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Abstract: In recent years, with the development of artificial intelligence and human–computer
interaction, more attention has been paid to the recognition and analysis of facial expressions. Despite
much great success, there are a lot of unsatisfying problems, because facial expressions are subtle and
complex. Hence, facial expression recognition is still a challenging problem. In most papers, the entire
face image is often chosen as the input information. In our daily life, people can perceive other’s
current emotions only by several facial components (such as eye, mouth and nose), and other areas of
the face (such as hair, skin tone, ears, etc.) play a smaller role in determining one’s emotion. If the
entire face image is used as the only input information, the system will produce some unnecessary
information and miss some important information in the process of feature extraction. To solve the
above problem, this paper proposes a method that combines multiple sub-regions and the entire
face image by weighting, which can capture more important feature information that is conducive to
improving the recognition accuracy. Our proposed method was evaluated based on four well-known
publicly available facial expression databases: JAFFE, CK+, FER2013 and SFEW. The new method
showed better performance than most state-of-the-art methods.
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1. Introduction

Facial expression recognition plays a great role in human–computer interaction. In the course
of human communication, 55% of the information is conveyed by different facial expressions,
voice constitutes 38% of a communicated message, and language only constitutes 7% [1], therefore
facial expression recognition has attracted much attention in recent years [2,3], and has many important
applications in, e.g., remote education, safety, medicine, psychology and human–robot interaction
systems. Although great progress has been made [4], it is difficult to acquire a facial expression
recognition system with a satisfactory accuracy rate due to a variety of complex external conditions such
as head pose, image resolution, deformations, and illumination variations. Hence, facial expression
analysis is still a challenging work.

Generally, facial expression recognition is composed of three steps: preprocessing, feature
extraction and classification [5]. The image preprocessing plays two roles: firstly, the system access
to the original image is not generally perfect in practical application, such as the effects of noise,
illumination and contrast, hence it is necessary to enhance the image processing with a view to
increasing the quality requirements. Secondly, the acquired image information does not meet the
specific requirements of subsequent operations, such as size and angle, therefore it is necessary to
perform the image processing. The image preprocessing serves as a transition, which needs to be

Algorithms 2019, 12, 227; doi:10.3390/a12110227 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-8805-6724
http://www.mdpi.com/1999-4893/12/11/227?type=check_update&version=1
http://dx.doi.org/10.3390/a12110227
http://www.mdpi.com/journal/algorithms


Algorithms 2019, 12, 227 2 of 15

considered comprehensively. Feature extraction is a key step in the whole recognition work [6],
and the feature that we expect should minimize the distance of within-class variations of expression
while maximizing the distance of between-class variations. If features are inadequate, even the best
classifier would fail to achieve good performance. Among machine learning algorithms, features are
extracted by hand, such as local binary patterns (LBP) [7], Gabor [8], local Gabor binary patterns
(LGBP) [9], scale invariant feature transforms (SIFT) [10], and histograms of oriented gradient
(HOG) [11]. Handcrafted features such as LBP, HOG, and SIFT have been widely used in the
traditional approach owing to their proven performances under specific circumstances and their
low computational cost in the feature extraction process. After feature extraction, the classification
method should be applied to perform facial expression recognition, such as SVM [12], random forest
[13], sparse coding [14], neural network [15], etc. Although these methods have achieved great success
in specific fields, the handcrafted feature [16] has its inherent drawbacks. When we use handcrafted
features, either unintended features that have no effects on classification may get included or important
features that have a great influence on the classification may get omitted. This is because the features
are “crafted” by human experts, and the experts may not be able to consider all possible cases and
include them in the feature. Meanwhile, it is difficult to realize a good recognition result for big
datasets with large inter-personal differences in facial expression appearance.

To cope with the above disadvantages, deep learning methods [17,18] are considered, especially
the emergence of convolutional neural networks. Convolutional neural network (CNN) [19] is a very
effective method to recognize facial emotions. They can perform the feature extraction and classification
process simultaneously, and can automatically discover the multiple levels of representations in data.
This is why they succeed in breaking the most world records in recognition tasks.

The structure of early convolutional neural network was relatively simple. With the development
of the relative research, the structure of convolutional neural network has been continuously optimized
and its application field has been extended. In recent years, the research on the structure of
convolutional neural network is still very hot, and some network structures with excellent performance
have been proposed. The research results of convolutional neural network in various fields make it
one of the most concerned research hotspots.

