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Abstract: Chen and Flum showed that any FPT-approximation of the k-CLIQUE problem is not in
para-AC0 and the k-DOMINATINGSET (k-DOMSET) problem could not be computed by para-AC0 circuits.
It is natural to ask whether the f (k)-approximation of the k-DOMSET problem is in para-AC0 for some
computable function f . Very recently it was proved that assuming W[1] 6= FPT, the k-DOMSET problem
cannot be f (k)-approximated by FPT algorithms for any computable function f by S., Laekhanukit and
Manurangsi and Lin, seperately. We observe that the constructions used in Lin’s work can be carried
out using constant-depth circuits, and thus we prove that para-AC0 circuits could not approximate
this problem with ratio f (k) for any computable function f . Moreover, under the hypothesis that the
3-CNF-SAT problem cannot be computed by constant-depth circuits of size 2εn for some ε > 0, we show
that constant-depth circuits of size no(k) cannot distinguish graphs whose dominating numbers are either

≤k or >
(

log n
3 log log n

)1/k
. However, we find that the hypothesis may be hard to settle by showing that it

implies NP 6⊆ NC1.
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1. Introduction

The dominating set problem is often regarded as one of the most important NP-complete problems
in computational complexity. A dominating set in a graph is a set of vertices such that every vertex in
the graph is either in the set or adjacent to a vertex in it. The dominating set problem is, given a graph
G = (V, E) and a number k ∈ N, to decide the minimum dominating set of G has a size of at most k.
This problem is tightly connected to the set cover problem, which was firstly shown to be NP-complete
in Karp’s famous NP-completeness paper [1]. Unless P = NP, we do not expect to solve this problem
and its optimization variant in polynomial time. Furthermore, the set cover conjecture asserts that for
every fixed ε > 0, no algorithm can solve the set cover problem in time 2(1−ε)npoly(m), even if set sizes
are bounded by ∆ = ∆(ε) [2,3]. One way to handle NP-hard problems is to use approximation algorithms.
One key measurement of an approximation algorithm for the dominating set problem is its approximation
ratio, i.e., the ratio between the size of the solution output by the algorithm and the size of the minimum
dominating set. It is known that greedy algorithms can achieve an approximation ratio of ≈ln n [4–8].
Though this problem has a PTAS (polynomial-time approximation scheme, an algorithm which takes an
instance of an optimization problem and a parameter ε > 0 and, in polynomial time, approximate the
problem with ratio 1 + ε) applied to apex-minor-free graphs for contraction-bidimensional parameters [9],
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after a long line of works [10–14], the approximation ratio of this problem was matched by the lower bound
by Dinur and Steurer [15], who followed the construction presented in Feige’s work [12], showing that for
every ε > 0, we could not obtain a (1− ε) ln n-approximation for this problem unless P = NP. Besides
approximation, another widely-considered technique to circumvent the intractability of NP-hard problems
is parameterization. If we take the minimum solution size k as a parameter, then the brute-force algorithm
can solve the k-DOMINATINGSET (k-DOMSET) problem in O(nk+1) time. However, it is recently proved
that, assuming FPT 6= W[1], for any computable function f , there is no f (k)-FPT-approximation algorithm,
that is, there is no approximation algorithm running in FPT-time and with a ratio of f (k) [16–18].

Circuit complexity was thought to be a promising direction to solve P vs. NP. Though it has been
long known that some problems, like the parity problem, are not in AC0 [19–21], proving that non-uniform

lower bounds for functions in nondeterministic complexity classes such as NP, NQP = NTIME[nlogO(1) n],

or NEXP is a well-known challenge. After Williams’ proving that NEXP does not have nlogO(1) n-size
ACC ◦ THR circuits (ACC composed with a layer of linear threshold gates at the bottom) [22,23], Murray
and Williams showed that for every k, d, and m there is an e and a problem in NTIME[nloge n] which does
not have depth-d nlogk n-size AC[m] circuits with linear threshold gates at the bottom layer [24].

Rossman showed that the k-CLIQUE problem has no bounded-depth and unbounded fan-in circuits
of size O(nk/4) [25], which may be viewed as an AC0 version of FPT 6= W[1]. Chen and Flum [26] showed
that any FPT-approximation of the k-CLIQUE problem is not in para-AC0. The parameterized circuit
complexity class para-AC0 introduced by Elberfeld, Stockhusen, and Tantau [27] as the AC0 analog of the
class FPT, is the class of parameterized problems computed by constant-depth circuits of size f (k)poly(n)
for some computable function f . In the same paper, based on Rossman’s result, they also showed that the
k-DOMSET problem could not be computed in para-AC0. This brings us to the main question addressed
in our work: Is there a computable function f such that the f (k)-approximation of k-DOMSET is in para-AC0?
Furthermore, since we could enumerate every k tuple of vertices by depth-3 circuits of size O(nk+1)

using brute force, we might wonder whether it is possible to have a computable function f such that the
f (k)-approximation of k-DOMSET could be computed by constant-depth circuits of size no(k).

