
algorithms

Article

A Reinforcement Learning Method for a Hybrid
Flow-Shop Scheduling Problem

Wei Han, Fang Guo * and Xichao Su

Department of Airborne Vehicle Engineering, Naval Aviation University, Yantai 264001, China;
hanwei70cn@tom.com (W.H.); suxich@126.com (X.S.)
* Correspondence: guofang575856@163.com

Received: 20 September 2019; Accepted: 22 October 2019; Published: 23 October 2019
����������
�������

Abstract: The scheduling problems in mass production, manufacturing, assembly, synthesis, and
transportation, as well as internet services, can partly be attributed to a hybrid flow-shop scheduling
problem (HFSP). To solve the problem, a reinforcement learning (RL) method for HFSP is studied
for the first time in this paper. HFSP is described and attributed to the Markov Decision Processes
(MDP), for which the special states, actions, and reward function are designed. On this basis, the MDP
framework is established. The Boltzmann exploration policy is adopted to trade-off the exploration
and exploitation during choosing action in RL. Compared with the first-come-first-serve strategy
that is frequently adopted when coding in most of the traditional intelligent algorithms, the rule in
the RL method is first-come-first-choice, which is more conducive to achieving the global optimal
solution. For validation, the RL method is utilized for scheduling in a metal processing workshop of
an automobile engine factory. Then, the method is applied to the sortie scheduling of carrier aircraft
in continuous dispatch. The results demonstrate that the machining and support scheduling obtained
by this RL method are reasonable in result quality, real-time performance and complexity, indicating
that this RL method is practical for HFSP.

Keywords: reinforcement learning; hybrid flow-shop scheduling problem; Markov decision processes;
sortie scheduling of carrier aircraft

1. Introduction

The traditional flow shop scheduling problem can be described as n workpieces to be processed
on m machines, each workpiece has to be machined in m machines, and each machining stage must be
worked on different machines. The order of n workpieces processed on m machines is the same, and
the goal of the problem is to find the machining order of each workpiece on each machine [1]. HFSP is
the integration of traditional flow shop scheduling and parallel machine scheduling [2,3]. With the
characteristics of flow shop and parallel machine, HFSP is difficult to solve and even the two-stage
HFSP is also an NP-hard (non-deterministic polynomial, NP) problem [4].

Based on the different type of parallel machines, HFSP can be divided into three categories: the
same parallel machine HFSP, the uniform parallel machine HFSP, and the unrelated parallel machine
HFSP [5]. In the same parallel machine HFSP, any workpiece has the same processing time on any
parallel machine at each stage. The machining time of any workpiece on any parallel machine at each
stage is inversely proportional to the processing speed of the machine in the uniform parallel machine
HFSP. Explicitly, the working time of any workpiece on two parallel machines at each stage is not
correlated with each other in the unrelated parallel machine HFSP, which is the focus of this paper.

HFSP has a strong engineering background and widely exists in chemical industry, metallurgy,
textile, machinery, semiconductor, logistics, construction, papermaking and other fields. The research of
HFSP is full of important academic significance and application value, for which HFSP has been widely

Algorithms 2019, 12, 222; doi:10.3390/a12110222 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-9893-1994
http://dx.doi.org/10.3390/a12110222
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/11/222?type=check_update&version=2

Algorithms 2019, 12, 222 2 of 15

studied and applied up to now. To solve the HFSP, exact algorithms [6,7], heuristic algorithms [8],
and intelligent algorithms [9–11] are mainly taken into account. Though the exact algorithms can get
the optimal solution theoretically, its computation time is usually unacceptable, resulting in it only
being suitable for solving small-scale HFSP. Heuristic algorithms, which are usually based on specific
heuristic rules, can quickly obtain the solution of the problem; it is difficult, however, to guarantee the
quality of the solution. In the past few years, an array of intelligent algorithms has been proposed and
can be applied to solve HFSP effectively.

RL is an algorithmic method for solving sequential decision problems where an agent learns
through trial and error interacting with its environment. As such, the agent is connected to the
environment via perception and action such that the agent seeks to discover a mapping of system states
to optimal agent actions. Having been a research hotspot in the field of machine learning in recent years,
RL is widely adopted in industrial manufacturing [12], simulation [13], robot control [14], optimization
and scheduling [15,16], game [17,18] and other fields, and achieves impressive performances.

Q-Learning [19], one of the most popular algorithms of RL, is used in this paper. In the Q-learning
algorithm, the goal is to find a state–action pair value, which represents the long–term expected reward
for each pair of state and action. The optimal state–action values for a system, proven to converge to
the optimal state–action values, represent the optimal policy that an agent intends to learn.

To the best of the authors’ knowledge, there has not been any reported research focused on HFSP
with the RL method before. In this paper, the solution methods of HFSP and RL method are described
in detail in the literature review section. The solving model is established in Section 3 and is attributed
to the MDP framework in Section 4. In Section 5, the reinforcement learning for HFSP is verified on
scheduling in the metal processing workshop of an automobile engine factory. Then, the method is
utilized to the sortie scheduling of carrier aircraft in Section 6 and the concluding remarks are contained
in the last section.

2. Literature Review

For solving HFSP, a lot of precious works have been done. On exact algorithms, Haouar et al. [20]
proposed a branch and bound method (B&B) based on an improved search strategy. When the maximal
number of workpieces reaches 1000, the deviation from the lower limit remains within 0.1%, but
its performance remains to be improved for medium-scale problems with workpieces from 20 to 50.
Tang et al. [21] studied real-time and wait-free HFSP in the background of steel production, established
an integer programming model, and proposed an improved Lagrangian relaxation algorithm, which can
achieve satisfactory optimization performance in fewer iterations, especially for large-scale problems.

Many scholars have devoted themselves to the research of heuristic algorithms for the rapidity
of solution. To solve the two-stage unrelated parallel machine problem, Riane et al. [22] proposed
a heuristic method based on dynamic programming and Low et al. [23] put forward a heuristic
method based on an improved Johnson rule, which effectively solves two-stage HFSP with irrelevant
parallel computers. In multi-stage HFSP, due to the complexity of the problem, the study of heuristic
methods is rare. Hong et al. [24] proposed an improved fuzzy heuristic rule and studied the problem
including fuzzy data. Ying et al. [25] researched the multi-stage HFSP with multiprocessors applying
heuristic algorithm.

Recently, various intelligent algorithms have been being constantly proposed and effectively solve
the HFSP, including the genetic algorithm (GA) [9], the simulated annealing algorithm [10], the tabu
search algorithm [26], the ant colony optimization algorithm [27], the particle swarm optimization
algorithm [28], the grey wolf optimization algorithm [29], the artificial bee colony algorithm [30], the
artificial immune system (AIS) [31], the agent-based method [32], and so on. Xiao et al. [9] proposed a
GA based on heuristic rules. To generate feasible scheduling, GA is used to allocate and sort machines
in the first stage, while, in the second stage, FCFS is used to sort machines. Liu et al. [31] established a
mixed-integer nonlinear programming model of HFSP with the minimum of makespan as the objective

Algorithms 2019, 12, 222 3 of 15

function. Yu et al. [32] studied a multi-agent based hybrid flow shop dynamic scheduling system, in
which the coordination mechanism between the various agents was designed.