In the 1980s and 1990s, some researchers published relevant research work of CNN, and achieved
good recognition results in several pattern recognition fields. Shan et al. proposed a CNN model
called LeNet-5, and the success of handwriting character recognition about this model has aroused
the attention of academia on convolutional neural network. However, CNN is only suitable for small
image recognition at this time. For large-scale data, the recognition effect is not good. At the same
time, Convolutional neural network is gradually developing in many fields such as speech recognition,
object detection, face recognition etc. In 2012, Krizhevsky et al. used the extended CNN model
(AlexNet) to win the champion in ImageNet Large Scale Visual Recognition Challenge (LSVRC) with
a huge advantage of accuracy over the second place of 11%, making convolutional neural network
become the focus of academia. Since AlexNet, many new convolution models have been proposed:
such as the VGG (Visual Geometry Group) proposed by Oxford University, Google’s GoogleNet,
Microsoft’s ResNet, etc., and these models have been constantly breaking AlexNet’s ImageNet record.

Since Convolutional Neural Network (CNN) has already proved its excellence in many image
recognition tasks, we expect that it can show better results than already existing methods in facial
expression prediction problems. Most CNN -based facial recognition tasks use the entire face image as
the input information, but what we found in our observations is that the judgment of facial expression
is usually completed based on the information of several sensitive components in some areas of the
face, such as eye, nose, and mouth. Other areas of the face contribute very little to the main feature
of expression. If we use the entire face image to extract the features, the extracted feature vectors
might lose some important information because it failed to catch the focus of the facial features. If the
above feature information is adopted in the test experiment, it will make the test results very irrational,
because the extracted feature information by using the above methods is greatly different from the real



Algorithms 2019, 12, 227 3 of 15

feature information. This is often caused by two factors: (1) There are too few data. Unlike large scale
visual object recognition databases such as ImageNet [17], most existing facial expression recognition
databases do not have sufficient training data, which leads to the overfitting problem. (2) The learning
mechanism of the single-task CNN network itself has some limitations, and problems cannot be solved
by the only one CNN model.

Aiming at the above problems, some improvements have been proposed in this paper. To solve
the problems caused by too few data, this paper divides some organ images that have important
contributions to facial expression recognition from the raw images, which can not only improve
the quantity of datasets, but also improve the quality of extracted information. Meanwhile, since
it is difficult for the CNN model based on single task to improve the overall accuracy rate in the
recognition task, this paper proposes a multi-task learning-based recognition model, which can modify
the expression features extracted from the raw images with the help of the auxiliary model, so that the
final extracted feature information is more in line with the ideal expression feature information.

The paper is arranged as follows: After this introduction, Related Work (Section 2) is presented
which focuses on the various approaches with better performance that scientists have taken recently.
Section 3 focuses on the main components of the architecture proposed in this paper. Section 4 presents
the experiments and its results. Finally, Section 5 summarizes and concludes this paper.

2. Related Work

A detailed overview for expression recognition was given by Shan [20] and Cohen [21].
This section discusses some recent methods that achieve high accuracy in facial expression recognition
using a comparable experimental methodology.

Shan et al. [20] proposed an approach called Boosted-LBP to extract the most discriminant
LBP features, and the best recognition performance is obtained by using Support Vector Machine
classifiers with Boosted-LBP features. They conducted experiments on the Cohn–Kanade database,
MMI database and JAFFE database. They showed that the LBP-based SVMs perform slightly better
than the Gabor-wavelet based SVMs by using the 10-fold cross-validation on each dataset.

S L et al. [22] proposed a method which uses Haar classifier for face detection purpose and Local
Binary Pattern (LBP) histograms of different block sizes of a face image as feature vectors, and classifies
various facial expressions using Principal Component Analysis (PCA). They used grayscale frontal
face images of a person to classify six basic emotions, namely happiness, sadness, disgust, fear,
surprise and anger.

