
algorithms

Article

Enhancing Backtracking Search Algorithm using
Reflection Mutation Strategy Based on Sine Cosine

Chong Zhou 1,2, Shengjie Li 1,2, Yuhe Zhang 1,2, Zhikun Chen 3 and Cuijun Zhang 1,2,*
1 School of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China;

zhouchong@hgu.edu.cn (C.Z.); lsj1992 11@163.com (S.L.); zyh15226557061@gmail.com (Y.Z.);
2 Laboratory of Artificial Intelligence and Machine Learning, Hebei GEO University,

Shijiazhuang 050031, China
3 College of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China; chzhikun@163.com
* Correspondence: zc0315@foxmail.com

Received: 17 September 2019; Accepted: 24 October 2019; Published: 28 October 2019
����������
�������

Abstract: Backtracking Search Algorithm (BSA) is a younger population-based evolutionary
algorithm and widely researched. Due to the introduction of historical population and no guidance
toward to the best individual, BSA does not adequately use the information in the current
population, which leads to a slow convergence speed and poor exploitation ability of BSA. To address
these drawbacks, a novel backtracking search algorithm with reflection mutation based on sine
cosine is proposed, named RSCBSA. The best individual found so far is employed to improve
convergence speed, while sine and cosine math models are introduced to enhance population
diversity. To sufficiently use the information in the historical population and current population,
four individuals are selected from the historical or current population randomly to construct
an unit simplex, and the center of the unit simplex can enhance exploitation ability of RSCBSA.
Comprehensive experimental results and analyses show that RSCBSA is competitive enough with
other state-of-the-art meta-heuristic algorithms.

Keywords: evolutionary algorithm; backtracking search algorithm; reflection mutation; sine cosine;
unit simplex

1. Introduction

There are many global optimization problems in the real world. These problems are characterized
by complexity, multimodality, strong-nonlinearity, dynamic change, and non-differentiality.
The traditional optimization algorithms do not show satisfactory performance on such optimization
problems. Therefore, many scholars have begun developing new methods to effectively solve the
optimization problems. Evolutionary algorithms (EA), which are a kind of population-based global
optimization algorithm, have been widely used to solve such problems, like function optimization [1–3],
combinatorial optimization [4], neural network training [5,6], and image processing [7]. At present,
many EAs have been proposed, like Genetic Algorithm (GA) [8], Particle Swarm Optimization (PSO) [9],
Differential Evolution (DE) [10], Artificial Bee Colony algorithm (ABC) [1], Grey Wolf Optimizer
(GWO) [11], Whale Optimization Algorithm (WOA) [12] and Cultural Algorithms [13].

Backtracking search algorithm (BSA) is a new population-based heuristic method proposed by
Civicioglu for solving real-valued numerical optimization problems [14]. BSA has a simple structure
and only one control parameter needs to be set, and its performance is insensitive to the initial
value of the control parameter [15,16]. BSA uses a historical population which records individuals
of the previous generation as the search direction matrix. Due to the historical population, BSA can
simultaneously use the current population and previous population to improve the diversity of the

Algorithms 2019, 12, 225; doi:10.3390/a12110225 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-9971-4550
http://dx.doi.org/10.3390/a12110225
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/11/225?type=check_update&version=2


Algorithms 2019, 12, 225 2 of 20

population. Meanwhile, BSA owns a mutation operator with strong randomness and double crossover
mechanism with probability, which leads to its strong global search ability. Hence, BSA is researched
widely by many scholars and many variants are proposed. These variants can be divided roughly
into four categories. The first category focuses on improving its initialization. Kolawol et al. [17]
proposed chaotic-based BSA, in which random generation of the initial population is replaced with
chaotic mapping to enhance the disorder of the initial population. To adequately use the search space,
Yuan et al. [18] adopted an orthogonal design method rather than random generation. To enhance
the diversity of the initial population, Lin [19] and Xu [7] et al. proposed different BSA variants
based on opposition learning, in which the initial population and oppositional initial population
are produced simultaneously to select the best candidate solution and the jump-out strategy in
the opposition learning is added to update population. The main idea of the second category is
that crossover and mutation strategy are improved. Zhao et al. [20] proposed an improved BSA
algorithm mixing three mutation strategies, to handle the constrained optimization problem. For slow
convergence speed at the late stage and poor exploration ability, Wang et al. [21] proposed a BSA
variant embedding mutation strategy of DE, which improves convergence speed without adding
complexity of the algorithm. Zhao et al. [22] designed an optimal solution-guided BSA, where
the algorithm introduces an experience parameter to divide the overall iteration into two stages.
At the earlier stage of the iteration, the algorithm adopts the mutation operator of the original
BSA, while at the latter of the iteration, the algorithm employs the optimal solution-guided new
mutation operator. Tian et al. [23] developed a new mutation strategy, which does not consider the
optimal solution-guided information. This algorithm improves mutation operation though decreasing
perturbation to strengthen convergence speed of the algorithm. For the drawbacks of slow convergence
speed and falling into local optimum, Wang et al. [24] proposed an improved BSA fusing optimal
solution-guided mutation strategy and niche technology. Chen et al. [25] proposed an ensemble
learning, niche technology, mutation perturbation-based hybrid BSA and it is successfully applied
to neural network training. The third category is improved parameter-based variants. BSA has
a crossover probability parameter mixrate and an adaptive mutation control parameter F. In [26],
Wang et al. proposed an adaptive parameter F strategy which obeys Maxwell Boltzmann distribution
since parameter F value influences the convergence speed of the algorithm. Duan et al. [27] introduced
a fitness distance-based adaptive parameter F and mixrate with experience parameters to accelerate
convergence speed. Nama et al. [28] used a fitness information-based feedback mechanism to design
a more available adaptive parameter F which can vary in [0.45, 1.99] with the change of fitness.
Meanwhile, mixrate randomly varied in [0,1] is designed to improve search efficiency of the algorithm.
Chen et al. [29] proposed a new adaptive parameter F with experience parameter, which can adaptively
reduce with iteration increase of the algorithm, to effectively balance exploration and exploitation of
the BSA. Askarzadeh et al. [30] employed burger chaotic mapping to adjust parameter F, but two
experience parameters are introduced into the strategy. Shaheen et al. [31] analyzed five different
distributions F to impact algorithm performance and select the best available design of F. The fourth
category is with the local search mechanisms embedded. To improve local exploitation of BSA and
convergence speed, some search mechanisms are embedded into the framework of BSA. A chaotic
mapping-based local search is embedded into BSA and combines with another algorithm to solve the
hydrothermal generator set problem. Ali et al. [32] added a random walk guided local exploration
strategy into BSA after selection-II of BSA, enhancing exploration performance of the algorithm.
To solve the displacement flow shop scheduling problem, Lin et al. [33] proposed three different
strategies to improve BSA. A new initial generator is constructed to improve the quality of the initial
solution. In addition, the selection mechanism accepting a worse solution in the Simulated Annealing
(SA) is employed to avoid trapping in local optimum. A local search mechanism randomly inserted
is introduced to enhance exploitation ability of BSA. Moreover, due to its flexibility and efficiency,
BSA and its variants have been widely applied to a wide range of real-world optimization problems,
such as economic dispatch problems [34], optimal power flow [35], parameter identification [36,37],



Algorithms 2019, 12, 225 3 of 20

feature selection [38], artificial neural network [25], flow shop scheduling [39], and nonlinear optimal
control problem [40].

However, BSA still has some drawbacks and its performance needs to be further improved.
The first is that only the historical population information is adopted to guide the search and the
information in current population is not used sufficiently, which cannot maintain the population
diversity efficiently and thus the exploration ability of BSA is weak. The second is that there is no
guidance regarding the approach to the current best individual during the evolution process, which
leads to slow convergence speed and poor exploitation ability of BSA.

