraphs;
algorithms; comparative analysis

1. Introduction

Fuzzy sets (FSs) were originally defined by Zadeh [1] as a novel approach to represent uncertainty
arising in various fields that was questioned by many researchers at that time. A FS is characterized by
a truth membership function µ which ranges over [0, 1]. To generalize the notion of FSs, intuitionistic
fuzzy sets (IFSs) were proposed by Atanassov [2] because it is not always true that the falsity degree of
an element in a FS is 1− µ(x) as there may be some hesitation part. Therefore, the truth (t) and falsity
(f) membership functions are used independently to characterize an IFS such that the sum of truth
and falsity degrees should not be greater than one. Fuzzy sets give the degree of membership of an
element in a given set (the non-membership of degree equals one minus the degree of membership),
while IFSs give both a degree of membership and a degree of non-membership, which are more-or-less
independent from each other. Liu et al. [3] introduced different types of centroid transformations of IF
values. Furthermore, Feng et al. [4] defined various new operations for generalized IF soft sets. As an
extension of IFSs, Smarandache [5] introduced the concept of neutrosophy to study the nature, origin,
and neutralities, and the neutrosophic set (NS). A NS is characterized by truth (t), indeterminacy
(i), and falsity (f) membership functions. A NS is used as a powerful mathematical tool to deal the
inconsistent data that exists in our daily life. For the practical use of NSs in science and engineering,
Smarandache [5] and Wang et al. [6] introduced single-valued neutrosophic sets (SVNSs). A SVNS
propose an additional choice to handle indeterminate information. Ye [7] proposed a decision-making
method by using the weighted correlation coefficient or the weighted cosine similarity measure of
SVNSs to rank the alternatives and proposed an illustrative example to demonstrate the application of
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the proposed decision-making method. The same author defined SVN minimum spanning tree and its
clustering method [8]. Ye [9] also proposed a multicriteria decision-making method using aggregation
operators for simplified NSs.

The existing models such as FSs, IFSs, SVNSs cannot handle imprecise, inconsistent,
and incomplete information of periodic nature. These theories are applicable to different areas of
science, but there is one major deficiency in these sets, i.e., a lack of capability to model two-dimensional
phenomena. To overcome this difficulty, the concept of complex fuzzy sets (CFSs) was introduced by
Ramot et al. [10]. A CFS is characterized by a membership function µ(x) whose range is not limited to
[0, 1] but extends to the unit circle in the complex plane. Hence, µ(x) is a complex-valued function
that assigns a grade of membership of the form v(x)eια(x), ι =

√
−1 to any element x in the universe

of discourse. Thus, the membership function µ(x) of CFS consists of two terms, i.e., amplitude term
v(x) which lies in the unit interval [0, 1] and phase term (periodic term) α(x) which lies in the interval
[0, 2π]. This phase term distinguishes a CFS model from all other models available in the literature.
Opposing to a fuzzy characteristic function, the range of CFS’s membership degrees is not restricted
to [0, 1], but extends to the complex plane with unit circle. Ramot et al. [11] discussed the union,
intersection, and compliment of CFSs with the help of illustrative examples. A systematic review
of CFSs was proposed by Yazdanbakhsh and Dick [12]. To generalize the concept of CFSs, complex
intuitionistic fuzzy sets (CIFSs) were introduced by Alkouri and Salleh [13] by adding non-membership
degree ν(x) = s(x)eιβ(x) to the CFSs subjected to the constraint r + s ≤ 1. The CIFSs are used to
handle the information of uncertainty and periodicity simultaneously. The complex-valued truth and
falsity membership degrees can be used to represent uncertainty in many physical quantities such as
impedance in electrical engineering, wave function, and decision-making problems. The CFS has only
one extra phase term, while CIFS has two additional phase terms which are used in several concepts
such as distance measure, projections, and cylindric extensions. To handle imprecise information with
a periodic nature, complex neutrosophic sets (CNSs) were proposed by Ali and Smarandache [14].
As we see that uncertainty, inconsistency, and falsity in data are periodic in nature, to handle these
types of problems, the CNS plays an important role. A CNS is characterized by a complex-valued
truth t(x), complex-valued indeterminate i(x), and complex-valued falsity f (x) membership functions,
whose range is extended from [0, 1] to the unit disk in the complex plane. They proposed set theoretic
operations such as complement, union, intersection, complex neutrosophic product, Cartesian product,
distance measure, and δ-equalities of CNSs and presented an application of CNSs in signal processing.

The vagueness in the representation of various objects and the uncertain interactions between them
originated the necessity of fuzzy graphs (FGs) that were first defined by Rosenfeld [15]. He studied
several basic graph-theoretic concepts (e.g., bridges and trees), and established some of their properties.
Some remarks on FGs were given by Bhattacharya [16] and he proved that results from (crisp) graph
theory do not always hold for FGs. To handle the vague and uncertain relations with periodic nature,
FGs were extended to complex fuzzy graphs (CFGs) by Thirunavukarasu et al. [17]. They studied the
lower and upper bounds of energy of CFGs and illustrated these concepts through numeric examples.
Since FGs and CFGs just provide the truth degrees and uncertainties occurring repeatedly, respectively,
of pairwise relations. To consider the truth as well as falsity degrees between pairwise relationships
simultaneously, intuitionistic fuzzy graphs (IFGs) were defined by Parvathi and Karunambigai [18].
To handle periodic nature of falsity degrees in IFGs, Yaqoob et al. [19] defined complex intuitionistic
fuzzy graphs (CIFGs). They studied the homomorphisms of CIFGs and provided an application of
CIFGs in cellular network provider companies for the testing of their proposed approach. To extend
the concept of IFGs, Broumi et al. [20] defined single-valued neutrosophic graphs (SVNGs) and
investigated some of their properties such as strong SVNGs, constant SVNGs, and complete SVNGs.
Certain operations on SVNGs were studied by Akram and Shahzadi [21]. Single-valued neutrosophic
planar graphs were defined by Akram [22]. Applications of neutrosophic soft graphs were studied
by Akram and Shahzadi [23]. To generalize the concept of neutrosophic graphs and CIFGs, complex
neutrosophic graphs (CNGs) were defined by Yaqoob and Akram [24]. They discussed some basic
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operations on CNGs and described these operations with the help of concrete examples. They also
presented energy of CNGs.

A hypergraph, as an extension of crisp graph, is considered to be the most developing and
powerful tool to model different practical problems in various fields, including biological sciences,
computer sciences, and social networks [25]. To deal uncertainty in crisp hypergraphs, fuzzy
hypergraphs (FHGs), as an extension of FGs, were defined by Kaufmann [26]. Lee-Kwang and
Lee [27] discussed the fuzzy partition using FHGs. A valuable contribution on FGs and FHGs has been
proposed by Mordeson and Nair [28]. Fuzzy transversals of FHGs were studied by Goetschel et al. [29].
To discuss the falsity degrees of hypernetworks, intuitionistic fuzzy hypergraphs (IFHGs) were defined
by Parvathi et al. [30]. Akram and Dudek [31] proposed some applications of IFHGs. A method
for finding the shortest hyperpath in an IFHG (weighted) was proposed by Parvathi et al. [32].
They converted an IFN into intuitionistic fuzzy scores and find the IF shortest hyperpath in the
network using the scores and accuracy values. Akram and Shahzadi [33] introduced SVN hypergraphs.
Akram and Luqman [34] defined intuitionistic single-valued neutrosophic hypergraphs. The same
authors [35] introduced bipolar neutrosophic hypergraphs and discussed the applications of these
hypergraphs in marketing and biology. Transversals and minimal transversals of m-polar FHGs were
studied by Akram and Sarwar [36]. For further studies on FHGs and related extensions, readers are
referred to [37–40].

The motivation behind this research work is the existence of indeterminate information of periodic
nature in hypernetwork models. A complex neutrosophic hypergraph model plays an important role in
handling complicated behavior of indeterminacy and inconsistency with periodic nature. The proposed
model generalizes the complex fuzzy model as well as complex intuitionistic fuzzy model. To prove
the applicability of our proposed model, we consider two voting procedures. Suppose that 0.6 voters
say “yes”, 0.2 say “no”, and 0.2 are “undecided” in the first voting procedure and 0.3 voters say
“yes”, 0.3 say “no”, and 0.4 are “undecided” in the second voting procedure. We assume that these
two procedures held at different days. It is clear that a CFS cannot handle this situation as it only
depicts the truth membership 0.6 of voters but fails to represent the falsity and indeterminate degrees.
Similarly, a CIFS represents the truth 0.6 and falsity 0.2 degrees of voters but it does not illustrate the
0.2 undecided voters. Now, if we set the amplitude terms as the membership degrees of first voting
procedure and phase terms as the membership degrees of second voting procedure, then we can
illustrate this information using a complex neutrosophic model as, {0.6eι(0.3)2π , 0.2eι(0.3)2π , 0.2eι(0.4)2π}.
The aim of the proposed work is to apply the most generalized concept of complex neutrosophic
sets to hypergraphs to deal periodic nature of inconsistent information existing in hypernetworks.
The proposed research generalizes the concepts of CNGs, CFHGs, CIFHGs, and overcomes the
drawbacks occurring in previous research. The proposed model is more generalized framework as
it does not only deal the reductant nature of imprecise information but also includes the benefits of
hypergraphs. Thus, the main objective of this research work is to combine the fruitful effects of CNSs
and hypergraph theory.

The contents of this paper are as follows: In Section 2, we define complex neutrosophic
hypergraphs, level hypergraphs, lower truncation, upper truncation, and transition levels of these
hypergraphs. In Section 3, we define T-related complex neutrosophic hypergraphs and discuss
certain properties of minimal transversals of complex neutrosophic hypergraphs. We justify the
proposed concepts through some concrete examples. Section 4 illustrates the modeling of some social
networks with overlapping communities by means of complex neutrosophic hypergraphs. In Section 5,
we present a brief comparison of our proposed model with other existing models. In Section 6,
we discuss the results of our proposed research. Section 7 deals with conclusions and future directions.
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2. Complex Neutrosophic Hypergraphs

Definition 1. [5] Let J be a non-empty set. A neutrosophic set (NS) on J is defined as,

N = {(x, tN(x), iN(x), fN(x))|x ∈ J },

where tN , iN , fN : J →]0−, 1+[ denote the truth, indeterminacy, and falsity degrees of N such that 0− ≤
tN(x) + iN(x) + fN(x) ≤ 3+.