Zhang et al. [23] proposed a novel facial expression recognition method using local binary pattern
(LBP) and local phase quantization (LPQ) based on Gabor face image. Firstly, Gabor wavelets can
capture the prominent visual attribute by extracting multi-scale and multi-direction spatial frequency
features from the face images, which is separable and robust to illumination changes. Then, the LBP
and LPQ feature based on the Gabor wavelet transform are fused for face representation. Considering
the dimension of the fused feature is too large, the PCA-LDA algorithm is used to extract complex
features. The method is finally tested and verified by multi-class SVM classifiers. This approach
was implemented on JAFFE database. Two methods were used to test the effect of the classification.
The first validation method was “leave one out”. All expression images of one subject were selected
as testing samples and the rest images as training samples, and it achieved a recognition accuracy of
81.82%. The other validation method was that two samples of each facial expression for each person
were used to form the training set, and the remaining samples were used for testing. The proposed
method showed the recognition rate of 98.57%.

Lisai et al. [24] proposed a novel algorithm for Facial Expression Recognition (FER), which is
based on fusion of Gabor texture features and Local Phase Quantization (LPQ). Firstly, the LPQ feature
and Gabor texture feature are, respectively, extracted from ever expression image. The image is first
transformed by LPQ, and then divided into 3 × 5 blocks. Then, the LPQ histograms are calculated
from each block. LPQ histograms of 15 blocks are concatenated into a long series of histogram as a
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single vector. Then, Five scales and eight orientations of Gabor wavelet filters are used to extract Gabor
texture features and adaboost algorithm is used to select Gabor features. Gabor features are obtained
by 40 filters. Then, adaboost algorithm is used to select the 100 most effective features from each Gabor
features image. Finally, the final concatenates the 4000 features from the 40 Gabor features images used
as facial expression features. They obtained two expression recognition results on both expression
features by Sparse Representation based Classification (SRC) method. Finally, the final expression
recognition is performed by fusion of residuals of two SRC algorithms. The experiment results on
Japanese Female Facial Expression (JAFFE) database demonstrated that the new algorithm was better
than the original two algorithms, and this algorithm had a much higher recognition rate of 73.33%.

Minchul et al. [25] used the Convolutional neural network model to realize facial expression
recognition. They cropped faces from each dataset and aligned the faces with respect to the landmark
position of the eye, and the original 482 × 48 facial images were cropped into a size of 42 × 42.
The training data were augmented 10 times by flipping them. Five types of data input (raw, histogram
equalization, isotropic smoothing, diffusion-based normalization, and difference of Gaussian) were
tested on four different network structures, respectively. They selected the one that showed the highest
accuracy as a target structure for fine parameter tuning. For the performance evaluation, five different
datasets were chosen: FER-2013, SFEW2.0, CK+ (extended CohnKanade), KDEF (Karolinska Directed
Emotional Faces), and Jaffe. Finally, Tang’s simple network with Hist-eq images was chosen as a
baseline CNN model for further research.

Yu et al. [26] proposed a method that contains a face detection module based on the ensemble
of three state-of-the-art face detectors, followed by a classification module with the ensemble of
multiple deep convolutional neural networks (CNN). Each CNN model is initialized randomly and
pre-trained on a larger dataset provided by the Facial Expression Recognition (FER) Challenge 2013.
The pre-trained models are then fine-tuned on the training set of SFEW 2.0. To combine multiple CNN
models, they presented two schemes for learning the ensemble weights of the network responses:
by minimizing the log-likelihood loss, and by minimizing the hinge loss. Their proposed method
achieved 55.96% and 61.29%, respectively, on the validation and test set of SFEW 2.0.

Heechul Jung et al. [27] proposed a new CNN method based on two different models. The first
deep network model can extract temporal appearance features from image sequences, while the other
deep network model can extract temporal geometry features from temporal facial landmark points.
The faces in the input image sequences are detected, cropped, and rescaled to 64 × 64. IntraFace
algorithm is used to extract facial landmark points, and accurate facial landmark points are provided
consisting of 49 landmark points, including two eyes, a nose, a mouth, and two eyebrows. Finally,
these two models are combined using a new integration method. Through several experiments on
the CK+ and Oulu-CASIA databases, as well as many data by various data augmentation techniques,
this new model showed that the two models cooperate with each other.