Based on the above discussion, in this paper, an enhancing backtracking search optimization
algorithm with reflection mutation strategy based on sine cosine, named RSCBSA, is proposed.
In RSCBSA, inspired by reflection operation in Nelder–Mead method [41] and Sine Cosine Algorithm
(SCA) [42], a new reflection mutation strategy based on sine cosine is developed to address the
above-mentioned drawbacks, in which the best solution and sine and cosine math models are
introduced to balance exploration and exploitation ability of BSA.

The contributions of the paper are listed as follows:

1. A new reflection mutation strategy based on sine cosine is proposed to balance exploration
and exploitation ability of BSA. To improve exploration ability, the best global individual is
used to guide search direction, while sine and cosine math functions are used to enhance
exploitation ability of BSA. Based on the strategy, a novel backtracking search algorithm
with reflection mutation strategy based on sine cosine (RSCBSA) is proposed to solve global
optimization problems.

2. In the above strategy, the center of a unit simplex constructed by three individuals selected
randomly is employed to enhance diversity of population, since it considers more information of
individuals. In addition, in RSCBSA, crossover operator of BSA is replaced with that of DE.

3. A comprehensive experiment is designed to verity the effectiveness of the proposed RSCBSA.
In addition, a new parameter in RSCBSA is analyzed to set suitable values so that the performance
of RSCBSA is the best.

The rest of this paper is organized as follows. Section 2 reviews the classic BSA. Section 3 presents
the detail of RSCBSA, including its constituent RSCBSA variants and its framework. The experimental
setting and results are reported and analyzed in Section 4 and Section 5. Finally, Section 6 concludes
this paper.

2. Backtracking Search Optimization Algorithm

BSA is a young EA which is designed to be a global optimizer. It employs two populations:
current population and historical population to search for the optimal solution. As done in other
EAs, BSA has simple structure and can be divided into five processes by its functions: initialization,
selection-I, mutation, crossover, and selection-II.

Initialization: In the stage, BSA randomly produces the initial population P using Equation (1).

Pi,j = lbj + rand ·
(
ubj − lbj

)
(1)

where i = 1, 2, 3, . . . , NP and NP is the number of individuals in population. j = 1, 2, 3, . . . , D and D is
the number of dimension of variables. lowj and upj are the lower and upper boundaries on the jth
variable , respectively. rand is a random number within [0,1].

Selection-I: In the BSA‘s selection-I stage, the initial historical population oldP is generated
randomly using Equation (2).

oldPi,j = lbj + rand ·
(
ubj − lbj

)
(2)



Algorithms 2019, 12, 225 4 of 20

Afterwards, at the beginning of each iteration, oldP is redefined by Equation (3). In addition,
Equation (4) is used to randomly update the order of the members in oldP.

oldP =

{
P, if a < b

oldP, otherwise
(3)

oldP = permuting (oldP) (4)

where p is a random number within [0,1]. permuting function is a random shuffling function. Through
Equation (3), BSA assigns a population randomly selected previous generation as the historical
population and saves the historical population until it is changed.

Mutation and Crossover: Mutation and crossover operators aim at producing a new individual.
Equation (5) involving historical population and current population is used to generate a trail
individual. Then, crossover operator is performed by Equation (6). From Equation (6), a binary
integer-value map is employed to guide the crossover direction.

M = P + F · (oldP− P) (5)

Vi,j =

{
Pi,j, if mapi,j = 1
Mi,j, if mapi,j = 0

(6)

where F is a scale factor and it generally takes value of 3 · rand, where rand is a random number
between 0 and 1. Vi,j is the value of the jth variable for the ith trial individual.

Selection-II: In the selection-II stage, BSA adopts a greedy selection mechanism to pick out a new
solution Pnew

i . For the minimum problem, if the fitness value of the trial individual V is better than
that of the current individual Pi, V is selected, as shown in Equation (7);

Pnew
i =

{
Vi, if f (Vi) ≤ f (Pi)

Pi, otherwise
(7)

In the BSA, four above-mentioned processes 2–5 are repeatedly executed until it meets the
termination criteria.

3. The Proposed Algorithm

In this section, the proposed algorithm is described in detail.

3.1. Initialization

The initialization stage is similar to that of the origin BSA. The initial population is produced.

Pi,j = lbj + rand ·
(
ubj − lbj

)
(8)

where i is the index of individual in population and j is the number of dimension of variables. Rand is
a uniformly distributed random number between 0 and 1. Ub and lb are the upper and low boundary
of each jth variable, respectively.

3.2. Reflection Mutation Strategy Based on Sine Cosine

In the proposed algorithm, reflection mutation strategy based on sine cosine is a key operator.
Inspired by Nelder–Mead method and SCA, the strategy is proposed. After the operator, a new
trial individual is generated to guide the research direction. It is similar to reflection mutation
strategy in [43], but the difference is that sine and cosine math functions are introduced into the
proposed strategy. First, four individuals are selected from the current population or historical



Algorithms 2019, 12, 225 5 of 20

population randomly to construct a unit simplex. The center of the unit simplex is computed using
Equations (9) and (10).

Xo = ω1 · Xa + ω2 · Xb + ω3 · Xc (9)

ω1 =
f (Xa)

f (Xa) + f (Xb) + f (Xc)

ω2 =
f (Xb)

f (Xa) + f (Xb) + f (Xc)

ω3 =
f (Xc)

f (Xa) + f (Xb) + f (Xc)

(10)

where a, b and c are the index of three different individuals randomly selected from population to
construct a unit simplex. ω1, ω2 and ω3 are the weights of three vertexes in the unit simplex. Xa, Xb
and Xc are three vertexes of the unit simplex. Xo is the center of the unit simplex.

Based on the center, the best individual found so far, and sine cosine are introduced into the
strategy to balance exploration and exploitation. The best individual provides the better search
direction to improve exploration ability of the algorithm, while sine and cosine math models are used
to enhance diversity ability and the center of the unit simplex also provides more diversity information.
The formulation of the strategy is listed as follows:

Vi,j =

{
Xbest,j + η · sin (r1)

(
r2Xo,j − Xm,j

)
if r3 < 0.5

Xbest,j + η · cos (r1)
(
r2Xo,j − Xm,j

)
otherwise

(11)

η = a ·
(

1− t
MaxGen

)
(12)

where r1 and r3 are random number in [0, 1]. r2 is a random number in [0, 2]. Xbest,j indicates the jth
dimension of the best individual. Xm,j is the jth dimension of the m individual randomly selected
from population. t is the current iteration and MaxGen is the maximum iteration. a is a perturbation
parameter and is usually set to 2.0.

3.3. Crossover Operator

To produce better trial individuals, crossover operator is executed. Like the DE, the crossover
operator uses two individuals Vi(t) and X(t) to generate offspring individual randomly, where Vi(t) is
generated by the above mutation strategy and X(t) is current individual. The formula of crossover
operator is showed as follows:

ui,j =

{
vi,j, if rand ≤ CR ∨ j = l
xi,j, otherwise

(13)

where j = 1, 2, . . . , D, rand is in [0,1], l is a random integer in [1, D]. CR is crossover probability and is
usually set to 0.9.

3.4. The Framework of The Proposed Algorithm

Based on above description, the framework of the proposed RSCBSA is similar to that of BSA, but
the difference is that mutation and crossover stages are replaced with reflection mutation based on
sine cosine and crossover operator. The framework of RSCBSA is presented in Algorithm 1.