Definition 2. [6] A single-valued neutrosophic set (SVNS) on J is defined as,

S = {(x, tS(x), iS(x), fS(x))|x ∈ J },

where tS, iS, fS : J → [0, 1] denote the truth, indeterminacy, and falsity degrees of S such that 0 ≤ tS(x) +
iS(x) + fS(x) ≤ 3.

If J is continues, then

S =
∫
x

(tS(x), iS(x), fS(x))
x

, ∀ x ∈ J .

If J is discrete, then

S = ∑
x

(tS(x), iS(x), fS(x))
x

, ∀ x ∈ J .

Definition 3. [13] A complex intuitionistic fuzzy set (CIFS) I on the universal set J is defined as,

I = {(u, tI(u)eιφI(u), f I(u)eιψI(u))|u ∈ J },

where ι =
√
−1, tI(u), f I(u) ∈ [0, 1] are known as amplitude terms, φI(u), ψI(u) ∈ [0, 2π] are called phase

terms, and for every u ∈ J , 0 ≤ tI(u) + f I(u) ≤ 1.

Complex neutrosophic sets are defined using SVNSs.

Definition 4. [14] A complex neutrosophic set (CNS) N on the universal set J is defined as,

N = {(u, tN (u)eιφN (u), iN (u)eιϕN (u), fN (u)eιψN (u))|u ∈ J },

where ι =
√
−1, tN (u), iN (u), fN (u) ∈ [0, 1] are known as amplitude terms, φN (u), ϕN (u), ψN (u) ∈

[0, 2π] are called phase terms, and for every u ∈ J , 0 ≤ tN (u) + iN (u) + fN (u) ≤ 3.

Definition 5. [24] A complex neutrosophic relation (CNR) is a CNS on J ×J given as,

R = {(rs, tR(rs)eιφR(rs), iR(rs)eιϕR(rs), fR(rs)eιψR(rs))|rs ∈ J ×J },

where ι =
√
−1, tR : J × J → [0, 1], iR : J × J → [0, 1], fR : J × J → [0, 1] characterize the truth,

indeterminacy, and falsity degrees of R, and φR(rs), ϕR(rs), ψR(rs) ∈ [0, 2π] such that for all rs ∈ J × J ,
0 ≤ tR(rs) + iR(rs) + fR(rs) ≤ 3.
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Definition 6. [24] A complex neutrosophic graph (CNG) on J is an ordered pair G = (A, B), where A is a
CNS on J and B is CNR on J such that

tB(ab) ≤ min{tA(a), tA(b)},
iB(ab) ≤ min{iA(a), iA(b)},
fB(ab) ≤ max{ fA(a), fA(b)}, (for amplitude terms)

φB(ab) ≤ min{φA(a), φA(b)},
ϕB(ab) ≤ min{ϕA(a), ϕA(b)},
ψB(ab) ≤ max{ψA(a), ψA(b)}, (for phase terms)

0 ≤ tB(ab) + iB(ab) + fB(ab) ≤ 3, for all a, b ∈ J .

Example 1. Consider a CNG G = (A, B) on J = {c1, c2, c3}, where A = {(c1, 0.7eι(0.9)π , 0.6eι(0.8)π ,
0.9eι(0.7)π), (c2, 0.5eι(0.5)π , 0.7eι(0.9)π , 0.9eι(0.7)π), (c3, 0.8eι(0.8)π , 0.6eι(0.9)π , 0.5eι(0.7)π)} and B = {(c1c2,
0.5eι(0.5)π , 0.6eι(0.8)π , 0.6eι(0.6)π), (c2c3, 0.5eι(0.5)π , 0.6eι(0.8)π , 0.4eι(0.6)π), (c1c3, 0.7eι(0.8)π , 0.5eι(0.8)π ,
0.4eι(0.6)π)} are CNS and CNR on J , respectively. The corresponding graph is shown in Figure 1.

b

b b
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Figure 1. Complex neutrosophic graph.

Definition 7. [14] Let N1 = {(u, tN1(u)e
ιφN1 (u), iN1(u)e

ιϕN1 (u), fN1(u)e
ιψN1 (u))|u ∈ J } and N2 =

{(u, tN2(u)e
ιφN2 (u), iN2(u)e

ιϕN2 (u), fN2(u)e
ιψN2 (u))|u ∈ J } be two CNSs in J , then

(i) N1 ⊆ N2 ⇔ tN1(u) ≤ tN2(u), iN1(u) ≤ iN2(u), fN1(u) ≥ fN2(u), and φN1(u) ≤ φN2(u), ϕN1(u) ≤
ϕN2(u), ψN1(u) ≥ ψN2(u) for amplitudes and phase terms, respectively, for all u ∈ J .

(ii) N1 = N2 ⇔ tN1(u) = tN2(u), iN1(u) = iN2(u), fN1(u) = fN2(u), and φN1(u) = φN2(u), ϕN1(u) =
ϕN2(u), ψN1(u) = ψN2(u) for amplitudes and phase terms, respectively, for all u ∈ J .

(iii) N1 ∪ N2 = {(u, max{tN1(u), tN2(u)}eι max{φN1 (u),φN2 (u)}, min{iN1(u), iN2(u)}eι min{ϕN1 (u),ϕN2 (u)},

min{ fN1(u), fN2(u)}eι min{ψN1 (u),ψN2 (u)})|u ∈ N1 ∪ N2}.
(iv) N1 ∩ N2 = {(u, min{tN1(u), tN2(u)}eι min{φN1 (u),φN2 (u)}, max{iN1(u), iN2(u)}eι max{ϕN1 (u),ϕN2 (u)},

max{ fN1(u), fN2(u)}eι max{ψN1 (u),ψN2 (u)})|u ∈ N1 ∩ N2}.
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Definition 8. The support of a CNS N = {(u, tN(u)eιφN(u), iN(u)eιϕN(u) fN(u)eιψS(u))|u ∈ J } is defined as

supp(N) = {u|tN(u) 6= 0, iN(u) 6= 0, fN(u) 6= 1, 0 < φN(u), ϕN(u), ψN(u) < 2π}.

The height of a CNS N = {(u, tN(u)eιφN(u), iN(u)eιϕN(u) fN(u)eιψS(u))|u ∈ J } is defined as

h(N) = {max
u∈J

tN(u)e
ι max

u∈J
φN(u)

, max
u∈J

iN(u)e
ι max

u∈J
ϕN(u)

, min
u∈J

fN(u)e
ι min

u∈J
ψN(u)}.

Definition 9. A complex neutrosophic hypergraph (CNHG) on J is defined as an ordered pairH = (N , λ),
where N = {N1, N2, · · · , Nk} is a finite family of CNSs on J and λ is a CNR on CNSs Nj’s such that

(i)

tλ({r1, r2, · · · , rl}) ≤ min{tNj(r1), tNj(r2), · · · , tNj(rl)},
iλ({r1, r2, · · · , rl}) ≤ min{iNj(r1), iNj(r2), · · · , iNj(rl)},
fλ({r1, r2, · · · , rl}) ≤ max{ fNj(r1), fNj(r2), · · · , fNj(rl)}, (for amplitude terms)

φλ({r1, r2, · · · , rl}) ≤ min{φNj(r1), φNj(r2), · · · , φNj(rl)},
ϕλ({r1, r2, · · · , rl}) ≤ min{ϕNj(r1), ϕNj(r2), · · · , ϕNj(rl)},
ψλ({r1, r2, · · · , rl}) ≤ max{ψNj(r1), ψNj(r2), · · · , ψNj(rl)}, (for phase terms)

0 ≤ tλ + iλ + fλ ≤ 3, for all r1, r2, · · · , rl ∈ J .
(ii)

⋃
j

supp(Nj) = J , for all Nj ∈ N .

Please note that Ek = {r1, r2, · · · , rl} is the crisp hyperedge ofH = (N , λ).

Definition 10. Let H = (N , λ) be a CNHG. The height of H, denoted by h(H), is defined as
h(H) = (max λleι max φ, max λmeι max ϕ, min λneι min ψ), where λl = max tξ j(vk), φ = max φξ j(vk),
λm = max iξ j(vk), ϕ = max ϕξ j(vk), λn = min fξ j(vk), ψ = min ψξ j(vk). Here, tξ j(vk), iξ j(vk), fξ j(vk)

denote the truth, indeterminacy, and falsity degrees of vertex vk to hyperedge ξ j, respectively.

Definition 11. LetH = (N , λ) be a CNHG. Suppose that α, β, γ ∈ [0, 1] and Θ, Φ, Ψ ∈ [0, 2π] such that 0 ≤
α + β + γ ≤ 3. The (αeιΘ, βeιΦ, γeιΨ)-level hypergraph ofH is defined as an ordered pairH(αeιΘ ,βeιΦ ,γeιΨ) =

(N (αeιΘ ,βeιΦ ,γeιΨ), λ(αeιΘ ,βeιΦ ,γeιΨ)), where

(i) λ(αeιΘ ,βeιΦ ,γeιΨ) = {λ(αeιΘ ,βeιΦ ,γeιΨ)
j : λj ∈ λ} and λ

(αeιΘ ,βeιΦ ,γeιΨ)
j = {u ∈ J : tλj(u) ≥ α, φλj(u) ≥

Θ, iλj(u) ≥ β, ϕλj(u) ≥ Φ, and fλj(u) ≤ γ, ψλj(u) ≤ Ψ},
(ii) N (αeιΘ ,βeιΦ ,γeιΨ) =

⋃
λj∈λ

λ
(αeιΘ ,βeιΦ ,γeιΨ)
j .

Please note that (αeιΘ, βeιΦ, γeιΨ)-level hypergraph ofH is a crisp hypergraph.