Overall, a number of algorithms have been proposed to address HFSP. To the best of the authors’
knowledge, nevertheless, there is still no existing research about the RL method for HFSP.

Being always the focus of academic research, RL has achieved remarkable development till now
and the performance of RL algorithm has been continuously improved. Haarnoja et al. [33] proposed
soft actor–critic and an off-policy actor–critic deep RL algorithm based on the maximum entropy
reinforcement learning framework where the actor aims to maximize the expected reward while also
maximizing entropy. Their method achieves state-of-the-art performance on a range of continuous
control benchmark tasks. Haarnoja et al. [34] studied how maximum entropy policies, which are
trained using soft Q-learning, can be applied to real-world robotic manipulation. Gao et al. [35]
proposed a unified RL algorithm, Normalized Actor–Critic, that effectively normalizes the Q-function,
reducing the Q-values of actions unseen in the demonstration data. Gu et al. [36] explored algorithms
and representations to reduce the sample complexity of deep reinforcement learning for continuous
control tasks. Nevertheless, existing literature about the RL for HFSP is still nowhere to be found.

The HFSP is researched in this paper and attributed to MDP for which the special states, actions
and reward function are designed, on whose basis the Q-learning method is adopted to find the
optimal policy.

3. Description of the Hybrid Flow-Shop Scheduling Problem

In this section, HFSP is introduced, and its standard model is established.
A typical HFSP is shown in Figure 1, there are S stages in total in the process of HFSP, and m1,

m2, . . . , mS machines are included in each stage, respectively. Every workpiece must be worked in all
stages in a certain order. In each stage, however, any one machine can be selected for each workpiece.
For instance, the sequence [start, M12, M24, . . . , MS3, stop] can be one of an order of a workpiece
being machined.

Algorithms 2019, 12, x FOR PEER REVIEW 3 of 16

dynamic scheduling system, in which the coordination mechanism between the various agents was

designed.

Overall, a number of algorithms have been proposed to address HFSP. To the best of the authors’

knowledge, nevertheless, there is still no existing research about the RL method for HFSP.

Being always the focus of academic research, RL has achieved remarkable development till now

and the performance of RL algorithm has been continuously improved. Haarnoja et al. [33] proposed

soft actor–critic and an off-policy actor–critic deep RL algorithm based on the maximum entropy

reinforcement learning framework where the actor aims to maximize the expected reward while also

maximizing entropy. Their method achieves state-of-the-art performance on a range of continuous

control benchmark tasks. Haarnoja et al. [34] studied how maximum entropy policies, which are

trained using soft Q-learning, can be applied to real-world robotic manipulation. Gao et al. [35]

proposed a unified RL algorithm, Normalized Actor–Critic, that effectively normalizes the Q-

function, reducing the Q-values of actions unseen in the demonstration data. Gu et al. [36] explored

algorithms and representations to reduce the sample complexity of deep reinforcement learning for

continuous control tasks. Nevertheless, existing literature about the RL for HFSP is still nowhere to

be found.

The HFSP is researched in this paper and attributed to MDP for which the special states, actions

and reward function are designed, on whose basis the Q-learning method is adopted to find the

optimal policy.

3. Description of the Hybrid Flow-Shop Scheduling Problem

In this section, HFSP is introduced, and its standard model is established.

A typical HFSP is shown in Figure 1, there are S stages in total in the process of HFSP, and m1,

m2, …, mS machines are included in each stage, respectively. Every workpiece must be worked in all

stages in a certain order. In each stage, however, any one machine can be selected for each workpiece.

For instance, the sequence [start, M12, M24, …, MS3, stop] can be one of an order of a workpiece being

machined.

M11

start

M12

M1m1

M21

M22

M2m2

MS1

MS2

MSms

stop

stage 1 stage 2 stage S

Figure 1. Flow chart of a typical HFSP.

In HFSP, several assumptions are usually made as follows: first, once a workpiece starts to be

worked, it cannot be interrupted; second, a machine can only process one workpiece at a time; third,

a workpiece can only be processed on one machine at a time; fourth, workpieces can be machined on

any machine at each stage; fifth, there is unlimited storage capacity between any two stages (i.e., a

workpiece can wait for any time between the two processes).

HFSP is divided into the determined initial sequence HFSP and the non-determined initial

sequence HFSP in this paper, according to whether the initial sequence of the workpiece is

deterministic or not. Knowing the processing time in each stage of the workpiece on each machine,

the purpose of HFSP is to determine the distribution of each workpiece on the machines at each stage

to minimize the maximum completion time for the former. For the latter, the ordering of all

workpieces is necessary to define additionally.

Figure 1. Flow chart of a typical HFSP.

In HFSP, several assumptions are usually made as follows: first, once a workpiece starts to be
worked, it cannot be interrupted; second, a machine can only process one workpiece at a time; third, a
workpiece can only be processed on one machine at a time; fourth, workpieces can be machined on
any machine at each stage; fifth, there is unlimited storage capacity between any two stages (i.e., a
workpiece can wait for any time between the two processes).

HFSP is divided into the determined initial sequence HFSP and the non-determined initial
sequence HFSP in this paper, according to whether the initial sequence of the workpiece is deterministic
or not. Knowing the processing time in each stage of the workpiece on each machine, the purpose of
HFSP is to determine the distribution of each workpiece on the machines at each stage to minimize the
maximum completion time for the former. For the latter, the ordering of all workpieces is necessary to
define additionally.

Ji(i = 1, 2, . . . , n) indicates the workpieces needed to be worked, in which n is the total number of
workpieces. m j(j = 1, 2, . . . , S) is the number of machines in each stage. ti, j,l is the machining time
of the workpiece Ji at stage j, machine l. ct j, j+1(j = 1, 2, . . . , S − 1) is the time cost on the way from

Algorithms 2019, 12, 222 4 of 15

stage j to stage j + 1(j = 1, 2, . . . , S− 1). ATi, j,l is the arrival time of workpiece Ji at stage j, machine
l. Correspondingly, STi, j,l and ETi, j,l indicate the starting and ending times of workpiece Ji which is
machined at stage j, machine l. BT j,l and FT j,l reveal the time when the machine l at stage j starts to
work and stops working. The standard mathematical model of HFSP is as follows:

minmax
{
ETi, j,l

}
i = 1, 2, . . . , n; j = S; l = 1, 2, . . . , mS, (1)

s.t.
m j∑
l=1

yi, j,l = 1 i = 1, 2, . . . , n; j = 1, 2, . . . , S, (2)

where yi, j,l = 1 if workpiece Ji is worked at stage j, machine l, else yi, j,l = 0

STi, j,l = max
{
ATi, j,l, FT j,l

}
i = 1, 2, . . . , n; j = 1, 2, . . . , S; l = 1, 2, . . . , m j, (3)

ETi, j,l = STi, j,l + ti, j,l i = 1, 2, . . . , n; j = 1, 2, . . . , S; l = 1, 2, . . . , m j, (4)

ATi, j+1,l = ETi, j,l + ct j, j+1 i = 1, 2, . . . , n; j = 1, 2, . . . , S− 1, (5)

BT j,l = STi, j,l j = 1, 2, . . . , S; l = 1, 2, . . . , m j, (6)

if workpiece Ji is the first one machined at stage j, machine l and without interruption.