Algorithms 2019, 12, 225 6 of 20

Algorithm 1: Framework of the Proposed Algorithm

1 Initiate population size N and maximum number of iterations MaxGen;
2 Initialize the current population P and historical population oldP using Equations (1) and (2),

respectively;
3 Compute the fitness value of all individuals in current population P;
4 gen← 1;
5 while gen < MaxGen do
6 Perform selection-I using Equations (3) and (4) to form the historical population oldP;
7 Find the best individual from the current population;
8 for i=1 to N do do
9 Randomly select four different individuals form historical population oldP or current

population P to construct a unit simplex ;
10 Compute the center of the unit simplex using Equation (10);
11 Perform Reflection mutation strategy based on sine cosine using Equations (11) and (12)

to generate the trial individual Vi;
12 Perform crossover operator using Equation (13);
13 \\ Boundary control mechanism;
14 for j=1 to D do do
15 if Vi,j < lowj or Vi,j > upj then
16 Vi,j = lowj + rand · (upj − lowj)

17 end
18 end
19 Evaluate the trial individual Vi; Perform Selection-II using Equation (7) to save the

global best individual;
20 end
21 gen← gen + 1;
22 end
23 Output the best individual

3.5. Complex Analysis of The Proposed Algorithm

The proposed algorithm is based on the basic BSA framework. Five processes in the algorithm are
implemented: initialization, selection-I, reflection mutation strategy based on sine cosine, crossover
operator, and selection-II, where reflection mutation strategy based on sine cosine and crossover
operator are the main steps. In the reflection mutation stage, N new individuals are produced, which
leads to O(N ∗D) time complexity, where N is population size and D is the dimension of test problem.
Crossover operator needs O(N ∗D) time complexity for each individual in the trial population. In brief,
the time complexity of the proposed algorithm is O(N ∗ D).

4. Experimental Simulations

In this section, the experimental simulation is listed. In Section 4.1, benchmark test suit used in
the experiment is described. Then, the parameter setting is stated in Section 4.2.

4.1. Benchmark Test Suit

The 23 classical benchmark functions used widely by many researchers are used in the experiment
to verify performance of the proposed algorithm. These benchmark functions F1–F23 can be found
in [12]. Typically, these functions can be divided into three categories: (1) unimodal benchmark
functions, (2) multimodal benchmark functions and (3) fixed-dimension multimodal functions. F1–F7
belong to unimodal benchmark functions, whose dimension are set to 30 to test the convergence



Algorithms 2019, 12, 225 7 of 20

performance of search algorithms. F8–F13 are multimodal benchmark functions with several local
optimum, whose dimension also are set to 30 to verify the convergence performance and avoidance
premature convergence of the proposed algorithm, while the other functions with low-dimension are
used to deal with small number of local optima. Their function name, expression, dimension, search
range and theoretical optimal value can be found in [12]. All of the algorithms are programmed in
“Matlab 2014” and implemented on “Windows 10 64bit” environment on a computer with “Intel Core i5”
processor and 8 GB memory.

4.2. Parameter Setting

Common parameters of all considered algorithms are set to same size. The maximum number of
generations (MaxGen) is equal to 3000. Population size is set to 30. All algorithms are run 30 times
independently. The other parameters used in different algorithm are set as follows:

F in DE: random number in [0.2, 0.8];
CR in DE and RSCBSA: 0.9;
a in RSCBSA: 2.0;
Personal learning coefficient c1 in PSO: 1.5;
Global learning coefficient c2 in PSO: 2.0;
limit in ABC: 100;
Acceptance Ratio pAccept in CA: 0.35.

5. Experimental Results

In this section, five state-of-the-art algorithms are compared with the proposed algorithm,
including DE, PSO, ABC, CA and original BSA, to verify the performance of the proposed algorithm.
Statistical results on the three categories test problems are reported in Tables 1, 3, and 5, respectively,
in which the best value, mean value, the worst value and standard deviation obtained by the six
algorithms are listed. To have statistically sound conclusions, the Friedman test with Bonferroni-Dunn‘s
procedure is employed to achieve the final ranking of different algorithms on the different type
benchmark functions. Moreover, the Wilcoxon‘s rank-sum test for independent sample at a
0.05 significance level [44], which is a nonparametric statistical test method, is conducted to judge
the significance of the results between two algorithms. Signs “+“, “−“ and “=“ indicate that the
corresponding comparative algorithm is worse than, better than, and similar to RSCBSA, respectively.
Then, convergence behavior of RSCBSA is analyzed and showed. Finally, parameter a in the reflection
mutation based on sine cosine is analyzed by taking different value.

5.1. Compared with State-of-the-Art Algorithms

Unimodal Benchmark Problems (F1–F7): From Table 1, it is seen that the proposed algorithm
is superior to other algorithms considered on the unimodal benchmark functions. The PSO obtains
the best performance on 1 (F6) test function. ABC obtains the best solution on 1 (F5) test function.
However, RSCBSA can perform the best than other algorithms except 2 (F5 and F6) test functions.
The reason maybe that the best global individual is employed to strength the exploration ability which
leads to that the algorithm can explore more promising area to find the better solution. In addition, the
Friedman rank is implemented based on KEEL software [45], and the results are reported in Table 2.
As shown in Table 2, RSCBSA obtains the best place.



Algorithms 2019, 12, 225 8 of 20

Table 1. Results of unimodal benchmark functions.

Benchmark Function PSO ABC DE CA BSA RSCBSA

F1

best 2.6078× 10−21 5.3796× 10−16 2.5816× 10−46 2.5562× 102 1.4976× 10−17 0.0000× 100

mean 3.9736× 10−7 7.5685× 10−16 5.4588× 10−45 1.6712× 103 2.4454× 10−15 0.0000× 100

worst 3.6505 × 10−6 5.4117 × 10−15 2.4629 × 10−44 4.1270 × 103 2.8521× 10−14 0.0000× 100

std 1.3868 × 10−12 6.8910 × 10−31 2.6423 × 10−89 9.5577 × 105 3.0966 × 10−29 0.0000× 100

F2

best 5.4694 × 10−28 1.6002 × 10−15 4.1335 × 10−28 5.8462 × 100 5.0408 × 10−10 4.3459× 10−218

mean 1.3657 × 10−12 1.8228 × 10−15 2.0667 × 10−27 2.2100 × 101 3.2572 × 10−9 3.9314 × 10−214

worst 1.5274 × 10−11 3.3803 × 10−15 5.6259 × 10−27 6.9183 × 101 1.0338 × 10−8 3.1240 × 10−213

std 1.5008 × 10−23 1.6937 × 10−31 1.2307 × 10−54 2.3890 × 102 5.5714 × 10−18 0.0000 × 100

F3

best 3.9653 × 10−103 3.5792 × 103 7.3893 × 103 8.3334 × 103 3.0345 × 101 8.1950 × 10−204

mean 6.4404 × 10−93 5.9449 × 103 1.1857 × 104 2.0627 × 104 1.7266 × 102 7.7379 × 10−188

worst 1.5655 × 10−91 1.1140 × 104 1.9801 × 104 4.0887 × 104 3.7642 × 102 2.3203 × 10−186

std 8.1160 × 10−184 3.2828 × 106 6.0971 × 106 7.8083× 107 6.6997 × 103 0.0000 × 100

F4

best 7.8193 × 10−83 2.8317 × 101 5.1221 × 10−4 3.0161 × 101 9.0018 × 10−1 8.1338 × 10−152

mean 1.5871 × 10−72 3.9440 × 101 1.0355 × 10−3 4.6255 × 101 2.1297 × 100 4.7338 × 10−144

worst 2.4649 × 10−71 5.0921 × 101 2.2349 × 10−3 7.9715 × 101 3.9292 × 100 8.8191 × 10−143

std 2.1488 × 10−143 3.7018 × 101 1.5905 × 10−7 1.4438 × 102 4.0870 × 10−1 2.6901 × 10−286

F5

best 7.9093 × 10−2 8.6115 × 10−3 2.3793 × 101 1.0168 × 105 8.6456 × 10−1 2.3440× 101

mean 2.2878 × 100 5.3359 × 10−1 3.3665 × 101 1.2073 × 106 5.5375 × 101 2.4658 × 101

worst 7.0303 × 100 1.8079 × 101 8.8254 × 101 4.4121 × 106 8.6258 × 101 2.6975 × 101

std 3.1431 × 100 1.3289 × 101 4.0340 × 102 1.0354 × 1012 9.4312 × 102 6.2485 × 101