Definition 12. Let H = (N , λ) be a CNHG and for 0 < α ≤ t(h(H)), 0 < β ≤ i(h(H)),
γ ≥ f (h(H)) > 0, 0 < Θ ≤ φ(h(H)), 0 < Φ ≤ ϕ(h(H)), and Ψ ≥ ψ(h(H)) > 0,
let H(αeιΘ ,βeιΦ ,γeιΨ) = (N (αeιΘ ,βeιΦ ,γeιΨ), λ(αeιΘ ,βeιΦ ,γeιΨ)) be the level hypergraph of H. The sequence of
complex numbers {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), · · · , (αneιΘn , βneιΦn , γneιΨn)} such that
0 < α1 < α2 < · · · < αn = t(h(H)), 0 < β1 < β2 < · · · < βn = i(h(H)), γ1 > γ2 > · · · >
γn = f (h(H)) > 0, 0 < Θ1 < Θ2 < · · · < Θn = φ(h(H)), 0 < Φ1 < Φ2 < · · · < Φn = ϕ(h(H)),
and Ψ1 > Ψ2 > · · · > Ψn = ψ(h(H)) > 0 satisfying the conditions,

(i) if αk+1 < α′ ≤ αk, βk+1 < β′ ≤ βk, γk+1 > γ′ ≥ γk, Θk+1 < φ ≤ Θk, Φk+1 < ϕ ≤ Φk,

Ψk+1 > ψ ≥ Ψk, then λ(α′eιφ ,β′eιϕ ,γ′eιψ) = λ(αkeιΘk ,βkeιΦk ,γkeιΨk ), and
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(ii) λ(αkeιΘk ,βkeιΦk ,γkeιΨk ) ⊂ λ(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ),

is called the fundamental sequence ofH = (N , λ), denoted by Fs(H). The set of (αje
ιΘj , β je

ιΦj , γje
ιΨj)

-level hypergraphs {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), · · · ,H(αneιΘn ,βneιΦn ,γneιΨn )} is called the set of
core hypergraphs or the core set ofH, denoted by c(H).

Example 2. Consider a CNHG H = (N , λ) on J = {r1, r2, r3, r4, r5, r6}. The CNR λ is given as,
λ({r1, r2, r3}) = (0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π), λ({r1, r4}) = (0.8eι(0.8)2π , 0.5eι(0.5)2π , 0.4eι(0.4)2π),
λ({r3, r4, r5}) = (0.3eι(0.3)2π , 0.2eι(0.2)2π , 0.1eι(0.1)2π), and λ({r1, r5, r6}) = (0.3eι(0.3)2π , 0.2eι(0.2)2π ,
0.1eι(0.1)2π). The corresponding CNHG is shown in Figure 2.

Let

(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1) = (0.9eι(0.9)2π , 0.7eι(0.7)2π , 0.6eι(0.6)2π),

(α2eιΘ2 , β2eιΦ2 , γ2eιΨ2) = (0.8eι(0.8)2π , 0.5eι(0.5)2π , 0.4eι(0.4)2π),

(α3eιΘ3 , β3eιΦ3 , γ3eιΨ3) = (0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π),

(α4eιΘ4 , β4eιΦ4 , γ4eιΨ4) = (0.3eι(0.3)2π , 0.2eι(0.2)2π , 0.1eι(0.1)2π).

Please note that the sequence {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), (α3eιΘ3 , β3eιΦ3 , γ3eιΨ3),
(α4eιΘ4 , β4eιΦ4 , γ4eιΨ4)} satisfies all the conditions of Definition 12. Thus, it is a fundamental sequence ofH.
The corresponding (αje

ιΘj , β je
ιΦj , γje

ιΨj)-level hypergraphs are shown in Figures 3–5.
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Figure 2. Complex neutrosophic hypergraphH.
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b

r1

b

r4

b
r4

H(α1e
ιΘ1 ,β1e

ιΦ1 ,γ1e
ιΨ1 )

H(α2e
ιΘ2 ,β2e

ιΦ2 ,γ2e
ιΨ2 )

Figure 3. H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )-level hypergraphs.

b b b

b

r1
r2 r3

r
4

Figure 4. H(α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 )-level hypergraph.

b b b

b b
b

r1 r2
r3

r4 r5 r6

Figure 5. H(α4eιΘ4 ,β4eιΦ4 ,γ4eιΨ4 )-level hypergraph.

Definition 13. A CNHGH = (N , λ) is ordered if c(H) is ordered, i.e., if c(H) = {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),
H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), · · · ,H(αneιΘn ,βneιΦn ,γneιΨn )}, then {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊂ H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) ⊂
· · · ⊂ H(αneιΘn ,βneιΦn ,γneιΨn )}.

A CNHGH = (N , λ) is simply ordered if c(H) is simply ordered, i.e., if e ∈ Ej+1 \ Ej, then e * Jj.
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Example 3. Consider a CNHGH = (N , λ) as shown in Figure 2. The set of core hypergraphs is given as,

c(H) = {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ),H(α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 ),H(α4eιΘ4 ,β4eιΦ4 ,γneιΨ4 )},

where

H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) = (J1, E1), J1 = {r4}, E1 = {},
H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) = (J2, E2), J2 = {r1, r4}, E2 = {{r1, r4}},
H(α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 ) = (J3, E3), J3 = {r1, r2, r3, r4}, E3 = {{r1, r4}, {r1, r2, r3}},
H(α4eιΘ4 ,β4eιΦ4 ,γ4eιΨ4 ) = (J4, E4), J4 = {r1, r2, r3, r4, r5, r6}, E4 = {{r1, r4}, {r1, r2, r3}, {r1, r5, r6}

, {r3, r4, r5}}.

Please note that

H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊆ H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) ⊆ H(α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 ) ⊆ H(α4eιΘ4 ,β4eιΦ4 ,γ4eιΨ4 ).

Hence,H = (N , λ) is an ordered CNHG. Also,H = (N , λ) is simply ordered.

Definition 14. A CNHGH = (N , λ) with Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2),
· · · , (αneιΘn , βneιΦn , γneιΨn)} is called sectionally elementary if for every λj ∈ λ and for k ∈ {1, 2, · · · ,

n}, λ
(αeιΘ ,βeιΦ ,γeιΨ)
j = λ

(αkeιΘk ,βkeιΦk ,γkeιΨk )
j , for all α ∈ (αk+1, αk], β ∈ (βk+1, βk], γ ∈ (γk+1, γk], Θ ∈

(Θk+1, Θk], Φ ∈ (Φk+1, Φk], and Ψ ∈ (Ψk+1, Ψk].

Definition 15. Let N be a CNS on J . The lower truncation of N at level (αeιΘ, βeιΦ, γeιΨ), 0 < α, β, γ ≤ 1,
0 < Θ, Φ, Ψ ≤ 2π, is the CNSS N[(αeιΘ ,βeιΦ ,γeιΨ)] defined by,

tN
[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)e
iφN

[(αeιΘ ,βeιΦ ,γeιΨ)]
(x)

=

{
tN(x)eiφN(x), if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

0, otherwise.

iN
[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)e
iϕN

[(αeιΘ ,βeιΦ ,γeιΨ)]
(x)

=

{
iN(x)eiϕN(x), if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

0, otherwise.

fN
[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)e
iψN

[(αeιΘ ,βeιΦ ,γeιΨ)]
(x)

=

{
fN(x)eiψN(x), if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

0, otherwise.

Definition 16. Let N be a CNS on J . The upper truncation of N at level (αeιΘ, βeιΦ, γeιΨ), 0 < α, β, γ ≤ 1,
0 < Θ, Φ, Ψ ≤ 2π, is the CNSS N[(αeιΘ ,βeιΦ ,γeιΨ)] defined by,

t
N[(αeιΘ ,βeιΦ ,γeιΨ)](x)e

iφ
N[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)
=

{
αeιΘ, if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

tN(x)eiφN(x), otherwise.

i
N[(αeιΘ ,βeιΦ ,γeιΨ)](x)e

iϕ
N[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)
=

{
βeιΦ, if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

iN(x)eiϕN(x), otherwise.

f
N[(αeιΘ ,βeιΦ ,γeιΨ)](x)e

iψ
N[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)
=

{
γeιΨ, if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

fN(x)eiψN(x), otherwise.
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Definition 17. Let H = (N , λ) be a CNHG. The lower truncation H[(αeιΘ ,βeιΦ ,γeιΨ)] of H at
level (αeιΘ, βeιΦ, γeιΨ) is defined as, H[(αeιΘ ,βeιΦ ,γeιΨ)] = (N[(αeιΘ ,βeιΦ ,γeιΨ)], λ[(αeιΘ ,βeιΦ ,γeιΨ)])), where
N[(αeιΘ ,βeιΦ ,γeιΨ)] = {N[(αeιΘ ,βeιΦ ,γeιΨ)]|N ∈ N}.

The upper truncationH[(αeιΘ ,βeιΦ ,γeιΨ)] ofH at level (αeιΘ, βeιΦ, γeιΨ) is defined as,H[(αeιΘ ,βeιΦ ,γeιΨ)] =

(N [(αeιΘ ,βeιΦ ,γeιΨ)], λ[(αeιΘ ,βeιΦ ,γeιΨ)])), where N [(αeιΘ ,βeιΦ ,γeιΨ)] = {N[(αeιΘ ,βeιΦ ,γeιΨ)]|N ∈ N}.

Definition 18. Let N be a CNS on J . Then, each (αeιΘ, βeιΦ, γeιΨ), such that α ∈ (0, t(h(N))), β ∈
(0, i(h(N))), γ ∈ (0, f (h(N))), Θ ∈ (0, φ(h(N))), Ψ ∈ (0, ϕ(h(N))), and Ψ ∈ (0, ψ(h(N))), for which
N(αeιθ ,βeιφ ,γeιψ) ⊂ N(αeιΘ ,βeιΦ ,γeιΨ), is called a transition level of N.

Example 4. Consider a CNHG H = (N , λ) as shown in Figure 2. The (0.6eι(0.6)2π ,
0.4eι(0.4)2π , 0.3eι(0.3)2π)-level hypergraph of H is shown in Figure 4. Then, the lower truncation
H[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)] = (N[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)], λ[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)]) of H is
a CNHG on J1 = {r1, r2, r3, r4} as given in Figure 6.

b b b

b

(r1, 0.8e
ι(0.8)2π , 0.5eι(0.5)2π , 0.4e

ι(0.4)2π) (r2, 0.7eι(0.7)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π)

(r3, 0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π)

(r
4 , 0.9e ι(0

.9
)2
π
, 0.7e ι(0

.7
)2
π
, 0.6e ι(0

.6
)2
π
)

(0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π)

(0.8e ι(0
.8
)2
π
, 0.5e ι(0

.5
)2
π
, 0.4e ι(0

.4
)2
π
)

Figure 6. Lower truncation ofH.

Not that J1 =
⋃

N∈N
N[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)]. The upper truncation

H[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)] = (N [(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)], λ[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)]) of
H is a CNHG on J = {r1, r2, r3, r4, r5, r6} as given in Figure 7.
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b b b

b

(r1, 0.6e
ι(0.6)2π , 0.4eι(0.4)2π , 0.3e

ι(0.3)2π) (r2, 0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π)

(r3, 0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π)(r
4 , 0.6e ι(0
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π
, 0.4e ι(0

.4
)2
π
, 0.3e ι(0

.3
)2
π
)

(0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π)

(0.8e ι(0
.8
)2
π
, 0.5e ι(0

.5
)2
π
, 0.4e ι(0

.4
)2
π
) b b

(r5, 0.3eι(0.3)2π , 0.2eι(0.2)2π, 0.1eι(0.1)2π)

(r6, 0.3eι(0.3)2π , 0.2eι(0.2)2π , 0.1eι(0.1)2π)

Figure 7. Upper truncation ofH.