FT j,l = BT j,l + ti, j,l, (7)

if workpiece Ji is worked at stage j, machine l.
Equation (1) is the objective function, minimizing the maximum ending time of all workpieces in

the last stage S. Equation (2) ensures that there is only one workpiece at any machine in any stage.
Equation (3) clears the time limitation of arrival and start. Equation (4) shows the relationship between
the completion time and the start time of the process at the same stage. Equation (5) calculates the
arrival time on the next stage utilizing the end time of the previous stage. Equations (6) and (7) reveal
the time when the machine l at stage j starts to work and stops working.

4. MDP Framework for HFSP

In this section, MDP is introduced to which HFSP is attributed. Firstly, the MDP framework
is described in detail, and the states and actions of MDP framework for HFSP are determined in
Section 4.2. The exploration and exploitation policy, an improved ε-greedy policy and Boltzmann
exploration policy included, is analyzed in Section 4.3. The reward function based on machining time
of each workpiece is designed in Section 4.4. The RL process for HFSP is contained in the last section.

4.1. Description of MDP

Reinforcement learning is usually described with an MDP. In HFSP, obviously, the location of the
workpiece in the next stage is only related to the current position, but not to the previous location,
which is Markov property, manifesting HFSP can be attributed to a MDP.

An MDP is a tuple (S, A, P, R), where S denotes a set of states, A is a set of actions, P : S×A 7→ [0, 1)
is the state transition distribution upon taking action a in state s, and R : S×A× S′ 7→ R is the reward
after taking action a and transferring to state s′ in state s.

An agent in reinforcement learning learns the policy π by continuously interacting with the
environment over a number of time steps and getting environmental feedback, at each time step t, the
agent selects the action a at state st and transfers to the next state st+1 from the policy π(s). A policy
π : S×A 7→ R+ is a mapping from state–action pair to the probability of taking action a in state s, so∑

a∈A π(s, a) = 1 (∀s ∈ S).

Algorithms 2019, 12, 222 5 of 15

The Q-learning algorithm is one of the most illustrious algorithms in reinforcement learning. The
action-value, or Q(s, a), of a particular state under policy π, is:

Q(s, a)= E(
∞∑

k=0

γkrt+k+1| s 0= s, a0= a,π), (8)

where rt+1(s, a) is the reward function in time step t, and γ is the discount factor.
The Bellman operator and the optimal Bellman operator for policy is defined in literature [37] as

Equations (9) and (10):
TπQ(s, a) = E

s′,r,a′
(r(s, a) + γQ(s′, a′)), (9)

T∗Q(s, a) = E
s′,r

(r(s, a) + γmax
a′

Q(s′, a′)), (10)

where the expectation is over next state s′ ∼ P(·, s, a), the reward r(s, a), and the action a′ is from policy
π(s′). Both the Q-value function and the optimal Q-value function are the fixed points of corresponding
Bellman equations. Bertsekas [38] proved the uniqueness of the fixed point of each operator and the
convergence of value iteration. The iteration equation of Q-value is represented as follows [39]:

Q(s, a) = Q(s, a) + α(r + γmax
a′

Q(s′, a′) −Q(s, a)), (11)

where α is the learning rate.

4.2. Abstraction of State and Action for HFSP

States are the tuple (stage, workpiece) in the MDP framework for HFSP, in which every workpiece
chooses action and transfers to the next stage. In addition, the start stage is taken as an initial stage,
where all workpieces lie before starting to be worked. When all workpieces in a stage transfer to the
next stage, the state transfers to the next state. Actions are the machines in each stage. Take machine 1
at stage 1 in Figure 1 as an example. There are m2 machines in next stage, so any workpieces machined
on machine 1 at stage 1 have m2 actions to choose.

4.3. Exploration and Exploitation

The agent needs to continuously interact with the environment in Q-learning. The agent selecting
the correct action based on the perceived external information determines whether the interaction
is effective or not. When selecting an action, the action maximizing the Q-value function should be
selected in each state to obtain as many rewards as possible; this is exploitation. On the other hand,
the agent should explore the better actions to obtain the optimal Q-value so as not to fall into the
local optimal value. To solve the problem, ε-greedy policy is often adopted, where the agent, given a
coefficient ε ∈ [0, 1], with the probability 1− ε, selects the action with the largest Q-value and randomly
selects an action to execute with the left ε probability. Undoubtedly, ε-greedy policy increases the
probability to choose the better action at the beginning of learning. However, it affects the learning
efficiency with an array of explorations when the policy is close to the optimal one in the later stage of
study. Two solutions are usually available to solve the flaw of ε-greedy policy.

4.3.1. Improved ε-Greedy Policy

The central blemish of ε-greedy policy is its high exploration at the end of study, for which an
iteration equation is put forward in this paper, as shown in Equation (12), where the coefficient ε
gradually decreases with the episode of learning:

ε = ε0 − βe. (12)

Algorithms 2019, 12, 222 6 of 15

This can be called improved ε-greedy policy where β is a small decimal, and e is the number of
iterations. Note that ε is not less than 0 must be guaranteed.

4.3.2. Boltzmann Exploration Policy

Boltzmann exploration policy is to determine the probability that each action is selected with a
random distribution function. Given random temperature coefficient T(> 1), the probability of the ith

action being selected in time step t at state is:

p(st, ait) =
eQ(st,ait)/T

N∑
i

eQ(st,ait)/T

, (13)

where N is the total number of actions.
The temperature coefficient T is high and Q-value is relatively small at the beginning of the

learning, resulting in all the action to be chosen with nearly equal probabilities, which is beneficial for
the agent to explore the actions with non-optimal Q-value. As the learning progresses, the temperature
coefficient T decreases gradually, and the probability changes with Q(s, a), the probability of adopting
random actions decrease, which is instrumental in selecting the optimal action with the largest Q-value.
In the later stage of learning, the temperature parameter T tends to 0, Q(s, a) is the largest, and the
corresponding action is selected with the largest probability, and the action with the largest Q-value is
selected each time, which means the policy change to greedy policy.