F6

best 0.0000 × 100 5.5033 × 10−16 0.0000 × 100 4.3707 × 102 2.2988 × 10−17 8.6469 × 10−7

mean 1.9105 × 10−32 7.4696 × 10−16 0.0000 × 100 1.8850 × 103 4.8673 × 1016 1.4989 × 10−1

worst 1.1093 × 10−31 2.5076 × 10−15 0.0000 × 100 3.1993 × 103 1.9639× 10−15 5.1162× 10−1

std 8.1244× 1064 1.3274 × 10−31 0.0000 × 100 5.4730 × 105 2.3180 × 10−31 2.7930 × 10−2

F7

best 1.1152 × 10−4 9.4208 × 10−2 3.1487 × 10−3 3.5096 × 10−1 4.3966 × 10−3 3.3201 × 10−5

mean 7.4359 × 10−4 2.0345 × 10−1 8.2541 × 10−3 1.4979 × 100 1.4448 × 10−2 1.7506 × 10−4

worst 2.1471 × 10−3 3.5513 × 10−1 1.2403 × 10−2 3.4948 × 100 2.1994 × 10−2 4.4544 × 10−4

std 3.1481 × 10−7 3.7637 × 10−3 4.3611 × 10−6 8.3832 × 10−1 1.6176× 105 1.1159 × 10−8

Table 2. Average Rankings of the algorithms (Friedman) on unimodal benchmark functions.

Algorithm Ranking

PSO 2.3571
ABC 3
DE 3.4286
CA 6
BSA 4.0714

RSCBSA 2.1429

Multimodal Benchmark Problems (F8–F13): Experiment results are listed in Table 3 on the
multimodal test functions. From Table 3, DE is superior to other five compared algorithms on the
4 (F8 and F11–F13) benchmark functions. RSCBSA can obtain the best solution on the 3 (F9–F11)
benchmark functions, but on the other functions it does not perform well. ABC and BSA outperform
RSCBSA on the 3 (F8 and F12–F13) benchmark functions and CA cannot beat BSA on the any
benchmark functions except F8. Although RSCBSA can get the best on three benchmark functions,
accounting for 50%, RSCBSA only gets the third rank in terms of the Friedman rank, as shown in
Table 4. DE performs the best than other peer competitors and gets the first rank.



Algorithms 2019, 12, 225 9 of 20

Table 3. Results of multimodal benchmark functions.

Benchmark Function PSO ABC DE CA BSA RSCBSA

F8

best −3.2818 × 103 −1.2570 × 104 −1.2570 × 104 −1.2049 × 104 −1.2569 × 104 −1.0278 × 104

mean −2.4289 × 103 −1.2541 × 104 −1.2980 × 104 −9.8465 × 103 −1.2569 × 104 −8.8889 × 103

worst −1.6827 × 103 −1.2209 × 104 −1.2214 × 104 −6.9449 × 103 −1.2569 × 104 −8.0066 × 103

std 9.9518 × 104 8.0666 × 103 −1.2442 × 104 3.3642 × 106 2.2234 × 10−1 2.3757 × 105

F9

best 5.9698 × 100 1.1369 × 10−13 6.8781 × 10−12 7.7160 × 101 1.0854 × 10−1 0.0000 × 100

mean 1.1840 × 101 1.4061 × 10−8 5.0229 × 100 1.4651 × 102 3.3603 × 100 0.0000 × 100

worst 2.0894 × 101 9.9496 × 10−1 2.6971 × 101 2.5216 × 102 6.6977 × 100 0.0000 × 100

std 1.5334 × 101 6.2573 × 10−2 6.5267 × 101 1.8300 × 103 3.1008 × 100 0.0000 × 100

F10

best 4.4409 × 10−15 4.7074 × 10−14 7.9936 × 10−15 5.5878 × 100 2.1721 × 10−9 8.8818 × 10−16

mean 3.8505 × 10−2 6.0574 × 10−14 7.9936 × 10−15 1.0163 × 101 2.5030 × 10−8 8.8818 × 10−16

worst 1.1552 × 100 1.5721 × 10−13 7.9936 × 10−15 1.3951× 101 7.7180 × 10−8 8.8818 × 10−16

std 4.2996× 10−2 5.4819 × 10−28 2.2403 × 10−59 3.9939 × 100 5.5106 × 10−16 3.8894 × 10−62

F11

best 3.9319 × 10−2 1.1102 × 10−15 0.0000 × 100 5.5845 × 100 0.0000 × 100 0.0000 × 100

mean 9.3162 × 10−2 3.5826 × 10−4 0.0000 × 100 1.5086 × 101 1.6533 × 10−11 0.0000 × 100

worst 2.2875 × 10−1 3.5406 × 10−2 0.0000 × 100 4.6938 × 101 4.9135 × 10−10 0.0000× 100

std 1.9610 × 10−3 7.4801 × 10−5 0.0000 × 100 8.2619 × 101 7.7747 × 10−21 0.0000× 100

F12

best 4.7116 × 10−32 6.1436 × 10−16 1.5705 × 10−32 6.2196 × 101 2.8984 × 10−19 6.0657 × 10−7

mean 5.1561 × 10−32 7.8009 × 10−16 1.5705 × 10−32 2.7468 × 105 2.8011 × 10−17 8.8653 × 10−3

worst 1.2553 × 10−31 5.2760 × 10−13 1.5705 × 10−32 1.7374 × 106 4.4505 × 10−16 2.3351 × 10−2

std 2.1613 × 10−64 8.9331 × 10−27 2.9963 × 10−95 1.7490 × 1011 6.7812 × 10−33 4.6445 × 10−5

F13

best 1.0987 × 10−2 5.3680 × 10−16 1.3498 × 10−32 6.4179 × 103 2.2895 × 10−18 1.1010 × 10−2

mean 1.0987× 10−3 8.3837 × 10−16 1.3498 × 10−32 2.6594 × 106 3.7103 × 10−16 5.0903 × 10−1

worst 1.0987 × 10−2 2.2538 × 10−15 1.3498 × 10−32 1.2544 × 107 2.9765 × 10−15 1.4244 × 100

std 1.0865 × 10−5 1.0659 × 10−31 0.0000 × 100 1.0542 × 1013 4.7169 × 10−31 1.0055 × 10−1

Table 4. Average Rankings of the algorithms (Friedman) on multimodal benchmark functions.

Algorithm Ranking

PSO 4.5833
ABC 2.5833
DE 2.25
CA 5.6667
BSA 2.5833

RSCBSA 3.3333

Fixed-dimension multimodal benchmark functions (F14–F23): For the category of benchmark
function, the proposed RSCBSA can obtain the best performance on 7 test functions (F14, F16–F19
and F21–F22) from Table 5. BSA can perform the best than other competitors on the all test functions.
The performance of PSO, DE, CA is inferior to that of the BSA and RSCBSA. From Table 6, it is observed
that RSCBSA can rank the second place according to the Friedman rank.



Algorithms 2019, 12, 225 10 of 20

Table 5. Results of fixed-dimension multimodal benchmark functions.