Our Work

In this paper, we show that for any computable function f , the f (k)-FPT-approximation of the
k-DOMSET problem is not in para-AC0. Furthermore, under the hypothesis that constant-depth circuits of
size 2o(n) could not compute 3-CNF-SAT (we call it AC0-ETH, the constant-depth version of ETH—the
exponential time hypothesis), there is no computable function f such that the f (k)-approximation of
k-DOMSET could be computed by constant-depth circuits of size no(k). Theorems 1 and 2 are direct
consequences of Theorems 3 and 4, respectively.

Theorem 1. Given a graph G with n vertices, there is no constant-depth circuits of size f (k)no(
√

k) for any
computable function f which distinguish between:

• The size of the minimum dominating set is at most k,

• The size of the minimum dominating set is greater than
(

log n
log log n

)1/(k
2).

Note that this theorem implies the nonexistence of para-AC0 circuits which f (k)-approximates the
k-DOMSET problem for any computable function f . This is because if there is an f (k)-approximation
para-AC0 circuit Cn,k whose size is g(k)poly(n), we can construct a constant-depth para-AC0 circuit C′n,k

to distinguish the size of the minimum dominating set is at most k or greater than
(

log n
log log n

)1/(k
2) as
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follows. Compare f (k) and
(

log n
log log n

)1/(k
2) — if f (k) is smaller, we let C′n,k be Cn,k; otherwise, since

f (k) ≥
(

log n
log log n

)1/(k
2), we let C′n,k be the circuit which, using brute force, computes the size of a minimum

dominating set with the depth-3 circuit of size O(nk+1). Since f (k) ≥
(

log n
log log n

)1/(k
2), we have f (k)k3

≥

(
log n

log log n )
2k

; by simple calculations we know that k · log2k−1 n ≥ (k + 1)(log log n)2k for k ≥ 2, n ≥ 2, which

implies k · ( log n
log log n )

2k
≥ (k + 1) · log n, that is, 2k·( log n

log log n )
2k

≥ nk+1. Thus, we know 2k f (k)k3

≥ nk+1, which

means the circuit is still a para-AC0 circuit.

Hypothesis 1 (AC0-ETH, the constant-depth version of ETH). There exists δ > 0 such that no constant-depth
circuits of size 2δn can decide whether the 3-CNF-SAT instance ϕ is satisfiable, where n is the number of variables
of ϕ.

Theorem 2. Assuming AC0-ETH, given a graph G with n vertices, there is no constant-depth circuits of size
f (k)no(k) for any computable function f which distinguish between:

• The size of the minimum dominating set of G is at most k,

• The size of the minimum dominating set of G is greater than
(

log n
3 log log n

)1/k
.

Though AC0-ETH seems much weaker than ETH (ETH implies the nonexistence of uniform circuits
of size 2δn and any depth which could compute the 3-CNF-SAT problem), we show that the hypothesis
is hard to settle by proving it implies NP 6⊆ NC1, which, believed to be true, remains open for decades.
Moreover, it is still unknown whether the weaker version, NP 6⊆ ACC ◦ THR, holds or not.

Since our hard set cover instances can be easily reduced to the instances of the total dominating set
problem, the connected dominating set problem and the independent dominating set problem, we can
apply our inapproximability results to these variants of the dominating set problem. More discussion
of the variants can be found in the work of Downey and Fellows [28] and the work of Chlebík and
Chlebíková [29].

Compared with the conference version [30] of this article, the proofs of Lemmas 1–7 are firstly given
here; some results are slightly improved by more careful analyses.

2. Preliminaries

We denote by N the set of nonnegative integers. For each n, m ∈ N, we define [n] := {1, . . . , n} and
[n, m] := [m] \ [n− 1] for m > n > 0. For any set A and k ∈ N, we let (A

k ) := {B ⊆ A | |B| = k} be the set
of subsets with exactly k elements of A. For a sequence of bits b, we let b[l] be the l-th bit of b.

For a graph G, the set of vertices of G is denoted by VG and the set of edges is denoted by EG; for
a vertex v ∈ VG, we let NG(v) := {u ∈ VG | {u, v} ∈ EG} be the neighbors of v. Since a graph G is
represented using a binary string, we express the bit of the edge {u, v} by bitG{u, v}. For a bipartite graph
G = (L, R, E), we often tacitly represent G only using O(|L| · |R|) bits.

In this article, logarithms have base 2, and fractions and irrational numbers are rounded up
if necessary.

2.1. Problem Definitions

The decision problems studied in this paper are listed below:
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• In the k-DOMINATINGSET (k-DOMSET) problem, our goal is to decide if there is a dominating set of
size k in the given graph G.

• In the k-SETCOVER problem, we are given a bipartite graph I = (S, U, E) and the goal is to decide
whether there is a subset X of S with cardinality k such that for each vertex v in U, there exists a vertex
u in X that covers v, i.e., {u, v} ∈ E.

• In the k-CLIQUE problem, our goal is to determine if there is a clique of size k in the given graph G.
• In the 3-CNF-SAT problem, we are given a propositional formula ϕ in which every clause contains

at most 3 literals and the goal is to decide whether ϕ is satisfiable.