The iteration of temperature coefficient is usually achieved by three policies:

T = λeT0, (14)

T =
T0

log(e + e0)
, (15)

T =
T0

e + e0
, (16)

where λ(∈ (0, 1)) is the cooling parameter, often set as a decimal close to 1. e is the times of iteration
and e0 is a positive constant. T0 is the initial value of temperature coefficient T; if set too small, it will
cause the local minimum value of the algorithm; on the contrary, the calculation of the algorithm will
be increased with a large T0. Equation (14) is an equivalent cooling policy, Equation (15) is logarithmic
cooling strategy, and Equation (16) is a fast cooling policy.

4.4. Reward Function Representation Based on Machining Time

Distinguishing an optimal policy from other ones is the reason why action-value, or Q(s, a), is
adopted, whose ability to express has a strong dependence on the representation of the reward function.
In addition, to achieve plummy learning results and improve learning convergence speed, reward
function representation is pivotal.

The ultimate goal of Q-learning is to maximize the cumulative reward, and the objective function
is to minimize the machining time of all workpieces in this paper. Namely, the reward function
is negatively correlated to machining time. For uniform representation, at the same time, a linear
reward function is proposed, so the reward function in reinforcement learning for HFSP is defined as
what follows:

r(s, a) = −ω× c_ti, j,l + b, (17)

c_ti, j,l = FT′j,l − BT j,l, (18)

Algorithms 2019, 12, 222 7 of 15

where c_ti, j,l is the waiting time of workpiece Ji before finishing being machined on machine l at stage j
if workpiece Ji chooses action a in stage j− 1 and transfers to machine l at stage j. FT′j,l is the updated
finishing time after machine l at stage j being selected by action a:

FT′j,l = FT j,l + ti, j,l. (19)

Note that BT j,l is the time when machine l begins to work, which is not necessarily equal to STi, j,l.
ω and b is a positive constant, making the reward function negatively correlated with c_ti, j,l. Generally,
it takes two to five to distinguish the reward function of good action from others.

4.5. Reinforcement Learning Process for HFSP

For the deterministic initial sequence HFSP, its pseudo code of solution with reinforcement
learning method is shown in Algorithm 1, and the corresponding flow chart is illustrated in Figure 2.

For the non-deterministic initial sequence HFSP, it is necessary to choose the initial sequence
before executing the below pseudo code (i.e., Algorithm 1).

Algorithm 1. The Reinforcement Learning Method for HFSP

Require: discount factor γ, learning parameter α
initialize Q arbitrarily (e.g. Q(s, a = 0;∀s ∈ S,∀a ∈ A)

for each episode do
s is initialized as the initial state STi, j,l, ETi, j,l, BT j,l, FT j,l are initialized as 0, ATi, j,l is initialized with the

initial sequence.
repeat

for each state do
repeat

ATi, j+1,k = ETi, j,k (j = 1, 2, . . . , S−1)

for each workpiece Ji do
repeat

choose an action a ∈ A(s) based on Q and an exploration strategy
perform action a
observe the new state s′ and receive reward r
Q(s, a) := Q(s, a) + α(r + γmax

a
Q(s′a) −Q(s, a))

i = i + 1
until all workpieces transfer to s′

sort the workpiece with the ending time of machine with ascending
until s′ is a goal state

until episode is the last episode
end

Algorithms 2019, 12, 222 8 of 15

Algorithms 2019, 12, x FOR PEER REVIEW 8 of 16

 perform action a

 observe the new state 's and receive reward r

 (,) : = (,) (max (',) (,))
a

Q s a Q s a r Q s a Q s a

 1i i

 until all workpieces transfer to 's

 sort the workpiece with the ending time of machine with ascending

 until 's is a goal state

 until episode is the last episode

end

start
set learning rate, discount

factor and initialize Q-value

whether the episode

is the last one？

sort the workpieces with

ending time with

ascending

 initialize state and time

parameter
episode=episode+1

whether the state

 is terminal？

update the arrival time

whether all workpieces

transfer to next state?

choose an action based on Q-

value and exploration policy

perform action
transfer to next state and

receive the reward

update the Q-value

turn next workpiece

output the minimum and

the Gantt chart

transfer to next state

end

yes

no

no

yes

yes

no

Figure 2. The flow chart of the reinforcement learning for HFSP.

5. Case Validation

In this section, an example of scheduling in the metal processing workshop of an automobile

engine factory, a non-deterministic initial sequence HFSP, is utilized to verify the proposed

algorithm. In addition, the reasonability of the parameters is verified and the complexity is analyzed.

5.1. Case Description

Compared to deterministic sequence HFSP, non-deterministic sequence HFSP poses a greater

challenge to reinforcement learning for its stochastic initial arrival sequence. Only the non-

deterministic sequence HFSP is validated, therefore, in this paper.

In this case, there are 12 workpieces, tagged with J1 to J12, needing to be processed. Each

workpiece has three processes: lathing, planning, and grinding. Three lathes, two planers and four

grinders (each labeled with Mx) are equipped. Each machine has different processing times for each

different workpieces, which is shown in Table 1 (data from [40]). The time of scheduling between two

machines in different stages is ignored in this case.

Figure 2. The flow chart of the reinforcement learning for HFSP.

5. Case Validation

In this section, an example of scheduling in the metal processing workshop of an automobile
engine factory, a non-deterministic initial sequence HFSP, is utilized to verify the proposed algorithm.
In addition, the reasonability of the parameters is verified and the complexity is analyzed.

5.1. Case Description

Compared to deterministic sequence HFSP, non-deterministic sequence HFSP poses a greater
challenge to reinforcement learning for its stochastic initial arrival sequence. Only the non-deterministic
sequence HFSP is validated, therefore, in this paper.

In this case, there are 12 workpieces, tagged with J1 to J12, needing to be processed. Each
workpiece has three processes: lathing, planning, and grinding. Three lathes, two planers and four
grinders (each labeled with Mx) are equipped. Each machine has different processing times for each
different workpieces, which is shown in Table 1 (data from [40]). The time of scheduling between two
machines in different stages is ignored in this case.

Table 1. Processing time of each workpiece on each machine.

Workpiece J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

lathing
M1 2 4 6 4 4 6 5 3 2 3 5 6
M2 2 5 5 3 5 5 2 5 5 6 2 5
M3 3 4 4 4 3 4 4 4 4 4 4 4

planing M1 4 3 4 6 3 2 4 7 1 3 3 5
M2 5 4 2 5 1 3 6 5 2 4 5 4

grinding

M1 2 3 3 3 3 4 3 3 7 4 6 3
M2 3 4 4 6 4 3 4 3 8 8 7 4
M3 2 5 2 5 6 9 3 6 6 6 6 7
M4 3 4 5 8 5 5 5 4 5 7 5 5

5.2. Parameters Setting

The parameters in the reinforcement learning method for HFSP are discussed in this section.
When trading-off the exploitation and exploration, the Boltzmann exploration policy with fast

cooling policy (i.e., Equation (14)) is utilized. The initial temperature coefficient T0 is set as 500, which

Algorithms 2019, 12, 222 9 of 15

is relative to the different episodes of simulation of each initial sequence. The parameters of Q-learning
are set as follows: the learning rate α = 0.1 and discount factor γ = 0.9.