Benchmark Function PSO ABC DE CA BSA RSCBSA

F14

best 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1

mean 3.4567× 100 9.9800 × 10−1 1.1624 × 100 6.6697 × 100 9.9800 × 10−1 9.9800 × 10−1

worst 1.2671 × 101 9.9800 × 10−1 5.9289 × 100 1.6441 × 101 9.9800 × 10−1 9.9800 × 10−1

std 9.3179 × 100 4.4373 × 10−31 7.8343 × 10−1 1.9194 × 101 1.9722 × 10−31 1.9722 × 10−31

F15

best 3.0749 × 10−4 4.1171 × 10−4 3.0749 × 10−4 4.8171 × 10−4 3.0749 × 10−4 3.0749 × 10−4

mean 3.3567 × 10−3 5.5933 × 10−4 4.7100 × 10−4 2.2035 × 10−3 3.0749 × 10−4 3.5056 × 10−4

worst 2.0363 × 10−2 1.0451 × 10−3 7.8431 × 10−4 1.4641 × 10−2 3.0749 × 10−4 1.2232 × 10−3

std 4.4754 × 10−5 1.3891 × 10−8 2.6811 × 10−8 6.8205 × 10−6 1.1755 × 10−38 2.8670 × 10−8

F16

best −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100

mean −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100

worst −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100

std 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.9722 × 10−31 1.9722 × 10−31

F17

best 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1

mean 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1

worst 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1

std 2.7733 × 10−32 2.7733 × 10−32 2.7733 × 10−32 2.7733 × 10−32 3.0815 × 10−33 1.9600 × 10−13

F18

best 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100

mean 3.0000 × 100 3.0002 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100

worst 3.0000 × 100 3.0039 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100

std 0.0000 × 100 5.0468 × 10−7 0.0000 × 100 0.0000 × 100 0.0000 × 100 2.0556 × 10−13

F19

best −3.8628 × 100 −3.8628 × 100 −3.8628 × 100 −3.8628 × 100 −3.8628 × 100 -3.8628 × 100

mean −3.8370 × 100 −3.8628 × 100 −3.8628 × 100 −3.8628 × 100 −3.8628 × 100 −3.8628 × 100

worst −3.0898 × 100 -3.8628 × 100 −3.8628 × 100 −3.8628 × 100 −3.8628 × 100 −3.8628 × 100

std 1.9255 × 10−2 1.9722 × 10−31 1.9722 × 10−31 1.9722 × 10−31 3.1554 × 10−30 3.1554 × 10−30

F20

best −3.3220 × 100 −3.3220 × 100 −3.3220 × 100 −3.3220 × 100 −3.3220 × 100 −3.3220 × 100

mean −3.2863 × 100 −3.3220 × 100 −3.3212 × 100 −3.2809 × 100 −3.3220 × 100 −3.2863 × 100

worst −3.2031 × 100 −3.3220 × 100 −3.2974 × 100 −3.1993 × 100 −3.3220 × 100 −3.2031 × 100

std 2.9688 × 10−3 3.1554 × 10−30 1.9578 × 10−5 3.1319 × 10−3 7.8886 × 10−31 2.9685 × 10−3

F21

best −1.0153 × 101 −1.0153 × 101 −1.0153 × 101 −1.0153 × 101 −1.0153 × 101 −1.0153 × 101

mean −4.7418 × 100 −1.0153 × 101 −9.7358 × 100 −6.4744 × 100 −1.0153 × 101 −1.0153 × 101

worst −2.6305 × 100 −1.0153 × 101 −2.6829 × 100 −2.6305 × 100 −1.0153 × 101 −1.0153 × 101

std 1.0831 × 101 1.2622 × 10−29 2.5369 × 100 1.1149 × 101 1.2622 × 10−29 4.2873 × 10−8

F22

best −1.0403 × 101 −1.0403 × 101 −1.0403 × 101 −1.0403 × 101 −1.0403 × 101 −1.0403 × 101

mean −6.1650 × 100 −1.0403 × 101 −-1.0227 × 101 −6.7240 × 100 −1.0403 × 101 −1.0403 × 101

worst −1.8376 × 100 −1.0403 × 101 −5.1288 × 100 −2.7519 × 100 −1.0403 × 101 −1.0403 × 101

std 1.2604 × 101 5.0487 × 10−29 8.9629 × 10−1 1.2263 × 101 0.0000 × 100 6.5010 × 10−9

F23

best −1.0536 × 101 −1.0536 × 101 −1.0536 × 101 −1.0536 × 101 −1.0536 × 101 −1.0536 × 101

mean −6.7622 × 100 −1.0536 × 101 −1.0536 × 101 −6.2481 × 100 −1.0536 × 101 −1.0133 × 101

worst −2.4217E × 100 −1.0512 × 101 −1.0536 × 101 −2.4217 × 100 −1.0536 × 10 -3.8354 × 100

std 1.4389 × 101 1.9658 × 10−5 7.8886 × 10−29 1.4417 × 101 2.8399 × 10−29 2.3087 × 100

Table 6. Average Rankings of the algorithms (Friedman) on fixed multimodal benchmark functions.

Algorithm Ranking

PSO 4.85
ABC 2.95
DE 3.3
CA 4.6
BSA 2.35

RSCBSA 2.95

To further detect the significant differences between the proposed RSCBSA and the five
competitors, the Wilcoxon‘s rank-sum test is executed. The statistical results are reported in Table 7.
It is seen that RSCBSA outperforms 9, 14, 9, 12 and 17 benchmark functions than BSA, PSO, ABC, DE
and CA, respectively.



Algorithms 2019, 12, 225 11 of 20

Table 7. Test statistical results of Wilcoxon rank-sum test.

Benchmark RSCBSA vs. BSA RSCBSA vs. PSO RSCBSA vs. ABC RSCBSA vs. DE RSCBSA vs. CA

H p-Value Winner H p-Value Winner H p-Value Winner H p-Value Winner H p-Value Winner

F1 1 1.2118 × 10−12 + 1 1.2118 × 10−12 + 1 1.2118 × 10−12 + 1 1.2118 × 10−12 + 1 1.2118 × 10−12 +
F2 1 3.0199 × 10−11 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 +
F3 1 3.0199 × 10−11 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 +
F4 1 3.0199 × 10−11 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 +
F5 1 1.0763 × 10−2 + 1 3.0199 × 10−11 − 1 3.0199 × 10−11 − 1 1.2493 × 10−5 + 1 3.0199 × 10−11 +
F6 1 3.0199 × 10−11 − 1 2.3692 × 10−11 − 1 3.0199 × 10−11 − 1 1.2118 × 10−12 − 1 3.0199 × 10−11 +
F7 1 3.0199 × 10−11 + 1 2.0283 × 10−7 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 + 1 3.0199 × 10−11 +
F8 1 2.2076 × 10−11 − 1 3.0104 × 10−11 + 1 1.4248 × 10−11 − 1 2.5416 × 10−11 − 1 3.8481 × 10−3 −
F9 1 1.2118 × 10−12 + 1 1.1661 × 10−12 + 1 1.0566 × 10−12 + 1 1.2118 × 10−12 + 1 1.2118 × 10−12 +

F10 1 1.2118 × 10−12 + 1 1.5702 × 10−13 + 1 9.7992 × 10−13 + 1 1.6853 × 10−14 + 1 1.2118 × 10−12 +
F11 1 4.5700 × 10−12 + 1 1.2118 × 10−12 + 1 1.2078 × 10−12 + 0 NaN = 1 1.2118 × 10−12 +
F12 1 3.0199 × 10−11 − 1 2.4291 × 10−11 − 1 3.0199 × 10−11 − 1 1.2118 × 10−12 − 1 3.0199 × 10−11 +
F13 1 3.0199 × 10−11 − 1 2.6537 × 10−11 − 1 3.0199 × 10−11 − 1 1.2118 × 10−12 − 1 3.0199 × 10−11 +
F14 0 NaN = 1 9.7829 × 10−13 + 1 1.6853 × 10−14 = 1 2.7085 × 10−14 + 1 1.1642 × 10−12 +
F15 1 2.1633 × 10−11 − 0 9.7028 × 10−1 = 1 4.1804 × 10−9 + 1 8.8803 × 10−6 + 1 1.2050 × 10−10 +
F16 0 NaN = 1 1.6853 × 10−14 = 1 1.6853 × 10−14 = 1 1.6853 × 10−14 = 1 1.6853 × 10−14 =
F17 1 6.6113 × 10−4 = 1 3.8943 × 10−13 = 1 3.8943 × 10−13 = 1 3.8943 × 10−13 = 1 3.8943 × 10−13 =
F18 1 4.1865 × 10−2 = 1 4.1865 × 10−2 = 0 4.6889 × 10−1 = 1 4.1865 × 10−2 = 1 4.1865 × 10−2 =
F19 0 NaN = 1 2.7085 × 10−14 + 1 1.6853 × 10−14 = 1 1.6853 × 10−14 = 1 1.6853 × 10−14 =
F20 1 6.2958 × 10−4 − 1 5.4952 × 10−3 = 1 3.5049 × 10−13 − 1 7.8511 × 10−11 − 0 9.6974 × 10−1 =
F21 1 2.1150 × 10−6 = 1 6.7082 × 10−5 + 1 2.1150 × 10−6 = 1 1.9600 × 10−4 + 1 2.5975 × 10−2 +
F22 1 1.4331 × 10−4 = 1 1.2791 × 10−8 + 1 1.4992 × 10−5 = 1 1.1131 × 10−5 + 1 3.3861 × 10−8 +
F23 1 3.1216 × 10−4 − 1 2.0775 × 10−6 + 1 2.7674 × 10−3 − 1 2.7674 × 10−3 − 1 6.7273 × 10−7 +