Definition 19. Let H = (N , λ) be a CNHG. A complex neutrosophic transversal (CNT) τ is a CNS of J
satisfying the condition ξh(ξ) ∩ τh(ξ) 6= ∅, for all ξ ∈ λ, where h(ξ) is the height of ξ.

A minimal complex neutrosophic transversal τ1 is the CNT ofH with the property that if τ ⊂ τ1, then τ is
not a CNT ofH.

Let us denote the family of minimal CNTs ofH by Tr(H).

Definition 20. A CNT τ with the property that τ(αeιΘ ,βeιΦ ,γeιΨ) ∈ tr(H(αeιΘ ,βeιΦ ,γeιΨ)), for all α, β, γ ∈ [0, 1],
and Θ, Φ, Ψ ∈ [0, 2π] is called the locally minimal CNT ofH. The collection of all locally minimal CNTs ofH
is represented by T∗r (H).

Please note that T∗r (H) ⊆ Tr(H), but the converse is not generally true.

Definition 21. Let N be a CNS on J . Then, the basic sequence of N determined by N, denoted by Bs(N),
is defined as {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1)N , (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2)N , · · · , (αneιΘn , βneιΦn , γneιΨn)N}, where

(i) α1 > α2 > · · · > αn, β1 > β2 > · · · > βn, γ1 < γ2 < · · · < γn, Θ1 > Θ2 > · · · > Θn,
Φ1 > Φ2 > · · · > Φn, Ψ1 < Ψ2 < · · · < Ψn,

(ii) (α1eιΘ1 , β1eιΦ1 , γ1eιΨ1) = h(N),
(iii) {(α2eιΘ2 , β2eιΦ2 , γ2eιΨ2)N , · · · , (αneιΘn , βneιΦn , γneιΨn)N} are the transition levels of N.

Definition 22. Let Bs(N) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1)N , (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2)N , · · · , (αneιΘn , βneιΦn ,
γneιΨn)N} be the basic sequence of N. Then, the set of basic cuts Bc(N) is defined as, Bc(N) =

{N(αeιΘ ,βeιΦ ,γeιΨ)|(αeιΘ, βeιΦ, γeιΨ) ∈ Bs(N)}.

Lemma 1. LetH = (N , λ) be a CNHG with Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2),
· · · , (αneιΘn , βneιΦn , γneιΨn)}. Then,

(i) If (αeιΘ, βeιΦ, γeιΨ) is a transition level of τ ∈ Tr(H), then there exists an ε > 0 such that for all
α1 ∈ (α, α + ε], β1 ∈ (β, β + ε], γ1 ∈ (γ, γ + ε], Θ1 ∈ (Θ, Θ + ε], Φ1 ∈ (Φ, Φ + ε], Ψ1 ∈
(Ψ, Ψ + ε], τ(αeιΘ ,βeιΦ ,γeιΨ) is a minimal H(αeιΘ ,βeιΦ ,γeιΨ) transversal extension of τ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),
i.e., if τ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊆ C ⊂ τ(αeιΘ ,βeιΦ ,γeιΨ), then C is not a transversal ofH(αeιΘ ,βeιΦ ,γeιΨ).

(ii) Tr(H), i.e., the collection of minimal transversals ofH is sectionally elementary.
(iii) Fs(Tr(H)) is properly contained in Fs(H).

(iv) τ(αeιΘ ,βeιΦ ,γeιΨ) ∈ Tr(H(αeιΘ ,βeιΦ ,γeιΨ)), for all τ ∈ Tr(H) and for every α2 < α ≤ α1, β2 < β ≤ β1,
γ2 > γ ≥ γ1, Θ2 < Θ ≤ Θ1, Φ2 < Φ ≤ Φ1, Ψ2 > Ψ ≥ Ψ1.
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Definition 23. Let H = (N , λ) be a CNHG. The complex neutrosophic line graph of H is defined as an
ordered pair l(H) = (Nl , λl), where Nl = λ and there exists an edge between two vertices in l(H) if
|supp(λj) ∩ supp(λk)| ≥ 1, for all λj, λk ∈ λ. The membership degrees of l(H) are given as,

(i) Nl(Ek) = λ(Ek),

(ii) λl(EjEk) = (min{tλ(Ej), tλ(Ek)}eι min{φλ(Ej),φλ(Ek)}, min{iλ(Ej), iλ(Ek)}eι min{ϕλ(Ej),ϕλ(Ek)},

max{ fλ(Ej), fλ(Ek)}eι max{ψλ(Ej),ψλ(Ek)}).

3. T-Related Complex Neutrosophic Hypergraphs

Definition 24. A CNHG H = (N , λ) is N-tempered CNHG of H = (J , E) if there exists H = (J , E),
a crisp hypergraph, and a CNS N such that λ = {δe|e ∈ E}, where

tδ(u)eιφδ(u) =

{
min{tN(x)eι min{φN(x)}|x ∈ e}, if u ∈ e,

0, otherwise.

iδ(u)eιϕδ(u) =

{
min{iN(x)eι min{ϕN(x)}|x ∈ e}, if u ∈ e,

0, otherwise.

fδ(u)eιψδ(u) =

{
max{ fN(x)eι max{ψN(x)}|x ∈ e}, if u ∈ e,

0, otherwise

An N-tempered CNHGH = (N , λ) determined by H and CNS N is denoted by N ⊗ H.

Definition 25. A pair (G, J) of crisp hypergraphs is T-related if whenever g is a minimal transversal of G, k is
any transversal of J, and g ⊆ k, then there exists a minimal transversal t of J such that g ⊆ t ⊆ k.

Definition 26. Let H = (N , λ) be a CNHG with Fs(H) =

{(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), · · · , (αneιΘn , βneιΦn , γneιΨn)}. Then, H is T-related
if from the core set

c(H) = {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), · · · ,H(αneιΘn ,βneιΦn ,γneιΨn )}

ofH, every successive ordered pair (H(αje
ιΘj ,β je

ιΦj ,γje
ιΨj ),H(αj−1eιΘj−1 ,β j−1eιΦj−1 ,γj−1eιΨj−1 )) is T-related.

If Fs(H) contains only one element,H is considered to be trivially T-related.

Theorem 1. LetH = (N , λ) be a T-related CNHG, then Tr(H) = T∗r (H).

Proof. LetH = (N , λ) be a T-related CNHG with Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 ,
γ2eιΨ2), · · · , (α1eιΘn , βneιΦn , γneιΨn)}. Then, there arises two cases:

Case (i) First we consider that Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1)}. Then, Lemma 1 implies that for

each ξ ∈ Tr(H), ξ(αeιΘ ,βeιΦ ,γeιΨ) ∈ Tr(H(αeιΘ ,βeιΦ ,γeιΨ)), for all 0 < α ≤ t(h(H)), 0 < β ≤
i(h(H)), γ ≥ f (h(H)) > 0, 0 < Θ ≤ φ(h(H)), 0 < Φ ≤ ϕ(h(H)), and Ψ ≥ ψ(h(H)) > 0.
Thus, Tr(H) = T∗r (H).

Case (ii) We now suppose that |Fs(H)| ≥ 2. Since, T∗r (H) ⊆ Tr(H), we just have

to prove that Tr(H) ⊆ T∗r (H). Let ξ ∈ Tr(H), and ξ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊂
ξ(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ). AS ξ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ∈ Tr(H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 )), ξ(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) ∈
Tr(H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )), and the ordered pair (H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ),H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 )) is
T-related. If ξ(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) /∈ Tr(H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )), then there exists a minimal
transversal τ ofH(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) such that ξ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊆ τ2 ⊂ ξ(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ).
Hence, we obtain a CNT δ of H such that δ ⊂ ξ. Let ξ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) = τ1 and
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δ = ξ(α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 ) ∪ ρ2 ∩ ρ1, where ρk is an elementary CNS with support τk and
height (αkeιΘk , βkeιΦk , γkeιΨk ), k = 1, 2. This contradiction shows that ξ(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) ∈
Tr(H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )). Then, Lemma 1 implies that ξ(αeιΘ ,βeιΦ ,γeιΨ) ∈ Tr(H(αeιΘ ,βeιΦ ,γeιΨ)),
for α ∈ (α3, α1], β ∈ (β3, β1], γ ∈ (γ3, γ1], Θ ∈ (Θ3, Θ1], Φ ∈ (Φ3, Φ1], Ψ ∈ (Ψ3, Ψ1].
Continuing the same recursive procedure, we show that ξ(αeιΘ ,βeιΦ ,γeιΨ) ∈ Tr(H(αeιΘ ,βeιΦ ,γeιΨ)),
for each α ∈ (0, α1], β ∈ (0, β1], γ ∈ (0, γ1], Θ ∈ (0, Θ1], Φ ∈ (0, Φ1], Ψ ∈ (0, Ψ1].

Example 5. LetH = (N , λ) be a CNHG represented by the incidence matrix as given in Table 1.
Please note that

λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π) = {{j1, j2}, {j1, j3}, {j2, j3}},
λ(0.6eι(0.6)2π ,0.6eι(0.6)2π ,0.6eι(0.6)2π) = {{j1, j2, j4}, {j1, j3, j4}, {j2, j3, j5}},
λ(0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π) = {{j1, j2, j4, j5}, {j1, j3, j4, j5}, {j2, j3, j4, j5}}.

Clearly, Fs(H) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (0.6eι(0.6)2π , 0.6eι(0.6)2π , 0.6eι(0.6)2π),
(0.3eι(0.3)2π , 0.3eι(0.3)2π , 0.3eι(0.3)2π)}. Also, Tr(H) = {τ1, τ2, τ3} = T∗r (H), where

τ1 = {(j1, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (j2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)},
τ2 = {(j1, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (j3, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)},
τ3 = {(j2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (j3, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)}.

Since, {j4, j5} ∈ Tr(H(0.6eι(0.6)2π ,0.6eι(0.6)2π ,0.6eι(0.6)2π)) and {j4} ∈ Tr(H(0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π)),
i.e., no minimal transversal of H(0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π) contains {j4, j5}.
Thus, (H(0.6eι(0.6)2π ,0.6eι(0.6)2π ,0.6eι(0.6)2π),H(0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π)) is not T-related, therefore H is
not T-related.