We say a set cover instance I = (S, U, E) has set cover number m if the size of a minimum set X ⊆ S
such that X could cover U is m. Similarly, we say a graph G has dominating number m if the size of
a minimum dominating set of G is m.

As we mentioned, the dominating set problem is tightly connected to the set cover problem. Given
a k-DOMSET instance G = (V, E), we can construct a k-SETCOVER instance I = (S, U, E′) with S = V,
U = V and E′ =

⋃
{u,v}∈E{{uS, uU}, {vS, vU}, {uS, vV}, {vS, uU}}; here, for each vertex v ∈ V, we denote

the corresponding vertices in S, U by vS and vU , respectively. It is quite clear that G has dominating
number k if and only if I has set cover number k. Also, given a k-SETCOVER instance I = (S, U, E), we
can construct a k-DOMSET instance G = (D ∪U1 ∪U2, C ∪ E1 ∪ E2) by letting D = S, U1 = U2 = U,
C = {{u, v} | u, v ∈ D}, E1 = {{s, u} | s ∈ D, u ∈ U1} and E2 = {{s, u} | s ∈ D, u ∈ U2}. It is trivial
that I has set cover number k if and only if G has dominating number k. The reductions can also be found
in the work of Chlebík and Chlebíková [29].

It is notable that each hard instance with gap reduced from a CLIQUE or 3-CNF-SAT instance satisfies
that the size of the sets M is at most poly(N) where N is the size of the universe. Hence, it is safe to tacitly
apply the inapproximability of k-SETCOVER to the k-DOMSET problem.

2.2. Circuit Complexity

For n, m ∈ N, an n-input, m-output Boolean circuit C is a directed acyclic graph with n vertices with
no incoming edges and m vertices with no outgoing edges. All nonsource vertices are called gates and
are labeled with one of either ∨,∧, or ¬. The size of C, denoted by |C|, is the number of vertices in it. The
depth of C is the length of the longest directed path from an input node to the output node. We often
tacitly identify C with the function C : {0, 1}n → {0, 1}m it computes.

All the circuits considered in this paper are non-uniform and with unbounded fan-in ∧ and ∨ gates
unless otherwise stated.

The classes of AC0, para-AC0, and NC1 are defined as follows:

• AC0 is the class of problems which can be computed by constant-depth circuit families (Cn)n∈N where
every Cn has size poly(n), and whose gates have unbounded fan-in.

• Para-AC0 is the class of parameterized problems which can be computed by a circuit family (Cn,k)n,k∈N
satisfying that there exist d ∈ N and a computed function f such that for every n ∈ N, k ∈ N, Cn,k has
depth d and size f (k)poly(n), and whose gates have unbounded fan-in.

• NC1 is the class of problems which can be computed by a circuit family (Cn)n∈N where Cn has depth
O(log n) and size poly(n), and whose gates have a fan-in of 2.

2.3. Covering Arrays

A covering array CA(N; t, p, v) is an N × p array A whose cells take values from a set V of size
v and the set of rows of every N × t subarray of A is the whole set Vt. The smallest number N such
that CA(N; t, p, v) exists is denoted by CAN(t, p, v). Covering arrays are discussed extensively since the
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1990s, as they play an important role in the interaction testing of complex engineered systems. The recent
discussion about the upper bounds of the size of covering arrays can be found as presented by Sarkar and
Colbourn [31].

In this article, we always assume V = {0, 1}. It is noted that in Lin’s work [18], a covering array
CA(N; k, n, 2) is also called an (n, k)-universal set.

3. Introducing Gap to the k-SETCOVER Problem

Theorem 1 and Theorem 2 show that the para-AC0 circuits cannot approximate the k-DOMSET problem
with ratio f (k) for any computable function f . To achieve this, we need to introduce gaps for k-DOMSET

instances. In this section, we present the lemmas which allow us to introduce gaps to the k-SETCOVER

problem, using gap-gadgets as presented in Lin’s work [18]. Lemma 1 gives an upper bound for CAN(k, n, 2).
The next two lemmas also follow the idea from Lin’s work [18]. Lemma 2 allows us to construct gap gadgets
with h ≤ log n

log log n and k log log n ≤ log n. In Lemma 3, we present the construction which introduces gaps
to set cover instances.

Definition 1. A (k, n, m, `, h)-Gap-Gadget is a bipartite graph T = (A, B, E) satisfying the following conditions.

(G1) A is partitioned into (A1, . . . , Am) where |Ai| = ` for every i ∈ [m].
(G2) B is partitioned into (B1, . . . , Bk) where |Bj| = n for every j ∈ [k].
(G3) For each b1 ∈ B1, . . . , bk ∈ Bk, there exists a1 ∈ A1, . . . , am ∈ Am such that ai is adjacent to bj for

i ∈ [m], j ∈ [k].
(G4) For any X ⊆ B and a1 ∈ A1, . . . , am ∈ Am, if ai has k + 1 neighbors in X for i ∈ [m], then |X| > h.

Lemma 1. CAN(k, n, 2) ≤ k2k log n for n ≥ 5.