+/−/= 9/7/7 14/4/5 9/7/7 12/6/5 17/1/5



Algorithms 2019, 12, 225 12 of 20

In summary, the proposed RSCBSA can exhibit very competitive performance than those of the
other well-known algorithms, which is able to generate the high-quality solutions and accelerate the
convergence speed.

5.2. Convergence Analysis

To analyze the convergence of the proposed RSCBSA, convergence curves of RSCBSA, PSO, DE,
ABC, CA and BSA are shown in Figure 1 as iteration increases. In the Figure 1, X axial represents for
the total number of iteration and Y axial stands for the logarithm of the function optimal value. It is
observed that RSCBSA tends to extensively explore promising areas of design space and exploit
the best one. The convergence curve changes abruptly in the early stages of the optimization
process and then gradually converge. According to Berg et al. [46], such a behavior can guarantee
that a population-based algorithm eventually convergences to a point in a search space. On the
unimodal benchmark function, RSCBSA have an obvious advantage than other competitors. However,
although RSCBSA does not perform better than other algorithms on the multimodal benchmark
function, RSCBSA and other algorithms can converge the global optimal on the almost multimodal
benchmark functions. It can be seen that RSCBSA is enough competitive with other state-of-the-art
meta-heuristic algorithms.

0 0.5 1 1.5 2 2.5 3
−800

−700

−600

−500

−400

−300

−200

−100

0

100

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F1

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−600

−500

−400

−300

−200

−100

0

100

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F2

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−500

−400

−300

−200

−100

0

100

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F3

BSA
RSCBSA
ABC
DE
PSO
CA

(a) (c)(b)

(d) (f)(e)

0 0.5 1 1.5 2 2.5 3
−350

−300

−250

−200

−150

−100

−50

0

50

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F4

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

15

20

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F5

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F6

BSA
RSCBSA
ABC
DE
PSO
CA

Figure 1. Cont.



Algorithms 2019, 12, 225 13 of 20

(g) (i)(h)

0 0.5 1 1.5 2 2.5 3
−12

−10

−8

−6

−4

−2

0

2

4

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F7

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−13000

−12000

−11000

−10000

−9000

−8000

−7000

−6000

−5000

−4000

−3000

Iteration times(103)

op
tim

al
 v

al
ue

F8

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−35

−30

−25

−20

−15

−10

−5

0

5

10

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F9

BSA
RSCBSA
ABC
DE
PSO
CA

(j) (l)(k)

0 0.5 1 1.5 2 2.5 3
−35

−30

−25

−20

−15

−10

−5

0

5

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F10

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F11

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F12

BSA
RSCBSA
ABC
DE
PSO
CA

(m) (o)(n)

0 0.5 1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F13

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F14

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−8.5

−8

−7.5

−7

−6.5

−6

−5.5

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F15

BSA
RSCBSA
ABC
DE
PSO
CA

(p) (r)(q)

0 0.5 1 1.5 2 2.5 3
−1.0318

−1.0316

−1.0314

−1.0312

−1.031

−1.0308

−1.0306

−1.0304

−1.0302

Iteration times(103)

op
tim

al
 v

al
ue

F16

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−0.922

−0.92

−0.918

−0.916

−0.914

−0.912

−0.91

−0.908

−0.906

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F17

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F18

BSA
RSCBSA
ABC
DE
PSO
CA

Figure 1. Cont.



Algorithms 2019, 12, 225 14 of 20

(s) (u)(t)

0 0.5 1 1.5 2 2.5 3
−3.863

−3.8625

−3.862

−3.8615

−3.861

−3.8605

−3.86

−3.8595

Iteration times(103)

op
tim

al
 v

al
ue

F19

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−3.35

−3.3

−3.25

−3.2

−3.15

−3.1

Iteration times(103)

op
tim

al
 v

al
ue

F20

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

Iteration times(103)

op
tim

al
 v

al
ue

F21

BSA
RSCBSA
ABC
DE
PSO
CA

(v) (w)

0 0.5 1 1.5 2 2.5 3
−11

−10

−9

−8

−7

−6

−5

−4

Iteration times(103)

op
tim

al
 v

al
ue

F22

BSA
RSCBSA
ABC
DE
PSO
CA

0 0.5 1 1.5 2 2.5 3
−11

−10

−9

−8

−7

−6

−5

−4

−3

Iteration times(103)

op
tim

al
 v

al
ue

F23

BSA
RSCBSA
ABC
DE
PSO
CA

Figure 1. Convergence figures on test functions F1–F23, where (a–w) indicate the convergence curves
on the functions F1–F23 respectively.

5.3. Parameter Sensitivity Analysis

To investigate the effect of parameter a in the mutation strategy for the proposed algorithm, an
experiment is designed. In the experiment, parameter a is set from 1 up to 6 and experiment results
are plotted in Figure 2, where X axial represents for the total number of iteration and Y axial stands for
the logarithm of the function optimal value. As shown in Figure 2, the performance of the proposed
RSCBSA leads to the optimal on the almost test functions when parameter a is set to 2.0.

(a) (b) (c)

0 0.5 1 1.5 2 2.5 3
−800

−700

−600

−500

−400

−300

−200

−100

0

100

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F1

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−600

−500

−400

−300

−200

−100

0

100

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F2

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−500

−400

−300

−200

−100

0

100

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F3

1
2
3
4
5
6

Figure 2. Cont.



Algorithms 2019, 12, 225 15 of 20

(d) (e) (f)

0 0.5 1 1.5 2 2.5 3
−350

−300

−250

−200

−150

−100

−50

0

50

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F4

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

14

16

18

20

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F5

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F6

1
2
3
4
5
6

(g) (h) (i)

0 0.5 1 1.5 2 2.5 3
−12

−10

−8

−6

−4

−2

0

2

4

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F7

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−13000

−12000

−11000

−10000

−9000

−8000

−7000

−6000

−5000

−4000

−3000

Iteration times(103)

op
tim

al
 v

al
ue

F8

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−30

−25

−20

−15

−10

−5

0

5

10

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F9

1
2
3
4
5
6

(j) (k) (l)

0 0.5 1 1.5 2 2.5 3
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F11

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−20

−15

−10

−5

0

5

10

15

20

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)
F12

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−35

−30

−25

−20

−15

−10

−5

0

5

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F10

1
2
3
4
5
6

(m) (n) (o)

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

20

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F13

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F14

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F15

1
2
3
4
5
6

Figure 2. Cont.