In Equation (17), to discuss how the coefficients ω in reward function affect the scheduling result
(the minimum scheduling time), a random initial sequence [1–12] is tested when ω is set as the integers
from 1 to 6, respectively, during which the value of b is set as 200 to satisfy that the reward function
r(s, a) is not less than 0. The minimal scheduling time of 200 episodes’ simulation, which goes with the
coefficient ω, is illustrated in Figure 3. From the result shown in Figure 3, the reward function can be
set as r(s, a) = −4c_ti, j,l + 200.

Algorithms 2019, 12, x FOR PEER REVIEW 9 of 16

Table 1. Processing time of each workpiece on each machine.

Workpiece J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

lathing

M1 2 4 6 4 4 6 5 3 2 3 5 6

M2 2 5 5 3 5 5 2 5 5 6 2 5

M3 3 4 4 4 3 4 4 4 4 4 4 4

planing
M1 4 3 4 6 3 2 4 7 1 3 3 5

M2 5 4 2 5 1 3 6 5 2 4 5 4

grinding

M1 2 3 3 3 3 4 3 3 7 4 6 3

M2 3 4 4 6 4 3 4 3 8 8 7 4

M3 2 5 2 5 6 9 3 6 6 6 6 7

M4 3 4 5 8 5 5 5 4 5 7 5 5

5.2. Parameters Setting

The parameters in the reinforcement learning method for HFSP are discussed in this Subsection.

When trading-off the exploitation and exploration, the Boltzmann exploration policy with fast

cooling policy (i.e., Equation (14)) is utilized. The initial temperature coefficient 0T is set as 500,

which is relative to the different episodes of simulation of each initial sequence. The parameters of

Q-learning are set as follows: the learning rate and discount factor =0.9 .

In Equation (17), to discuss how the coefficients in reward function affect the scheduling result

(the minimum scheduling time), a random initial sequence [11, 2, 6, 9, 3, 4, 1, 7, 5, 8, 12, 10] is tested

when is set as the integers from 1 to 6, respectively, during which the value of b is set as 200 to

satisfy that the reward function (,)r s a is not less than 0. The minimal scheduling time of 200

episodes’ simulation, which goes with the coefficient , is illustrated in Figure 3. From the result

shown in Figure 3, the reward function can be set as .

Figure 3. The effect of coefficient on minimal scheduling time for a random initial sequence.

5.3. Case Results

On the basis of Subsection 3.5, 100 initial sequences are generated randomly. For each initial

sequence, 200 episodes’ simulation are conducted, of which the minimal scheduling time is saved.

The scheduling time of 100 initial sequences is minimized as the optimal scheduling time, and the

corresponding initial sequence and computing time are also recorded.

The computing environment is 2.20 GHz, 8.00 GB, Win 10, Dell PC (City, US State abbrev. if

applicable, Country), in which the simulation is executed 10 times in Spyder 3.3.3 in Anaconda 3

(March 2019) (64-bit) (Manufacturer, City, US State abbrev. if applicable, Country). The optimal

0.1

, ,(,) 4 _ 200i j lr s a c t

Figure 3. The effect of coefficient ω on minimal scheduling time for a random initial sequence.

5.3. Case Results

On the basis of Section 4.5, 100 initial sequences are generated randomly. For each initial sequence,
200 episodes’ simulation are conducted, of which the minimal scheduling time is saved. The scheduling
time of 100 initial sequences is minimized as the optimal scheduling time, and the corresponding initial
sequence and computing time are also recorded.

The computing environment is 2.20 GHz, 8.00 GB, Win 10, Dell PC (City, US State abbrev. if
applicable, Country), in which the simulation is executed 10 times in Spyder 3.3.3 in Anaconda 3
(March 2019) (64-bit) (Manufacturer, City, US State abbrev. if applicable, Country). The optimal
scheduling time of 10 executing is listed in Table 2 where one result calculated by AIS [31] and 10
results by GA [40] are listed for comparison as well.

Table 2. The comparison of optimal results for 10 times (min).

Times 1 2 3 4 5 6 7 8 9 10

AIS 27
GA 29 30 29 29 29 31 29 29 29 30
RL 27 28 28 28 27 28 28 27 28 28

As Table 2 illustrates, the RL method can find a better solution of 27 min in contrast with
GA. However, the result from RL is not better than the result from AIS, which may be due to the
non-deterministic sequence of HFSP and the low stochastic sequences in the RL method.

The initial sequence corresponding to one of the optimal values in the RL method is [2–12] (the
result of the 8th execution), of which the Gantt chart is shown in Figure 4.

In Figure 4, the y-label is the location where the workpieces are worked in each stage, for example,
‘S3_1’ indicates the first machine of the third stage or grinding stage. The annotation in the chart
manifests the stage of machining and the tag of workpiece (e.g., ‘2-J1’ demonstrates the workpiece
with tag J1 being worked in the second stage or planing stage). The computing time is 20.5 s.

Algorithms 2019, 12, 222 10 of 15

Algorithms 2019, 12, x FOR PEER REVIEW 10 of 17

scheduling time of 10 executing is listed in Table 2 where one result calculated by AIS [31] and 10
results by GA [40] are listed for comparison as well.

Table 2. The comparison of optimal results for 10 times (min).

Times 1 2 3 4 5 6 7 8 9 10
AIS 27
GA 29 30 29 29 29 31 29 29 29 30
RL 27 28 28 28 27 28 28 27 28 28

As Table 2 illustrates, the RL method can find a better solution of 27 min in contrast with GA.
However, the result from RL is not better than the result from AIS, which may be due to the non-
deterministic sequence of HFSP and the low stochastic sequences in the RL method.

The initial sequence corresponding to one of the optimal values in the RL method is
[10,6,5,8,2,11,1,4,3,7,12,9] (the result of the 8th execution), of which the Gantt chart is shown in Figure
4.

Figure 4. Gantt chart of one of the optimal scheduling of workpieces.

In Figure 4, the y-label is the location where the workpieces are worked in each stage, for
example, ‘S3_1’ indicates the first machine of the third stage or grinding stage. The annotation in the
chart manifests the stage of machining and the tag of workpiece (e.g., ‘2-J1’ demonstrates the
workpiece with tag J1 being worked in the second stage or planing stage). The computing time is 20.5
s.