Proof. We let M = 2k(n
k)(1−

1
2k )

k2k log n
. Kleitman and Spencer showed that if 2k(n

k)(1−
1
2k )

r
< 1,

CAN(k, n, 2) ≤ r [32]. Thus, we only need to show that M < 1. Since 2x log ( 2x

2x−1 ) >
1

ln 2 and n > 5, we
have

log M < k + k log n + k2k log n log(1− 1
2k )

< k + k log n− 1
ln 2

k log n

< 0

.

This implies M < 1.

Lemma 2. There is a constant-depth circuit family (Ck,n,h)k,n,h∈N which, for sufficiently large n and k, h ∈
N with h ≤ log n

log log n and k log log n ≤ log n, given S = S1 ∪ · · · ∪ Sk with |Si| = n for i ∈ [k], outputs

a (k, n, n log h, hk, h)-Gap-Gadget T = (A, B, E) with |A| = hkn log h, B = S. Furthermore, Ck,n,h has size at most
khkn2 log h and could output whether a and b are adjacent using O(1) gates, for every a ∈ A, b ∈ B.

Proof. Let m = n log h. Note that log((h log h)2h log h log m) ≤ (h + 2) log h + log log n, that is,
(h log h)2h log h log m ≤ n ≤ n log h; by Lemma 1, we know that there exists a covering array
CA(n log h; k, n, 2), denoted by S .



Algorithms 2019, 12, 230 6 of 14

We partition every row of S into n = m
log h blocks so that each block has length log h, interpreted as an

integer in [h]. From the m× n numbers of S , we could obtain an m× n matrix M by setting Mr,c to be the
c-th integer of the r-th row.

Claim. For any C ⊆ [n] with |C| ≤ h, there exists r ∈ [m] such that |{Mr,c | c ∈ C}| = |C|.

This claim says that for any C = {i1, . . . , ij} ⊆ [n] for j ≤ h, there is a row r such that the i1-th, . . . ,
ij-th numbers of r are distinct. This is because we could choose the corresponding bits C′ = ∪c∈C[(c−
1) log h + 1, c log h] (since for each c ∈ [n], the c-th number of a row is from the

(
(c− 1) log h + 1

)
-th bit to

the (c log n)-th bit) of the row, with |C′| ≤ h log h; by the property of a CA(n log h; k, n, 2) covering array,
there must be a row r such that for each ij′ ∈ C, Mr,ij′

= j′.
Now we construct a bipartite graph T = (A, B, E) as follows.

• A = ∪i∈[m]Ai with each Ai = {a | a = (a1, . . . , ak), aj ∈ [h] for j ∈ [k]};
• B = ∪i∈[k]Bi with Bi = Si for i ∈ [k];
• E = {{a, b} | a ∈ Ai, b ∈ Bj and Mi,b = a[j], for i ∈ [m], j ∈ [k]}, that is, for every i ∈ [m], j ∈ [k]

and every a ∈ Ai, b ∈ Bj, if Mi,b = a[j] then we add an edge between a and b.

We prove that T is a (k, n, n log h, hk, h)-Gap-Gadget. It is clear that (G1) and (G2) hold for T. For (G3),
given any b1 ∈ B1, . . . , bk ∈ Bk, we know that for each i ∈ [m], (Mi,b1 , . . . , Mi,bk

) ∈ Ai, which is adjacent to
b1, . . . , bk.

If T does not satisfy (G4), then there exists X ⊆ B with |X| ≤ h such that there is a1 ∈ A1, . . . , am ∈ Am

and ai has at least k + 1 neighbors in X for each i ∈ [m]. Since |X| ≤ h, we know that there is a row
r ∈ [m] such that |{Mr,c | c ∈ X}| = X. For this r, there exist some j ∈ [k] such that ar has at least 2
neighbors b1 6= b2 in Bj. However, {ar, b1} and {ar, b2} ∈ E means that b1 = b2 = Mi,b1 . This implies
|{Mr,c | c ∈ X}| < X, which is a contradiction.

The Ck,n,h outputs T with khkn2 log h bits where whether a and b are connected is determined by

bitT{a, b} =
{

1 if Mi,b = a[j]

0 otherwise

for every a ∈ Ai, b ∈ Bj.

Given a set cover instance I = (S, U, E), we construct the gap gadget T = (A, B, ET) with B = S.
To use the gap gadget, we construct a new set cover instance I′ = (S′, U′, E′) with S′ = S such that for
every X ⊆ S′ which covers U′, there exists a1 ∈ A1, . . . , am ∈ Am witnessing that there is an X′ ⊆ X which
covers U and each vertex of which is adjacent to ai for some i ∈ [m].

In the following lemma, we use the hypercube set system, which is firstly presented in Feige’s
work [12] and is also used in [16–18]. The set XY = { f : Y → X} is considered to be all the functions from
Y to X with |XY| = |X||Y|.

Lemma 3. There is a constant-depth circuit family (Cn,k)n,k∈N which, for each k ∈ N, given a set cover instance
I = (S, U, E) where S = S1 ∪ · · · ∪ Sk and |Si| = n for i ∈ [k] and a (k, n, m, `, h)-Gap-Gadget constructed with
S as Lemma 2 describes, outputs a set cover instance I′ = (S′, U′, E) with S′ = S and |U′| = m|U|` such that

• If there exists s1 ∈ S1, . . . , sk ∈ Sk which could cover U, then the set cover number of I′ is at most k;
• If the set cover number of I is larger than k, then the set cover number of I′ is greater than h.