Table 1. Incidence matrix of CNHGH = (N , λ).

I λ1 λ2 λ3

j1 (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π) (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π) (0, 0, 1)
j2 (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π) (0, 0, 1) (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)

j3 (0, 0, 1) (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π) (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)

j4 (0.6eι(0.6)2π , 0.6eι(0.6)2π , 0.6eι(0.6)2π) (0.6eι(0.6)2π , 0.6eι(0.6)2π , 0.6eι(0.6)2π) (0.3eι(0.3)2π , 0.3eι(0.3)2π , 0.3eι(0.3)2π)

j5 (0.3eι(0.3)2π , 0.3eι(0.3)2π , 0.3eι(0.3)2π) (0.3eι(0.3)2π , 0.3eι(0.3)2π , 0.3eι(0.3)2π) (0.6eι(0.6)2π , 0.6eι(0.6)2π , 0.6eι(0.6)2π)

Theorem 2. LetH = (N , λ) be an ordered CNHG, then Tr(H) = T∗r (H)⇔ H is T-related.

Proof. In view of Theorem 1, this is enough to prove that Tr(H) = T∗r (H) implies H is T-related.
Suppose that Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), · · · , (αneιΘn , βneιΦn , γneιΨn)}
and H is not T-related. Here, we obtain ξ ∈ Tr(H) such that ξ /∈ T∗r (H). Assume that

the ordered pair (H(αje
ιΘj ,β je

ιΦj ,γje
ιΨj ),H(αj+1eιΘj+1 ,β j+1eιΦj+1 ,γj+1eιΨj+1 )) is not T-related and c(H) =

{H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), · · · ,H(αneιΘn ,βneιΦn ,γneιΨn )}. Then, there exists a CNT τk such
that τk ∈ Tr(H(αkeιΘk ,βkeιΦk ,γkeιΨk )) and τk ⊂ τk+1, where

τk+1 ∈ Tr(H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ))

satisfying the condition that N is not a minimal transversal ofH(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ), for every
N, τk ⊆ N ⊆ τk+1. Since, H = (N , λ) is an ordered CNHG, then H(αkeιΘk ,βkeιΦk ,γkeιΨk ) ⊆
H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ), therefore τk is not a transversal of H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ),



Algorithms 2019, 12, 234 14 of 28

for otherwise τk ∈ Tr(H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 )), which is a contradiction to our assumption.
Let δ be an arbitrary CNT of H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ) such that τk ⊆ δ ⊆ τk+1. Now, if τk ⊆
Q ⊂ δ, then Q is not a crisp transversal of H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ). As we know that
δ /∈ Tr(H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 )) and τk ⊂ δ. Thus, we can obtain a minimal CNT ξ of H
such that ξ /∈ T∗r (H). First, we compute a minimal CNT ξ1 of H(αkeιΘk ,βkeιΦk ,γkeιΨk ), where τk is the

top level cut of ξ1 at level (αkeιΘk , βkeιΦk , γkeιΨk ) and satisfies ξ
(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 )
1 ⊆ τk+1.

Then, Lemma 1 implies that the (αk+1eιΘk+1 , βk+1eιΦk+1 , γk+1eιΨk+1)-cut, ξ
(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 )
1

of ξ1 should equal to some δ that satisfies τk ⊆ δ ⊆ τk+1 and τk ⊆ Q ⊂ δ, then Q is not a
crisp transversal of H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ). Thus, we obtain ξ1 ∈ Tr(H(αkeιΘk ,βkeιΦk ,γkeιΨk )) \
T∗r (H(αkeιΘk ,βkeιΦk ,γkeιΨk )).

We now assume that (αkeιΘk , βkeιΦk , γkeιΨk ) ⊂ (α1eιΘ1 , β1eιΦ1 , γ1eιΨ1). Since, H is ordered,
then there exists an ordered sequence tk ⊇ tk−1 ⊃ · · · ⊇ t1 of crisp minimal transversals of
H(αkeιΘk ,βkeιΦk ,γkeιΨk ), H(αk−1eιΘk−1 ,βk−1eιΦk−1 ,γk−1eιΨk−1 ), · · · , H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ), respectively. Let ρl be
an elementary CNSS with support tl and height ξl . Then, ξ = ρ1 ∪ · · · ∪ ρl−1 ∪ δ such that ξ ∈ Tr(H)

and ξ /∈ T∗r (H).

Corollary 1. LetH = (N , λ) be an ordered CNHG with Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 ,
β2eιΦ2 , γ2eιΨ2), · · · , (αneιΘn , βneιΦn , γneιΨn)} and c(H) = {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ),
· · · ,H(αneιΘn ,βneιΦn ,γneιΨn )}.

If an ordered pair (H(αje
ιΘj ,β je

ιΦj ,γje
ιΨj ),H(αj+1eιΘj+1 ,β j+1eιΦj+1 ,γj+1eιΨj+1 )) is not T-related, then

(i) (αj+1eιΘj+1 , β j+1eιΦj+1 , γj+1eιΨj+1) ∈ Fs(Tr(H)).

(ii) (αj+1eιΘj+1 , β j+1eιΦj+1 , γj+1eιΨj+1) is a transition level for ξ ∈ Tr(H) \ T∗r (H).

Example 6. Let N = {(u, tN(u)eιφN(u), iN(u)eιϕN(u), fN(u)eιψN(u))|u ∈ J } be a CNS on
J = {a1, a2, a3, a4, a5, a6, a7} such that N(a7) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π) and N(a) =

(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), for all a ∈ J \ {a7}. Let H = (J , E) be a crisp hypergraph on J , where
E1 = {a1, a2, a4}, E2 = {a1, a3, a4}, E3 = {a4, a5, a6}, E4 = {a1, a5}, and E5 = {a5, a7}. Then, N-tempered
CNHGH = (N , λ) is given by the incidence matrix as shown in Table 2.

Here, 0 = (0, 0, 1), 0.9eι(0.9)2π=(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), and 0.4eι(0.4)2π= (0.4eι(0.4)2π ,
0.4eι(0.4)2π , 0.4eι(0.4)2π). Please note that Fs(H) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (0.4eι(0.4)2π ,
0.4eι(0.4)2π , 0.4eι(0.4)2π)} and c(H) = {H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π),H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)},
where

H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π) = (J1}, E1), J1 = {a1, a2, a3, a4, a5, a6},
E1 = {{a1, a2, a4}, {a1, a3, a4}, {a4, a5, a6}, {a1, a5}},

H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π) = (J2, E2), J2 = {a1, a2, a3, a4, a5, a6, a7},
E2 = {{a1, a2, a4}, {a1, a3, a4}, {a4, a5, a6}, {a1, a5}{a5, a7}}.

Please note that

{a1, a4} ∈ Tr(H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)), {a1, a4} /∈ Tr(H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)),

i.e., {a1, a4, a5} is a transversal of H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π) but not a minimal transversal.
Therefore, the ordered pair (H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π),H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)) as well as H is
not T-related.
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Table 2. Incidence matrix of N-tempered CNHGH.

H λ1 λ2 λ3 λ4 λ5

a1 0.9eι(0.9)2π 0.9eι(0.9)2π 0 0.9eι(0.9)2π 0
a2 0.9eι(0.9)2π 0 0 0 0
a3 0 0.9eι(0.9)2π 0 0 0
a4 0.9eι(0.9)2π 0.9eι(0.9)2π 0.9eι(0.9)2π 0 0
a5 0 0 0.9eι(0.9)2π 0.9eι(0.9)2π 0.4eι(0.4)2π

a6 0 0 0.9eι(0.9)2π 0 0
a7 0 0 0 0 0.4eι(0.4)2π

Remark 1.

• Example 6 shows that there exists some ordered CNHGs that are not T-related.

• Every simply ordered CNHGH = (N , λ) satisfies (T∗r (H)(αeιΘ ,βeιΦ ,γeιΨ) = Tr(H(αeιΘ ,βeιΦ ,γeιΨ)), for all
α ∈ (0, t(h(H))], β ∈ (0, i(h(H))], γ ∈ (0, f (h(H))], Θ ∈ (0, φ(h(H))], Φ ∈ (0, ϕ(h(H))], Ψ ∈
(0, ψ(h(H))].

Lemma 2. Let H = (J , E) be a crisp hypergraph and j be an arbitrary vertex of H. Then j ∈ E ∈ Tr(H)⇔
j ∈ Ek ∈ E such that for any hyperedge El 6= Ek of H, El * Ek.

Proposition 1. Let H1 = (J1, E1) be a crisp partial hypergraph of H = (J , E) that is obtained by removing
those hyperedges of H = (J , E) that contain any other edges properly. Then,

(i) Tr(H1) = Tr(H),
(ii) ∪Tr(H) = J1.

Definition 27. Let H = (N , λ) be a CNHG. The join of H, denoted by J(H), is defined as, J(H) =
⋃

ρ∈λ
ρ,

where λ is the CN hyperedge set ofH.
For every α ∈ (0, t(h(H))], β ∈ (0, i(h(H))], γ ∈ (0, f (h(H))], Θ ∈ (0, φ(h(H))], Φ ∈ (0, ϕ(h(H))],

Ψ ∈ (0, ψ(h(H))], the (αeιΘ, βeιΦ, γeιΨ)-level cut of J(H), i.e., (J(H))(αeιΘ ,βeιΦ ,γeιΨ) is the set of vertices of
(αeιΘ, βeιΦ, γeιΨ)-level hypergraph ofH, i.e., (J(H))(αeιΘ ,βeιΦ ,γeιΨ) = J (H(αeιΘ ,βeιΦ ,γeιΨ)).

Lemma 3. LetH = (N , λ) be a CNHG and ξ ∈ Tr(H). If j ∈ supp(ξ), then there exists a CN hyperedge ρ

ofH such that

(i) ρ(j) = h(ρ) = ξ(j) > 0,

(ii) ξh(ρ) ∩ ρh(ρ) = {j}.