5.4. Results Discussion

The complexity of three methods are analyzed, and the result is discussed in this Subsection.
The complexity of the RL method is O(|IS||E||S||n|), where IS is the number of initial

sequences, E is the number of episodes and S, n is the number of stages and workpieces. The
complexity of GA is O(|N||EG||S||n|), where N is population size, EG is evolutionary generations
and S, n is the same as those in RL. The complexity of AIS is O(|N||EG||S||n|), the meaning of the
parameters is the same as those in GA, but different values of N, EG are set in the scheduling problem.
The complexity, the optimal scheduling time, and the computing time are analyzed and listed in
Table 3.

Figure 4. Gantt chart of one of the optimal scheduling of workpieces.

5.4. Results Discussion

The complexity of three methods are analyzed, and the result is discussed in this section.
The complexity of the RL method is O(|IS||E||S||n|), where IS is the number of initial sequences, E is

the number of episodes and S, n is the number of stages and workpieces. The complexity of GA is
O(|N||EG||S||n|), where N is population size, EG is evolutionary generations and S, n is the same as those
in RL. The complexity of AIS is O(|N||EG||S||n|), the meaning of the parameters is the same as those
in GA, but different values of N, EG are set in the scheduling problem. The complexity, the optimal
scheduling time, and the computing time are analyzed and listed in Table 3.

Table 3. The complexity and optimal scheduling time of three methods.

Method AIS [31] GA [40] RL

parameter values N = 40, EG = 100, S = 3, n = 12 N = 30, EG = 100, S = 3, n = 12 IS = 100, E = 200, S = 3, n = 12
complexity O(|N||EG||S||n|) O(|N||EG||S||n|) O(|IS||E||S||n|)

optimal scheduling time 27 min 29 min 27 min
computing time – – 19 to 21 s

Table 3 shows that the complexity of three methods is in the same order of magnitude in terms of
the complexity. In terms of the optimal scheduling time, however, the AIS and RL methods are better
than the GA method. The computing time is not given in AIS and GA but usually tens of seconds, the
19 to 21 s of computing time of the RL method can meet the actual needs of production.

Obviously, the non-deterministic initial sequences increase the complexity of the RL method
and prominently influence the result quality. In addition, the results from the RL method, of course,
remain to be improved, such as the effects of the parameters on the result, including γ, α, ω, b, and
T0, are not fully explored. Furthermore, it is reasonable to reason that the complexity of the RL
method will be prominently superior to the AIS and GA method for the deterministic initial sequence
scheduling problem.

Stated thus, though remaining to be improved, the RL method precedes GA in terms of the
optimal scheduling time for the non-deterministic initial sequence scheduling problem, and it has
tremendous potential to solve the deterministic initial sequence scheduling problem with appropriate
parameter setting.

6. Application

In this section, the theory of reinforcement learning method for HFSP is applied to the sortie
scheduling of carrier aircraft in continuous dispatch.

6.1. Description of Carrier Aircraft Deck Operations Problem

Multi-station support is still widely used in carrier aircraft deck operations today. Efficient
carrier aircraft deck operations play an important role in improving aircraft carrier combat capability.
There are many tasks of deck aviation support for carrier aircraft, which involve the transfer of carrier

Algorithms 2019, 12, 222 11 of 15

aircraft among technical stations and the allocation of various resources on deck. According to the
content of support, the technical station is divided into detection and maintenance stage, refuel stage,
rearm stage, and ejection stage [41], each of which is equipped with four stations in this paper (i.e.,
station with certain support personnel and resources) to provide support services, and the support
time of each station is distinct due to the different capabilities of personnel. The support time of
each station for a similar carrier aircraft is shown in Table 4, which is from the supporting experience.
Since different stations are located at different locations, it takes a certain amount of time to schedule
between two stations. Transferring time between detection and maintenance stage and refuel stage, and
refuel stage and rearm stage both obey Gauss distribution N(2, 0.1); rearm stage and ejection stage obey
Gauss distribution N(4, 0.2).

Table 4. The support time of each station for a similar carrier aircraft (minute).

Stage Detection and Maintenance Refuel Rearm Ejection

station 1 11 15 20 2
station 2 9 13 15 2
station 3 10 12 17 3
station 4 13 16 13 3

Regarding the stations as machines, the carrier aircrafts needing to be supported as similar
workpieces, sortie scheduling of carrier aircraft, evidently, can be attributed to HFSP considering the
transferring time between stages. The flow chart of carrier aircraft deck operations is shown in Figure 5.

Algorithms 2019, 12, x FOR PEER REVIEW 12 of 16

Regarding the stations as machines, the carrier aircrafts needing to be supported as similar

workpieces, sortie scheduling of carrier aircraft, evidently, can be attributed to HFSP considering the

transferring time between stages. The flow chart of carrier aircraft deck operations is shown in Figure

5.

S1

landing

S2

S4

S1

S2

S4

taking off

detection and
 maintenance rearmrefuel

S3 S3

S1

S2

S4

S1

S2

S4

S3 S3

ejection

schedule schedule schedule

Figure 5. Flow chart of carrier aircraft aviation support scheduling.

6.2. Simulation Results

The Boltzmann exploration policy is adopted when choosing action, and the fast cooling policy

(i.e., Equation (14)) is selected when iterating the temperature coefficient T . According to the

principle in Subsection 5.2, the relative parameters are set as follows: 0 990T , 0.9 , 0.1 ,

and , ,(,) 2 _ 150i j lr s a c t .

Suppose 20 carrier aircraft (labeled with 1 to 20) with similar conditions come to the detection and

maintenance stage every 2 min, and the arrival time of the first one is 0. Thus, the arrival time to the

first stage and the initial sequence of all aircraft is deterministic.

One thousand episodes of simulation are conducted in the same computing environment with

Subsection 4.3, costing 2.03 s, the curve of maximal ending time of carrier aircraft support with an

episode is shown in Figure 6(a), and the former 200 episodes are shown in Figure 6(b).

(a)

Figure 5. Flow chart of carrier aircraft aviation support scheduling.

6.2. Simulation Results

The Boltzmann exploration policy is adopted when choosing action, and the fast cooling policy
(i.e., Equation (14)) is selected when iterating the temperature coefficient T. According to the
principle in Section 5.2, the relative parameters are set as follows: T0 = 900, γ = 0.9, α = 0.1, and
r(s, a) = −2c_ti, j,l + 150.

Suppose 20 carrier aircraft (labeled with 1 to 20) with similar conditions come to the detection and
maintenance stage every 2 min, and the arrival time of the first one is 0. Thus, the arrival time to the
first stage and the initial sequence of all aircraft is deterministic.

One thousand episodes of simulation are conducted in the same computing environment with
Section 4.3, costing 2.03 s, the curve of maximal ending time of carrier aircraft support with an episode
is shown in Figure 6a, and the former 200 episodes are shown in Figure 6b.