Furthermore, the circuit Cn,k has size at most knm`|U|` and could output whether s and f are connected with
at most (`+ 1) gates.
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Proof. Let T = (A = ∪i∈[m]Ai, B, ET) be the (k, n, m, `, h)-Gap-Gadget with Bi = Si for i ∈ [k]. I′ =
(S′, U′, E′) is defined as follows.

• S′ = S;
• U′ = ∪i∈[m]UAi ;
• For every s ∈ S′ and f ∈ UAi for each i ∈ [m], {s, f } ∈ E′ if there is an a ∈ Ai such that {s, f (a)} ∈ E

and {a, s} ∈ ET .

If there exist s1 ∈ S1, . . . , sk ∈ Sk that can cover U, then we show that for each f ∈ U′, it is covered by
some vertex in C = {s1, . . . , sk}. Suppose f ∈ UAi . By (G3) we know that, for s1 ∈ S1, . . . , sk ∈ Sk, there
exists a1 ∈ A1, . . . , am ∈ Am such that ap is adjacent to sq for p ∈ [m], q ∈ [k]. Since C covers U, there must
be sj ∈ C for some j ∈ [k] covers f (ai). That is, we have { f (ai), sj} ∈ E and {ai, sj} ∈ ET , which means sj
covers f .

If the set cover number of I is greater than k, we show that for every X ⊆ S′ that covers U′, we must
have |X| > h.

Claim. For any X ⊆ S′ that covers U′, there exist a1 ∈ A1, . . . , am ∈ Am that |NT(ai) ∩ X| ≥ k + 1 for every
i ∈ [m].

Otherwise, there is some i ∈ [m] such that for any a ∈ Ai, we have |NT(a) ∩ X| ≤ k, which means
there is some u ∈ U not covered by NT(a)∩X since the covering number of I is greater than k. For f ∈ UAi

such that f (a′) = u for any a′ ∈ Ai, it is covered by S only if it is covered by some s ∈ S \ NT(a) since u
can only be covered by S \ NT(a). However, for any s ∈ S \ NT(a), s is not a neighbor of a. That is, f is not
adjacent to S \ NT(a), either. Hence, f is not covered by X, which is a contradiction.

With the claim, we know that for any X ⊆ S′ that covers U′, there exist a1 ∈ A1, . . . , am ∈ Am that ai
has k + 1 neighbors in X for every i ∈ [m]. With (G4), we must have |X| ≥ h.

The Cn,k outputs I′ with knm`|U|` bits where whether there is an edge between s and f is determined
by

bitI′{s, f } =
∨

a∈Ai

bitT{s, a} ∧ bitI{s, f (a)},

for every s ∈ S′, f ∈ UAi using at most (`+ 1) gates.

4. Inapproximability of k-DOMINATINGSET

In this section, we show the inapproximability of the dominating set problem by proving Theorems 3
and 4. To show Theorem 3, we have Lemmas 4 and 5. Lemma 4 follows the idea in recent papers [17,
18], presenting the circuits that output a (k

2)-SETCOVER instance given a k-CLIQUE instance as input.
With Lemma 4, Lemma 5 introduces circuits reducing k-CLIQUE instances to set cover instances with
gaps. To prove Theorem 4, Lemma 6 (firstly shown by Pătraşcu and Williams [33]) is used to prove the
inapproximability of set cover problem using constant-depth no(k) circuits, assuming Hypothesis 1. At the
end of this section, we show that Hypothesis 1 may be hard to settle by showing that it implies NP 6⊆ NC1,
which has remained open for decades.

4.1. The Unconditional Inapproximability of k-DOMINATINGSET

Now we give the circuits which reduce k-CLIQUE instances to (k
2)-SETCOVER instances, and introduce

gaps to them. Finally we use Rossman’s result [25], i.e., the unconditional lower bounds of the size



Algorithms 2019, 12, 230 8 of 14

of constant-depth circuits determining the k-CLIQUE problem, to show the inapproximability of the
k-DOMSET problem.

Lemma 4. There is a (Cn,k)n,k∈N circuit family which, given a k-CLIQUE instance G with |VG| = n, outputs a set
cover instance I = (S, U, E) with |U| ≤ k3 log n and S ≤ (k

2)(
n
2) such that G contains a k-clique if and only if the

set cover number of I is at most (k
2). Furthermore, Cn,k has constant depth and size at most k5n2 log n.

Proof. Firstly, we construct G′ = (V1 ∪ · · · ∪Vk, E′), a k-colored version of G as follows. Let each V(i) be
a copy of V and for every v ∈ VG, we call the corresponding vertex in V(i) by v(i); let E′ = ∪1≤i<j≤kEi,j

with Ei,j = {{u(i), v(j)} | {u, v} ∈ EG}. Note that each V(i) is an independent set for i ∈ [k] and G′

contains a k-clique if and only if G contains a k-clique.
Now we construct the the set cover instance I = (S, U, E) according to G′ in the following way. Given

v ∈ G′, we denote by b(v) the bit representation of v. Note that when i is fixed, every vertex in Vi could be
determined using log n bits.