Most of the previous methods have processed the entire facial region as the input information,
and pay less attention to the sub-regions of human faces, which will lead to a large difference between
the extracted features and the expected features. If the extracted information obtained from the entire
face image is not ideal, the final recognition result will be affected. Because the judgment of facial
expression is usually based on the information of several sensitive components in some areas of the
face, such as eye, nose, and mouth, this paper proposes a new method that combines several important
sub-regions (i.e., eye, nose, and mouth) and the entire image, which not only can modify the extracted
feature information of the entire image, but also can further improve the overall recognition rate
of the system.
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3. The Proposed Method

3.1. Data Pre-Pocessing

Images of most face databases include not only faces, but also much background information;
therefore, removing background is an important step in face expression recognition preprocessing.
Although there are many face databases online, the face regions in most of them are not cut out and
cannot be directly used in face expression recognition experiments. If the uncropped image is directly
used as the input image, it will not only bring a huge amount of calculation, but also affect the final
expression recognition results. Therefore, whether the human face can be correctly detected has a great
impact on the expression recognition accuracy. To improve the accuracy of face detection, this paper
introduces the method of eye positioning to improve the result of face detection. Eyes are the most
prominent facial feature; once their position in the face is relatively fixed, the entire useful face will be
obtained easily. Because there is a certain distance between the eyes and the size of the face, many face
detection algorithms have a strong dependence on the location of the eye, taking the location of the
eye as an important step in the recognition process. Other prominent facial features, such as mouth,
nose and eyebrows, can be easily obtained from fixed geometric relations after positioning eyes, so the
accurate positioning of human eyes is helpful for the face positioning. The algorithm to obtain the
cropped face region image is shown in Figure 1, and experimental results are shown in Figure 2.

Uncropped image

Eyes location

Determine the height of the face to be cropped based on the 

longitudinal distance between the eyes, nose and mouth

Set the aspect ratio of the area to be cut to 1:1
Determine the final width coordinates based on the 

transverse distance between the nose and eyes

complete

Figure 1. Algorithm to crop face region. An important pre-processing method is used in this paper.
Eye orientation is the first step, then other important components are located based on the eye
orientation, and finally the picture size scale of face area is set to 1:1.
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Figure 2. Examples of image pre-processing based on the algorithm of cropping face region: the top-left
corner is the original facial expression image; the bottom left is the image of eye orientation; the top-right
corner is the image of face positioning based on eye orientation; and the last one is the face region that
used in experiments.

3.2. Convolutional Neural Networks

Convolutional neural network is a non-fully connected multi-layer neural network, which is
generally composed of convolution layer (Conv), down-sampling layer (or pooling layer) and
full-connection layer (FC). Firstly, the raw image is convoluted by several filters on the convolution
layer, which can get several feature maps. Then, the feature is blurred by the down-sampling
layer. Finally, a set of eigenvectors is obtained through a full connection layer. The architecture
of Convolutional Neural Network is represented in Figure 3.

 convolution Layer

Fully Connected  Layer   

Pooling Layer

 convolution Layer

Pooling Layer

Fully Connected  Layer   

Softmax

anger

disgust

fear

happiness

sadness

surprise

neutral

The process of pre-processing

Figure 3. The structure of the common convolutional neural network. The convolutional neural
network mainly includes convolution layer, pooling layer and full connection layer, and different layers
have different functions. The convolution layer is responsible for feature extraction, the pooling layer
is used for feature selection, and the full connection layer is used for classification.
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Convolutional Layer: In convolutional layer, multiple convolutional kernels fk with a kernel
size n × m are applied to the input x to calculate a more rich and diverse representation of the
input. It is not sufficient to have only one convolution kernel for feature extraction, hence multiple
convolution kernels can be used in this step. If there are 50 convolution kernels, 50 features will be
learned correspondingly. No matter how many channels there are in the input image, the total number
of channels in the output image is equal to the number of convolution kernels. Figure 4 shows the
process of computing the convolution region.

h11 h12 h21 h22

h13

h31

h14 h23 h24

h32 h41 h42h32

h33 h34 h43 h44h34

w1 w2

w3 w4w4

h11 h12

h13 h14

 stride 2
W1*h11+w2*

h12+w3*h13+

w4*h14

W1*h21+w2*

h22+w3*h23+

w4*h24

W1*h21+w2*

h22+w3*h23+

w4*h24

W1*h31+w2*

h32+w3*h33+

w4*h34

W1*h31+w2*

h32+w3*h33+

w4*h34

W1*h41+w2*

h42+w3*h43+

w4*h44

W1*h41+w2*

h42+w3*h43+

w4*h44

W1*h11+w2*

h12+w3*h13+

w4*h14

Figure 4. The basic operation of convolution layers. A new feature representation can be obtained by a
certain operation, which can be used to obtain a deeper feature expression.The more convolution kernels
there are, the more features can be learned. Different convolution kernels will produce different images.