As illustrated in Figure 6, the curve converges from around the 90th episode, and the mean and
variance of support time of the last 900 episodes are 135.3 min and 0.26, respectively, which prove the
robustness of this method. To make clear the distribution of each carrier aircraft on the station at each
stage, the Gantt chart of carrier aircraft scheduling of the 1000th episode is illustrated in Figure 7.

Algorithms 2019, 12, 222 12 of 15

Algorithms 2019, 12, x FOR PEER REVIEW 12 of 16

Regarding the stations as machines, the carrier aircrafts needing to be supported as similar

workpieces, sortie scheduling of carrier aircraft, evidently, can be attributed to HFSP considering the

transferring time between stages. The flow chart of carrier aircraft deck operations is shown in Figure

5.

S1

landing

S2

S4

S1

S2

S4

taking off

detection and
 maintenance rearmrefuel

S3 S3

S1

S2

S4

S1

S2

S4

S3 S3

ejection

schedule schedule schedule

Figure 5. Flow chart of carrier aircraft aviation support scheduling.

6.2. Simulation Results

The Boltzmann exploration policy is adopted when choosing action, and the fast cooling policy

(i.e., Equation (14)) is selected when iterating the temperature coefficient T . According to the

principle in Subsection 5.2, the relative parameters are set as follows: 0 990T , 0.9 , 0.1 ,

and , ,(,) 2 _ 150i j lr s a c t .

Suppose 20 carrier aircraft (labeled with 1 to 20) with similar conditions come to the detection and

maintenance stage every 2 min, and the arrival time of the first one is 0. Thus, the arrival time to the

first stage and the initial sequence of all aircraft is deterministic.

One thousand episodes of simulation are conducted in the same computing environment with

Subsection 4.3, costing 2.03 s, the curve of maximal ending time of carrier aircraft support with an

episode is shown in Figure 6(a), and the former 200 episodes are shown in Figure 6(b).

(a)

Algorithms 2019, 12, x FOR PEER REVIEW 13 of 16

(b)

Figure 6. The curve of support time of carrier aircrafts with episodes. (a) Description of the curve of

maximal support time during one thousand episodes; (b) Illustration of how the maximal support

time goes with the episode in detail in the former 200 episodes.

As illustrated in Figure 6, the curve converges from around the 90th episode, and the mean and

variance of support time of the last 900 episodes are 135.3 min and 0.26, respectively, which prove

the robustness of this method. To make clear the distribution of each carrier aircraft on the station at

each stage, the Gantt chart of carrier aircraft scheduling of the 1000th episode is illustrated in Figure

7.

Figure 7. Gantt chart of optimal scheduling of aircrafts.

In Figure 7, the y-label is the location of carrier aircraft, for instance, ‘S2_1’ indicates the first

station of the second stage or refuel stage. The number in the chart manifests the stage of security and

the tag of aircraft (e.g., ‘2-1’ demonstrates that the aircraft with tag 1 is in the second stage or refuel

stage). The terminal support time is 134.9 min this episode.

For deterministic initial sequence HFSP, the main factors affecting the convergence speed and

the result quality are the setting of parameters. Moreover, the stochastic transferring time between

two stages also has some influence on the optimal scheduling time.

7. Conclusions

HFSP based on reinforcement learning is addressed in this paper. The literature investigation

shows the universality of HFSP and its wide studies in various research methods, among which the

reinforcement learning method is not included.

Figure 6. The curve of support time of carrier aircrafts with episodes. (a) Description of the curve of
maximal support time during one thousand episodes; (b) Illustration of how the maximal support time
goes with the episode in detail in the former 200 episodes.

Algorithms 2019, 12, x FOR PEER REVIEW 13 of 16

(b)

Figure 6. The curve of support time of carrier aircrafts with episodes. (a) Description of the curve of

maximal support time during one thousand episodes; (b) Illustration of how the maximal support

time goes with the episode in detail in the former 200 episodes.

As illustrated in Figure 6, the curve converges from around the 90th episode, and the mean and

variance of support time of the last 900 episodes are 135.3 min and 0.26, respectively, which prove

the robustness of this method. To make clear the distribution of each carrier aircraft on the station at

each stage, the Gantt chart of carrier aircraft scheduling of the 1000th episode is illustrated in Figure

7.

Figure 7. Gantt chart of optimal scheduling of aircrafts.

In Figure 7, the y-label is the location of carrier aircraft, for instance, ‘S2_1’ indicates the first

station of the second stage or refuel stage. The number in the chart manifests the stage of security and

the tag of aircraft (e.g., ‘2-1’ demonstrates that the aircraft with tag 1 is in the second stage or refuel

stage). The terminal support time is 134.9 min this episode.

For deterministic initial sequence HFSP, the main factors affecting the convergence speed and

the result quality are the setting of parameters. Moreover, the stochastic transferring time between

two stages also has some influence on the optimal scheduling time.

7. Conclusions

HFSP based on reinforcement learning is addressed in this paper. The literature investigation

shows the universality of HFSP and its wide studies in various research methods, among which the

reinforcement learning method is not included.

Figure 7. Gantt chart of optimal scheduling of aircrafts.

In Figure 7, the y-label is the location of carrier aircraft, for instance, ‘S2_1’ indicates the first
station of the second stage or refuel stage. The number in the chart manifests the stage of security and
the tag of aircraft (e.g., ‘2-1’ demonstrates that the aircraft with tag 1 is in the second stage or refuel
stage). The terminal support time is 134.9 min this episode.

For deterministic initial sequence HFSP, the main factors affecting the convergence speed and the
result quality are the setting of parameters. Moreover, the stochastic transferring time between two
stages also has some influence on the optimal scheduling time.

7. Conclusions

HFSP based on reinforcement learning is addressed in this paper. The literature investigation
shows the universality of HFSP and its wide studies in various research methods, among which the
reinforcement learning method is not included.

Firstly, HFSP and its model are introduced, and divided into deterministic initial sequence HFSP
and non-deterministic initial sequence HFSP. HFSP is described into MDP, with the stage–workpiece
pairs considered as states and the machines in the next state as actions. The reward function is set
to be related to the processing time of the workpiece. To trade-off the exploration and exploitation,
ε-greedy policy, improved ε-greedy policy, and Boltzmann policy are introduced. The reinforcement
learning method for HFSP is validated in the case of scheduling in the metal processing workshop of
an automobile engine factory; then, it is applied to the sortie scheduling of carrier aircraft.

The main contributions of this paper is the first application of a reinforcement learning method to
HFSP, and the corresponding model is then established. The results obtained by this method, of course,
are not necessarily the optimal ones, but they can provide the relative people with some reference
for HFSP compared with manual scheduling and some intelligent algorithms scheduling, and this

Algorithms 2019, 12, 222 13 of 15

method achieves satisfactory real-time performance in deterministic initial sequence HFSP through the
application in this paper.