• S = E′ = ∪1≤i<j≤kEi,j;

• U = ∪i∈[k]Ui with Ui = {( f (i), l) | f (i) : {0, 1} → [k] \ {i}, l ∈ [log n]};
• For every i ∈ [k], we connect every ( f (i), l) ∈ Ui to each {vi, vj} ∈ S, with vi ∈ Vi, vj ∈ Vj, such that

f (i)(b(vi)[l]) = j.

Suppose that there is a k-clique in G′ with vertices u1 ∈ V1, . . . , uk ∈ Vk. We claim that {{ui, uj} | 1 ≤
i < j ≤ k} covers U. This is because for any ( f (i), l) ∈ Ui, we have f (i)(b(ui)[l]) ∈ [k] \ {i} and thus, it is
covered by {ui, uj}.

If there is X ⊆ S covers U with cardinality at most (k
2), then we show that there is a k-clique in G′.

Firstly, |X ∩ Ei,j| = 1 for 1 ≤ i < j ≤ k. Otherwise, let f (i)(0) = f (i)(1) = j and for any l ∈ [log n],
( f (i), l) ∈ Ui is not covered by X.

Now we let X be the vertices ei,j ∈ Ei,j for every 1 ≤ i < j ≤ k. For each i ∈ [k] and distinct
j, j′ ∈ [k] \ {i}, we let ei,j = {v, u(j)} and ei,j′ = {v′, u(j′)}. We claim that v = v′. Otherwise, there must be
a bit l ∈ [log n] such that b(v)[l] 6= b(v′)[l]. Without loss of generality, we assume b(v)[l] = 0, b(v′)[l] = 1.
Now we take f (i) such that f (i)(0) = j′ and f (i)(1) = j. Then ( f (i), l) is not covered by X, which is
a contradiction.

Hence, for every i ∈ [k], we could safely take the vertex v(i) ∈ Vi such that v(i) is in the edge
ei,j ∈ X ∩ Ei,j for arbitrary j as the i-th vertex of the k-clique.

The Cn,k outputs I′ with at most k5n2 log n bits where whether eu(i),vj j and ( f (i), l) is connected is
determined by

bitI{eu(i),v(j) , ( f (i), l)} =
{

1, if f (i)(b(u(i))[l]) = j

0, otherwise

for every 1 ≤ i < j ≤ k, eu(i),v(j) ∈ Ei,j and every ( f (i), l) ∈ Ui. Hence, Cn,k is with each output gate of
depth at most 3 and of size at most k5n2 log n.

Lemma 5. There is a (Cn,k)n,k∈N circuit family which, given a k-CLIQUE instance G with |VG| = n, could output
a set cover instance I = (S, U, E) with |U| ≤ n5 and S ≤ (k

2)(
n
2) such that

• If G contains a k-clique, then the set cover number of I is at most (k
2);

• If G contains no k-clique, then the set cover number of I is greater than
(

log n
log log n

)1/(k
2).
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Furthermore, Cn,k has constant depth and size at most n7 log n.

Proof. By Lemma 4, we can construct a (k
2)-SETCOVER instance I = (S, U, E) with |S| ≤ (k

2)(
n
2) and

|U| ≤ k3 log n, using a constant-depth circuit of size at most k5n2 log n. Let m = (n
2). By Lemma 2, we can

construct a ((k
2), m, m log h, h(

k
2), h)-Gap-Gadget T with h = (

log m
log log m )

1/(k
2) given S, using a constant-depth

circuit of size at most O(n2 log2 n). By Lemma 3, we could have a constant-depth circuit of size at most

n7 log n which computes a set cover instance I′ = (S′, U′, E′) with S′ = S, |U′| ≤ m log h(k3 log n)h(
k
2)

such
that

• If G contains a k-clique, then the set cover number of I is at most (k
2);

• If G contains no k-clique, then the set cover number of I is greater than (
log m

log log m )
1/(k

2) ≥
(

log n
log log n

)1/(k
2).

Here, since (k3 log n)
log m

log log m ≤ (k3 log n)
2 log n

log log n ≤ (k
log n

log log n )
6
· n2 ≤ n

6k
log log n · n2 ≤ n2+o(1), we can

conclude that |U′| ≤ m log h(k3 log n)h(
k
2) ≤ n2 log n · n2+o(1) ≤ n4+o(1) < n5 .

Theorem 3. Given a set cover instance I = (S, U, E) with n = |S|+ |U|, for k > 28, any constant-depth circuit

of size O(n
√

k
20 ) cannot distinguish between

• The set cover number of I is at most k, or

• The set cover number of I is greater than
(

log n
log log n

)1/(k
2).