Proof. Let j0 ∈ supp(ξ) such that ξ ∈ Tr(H) and ξ(j0) = (α0eιφ0 , β0eιϕ0 , γ0eιψ0). Since every
ξ1 that is a transversal of H contains a transversal ξ such that ξ ⊆ j(H). This implies that
j0 ∈ N (α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) = J (H(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 )). Therefore, there exists at least one hyperedge ρ

of H such that ρ(j0) ≥ (α0eιφ0 , β0eιϕ0 , γ0eιψ0). Let λ = {λ1, λ2, · · · , λm} be the set of hyperedges
of H and ρ(j0) ≥ (α0eιφ0 , β0eιϕ0 , γ0eιψ0). We now prove that there exists at least one λk ∈ λ

such that h(λj) = (α0eιφ0 , β0eιϕ0 , γ0eιψ0). For otherwise, we have h(λk) = (αkeιφk , βkeιϕk , γkeιψk ) ≥
(α0eιφ0 , β0eιϕ0 , γ0eιψ0), for all λk ∈ λ, k = 1, 2, · · · , m. This implies that for every λk ∈ λ,
there exists an element uk ∈ supp(ξ) such that uk ∈ (λk)

(αkeιφk ,βkeιϕk ,γkeιψk ) ∩ ξ(αkeιφk ,βkeιϕk ,γkeιψk ),
for (αkeιφk , βkeιϕk , γkeιψk ) ≥ (α0eιφ0 , β0eιϕ0 , γ0eιψ0). Since, ξ(j0) = (α0eιφ0 , β0eιϕ0 , γ0eιψ0), then h(λk) =

(αkeιφk , βkeιϕk , γkeιψk ) ≥ (α0eιφ0 , β0eιϕ0 , γ0eιψ0) and uk ∈ (λk)
(αkeιφk ,βkeιϕk ,γkeιψk ) ∩ ξ(αkeιφk ,βkeιϕk ,γkeιψk )

imply that uk 6= j0, k = 1, 2, · · · , m. If these hold, it could be shown that ξ /∈ Tr(H) by computing a
CNT δ of H that satisfies δ ⊂ ξ. This argument follows form the fact that J and λ are finite, there
exist intervals (α0 − ε, α0], (β0 − ε, β0], (γ0 − ε, γ0], (φ0 − 2πε, φ0], (ϕ0 − 2πε, ϕ0], and (ψ0 − 2πε, ψ0]
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such that H(αeιφ ,βeιϕ ,γeιψ) = H(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) on (α0 − ε, α0], (β0 − ε, β0], (γ0 − ε, γ0], (φ0 − 2πε, φ0],
(ϕ0 − 2πε, ϕ0], and (ψ0 − 2πε, ψ0].

Define δ(u) as,

tδ(u) =

{
tξ(u), if u 6= j0,

α0 − ε, if u = j0.
, iδ(u) =

{
iξ(u), if u 6= j0,

β0 − ε, if u = j0.
,

fδ(u) =

{
fξ(u), if u 6= j0,

γ0 − ε, if u = j0.
, φδ(u) =

{
φξ(u), if u 6= j0,

φ0 − 2πε, if u = j0.
,

ϕδ(u) =

{
ϕξ(u), if u 6= j0,

ϕ0 − 2πε, if u = j0.
, ψδ(u) =

{
ψξ(u), if u 6= j0,

ψ0 − 2πε, if u = j0.
.

Clearly δ ⊂ ξ and δ is a transversal of H. Also, ξ(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) \ {j0} contains {uk|k =

1, 2, · · · , m}. Therefore, ξ(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) \ {j0} is a transversal of H(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ). The same
argument holds for every H(αeιφ ,βeιϕ ,γeιψ), where α ∈ (α0 − ε, α0], β ∈ (β0 − ε, β0], γ ∈ (γ0 − ε, γ0],
φ ∈ (φ0 − 2πε, φ0], ϕ ∈ (ϕ0 − 2πε, ϕ0], ψ ∈ (ψ0 − 2πε, ψ0]. Since, δ(αeιφ ,βeιϕ ,γeιψ) = ξ(αeιφ ,βeιϕ ,γeιψ),
for all α ∈ (0, t(h(H))] \ (α0 − ε, α0], β ∈ (0, i(h(H))] \ (β0 − ε, β0], γ ∈ (0, f (h(H))] \ (γ0 − ε, γ0],
φ ∈ (0, φ(h(H))] \ (φ0− 2πε, φ0], ϕ ∈ (0, ϕ(h(H))] \ (ϕ0− 2πε, ϕ0], ψ ∈ (0, ψ(h(H))] \ (ψ0− 2πε, ψ0].
This establishes the existence of ρ ∈ H for which ρ(j0) = h(ρ) = ξ(j0) > 0.

We now suppose that every hyperedge from the set λ = {λ1, λ2, · · · , λm} with height ξ(j0)
contain two or more than two elements of ξ(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) \ {j0}. BY repeating the above procedure,
we can establish that ξ /∈ Tr(H), which is a contradiction.

Example 7. Consider a CNHG H = (N , λ) on J = {u1, u2, u3, u4} as represented by incidence matrix
given in Table 3.

Here, 0.7eι(0.7)2π= (0.7eι(0.7)2π , 0.7eι(0.7)2π , 0.7eι(0.7)2π), 0.9eι(0.9)2π= (0.9eι(0.9)2π , 0.9eι(0.9)2π ,
0.9eι(0.9)2π), 0.4eι(0.4)2π= (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π). Then, we see that λ1, λ3, and λ5 have no
transitions levels and (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π) is the transition level of λ2 and λ4. The basic
sequences are given as,

Bs(λ1) = {(0.7eι(0.7)2π , 0.7eι(0.7)2π , 0.7eι(0.7)2π)},
Bs(λ2) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π)},
Bs(λ3) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)},
Bs(λ4) = {(0.7eι(0.7)2π , 0.7eι(0.7)2π , 0.7eι(0.7)2π), (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π)},
Bs(λ5) = {(0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π)}.

Thus,

Bc(λ1) = {λ(0.7eι(0.7)2π ,0.7eι(0.7)2π ,0.7eι(0.7)2π)
1 },

Bc(λ2) = {λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
2 , λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
2 },

Bc(λ3) = {λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 },

Bc(λ4) = {λ(0.7eι(0.7)2π ,0.7eι(0.7)2π ,0.7eι(0.7)2π)
4 , λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
4 },

Bc(λ5) = {λ(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
5 }.



Algorithms 2019, 12, 234 17 of 28

Also, we have Fs(H) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π)}
and c(H) = {H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π),H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)}, where

λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π) = {{u1, u2, u3}, {u1, u2}, {u2, u3}},
λ(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π) = {{u1, u2, u3, u4}, {u1, u2}, {u1, u2, u4}, {u2, u3}, {u2, u3, u4}}.

We now determine Tr(H) and T∗r (H). If τ ∈ Tr(H), then τh(λ1) ∩{u1, u2} 6= ∅, τh(λ2) ∩{u1, u2} 6= ∅,
τh(λ3) ∩ {u2, u3} 6= ∅, τh(λ4) ∩ {u2, u3} 6= ∅, and τh(λ5) ∩ {u1, u3, u4} 6= ∅. Please note that Tr(H) =

{τ1, τ2, τ3, τ4}, where

τ1 = {(u1, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (u3, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)},
τ2 = {(u2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (u3, 0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π},
τ3 = {(u2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (u4, 0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π},
τ4 = {(u2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (u1, 0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π}.

Now Tr(H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)) = {{u2}, {u1, u3}} and Tr(H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)) =

{{u1, u3}, {u2, u3}, {u2, u4}, {u1, u2}, {u1, u3, u4}} and τ
(αeιΘ ,βeιΦ ,γeιΨ)
k ∈ Tr(H(αeιΘ ,βeιΦ ,γeιΨ)), for all α ∈

(0, t(h(H))], β ∈ (0, i(h(H))], γ ∈ (0, f (h(H))], Θ ∈ (0, φ(h(H))], Φ ∈ (0, ϕ(h(H))], Ψ ∈ (0, ψ(h(H))].
Hence, T∗r (H) = {τ1}.

We now illustrate Lemma 3 through the above example.

λ2(u1) = h(λ2) = τ1(u1) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π),

λ3(u3) = h(λ3) = τ1(u3) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π),

λ2(u2) = h(λ2) = τ2(u2) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π),

λ5(u3) = h(λ5) = τ2(u3) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π),

λ3(u2) = h(λ3) = τ3(u2) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π),

λ5(u4) = h(λ5) = τ3(u4) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π),

λ5(u1) = h(λ5) = τ4(u2) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π),

λ3(u2) = h(λ3) = τ4(u2) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π).

Also note that

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
1 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
2 = {u1},

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
1 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 = {u3},

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
2 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
2 = {u2},

τ
(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
2 ∩ λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
5 = {u3},

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 = {u2},

τ
(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
3 ∩ λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
5 = {u4},

τ
(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
4 ∩ λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
5 = {u1},

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
4 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 = {u2}.

Hence, (Tr(H))(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π) = {τ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
1 ,

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
2 , τ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 , τ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
4 } = {{u1,

u3}, {u2}, {u2}, {u2}} = {{u1, u3}, {u2}} = Tr(H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)).
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Table 3. Incidence matrix ofH.

IH λ1 λ2 λ3 λ4 λ5

u1 0.7eι(0.7)2π 0.9eι(0.9)2π (0, 0, 1) (0, 0, 1) 0.4eι(0.4)2π

u2 0.7eι(0.7)2π 0.9eι(0.9)2π 0.9eι(0.9)2π 0.7eι(0.7)2π (0, 0, 1)
u3 (0, 0, 1) (0, 0, 1) 0.9eι(0.9)2π 0.7eι(0.7)2π 0.4eι(0.4)2π

u4 (0, 0, 1) 0.4eι(0.4)2π (0, 0, 1) 0.4eι(0.4)2π 0.4eι(0.4)2π

Theorem 3. Let H = (N , λ) be a CNHG and j ∈ J . If ξ ∈ Tr(H) with j ∈ supp(ξ), then there exists an
hyperedge ρ ∈ λ such that

(i) ρ(j) = h(ρ),

(ii) For λ1 ∈ λ such that h(λ1) ≥ h(ρ), λ
h(λ1)
1 * ρh(ρ),

(iii) Ek * ρh(ρ), where Ek is an arbitrary hyperedge ofHh(ρ),
(iv) ξ(j) = ρ(j).

Corollary 2. Let H = (N , λ) be a CNHG. If λ1 ∈ λ satisfies h(λ1) ≥ h(ρ), λ
h(λ1)
1 * ρh(ρ), then h(λ1) ∈

Fs(H).

4. Applications

In this section, we propose the modeling of overlapping communities that exist in different social
networks through CNHGs. These communities intersect each other when one person belongs to
multiple communities at the same time. The vertices of the CNHGs are used to represent different
communities and the hyperlinks of individuals who participate in more than one community are
illustrated using hyperedges of CNHGs. Here, we define a score function for ranking CNSs by
considering the truth, indeterminacy, and falsity degrees.