Pooling Layer: The main function of the pooling layer is to lower sampling, and further reduce
the number of parameters by removing unimportant samples in feature map. A large image can
be downsized by the pooling layer, while retaining much important information. There are many
methods for pooling operation: Max Pooling, Mean Pooling, etc. Max Pooling is the most commonly
used method. In fact, Max Pooling is to take the maximum value of n × n samples as the sample value.
Figure 5 is the computation process based on 2 × 2 Max Pooling.

1 7 0 3

8

3

2 1 22

5 2 45

7 0 8 60

8 3

7 8

Max pool with 2*2 filters 

and stride 2

Figure 5. The computation process based on 2 × 2 Max Pooling.

Activation function: In the process of facial expression classification based on the convolutional
neural network, the selection of an activation function plays a great role in the whole system, which is
mainly used to introduce nonlinear factors. The sigmoid function, tanh function and rule function
are commonly used. Relu function is more efficient than most other activation functions. It has a
relatively cheap computation, because no exponential function has to be calculated. This function also
can prevent the vanishing gradient error, since the gradients are linear functions or zero but in no case
non-linear functions. Figure 6 shows the curve of this activation function.



Algorithms 2019, 12, 227 8 of 15

x
-4 -3 -2 -1 0 1 2 3 4

y

0

1

2

3

4

5

6
relu function

Figure 6. The curve of the relu function.

Fully Connected Layer: The fully connected layer connects all neurons of the prior layer to every
neuron of its own layer.

3.3. The Acquisition of Some Important Components of the Face

When all datasets are ready, we align and crop regions of the two eyes, nose, mouth, and whole
face. Then, four images are all resized into 96 × 96 pixels. Figure 7 shows a part of images of some
sub-regions.

eye detection nose detection mouse detection

Figure 7. The part of some important components of the face image.

3.4. New Structure

In our daily life, the judgment of one facial expression is mostly based on several sensitive organs
in some areas of the face, such as eyes, nose and mouth. Considering the advantages of ensemble
learning and the importance of sensitive components’ features in facial expression classification,
this paper designs a new recognition system based on an auxiliary model. The structure of the model
is shown in Figure 8.

There is no specific formula to build a convolutional neural network to ensure that it can work for
all scenarios. Different problems require different architectures to produce our desired verification
accuracy. Therefore, this paper designs a CNN structure for facial expression recognition according to
the requirement of the research task. Figure 9 shows four different architecture of the designed CNN
used in this task.
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CNN1

fuser
Fusion

information

m1

m2

Conv Pool Conv Pool Softmax

CNN2

Conv Pool Conv Pool Softmax

CNN3

Conv Pool Conv Pool Softmax

CNN4

Conv Pool Conv Pool Softmax

output

Anger 0.03

Surprise 

0.69

Neutral 

0.57

Sad 0.32

Fear 0.21

Disgust 

0.45

Happy 

0.88

Figure 8. The structure of facial expression recognition system based on auxiliary model.

Conv[5,5,30]

Relu

Pool[2,2,max]

Conv[5,5,30]

Relu

Pool[2,2,max]

Conv[5,5,30]

Relu

Pool[2,2,max]

Conv[5,5,30]

FC 1,256

Output 1,7

Conv[5,5,30]

Relu

Pool[2,2,max]

Conv[3,3,20]

Relu

Pool[2,2,max]

Conv[3,3,16]

Relu

Pool[2,2,max]

Conv[3,3,32]

FC 1,200

Output 1,7

Conv[5,5,25]

Relu

Pool[2,2,max]

Conv[3,3,20]

Relu

Pool[2,2,max]

Conv[3,3,50]

Relu

Conv[3,3,60]

FC 1,100

Output 1,7

Conv[5,5,30]

Relu

Pool[2,2,max]

Conv[3,3,30]

Relu

Pool[2,2,max]

Conv[3,3,30]

Relu

Pool[2,2,max]

Conv[3,3,40]

FC 1,200

Output 1,7

CNN1 CNN2 CNN3 CNN4

Figure 9. Different architectures of the four designed CNNs. The four models work in parallel.
The probability vector expression of an expression is obtained for each model, and the final expression
probability value is obtained through the weighted fusion algorithm.