Proof. Rossman showed that for every k ∈ N, the k-CLIQUE problem on n-vertex graphs requires

constant-depth circuits of size ω(n
k
4 ) [25]. Now if there is a constant-depth circuit Cn,k of size O(n

√
k

20 )

that could distinguish between the set cover number of I where |VI | = n is at most k or greater

than
(

log n
log log n

)1/(k
2), then by Lemma 5, given k ∈ N and a graph G with |VG| = n, we can construct

a set cover instance I with vertex number at most 2n5 satisfying that if G has a k-clique then the set

cover number of I is at most (k
2) and otherwise it is greater than

(
log n

log log n

)1/(k
2)—we could use C2n5,(k

2)

to decide whether the set cover number of I is either ≤ (k
2) or >

(
log n

log log n

)1/(k
2). The circuits are

of size O((n5)

√
(k

2)/20
) + O(n7 log n) = O(n

k
4 ) when k > 28, which contradicts the result shown by

Rossman [25].

Note that Theorem 3 implies Theorem 1 since for every set cover instance I = (S, U, E) we can
construct a dominating set instance I′ = (S ∪U, E ∪ {{u, v} | u, v ∈ S}) simply by adding edges to S so
that it becomes a clique. Then the dominating number of I′ is the same as the set cover number of I.

4.2. The Inapproximability of k-DOMINATINGSET Assuming AC0-ETH

Next we show the f (k)-inapproximability of the set cover problem for constant-depth circuits of
size no(k) for any computable function f , assuming AC0-ETH. To achieve this, we use Lemma 6 to reduce
3-CNF-SAT formulas to set cover instances with gaps.

Lemma 6. There is a circuit family (Cn,k)n,k∈N which for every k ∈ N, given a 3-CNF-SAT instance ϕ with n
variables where n is much larger than k, outputs N ≤ 2

11n
2k and a set cover instance I = (S, U, E) satisfying
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• |S|+ |U| ≤ N;
• If ϕ is satisfiable, then the set cover number of I is at most k;

• If ϕ is not satisfiable, then the set cover number of I is greater than
(

log N
3 log log N

)1/k
;

Furthermore, Cn,k has constant depth and size at most 2
11n
2k .

Proof. Firstly, we construct a set cover instance I′ = (S′, U′, E′) whose set cover number is k if and only if
ϕ is satisfiable, as follows.

Partition n variables into k parts and each part has n/k variables. We let S′ = S1 ∪ · · · ∪ Sk and for
i ∈ [k], each Si be the set of all the assignments of the variables from the i-th part. Thus, |Si| = 2n/k for
each i ∈ [k]. Let U′ := {C | C ∈ ϕ} ∪ {xi | i ∈ [k]} be the clauses of ϕ and vertices x1, . . . , xk. We define
E′ := ∪i∈[k]

(
{{s, C} | s satisfies C for s ∈ Si, C ∈ U′} ∪ {{s, xi} | s ∈ Si}

)
the edges connecting each

s ∈ Si with xi and every C ∈ U′ such that s satisfies C, for each i ∈ [k].
It is clear that if ϕ is satisfied by assignment σ, then we know that there are s1 ∈ S1, . . . , sk ∈ Sk such

that we can combine s1, . . . , sk to get the σ, satisfying ϕ. Now suppose s1 ∈ S1, . . . , sk ∈ Sk can cover U′.
Note that the set cover number of I′ cannot be less than k because of the existence of x1, . . . , xk. Since
the different sets S1, ..., Sk of variables are pairwise disjoint, we could simply combine the assignments
s1, . . . , sk, which together satisfy all the clauses, to have the assignment satisfying ϕ.

We have I′ with |S′| = k2n/k and |U′| ≤ (n
3) + k ≤ 2n3 and let m = 2n/k. By Lemma 2, there is

a constant-depth circuit which can compute a (k, m, m log h, hk, h)-Gap-Gadget T with h = k
√

log m
log log m ≥(

log N
3 log log N

)1/k
which has size O(k2m2h2k+1) = O(k2m2 log3 m). By Lemma 3, there is a constant-depth

circuit C that can construct a set cover instance I = (S, U, E) which, given I′ and T such that

• If ϕ is satisfiable, then the set cover number of I is at most k;
• If ϕ is unsatisfiable, then the set cover number of I is greater than h;

• S = S′, |U| = m log h|U′|h
k
≤ 1

k m(log log m− log log log m)(2n3)
log m

log log m ≤ m · log log m · (2
log m

log log m +

n
3n

k(log n−log k) ) ≤ m · log log m · (2
log m

log log m + n
3n
k ) = m4+o(1).

Thus, |S|+ |U| = km+m4+o(1) ≤ 2
11n
2k = N. Furthermore, C has size at most (hk + 1)(km ·m4+o(1)) =

O(m5+o(1)) = 2
11n
2k .

Theorem 4. Assuming AC0-ETH, there is ε > 0 such that, given a set cover instance I = (S, U, E) with
n = |S|+ |U|, any constant-depth Boolean circuit of size nεk cannot distinguish between

• The set cover number of I is at most k, or

• The set cover number of I is greater than
(

log n
3 log log n

)1/k
.