Algorithms 2019, 12, 225 16 of 20

(p) (q) (r)

0 0.5 1 1.5 2 2.5 3
−1.05

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

Iteration times(103)

op
tim

al
 v

al
ue

F16

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F17

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Iteration times(103)

op
tim

al
 v

al
ue

(lo
g1

0)

F18

1
2
3
4
5
6

(s) (t) (u)

0 0.5 1 1.5 2 2.5 3
−3.865

−3.86

−3.855

−3.85

−3.845

−3.84

−3.835

−3.83

−3.825

Iteration times(103)

op
tim

al
 v

al
ue

F19

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−3.4

−3.3

−3.2

−3.1

−3

−2.9

−2.8

−2.7

−2.6

Iteration times(103)

op
tim

al
 v

al
ue

F20

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−12

−10

−8

−6

−4

−2

0

Iteration times(103)

op
tim

al
 v

al
ue

F21

1
2
3
4
5
6

(v) (w)

0 0.5 1 1.5 2 2.5 3
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

Iteration times(103)

op
tim

al
 v

al
ue

F23

1
2
3
4
5
6

0 0.5 1 1.5 2 2.5 3
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

Iteration times(103)

op
tim

al
 v

al
ue

F22

1
2
3
4
5
6

Figure 2. Convergence curves on test functions F1–F23 for different a values, where (a–w) indicate the
convergence curves on the functions F1–F23 respectively.

5.4. Runtime Analysis

To present execution times, RSCBSA, PSO and DE are selected to run 20 times individually and
record their runtimes. The average time is computed and showed in the Figure 3. From Figure 3, it is
seen that RSCBSA obtains the best execution speed on the five benchmark problems, while DE and
PSO rank the second and third place, respectively.



Algorithms 2019, 12, 225 17 of 20

Figure 3. Runtime(s) of the three algorithms on five test problems.

5.5. Remarks

Based on the above results, some insights can be summarized: (1) RSCBSA can obtain the best
performance on the almost unimodal benchmark functions, since in the reflection mutation strategy
based on sine cosine, the best individual found so far is employed to improve the exploration ability of
the algorithm. In addition, sine cosine math models are introduced to enhance diversity. However,
RSCBSA perform badly on the multimodal test function. The reason may be that the crossover operator
is weak for enhancing diversity of population. (2) CA is the worst among the six algorithms, but CA
can perform the best on the fixed-dimension multimodal benchmark functions from Figure 1, due to
strong performance of jump-out local optimal. (3) DE has obvious advantages on the multimodal
test functions.

6. Conclusions

This study presented a new backtracking search algorithm, in which a novel reflection mutation
strategy based on sine cosine is proposed to balance exploration and exploitation ability of BSA.
The proposed algorithm (called RSCBSA) replaces mutation strategy with the proposed reflection
mutation strategy based on sine cosine. In the strategy, the best individual found so far is employed to
improve convergence speed, while sine cosine and the center of a unit simplex constructed by three
individuals selected from population or historical population are used to enhance exploitation ability.
Reflection mutation is similar to that in the Nelder–Mead method. To enhance a new trail individual
produced by mutation strategy, crossover operator of BSA is replaced with that of DE. In addition,
selection-II stage is saved to avoid the loss of the best individual. To verify the performance of RSCBSA,
a comprehensive experiment is designed. Experimental results show that the proposed RSCBSA can
obtain the best performance on the almost benchmark functions.

In the future, some work should be done to further improve performance of the algorithm.
A parameter adaptation strategy can be designed to enhance search ability of RSCBSA. RSCBSA can be
tested on some more difficult functions [47,48], to improve the effectiveness of their algorithm. RSCBSA
can be extended to discrete/combinatorial spaces using some algebraic-based strategies [49–51].
In addition, several other well-studied evolutionary algorithms (EAs), i.e., CMA-ES [52] and WOA [12]
can be combined so that the resultant algorithms can effectively complement one another.

Author Contributions: Conceptualization, C.Z. (Chong Zhou) and S.L.; methodology, C.Z. (Chong Zhou);
software, S.L.; data curation, S.L. and Y.Z.; writing–original draft preparation, C.Z. (Chong Zhou); writing–review
and editing, C.Z. (Cuijun Zhang); project administration, C.Z. (Chong Zhou); funding acquisition, C.Z. (Chong
Zhou); computing resources and other analysis tools, C.Z. (Chong Zhou).



Algorithms 2019, 12, 225 18 of 20

Funding: This research was partially funded by Natural Science Youth Foundation of Hebei Province under Grant
No. F2019403207, the High-Level Talents Research Projects of Beibu Gulf University under Grant No.2019KYQD27
and Research Fund for the Doctoral Startup Program of Hebei GEO University.

Acknowledgments: The authors thank the anonymous reviewers for their constructive comments. Chong Zhou,
Shengjie Li and Cuijun Zhang are equivalent contribution authors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization:
Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

2. Pan, Q.K.; Sang, H.Y.; Duan, J.H.; Gao, L. An improved fruit fly optimization algorithm for continuous
function optimization problems. Knowl. Based Syst. 2014, 62, 69–83. [CrossRef]

3. Soleimanpour-Moghadam, M.; Nezamabadi-Pour, H.; Farsangi, M.M. A quantum inspired gravitational
search algorithm for numerical function optimization. Inf. Sci. 2014, 267, 83–100. [CrossRef]

4. Baykasoğlu, A.; Hamzadayi, A.; Köse, S.Y. Testing the performance of teaching–learning based optimization
(TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases. Inf. Sci.
2014, 276, 204–218. [CrossRef]

5. Yaghini, M.; Khoshraftar, M.M.; Fallahi, M. A hybrid algorithm for artificial neural network training.
Eng. Appl. Artif. Intell. 2013, 26, 293–301. [CrossRef]

6. Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995;
pp. 39–43.

7. Xu, L.; Jia, H.; Lang, C.; Peng, X.; Sun, K. A novel method for multilevel color image segmentation based on
dragonfly algorithm and differential evolution. IEEE Access 2019, 7, 19502–19538. [CrossRef]

8. Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley Longman
Publishing Co., Inc.: Boston, MA, USA, 1989.

9. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International
Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995.

10. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

11. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
12. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
13. Reynolds, R.G. An introduction to cultural algorithms. In Evolutionary Programming—Proceedings of the Third

Annual Conference; World Scientific: Singapore, 1994; pp. 131–139.
14. Civicioglu, P. Backtracking search optimization algorithm for numerical optimization problems. Appl. Math.

Comput. 2013, 219, 8121–8144. [CrossRef]
15. Madasu, S.D.; Kumar, M.S.; Singh, A.K. Comparable investigation of backtracking search algorithm in

automatic generation control for two area reheat interconnected thermal power system. Appl. Soft Comput.
2017, 55, 197–210. [CrossRef]

16. Islam, N.N.; Hannan, M.; Shareef, H.; Mohamed, A. An application of backtracking search algorithm in
designing power system stabilizers for large multi-machine system. Neurocomputing 2017, 237, 175–184.
[CrossRef]

17. Kolawole, S.O.; Duan, H. Backtracking search algorithm for non-aligned thrust optimization for satellite
formation. In Proceedings of the 11th IEEE International Conference on Control & Automation (ICCA),
Taichung, Taiwan, 18–20 June 2014; pp. 738–743.

18. Yuan, X.; Wu, X.; Tian, H.; Yuan, Y.; Adnan, R.M. Parameter identification of nonlinear Muskingum model
with backtracking search algorithm. Water Resour. Manag. 2016, 30, 2767–2783. [CrossRef]

19. Lin, J. Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic
systems. Nonlinear Dyn. 2015, 80, 209–219. [CrossRef]

20. Zhao, W.; Wang, L.; Yin, Y.; Wang, B.; Yi, W.; Yin, Y. An improved backtracking search algorithm for
constrained optimization problems. In International Conference on Knowledge Science; Springer: Cham,
Switzerland, 2014.

http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1016/j.knosys.2014.02.021
http://dx.doi.org/10.1016/j.ins.2013.09.006
http://dx.doi.org/10.1016/j.ins.2014.02.056
http://dx.doi.org/10.1016/j.engappai.2012.01.023
http://dx.doi.org/10.1109/ACCESS.2019.2896673
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.amc.2013.02.017
http://dx.doi.org/10.1016/j.asoc.2017.01.018
http://dx.doi.org/10.1016/j.neucom.2016.10.022
http://dx.doi.org/10.1007/s11269-016-1321-y
http://dx.doi.org/10.1007/s11071-014-1861-8


Algorithms 2019, 12, 225 19 of 20

21. Wang, L.; Zhong, Y.; Yin, Y.; Zhao, W.; Wang, B.; Xu, Y. A hybrid backtracking search optimization algorithm
with differential evolution. Math. Probl. Eng. 2015, 2015, 1–16. [CrossRef]

22. Zhao, W.; Wang, L.; Wang, B.; Yin, Y. Best guided backtracking search algorithm for numerical
optimization problems. In Knowledge Science, Engineering and Management; Lehner, F., Fteimi, N., Eds.;
Springer International Publishing: Cham, Switzerland, 2016; pp. 414–425.