Definition 28. Let N = (teιφ, ieιϕ, f eιψ) be a CNN, the score function S of N is defined as,

S(N) =
1 + t− 2i− f

2
+

2π + φ− 2ϕ− ψ

4π
,

where S(N) ∈ [−2, 2].

4.1. Modeling of Intersecting Research Communities

Research scholars have different fields of interest and these multiple research interests make
researchers parts of different research communities at the same time. For example, Mathematics,
Physics, and Computer Science may be the fields of interest for one researcher at the same time.
That is how overlapping communities occur in research fields. We use a CNHG to model intersecting
communities that emerge in different research fields. The vertices of a CNHG represent the different
research fields and these fields are connected through an hyperedge that represents a research scholar
who works in the corresponding fields. The corresponding model of intersecting research communities
is shown in Figure 8.
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Figure 8. Intersecting research communities.

Here, the truth, indeterminacy, and falsity degrees of each vertex represent the accepted,
submitted, and rejected articles of that community in a specific period of time that is represented by
the phase terms. This inconsistent information with periodic nature is given in Table 4.

Table 4. Periodic behavior of research communities.

Research Fields Accepted Articles Submitted Articles Rejected Articles

F1 0.6eι(0.6)2π 0.6eι(0.3)2π 0.5eι(0.4)2π

F2 0.7eι(0.5)2π 0.3eι(0.7)2π 0.5eι(0.4)2π

F3 0.8eι(0.4)2π 0.6eι(0.3)2π 0.4eι(0.5)2π

F4 0.8eι(0.4)2π 0.6eι(0.7)2π 0.7eι(0.5)2π

F5 0.9eι(0.3)2π 0.4eι(0.5)2π 0.7eι(0.2)2π

F6 0.6eι(0.5)2π 0.3eι(0.4)2π 0.7eι(0.1)2π

F7 0.4eι(0.5)2π 0.3eι(0.2)2π 0.6eι(0.3)2π

F8 0.4eι(0.7)2π 0.5eι(0.1)2π 0.5eι(0.2)2π

F9 0.4eι(0.3)2π 0.4eι(0.4)2π 0.6eι(0.3)2π

F10 0.4eι(0.5)2π 0.5eι(0.2)2π 0.7eι(0.3)2π

Please note that number of accepted, submitted, and rejected articles of community F1 are 0.6, 0.6,
and 0.5, and the corresponding behaviors repeat after (0.6)2π, (0.3)2π, and (0.4)2π periods of time,
respectively, and so on. The research scholar λ1 belongs to communities F1, F2, and F3 as he shares
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these three fields of interest. Similarly, λ2 belongs to F3 and F8 and the communities overlap with each
other. The indeterminate information about a researcher is calculated using CNRs given as,

λ1({F1, F2, F3}) = (0.6eι(0.2)2π , 0.3eι(0.3)2π , 0.4eι(0.2)2π),

λ2({F3, F8}) = (0.4eι(0.3)2π , 0.5eι(0.1)2π , 0.4eι(0.2)2π),

λ3({F1, F4}) = (0.6eι(0.3)2π , 0.4eι(0.2)2π , 0.7eι(0.4)2π),

λ4({F5, F8, F6}) = (0.4eι(0.3)2π , 0.3eι(0.1)2π , 0.7eι(0.2)2π),

λ5({F5, F7, F10}) = (0.4eι(0.3)2π , 0.3eι(0.2)2π , 0.7eι(0.3)2π),

λ6({F8, F9, F10}) = (0.4eι(0.3)2π , 0.4eι(0.1)2π , 0.7eι(0.3)2π).

It shows the researcher represented by λ1 has 0.6 accepted, 0.3 submitted, and 0.4 rejected articles
within some specific periods of time. The line graph of intersecting communities as given in Figure 8 is
shown in Figure 9. Here, the nodes represent the individuals and the communities are described by
the links of same color.

b b b

b b b
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(λ4, 0.4eι(0.3)2π , 0.3eι(0.1)2π , 0.7eι(0.2)2π) (λ5, 0.4eι(0.3)2π , 0.3eι(0.2)2π , 0.7eι(0.3)2π) (λ6, 0.4eι(0.3)2π , 0.4eι(0.1)2π , 0.7eι(0.3)2π)

(0.4eι(0.2)2π , 0.3eι(0.1)2π , 0.4eι(0.2)2π)

(0.6
eι
(0.2

)2π , 0.3
eι
(0.2

)2π , 0.7
eι
(0.4

)2π )

(0
.4
e
ι(
0.
3)
2π
, 0
.3
e
ι(
0.
1)
2π
, 0
.7
e
ι(
0.
2)
2π
)

(0.4e ι(0.3)2π
, 0.4e ι(0.1)2π

, 0.7e ι(0.3)2π
)

(0.4eι(0.3)2π , 0.3eι(0.1)2π , 0.7eι(0.3)2π)

(0.4eι(0.3)2π , 0.3eι(0.1)2π , 0.7eι(0.3)2π) (0.4eι(0.3)2π , 0.3eι(0.1)2π , 0.7eι(0.3)2π)

Figure 9. Line graph of intersecting research communities.

This line graph represents the relationships between researchers. The researchers that belong to
the community F3 are connected through pink edge, members of F1 are linked by red edge, members
of F10 are connected by purple links, cyan and blue edges are used to represent the relation between
the members of F5 and F8, respectively. The absence of F2, F4, F6, F7, and F9 in the above graph shows
that these communities share no common researchers as their members. The membership degrees
of each edge of this line graph represent the collective work of corresponding researchers. The score
functions and choice values of a CNG are given as,

Sjk =
1
2
[1 + tjk − 2ijk − f jk] +

1
4π

[2π + φjk − 2ϕjk − ψjk],

Cj = ∑
k

Sjk +
1
2
[1 + tj − 2ij − f j] +

1
4π

[2π + φj − 2ϕj − ψj],

respectively. The score functions and choice values of researchers represented by the line graph given
in Figure 9 are calculated in Table 5.
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Table 5. Score and choice values of complex neutrosophic line graph.

Sjk λ1 λ2 λ3 λ4 λ5 λ6 Cj

λ1 0 0.600 0.350 0 0 0 0.450
λ2 0.600 0 0 0.500 0 0.350 0.900
λ3 0.350 0 0 0 0 0 −0.350
λ4 0 0.500 0 0 0.450 0.450 0.900
λ5 0 0 0 0.450 0 0.450 0.200
λ6 0 0.350 0 0 0.450 0 −0.050

The choice values of Table 5 show that λ2 and λ4 are the most active and efficient participants
of these research communities. Also, the score values show that λ1 and λ2 are the members
with the strongest interactions between them and can share the most fruitful ideas relevant to
their corresponding research fields being the participants of intersecting research communities.
The procedure adopted in our application is described in Algorithm 1.

Algorithm 1: Selection of a systematic member from intersecting research communities

1. Input the set of vertices (research communities) F1, F2, · · · , Fj.
2. Input the CNS N of vertices such that N(Fk) = (tkeιφk , ikeιϕk , fkeιψk ), 1 ≤ k ≤ j,

0 ≤ tk + ik + fk ≤ 3.
3. Input the number of hyperedges (researchers) r of a CNHGH = (N , λ).
4. Input the membership degrees of the hyperedges E1, E2, · · · , Er.
5. Construct a complex neutrosophic line graph l(H) = (Nl , λl) whose vertices are the r

hyperedges E1, E2, · · · , En such that Nl(En) = λ(En).
6. If |supp(λj) ∩ supp(λk)| ≥ 1, then draw an edge between Ej and Ek and λl(EjEk) =

(min{tλ(Ej), tλ(Ek)}eι min{φλ(Ej),φλ(Ek)}, min{iλ(Ej), iλ(Ek)}eι min{ϕλ(Ej),ϕλ(Ek)}, max{ fλ(Ej),

fλ(Ek)}eι max{ψλ(Ej),ψλ(Ek)}).
7. Input the adjacency matrix I = [(tmn, imn, fmn)]r×r of vertices of complex neutrosophic line

graph l(H).
8. do m from 1→ r
9. Cm = 0
10. do n from 1→ r
11. Smn = 1

2 [1 + tmn − 2imn − fmn] +
1

4π [2π + φmn − 2ϕmn − ψmn]
12. Cm = Cm + Smn
13. end do
14. Cm = Cm + 1

2 [1 + tm − 2im − fm] +
1

4π [2π + φm − 2ϕm − ψm]
15. end do
16. The vertex with highest choice value in l(H) is the most effective researcher among all the

participants.

4.2. Influence of Modern Teaching Strategies on Educational Institutes

Teaching strategies are defined as the methods, techniques, and procedures that an educational
institute use to improve its performance. An educational institute can be judged according to its
inputs and outputs that are highly affected through the teaching techniques adopted by that institute.
Traditional teaching methods mainly depends on textbooks and emphasizes on basic skills while the
modern techniques are based on technical approach and emphasizes on creative ideas. Thus, modern
teaching is very important and most effective in this technological era. Presently, educational
institutes are modified through modern teaching strategies to enhance their outputs and these modern
techniques play a vital role for teachers to explain the concepts in more effective and radiant manner.
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Here, we consider a CNHG modelH = (N , λ) to study the influence of modern teaching methods on a
specific group of institutes in a time frame of 12 months. The vertices of a CNHG represent the different
teaching strategies and these techniques are grouped through an hyperedge if they are applied in the
same institute. Since more than one institute can adopt a same strategy so the intersecting communities
occur in this case. Each strategy is different form the other in terms of its positive, neutral, and negative
impacts on students. The truth, indeterminacy, and falsity degrees of each strategy represent the
positive, neutral, and negative effects of the corresponding technique on some institute during the time
period of 12 months. The indeterminate information about modern teaching strategies with periodic
nature is given in Table 6.

Table 6. Impacts of modern teaching strategies.

Teaching Strategy Positive Effects Neutral Behavior Negative Effects

Brain storming 0.8eι(10/12)2π 0.7eι(7/12)2π 0.1eι(1/12)2π

Micro technique 0.6eι(4/12)2π 0.6eι(3/12)2π 0.1eι(1/12)2π

Mind map 0.6eι(6/12)2π 0.3eι(5/12)2π 0.7eι(7/12)2π

Cooperative learning 0.8eι(10/12)2π 0.7eι(7/12)2π 0.1eι(1/12)2π

Dramatization 0.5eι(3/12)2π 0.3eι(3/12)2π 0.2eι(2/12)2π

Educational software 0.8eι(10/12)2π 0.3eι(3/12)2π 0.2eι(1/12)2π

Please note that the membership values (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π) of brainstorming
show that this teaching technique has positive influence with degree 0.8 and this effect spreads over
ten months, the indeterminacy value represents the neutral effect or indeterminate behavior with
degree 0.7 with time interval of seven months, and the falsity degree 0.1 illustrates some negative
effects of this strategy that spreads over one month. Similarly, the effects of all other strategies can be
seen form Table 6 along with their time periods. An hyperedge of a CNHG represent some institute in
which the corresponding techniques are applied. The model of CNHG grouping these strategies is
shown in Figure 10.