The detailed algorithm of the fuser in Figure 8 is as follows. Let us introduce some
notation: CNNi (i = 1, 2, 3, 4) stands for the name of four CNN model that used in this work.
pi = [pi

1, pi
2, pi

3, pi
4, pi

5, pi
6, pi

7] is a vector that has seven rows and one column, which stands for the
probability of one CNNi classifier assigned to seven classes. For example, p1

2 stands for the probabilities
that one test sample belongs to the first emotion class in CNN2 model.

Then, pi is normalized by the following equation: pi = pi

max(pi)
. The final recognition result is

determined by the following formula:

y = arg max[m1 · pi
1 + m2 ·

4
∏
i=2

pi
1, m1 · pi

2 + m2 ·
4

∏
i=2

pi
2, ..., m1 · pi

7 + m2 ·
4

∏
i=2

pi
7], where m1 = 1 and

the initial value of m2 is 0.01. Seven values can be obtained from the above equation; the final
recognition label can be get from the location of these seven values.

As shown in Figure 8, this new structure not only takes into account the strong abstract feature
extraction ability for face images, but also takes into account the strong expression ability of important
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components for the facial expression. Meanwhile, the application of the probability-based ensemble
learning can further improve the performance of the system.

4. Experiments

4.1. Database

JAFFE database was published in 1998 [28], and it is a relatively small database. This database
includes 213 images produced by 10 Japanese women, and each person has seven emotional images:
disgust, anger, fear, happy, sad, surprise and neutral. Figure 10 shows parts samples of JAFFE.

Figure 10. Examples of images in the JAFFE database. The emotions from left to right are: anger,
disgust, fear, happy, sad, surprise, and neutral.

CK+ database is expanded based on Cohn–Kanade database, which was published in 2010.
This dataset was introduced by Lucey et al. [29]. There are 593 images and 123 sub-folders, and 327
images have their facial expression labels. This database is one of the most widely used in the field of
facial expression recognition. There are 123 university students ranging from 18 to 30 years old, where
65% are female, 15% are African-American and 3% are Asian or South American. The emotions consist
of anger, disgust, fear, happiness, sadness, surprise, and contempt. In our experiments, we used the
first frame as the neutral category and the last four frames as one of the seven emotional categories
for training the network as a frame-based classifier. Some examples of the CK+ database images are
shown in Figure 11.

Figure 11. Examples of images in the CK+ database. The emotions from left to right are: anger,
contempt, disgust, fear, happy, sadness, and surprise.

The Facial Expression Recognition 2013 (FER-2013) database [30] includes 35,887 different images.
The training set consists of 28,709 examples. The public test set used for the leaderboard consists of
3589 examples. The private test set consists of another 3589 examples. The data consist of 48 × 48 pixel
grayscale images of faces. Seven expressions are labeled in this database: normal, happy, sadness,
surprise, anger, disgust, and fear. Some examples of the FER-2013 database images are shown
in Figure 12.

Figure 12. Examples of images in the FER-2013 database. The emotions from left to right are: anger,
disgust, fear, happy, normal, sadness and surprise.
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SFEW database [31] is a part of a temporal facial expressions database acted facial expressions in
the wild, which we extracted from movies. This database is close to the real world illumination. There
are 958 images in the training set and 436 images in the validation set. Some examples of the SFEW
database images are shown in Figure 13.

Figure 13. Examples of images in the SFEW database. The emotions from left to right are: anger,
disgust, fear, happy, normal, sadness and surprise.