23. Tian, K. Effective self-learning backtracking search optimization algorithm. Electron. Sci. Tech. 2015, 28, 41.
24. Wang, P.; Chen, D.; Zou, F.; Li, Z. Guidance and niching backtracking search optimization algorithm. CEA

2017, 53, 126–131.
25. Chen, D.; Lu, R.; Feng, Z.; Li, S.; Peng, W. A learning and niching based backtracking search optimisation

algorithm and its applications in global optimisation and ANN training. Neurocomputing 2017, 266, 579–594.
[CrossRef]

26. Wang, X.; Liu, S.; Tian, W. Improved backtracking search optimization algorithm with new effective mutation
scale factor and greedy crossover strategy. J. Comput. Appl. 2014, 34, 2543.

27. Duan, H.; Luo, Q. Adaptive backtracking search algorithm for induction magnetometer optimization.
IEEE Trans. Magn. 2014, 50, 1–6. [CrossRef]

28. Nama, S.; Saha, A.K.; Ghosh, S. Improved backtracking search algorithm for pseudo dynamic active earth
pressure on retaining wall supporting c-Φ backfill. Appl. Soft Comput. 2016, 52, 885–897. [CrossRef]

29. Chen, X.; Liu, S.; Wang, Y. Emergency resources scheduling based on improved backtracking search
optimization algorithm. Comput. Appl. Softw. 2015, 32, 235–238.

30. Askarzadeh, A.; Coelho, L.D.S. A backtracking search algorithm combined with Burger’s chaotic map
for parameter estimation of PEMFC electrochemical model. Int. J. Hydrog. Energy 2014, 39, 11165–11174.
[CrossRef]

31. Shaheen, A.M.; El-Sehiemy, R.A.; Farrag, S.M. Integrated strategies of backtracking search optimizer for
solving reactive power dispatch problem. IEEE Syst. J. 2016, PP, 1–10. [CrossRef]

32. Ali, A.F. A memetic backtracking search optimization algorithm for economic dispatch problem.
Egypt. Comput. Sci. J. 2015, 39, 56–71.

33. Lin, Q.; Liang, G.; Li, X.; Zhang, C. A hybrid backtracking search algorithm for permutation flow-shop
scheduling problem. Comput. Ind. Eng. 2015, 85, 437–446. [CrossRef]

34. Modiri-Delshad, M.; Kaboli, S.H.A.; Taslimi-Renani, E.; Rahim, N.A. Backtracking search
algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options.
Energy 2016, 116, 637–649. [CrossRef]

35. Ayan, K.; Kilic, U. Optimal power flow of two-terminal HVDC systems using backtracking search algorithm.
Int. J. Electr. Power Energy Syst. 2016, 78, 326–335. [CrossRef]

36. Ahandani, M.A.; Ghiasi, A.R.; Kharrati, H. Parameter identification of chaotic systems using a shuffled
backtracking search optimization algorithm. Soft Comput. 2017, 1–23. [CrossRef]

37. Yu, K.; Liang, J.; Qu, B.Y.; Zhiping, C.; Heshan, W. Multiple learning backtracking search algorithm for
estimating parameters of photovoltaic models. Appl. Energy 2018, 226, 408–422. [CrossRef]

38. Chu, Z.; Zhou, J.; Li, C.; Fu, W.; Tian, P. A compound structure of ELM based on feature selection
and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting.
Energy Convers. Manag. 2017, 143, 360–376.

39. Lin, J.; Wang, Z.J.; Li, X. A backtracking search hyper-heuristic for the distributed assembly flow-shop
scheduling problem. Swarm Evol. Comput. 2017, 36, S2210650216305028. [CrossRef]

40. Su, Z.; Wang, H.; Peng, Y. A hybrid backtracking search optimization algorithm for nonlinear optimal control
problems with complex dynamic constraints. Neurocomputing 2016, 186, 182–194. [CrossRef]

41. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
42. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst.

2016, 96, 120–133. [CrossRef]
43. Qian, W.; Chai, J.; Zhang, Z. Adaptive differential evolution algorithm based on reflective mutation strategy.

Comput. Eng. Appl. 2018, 54, 166–173.
44. Derrac, J.; Garcia, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests

as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18. [CrossRef]

http://dx.doi.org/10.1155/2015/769245
http://dx.doi.org/10.1016/j.neucom.2017.05.076
http://dx.doi.org/10.1109/TMAG.2014.2342192
http://dx.doi.org/10.1016/j.asoc.2016.09.037
http://dx.doi.org/10.1016/j.ijhydene.2014.05.052
http://dx.doi.org/10.1109/JSYST.2016.2573799
http://dx.doi.org/10.1016/j.cie.2015.04.009
http://dx.doi.org/10.1016/j.energy.2016.09.140
http://dx.doi.org/10.1016/j.ijepes.2015.11.071
http://dx.doi.org/10.1007/s00500-017-2779-0
http://dx.doi.org/10.1016/j.apenergy.2018.06.010
http://dx.doi.org/10.1016/j.swevo.2017.04.007
http://dx.doi.org/10.1016/j.neucom.2015.12.067
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.swevo.2011.02.002


Algorithms 2019, 12, 225 20 of 20

45. Introduction to KEEL Software Suite. Available online: https://sci2s.ugr.es/keel/development.php
(accessed on 26 October 2019).

46. Bergh, F.V.D.; Engelbrecht, A.P. A study of particle swarm optimization particle trajectories. Inf. Sci.
2006, 176, 937–971.

47. García-Martínez, C.; Gutiérrez, P.D.; Molina, D.; Lozano, M.; Herrera, F. Since CEC 2005 competition
on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness.
Soft Comput. 2017, 21, 1–11. [CrossRef]

48. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.-P.; Auger, A.; Tiwari, S. Problem Definitions
and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization; Technical Report;
Nanyang Technological University: Singapore, 2005.

49. Baioletti, M.; Milani, A.; Santucci, V. Automatic Algebraic Evolutionary Algorithms; Springer: Cham,
Switzerland, 2017 .

50. Baioletti, M.; Milani, A.; Santucci, V. Algebraic Particle Swarm Optimization for the permutations search
space. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastian, Spain,
5–8 June 2017.

51. He, Y.; Wang, X. Group theory-based optimization algorithm for solving knapsack problems.
Knowl. Based Syst. 2018. [CrossRef]

52. Hansen, N. Covariance matrix adaptation evolution strategy. In Proceedings of the 10th International
Conference on Parallel Problem Solving from Nature, Dortmund, Germany, 13–17 September 2008; Springer:
Cham, Switzerland, 2008.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://sci2s.ugr.es/keel/development.php
http://dx.doi.org/10.1007/s00500-016-2471-9
http://dx.doi.org/10.1016/j.knosys.2018.07.045
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Backtracking Search Optimization Algorithm
	The Proposed Algorithm
	Initialization
	Reflection Mutation Strategy Based on Sine Cosine
	Crossover Operator
	The Framework of The Proposed Algorithm
	Complex Analysis of The Proposed Algorithm

	Experimental Simulations
	Benchmark Test Suit
	Parameter Setting

	Experimental Results
	Compared with State-of-the-Art Algorithms
	Convergence Analysis
	Parameter Sensitivity Analysis
	Runtime Analysis
	Remarks

	Conclusions
	References