Here, each hyperedge represents an institute which groups the strategies adopted by that institute
and the membership degrees of each hyperedge represent the combined effects of teaching strategies
on corresponding institute. We now want to find a strategy or a collection of those techniques which
are easy to apply, less in cost, and have higher positive effects on the performance of educational
institutes. To find such methods, we calculate the minimal transversal of CNHG given in Figure 10
using Algorithm 2.

Algorithm 2: Find a minimal complex neutrosophic transversal

1. Input the CNSs λ1, λ2, · · · , λr of hyperedges.
2. Input the membership degrees of hyperedges.
3. do j from 1→ r

4. Sj = λ
h(λj)

j

5. S = S ∪ Sj

6. end do
7. Take τ as the CNSS with support S.
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Figure 10. Complex neutrosophic hypergraph model of modern teaching strategies.

By following Algorithm 2, we construct a minimal CNT ofH = (N , λ).
We have five hyperedges E1, E2, E3, E4, E5 of H. The heights of all complex neutrosophic

hyperedges are given as,

h(λ1) = (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π), λ
h(λ1)
1 = {Brain storming},

h(λ2) = (0.7eι(10/12)2π , 0.6eι(7/12)2π , 0.1eι(1/12)2π), λ
h(λ2)
2 = {Brain storming},

h(λ3) = (0.8eι(10/12)2π , 0.3eι(3/12)2π , 0.2eι(1/12)2π), λ
h(λ3)
3 = {Educational software},

h(λ4) = (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π), λ
h(λ4)
4 = {Cooperative learning},

h(λ5) = (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π), λ
h(λ5)
5 = {Brainstorming, Cooperative learn.}.

S = λ
h(λ1)
1 ∪ λ

h(λ2)
2 ∪ λ

h(λ3)
3 ∪ λ

h(λ4)
4 ∪ λ

h(λ5)
5

= {Brainstorming, Cooperative learning, Educational software}.

The CNS with support S is given as,

{(Brain storming, 0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π), (Cooperative learning, 0.8eι(10/12)2π ,

0.7eι(7/12)2π , 0.1eι(1/12)2π), (Educational software, 0.8eι(10/12)2π , 0.3eι(3/12)2π , 0.2eι(1/12)2π)},

which is the minimal CNT of H = (N , λ) and it shows that brainstorming, cooperative learning,
and educational software are the most influential teaching strategies for the given period of time.
Thus, for some certain period of time, an influential and effective collection of modern teaching
techniques can be determined.
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5. Comparative Analysis

A CNS is characterized by truth, indeterminacy, and falsity degrees which are the combination
of real-valued amplitude terms and complex-valued phase terms. To prove the flexibility and
generalization of our proposed model CNHGs, we propose the modeling of social networks through
CNGs, CFHGs, and CIFHGs. Consider a part of the social network as described in Section 4.2.
Here, we consider only three modern techniques that are brainstorming, cooperative learning,
and educational software. A CFHG model of these techniques is given in Figure 11.
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Figure 11. Complex fuzzy hypergraph model of teaching techniques.

Please note that a CFHG model of intersecting techniques just illustrates the positive effects of
these methods during a specific time interval. We see that a CFHG model fails to describe the negative
effects of teaching strategies. To describe the positive as well as negative effects of these strategies,
we use a CIFHG model as shown in Figure 12.
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Figure 12. Complex intuitionistic fuzzy hypergraph model of teaching techniques.

This shows that a CIFHG model can well describe the positive and negative impacts of modern
techniques on educational institutes but it cannot handle the situations when there is no effect during
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some time interval or there is indeterminate behavior. To handle such type of situations, we use a
complex neutrosophic model as shown in Figure 13.

b

b
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(Educational software, 0.8eι(10/12)2π , 0.1eι(10/12)2π , 0.4eι(10/
12)2π)

λ
1

λ
2

Figure 13. Complex neutrosophic graph model of modern techniques.

Please note that a CNG model describe the truth, indeterminacy, and falsity degrees of impacts
of teaching methods for some specific interval of time and proves to be a more generalized model as
compared to CF and CIF models. Figure 13 shows that λ1 institute adopts the modern methods such
as educational software and cooperative learning. Now, if an institute wants to use more than two
strategies then this model fails to model the required situation. For example, λ1 wants to adopt the all
three modern teaching techniques. Then, we cannot model this social network using a simple graph.
To handle such type of difficulties, i.e., for the modeling of indeterminate information with periodic
nature existing in social hypernetworks, we have proposed CNHGs. The applicability and flexibility
of our proposed model can be seen from Table 7.

Table 7. Comparative analysis.

Hyperedge Containing
Models Edges Three Strategies Positive Effect Neutral Behavior Negative Effect

{Brain storming, 0.8eι(10/12)2π - -
CFHG model λ1 Cooperative learning, 0.8eι(10/12)2π - -

Educational software} 0.8eι(10/12)2π - -

{Brain storming, 0.8eι(10/12)2π - 0.3eι(10/12)2π

CIFHG model λ1 Cooperative learning, 0.8eι(10/12)2π - 0.5eι(10/12)2π

Educational software} 0.8eι(10/12)2π - 0.4eι(10/12)2π

Cannot
combine - 0.8eι(10/12)2π 0.2eι(10/12)2π 0.3eι(10/12)2π

CNG model more - 0.8eι(10/12)2π 0.3eι(10/12)2π 0.5eι(10/12)2π

than two - 0.8eι(10/12)2π 0.1eι(10/12)2π 0.4eι(10/12)2π

elements

{Brain storming, 0.8eι(10/12)2π 0.2eι(10/12)2π 0.3eι(10/12)2π

CNHG model λ1 Cooperative learning, 0.8eι(10/12)2π 0.3eι(10/12)2π 0.5eι(10/12)2π

Educational software} 0.8eι(10/12)2π 0.1eι(10/12)2π 0.4eι(10/12)2π

6. Discussions

It can be seen clearly from Table 7 that all existing models, including CNGs, CFHGs, and CIFHGs
lack some information to handle the periodic and indeterminate data in case of hypernetworks. Table 7
shows that a CFHG model can illustrate the combine effects of three different techniques through a
hyperedge. The truth degrees 0.8eι(10/12)2π of these techniques show that these methods provide very
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good influence which spread over ten months but this model fails to describe the negative effects of
some teaching technique happening periodically. A CIFHG model is then used to overcome such type
of deficiencies. The falsity degree 0.4eι(10/12)2π of “educational software” shows that this technique
has some negative effects that spread over ten months. The failure of CIFHG model appears when
neither positive nor negative effects or neutral effects of periodic nature are experienced because
some information does not have only truth and falsity degrees but also some indeterminacy degrees
which are independent of each other. For example, a 20o temperature in summer means a cool
day and in winter means a warm day but neither cool nor warm day in spring. This phenomenon
indicates that some real-life situations may have indeterminacy and periodicity along with uncertainty.
To handle such type of phenomena, a CNS model is more flexible and applicable. As we have seen
from Table 7 that a CNG illustrates the positive and negative as well as indeterminate effects of
under consideration teaching strategies applied to different institutes. The membership degrees
(0.8eι(10/12)2π , 0.2eι(10/12)2π , 0.3eι(10/12)2π) show that some particular technique has 0.8 positive effects,
0.2 neutral effects, and 0.3 negative effects on some institute and all these effects spread over ten
months. The main drawback of a CNG model is that a single edge can connect only two vertices,
i.e., if we consider the teaching techniques as vertices and these vertices (techniques) are connected
through an edge if they are adopted by a same institute. Then, a CNG model cannot illustrate the
situation when more than two techniques are applied to a single institute. In modeling of such type of
hypernetworks with indeterminacy of periodic nature, we propose a CNHG model. It can be seen
clearly from Table 7 that our proposed model is more generalized framework as it does not only
deal the reductant nature of imprecise information but also includes the benefits of hypergraphs.
Hence, a CNHG model combines the fruitful effects of CNSs and hypergraph theory.

7. Conclusions and Future Directions

A CNS extends the concept of SVNS from real unit interval [0, 1] to the complex plane and is used
to represent two-dimensional imprecise and indeterminate information. A CNS plays a vital role in
modeling the real-life applications where the truth, indeterminacy, and falsity degrees of given data
are periodic in nature. Thus, a CNS is more effective and generalized framework to deal the periodic
nature of indeterminacy where the CFS and CIFS fail. For example, a wave particle such as an electron
can be in two different positions at the same time and the CFS is not able to deal with this phenomenon.
A CIFS can only represent the information involving the information of the type: “yes” or “no"
occurring periodically. These models fail to deal the information that is neither true nor false or true
and false at the same time. A CNS model is more effectively used to deal such type of situations in our
daily life. In this paper, we have defined CNHGs which generalize the concepts of CFHGs and CIFHGs.
We have studied the level hypergraphs, lower truncation, upper truncation, and transition levels of
CNHGS. Furthermore, we have defined T-related CNHGs and discussed their certain properties.
We have illustrated the proposed ideas through some concrete examples. Moreover, we have presented
the modeling of certain social networks with intersecting communities using CNHGs. We have
determined a strong participant in overlapping research communities by defining the score and choice
values of CNGs. We have also determined the collection of most influential teaching strategies using
the minimal transversals of CNHGs. Finally, we have proved the novelty and applicability of this work
by giving a brief comparison of our proposed model with other existing models. We have seen that the
main drawback of CFHG models is that they cannot deal the falsity and indeterminate information
existing in a periodic manner. Similarly, a CIFHG fails to handle the situations when the indeterminate
and inconsistent information is happening repeatedly. The proposed analysis proved the dominance of
CNHG model to all other existing models by comparing the applicability of CFHGs, CIFHGs, CNGs,
and CNHGs using numeric examples as well as some theoretic results.

We aim to broaden our study to (1) Complex bipolar fuzzy hypergraphs, (2) Complex bipolar
neutrosophic hypergraphs, (3) Complex fuzzy soft hypergraphs and (4) Complex Pythagorean fuzzy
soft hypergraphs.
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