4.2. Data Augmentation

In deep learning, data enhancement is generally carried out on the database in order to enrich the
training set and better extract facial expression features. The more original data there are, the higher
the accuracy and generalization ability of the trained model will be; therefore, data enhancement is
very important, especially for some datasets with uneven distribution. A good training dataset is
the prerequisite of training an advanced model. When the training data are done well, it is often
twice the result with half the effort in the following model training. However, data annotation is
time-consuming, and it is hard to collect enough data. There are some common methods for data
enhancement, such as rotating the image, cutting the image, changing the color difference of the image,
distorting the image features, changing the size of the image and enhancing the image noise. In this
study, the above methods were used to enhance the data of the original dataset. Finally, 33,885 images
were produced in JAFFE, and about 4840 sample images were contained in each of seven expression
folders. CK+ eventually obtained 53,506 images. The number of the experimental databases have been
shown in Table 1.

Table 1. The number of data augmentation on CK+, JAFFE, FER2013 and SFEW.

Ck+ Expression Label Number JAFFE Expression Label Number

anger 5941 anger 4840
contempt 2970 disgust 4840
disgust 9735 fear 4842
fear 4125 happy 4842
happy 12,420 neutral 4840
sadness 3696 sad 4841
surprise 14,619 surprise 4840

FER2013 Expression Label Number SFEW Expression Label Number

anger 4486 anger 244
contempt 491 disgust 73
disgust 4625 fear 123
fear 8094 happy 252
happy 5591 neutral 226
sadness 5424 sad 228
surprise 3587 surprise 152

4.3. Results

Figure 14 shows the confusion matrixes based on the new model. Furthermore, we compared
the results for five different inputs (i.e., the whole face input, the combination of face and eyes,
the combination of face and nose, the combination of face and mouth, and the whole face region based
on sub-regions), as shown in Figure 15. In Figure 15, we can see that it is superior to the same model
given in Figure 8 with only the entire face region as the input. Meanwhile, the new method proposed
in this paper is still better than the current state of the art in emotion recognition on the JAFFE, CK+,
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FER2013 and SFEW datasets, as can be seen in Table 2. In Table 2, we can see that nose has a small
contribution to the final accuracy, and mouth has the biggest contribution to the accuracy rate.
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Figure 14. Confusion matrixes based on the new method.
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Figure 15. The experimental comparison of different combinations. From left to right, the methods
are: the whole face input, the combination of face and eyes, the combination of face and nose,
the combination of face and mouth, and the method proposed in this paper.

Table 2. This table summarizes the current state of the art in facial expression recognition on
four databases.

Database Author Method Accuracy (%)

CK+ Liu [32] 3DCNN 85.9
CK+ Jung [27] DTNN 91.44
CK+ This paper new method 99.07

JAFFE Chen [33] ECNN 94.3
JAFFE Wen [34] Probability-Based 50.7
JAFFE This paper new method 95.95

FER2013 Chen [33] ECNN 69.96
FER2013 This paper new method 67.7

SFEW Li [35] attention mechanism 53
SFEW Liu [36] Adaptive Deep Metric 54
SFEW This paper new method 59.97

5. Conclusions

In many cases, human beings communicate their emotions and intensions by their facial
expressions, which is one of the most powerful, natural and immediate means. Facial expression
analysis is an interesting and challenging task, and it has been applied in many fields such as
human–computer interaction and remote education. Although much progress has been made in
expression recognition field by researchers, it is not yet easily performed by computers or intelligent
robots. In most research tasks, the whole face is used as the input information. In people’s daily life,
when one person judges the expression of the other person, they usually capture the characteristics of
several key parts of the face to judge the final expression. The eyes, nose and mouth are some sensitive
parts that play a decisive role in determining one’s expression, while others play a small role in the
final result. To solve the above problem, we propose a novel CNN framework based on the sub-region
auxiliary model in this paper, which takes full advantage of three important regions, and modifies
the learning results of the main task by setting different s to improve the final accuracy rate. In the
experimental verification on JAFFE dataset, m1 = 1 and m2 = 0.68. In the experimental verification on
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CK+dataset, m1 = 1 and m2 = 0.59. In the experimental verification on FER2013 dataset, m1 = 1 and m2

= 0.72. In the experimental verification on SFEW dataset, m1 = 1 and m2 = 0.63.
Future Work: The recognition accuracy of the system is improved through the auxiliary role of

the sub-region model. In fact, there are many factors that affect the expression. In addition to the few
special regions of the facial image, there are many other key factors that need to be studied continuously.
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