Proof. By AC0-ETH, there exists δ > 0 such that no constant-depth circuits of size 2δn can decide whether
the 3-CNF-SAT instance ϕ is satisfiable where n is the number of variables of ϕ. For every 3-CNF-SAT
formula ϕ, there is a constant-depth circuit Cn,k of size 2

11n
2k which, given ϕ, computes a set cover instance

I = (S, U, E) with |S|+ |U| ≤ N for N ≤ 2
11n
2k whose set cover number is either at most k or greater than(

log N
3 log log N

)1/k
by Lemma 6. Now take ε = δ/12.

If a constant-depth circuit Cn of size nεk could distinguish between the set cover number of I being at

most k or greater than
(

log n
3 log log n

)1/k
where n is the vertex number of the given set cover instance I, then we
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could use C
(N

2 )
to determine the set cover number of I is whether at most k, i.e., to decide if ϕ is satisfiable.

The used circuits have size at most 2
11n
2k + (N2)

εk ≤ 212εn = 2δn, which contradicts AC0-ETH.

Using the same trick for Theorem 1, we know that Theorem 4 implies Theorem 2.

4.3. The Difficulty of Proving AC0-ETH

Though AC0-ETH seems much weaker than ETH, we find that it is still very hard to settle by showing
Theorem 5, i.e., AC0-ETH implies NP 6⊆ NC1. Firstly, we show the trade off between depth compression
and size expansion when simulating NC1 circuits using constant-depth ones. Then we prove the Theorem 5
by showing that AC0-ETH implies that 3-CNF-SAT 6∈ NC1.

Lemma 7. For every L ∈ NC1, i.e., there exists c ∈ N such that L could be computed by a family of circuits
(Cn)n∈N such that Cn has size at most nc and depth at most c log n, there exists d ∈ N such that there is a family of
circuits (C′n)n∈N which satisfies

• s ∈ L if and only if C′|s| outputs 1;

• C′n has depth d and size at most n3c/2(2n2c/d+1 + 1).

Proof. We show that for every n ∈ N, Cn could be simulated by a circuit Cn
′ that has depth d and size

n3c/2(2n2c/d+1 + 1). Suppose Cn has size nc and depth c log n (otherwise, we could add dummy gates to
Cn). For every gate σ of depth c log n

1
2 d

, let fσ be the Boolean function computed by σ. Note that fσ has at

most n2c/d input bits, denoted by b1, . . . , bn2c/d since Cn is of fan-in 2. Now we could replace σ using brute
force by

∨
fσ(`)=1,`∈{0,1}n2c/d

∧
i∈[n2c/d ]

βi

where βi = bi if `[i] = 1 and βi = ¬bi if `[i] = 0. That is, σ could be simulated by a 2-depth circuit which
has size at most 2n2c/d+1 + 1.

Assume for every l ∈ [d/2− 1], every gate σ of depth l·2c log n
d could be replaced by a 2l-depth circuit

C(σ) which has size n
(l−1)·3c

d (2n2c/d+1 + 1). Now we could simulate each gate γ of depth (l+1)·2c log n
d , whose

output is determined by the gates σ1, . . . , σn2c/d from the l·2c log n
d -th layer, in the similar way. That is, σ is

replaced by

∨
fσ(`)=1,`∈{0,1}n2c/d

∧
i∈[n2c/d ]

C(i)

where C(i) = C(σi) if `[i] = 1 and C(i) = ¬C(σi) if `[i] = 0. Now, C(γ) has depth 2(l + 1) and size at most

(2n2c/d+1 + 1) + n2c/d · n
(l−1)·3c

d (2n2c/d+1 + 1) ≤ n
l·3c

d (2n2c/d+1 + 1).
Thus, the output gate of Cn could be simulated by a depth d circuit whose size is at most

n3c/2(2n2c/d+1 + 1).

Theorem 5. AC0-ETH implies NP 6⊆ NC1.

Proof. We show that AC0-ETH implies 3-CNF-SAT 6∈ NC1. If there exists c ∈ N such that 3-CNF-SAT
could be computed by a family of circuits (Cn)n∈N satisfying Cn has size at most nc and depth at most



Algorithms 2019, 12, 230 12 of 14

c log n. By Lemma 7, 3-CNF-SAT could be computed by 5c-depth, size n3c/2(2n2/5+1 + 1) = O(2
√

n)

circuits for sufficiently large n, which contradicts AC0-ETH.

5. Conclusions and Open Questions

We have presented that para-AC0 circuits could not approximate the k-DOMSET problem with ratio
f (k) for any computable function f . With the hypothesis that the 3-CNF-SAT problem cannot be computed
by constant-depth circuits of size 2δn for some δ > 0, we could show that constant-depth circuits of size

no(k) cannot distinguish graphs whose dominating numbers are either ≤k or >
(

log n
3 log log n

)1/k
.

A natural question is to settle the hypothesis, which may be hard since we show that it implies NP 6⊆
NC1. Another question is to ask: Are constant-depth circuits of size no(k) unable to approximate dominating
number with ratio f (k) for any computable function f without assuming AC0-ETH? Sparsification is one of
the key techniques when ETH is involved. Could sparsification be implemented using constant-depth
circuits with size 2εn for any ε > 0? Moreover, we could have more results assuming the set cover
conjecture [3]. Can we prove the inapproximability of the set cover problem based on this conjecture?
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