In the future, the effects of more relative parameters on the result of RL method will be analyzed.
Moreover, combining intelligent algorithms with RL to solve non-deterministic initial sequence HFSP
and improve the performance of deterministic initial sequence HFSP may be considered. Then, the
different support time of each carrier aircraft and scheduling time between two stages will be fully
investigated for constructing a more precise model of sortie scheduling of carrier aircraft. Finally, a
repository of the sortie scheduling of carrier aircraft with different numbers of carrier aircrafts is about
to be established based on the RL method to provide deck dispatchers with some instructive guidance.

Author Contributions: Conceptualization, F.G.; Methodology, W.H.; Software, F.G.; Validation, W.H. and X.S.;
Formal analysis, F.G.; Resources, X.S.; Writing—original draft preparation, F.G.; Writing—review and editing, F.G.;
Supervision, W.H.

Funding: This research received no external funding.

Acknowledgments: We are deeply grateful for the constructive guidance provided by the review experts.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tian, Y.; Liu, D.Y. A Hybrid Particle Swarm Optimization Method for Flow Shop Scheduling Problem. Acta
Electron. Sinica 2011, 39, 1087–1093.

2. Ciavotta, M.; Meloni, C.; Pranzo, M. Speeding up a Rollout algorithm for complex parallel machine scheduling.
Int. J. Prod. Res. 2016, 54, 4993–5009. [CrossRef]

3. Ciavotta, M.; Meloni, C.; Pranzo, M. Scheduling dispensing and counting in secondary pharmaceutical
manufacturing. AIChE J. 2009, 55, 1161–1170. [CrossRef]

4. Hoogeveen, J.A.; Lenstra, J.K.; Veltman, B. Preemptive scheduling in a two-stage multiprocessor flow shop is
NP-hard. Eur. J. Oper. Res. 1996, 89, 172–175. [CrossRef]

5. Wang, S.; Wang, L.; Xu, Y. An Estimation of Distribution Algorithm for Solving Hybrid Flow-shop Scheduling
Problem. Acta Autom. Sin. 2012, 38, 437–443. [CrossRef]

6. Sawik, T. An Exact Approach for Batch Scheduling in Flexible Flow Lines with Limited Intermediate Buffers.
Math. Comput. Model. 2002, 36, 461–471. [CrossRef]

7. Sawik, T.; Schaller, A.; Tirpak, T.M. Scheduling of Printed Wiring Board Assembly in Surface Mount
Technology Lines. J. Electron. Manuf. 2002, 11, 1–17. [CrossRef]

8. Ruiz, R.; Vazquez-Rodriguez, J.A. The Hybrid Flow Shop Scheduling Problem. Eur. J. Oper. Res. 2010, 205,
1–18. [CrossRef]

9. Xiao, W.; Hao, P.; Zhang, S.; Xu, X. Hybrid Flow Shop Scheduling Using Genetic Algorithms. In Proceedings
of the 3rd World Congress on Intelligent Control and Automation, Hefei, China, 26 June–2 July 2000; IEEE
Press: Piscataway Township, NJ, USA, 2000; pp. 537–541.

10. Low, C. Simulated Annealing Heuristic for Flow Shop Scheduling Problems with Unrelated Parallel Machines.
Comput. Oper. Res. 2005, 32, 2013–2025. [CrossRef]

11. Oğuz, C.; Zinder, Y.; Janiak, A.; Lichtenstein, M. Hybrid Flow-shop Scheduling Problems with Multiprocessor
Task Systems. Eur. J. Oper. Res. 2004, 152, 115–131. [CrossRef]

12. Gao, Y.; Zhou, R.Y.; Wang, H.; Cao, Z.X. Study on an average reward reinforcement learning algorithm. Chin.
J. Comput. 2007, 30, 1372–1378.

13. Qi-Ming, F.; Quan, L.; Hui, W.; Fei, X.; Jun, Y.; Jiao, L. A novel off policy Q(λ) algorithm based on linear
function approximation. Chin. J. Comput. 2014, 37, 677–686. (In Chinese)

14. Kober, J.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274.
[CrossRef]

15. Wei, Y.Z.; Zao, M.Y. A reinforcement learning-based approach to dynamic job-shop scheduling. Acta Autom.
Sin. 2005, 31, 765–771. (In Chinese)

16. Ipek, E.; Mutlu, O.; Martínez, J.F.; Caruana, R. Self-optimizing memory controllers: A reinforcement learning
approach. Comput. Archit. 2008, 36, 39–50. [CrossRef]

http://dx.doi.org/10.1080/00207543.2016.1157276
http://dx.doi.org/10.1002/aic.11725
http://dx.doi.org/10.1016/0377-2217(94)00235-5
http://dx.doi.org/10.3724/SP.J.1004.2012.00437
http://dx.doi.org/10.1016/S0895-7177(02)00176-0
http://dx.doi.org/10.1142/S096031310200028X
http://dx.doi.org/10.1016/j.ejor.2009.09.024
http://dx.doi.org/10.1016/j.cor.2004.01.003
http://dx.doi.org/10.1016/S0377-2217(02)00644-6
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1145/1394608.1382172

Algorithms 2019, 12, 222 14 of 15

17. Tesauro, G. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural Comput.
1994, 6, 215–219. [CrossRef]

18. Kocsis, L.; Szepesvári, C. Bandit based Monte-Carlo planning. In Machine Learning: ECML 2006, Proceedings
of the 17th European Conference on Machine Learning, Berlin, Germany, 18–22 September 2006; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 282–293.

19. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
20. Haouar, I.M.; Hidr, I.L.; Gharb, I.A. Optimal Scheduling of a Two-stage Hybrid Flow Shop. Math. Methods

Oper. Res. 2006, 64, 107–124. [CrossRef]
21. Hua, X.; Lixin, T. Lagrangian Relation Algorithm for Real-time Hybrid Flow-shop Scheduling with No-wait

in Process. Control Decis. 2006, 21, 376–380.
22. Riane, F.; Artiba, A.; Elmaghraby, S.E. Sequencing a Hybrid Two-stage Flow Shop with Dedicated Machines.

Int. J Prod. Res. 2002, 40, 4353–4380. [CrossRef]
23. Low, C.Y.; Hsu, C.Z.; Su, C.T. A Two-stage Hybrid Flow-shop Scheduling Problem with a Function Constraint

and Unrelated Alternative Machines. Comput. Oper. Res. 2008, 35, 845–853. [CrossRef]
24. Hong, T.P.; Wang, T.T.; Wang, S.L. A Palmer-based Continuous Fuzzy Flexible Flow-shop Scheduling

Algorithm. Soft Comput. 2001, 5, 426–433. [CrossRef]
25. Ying, K.C.; Lin, S.W. Multiprocessor Task Scheduling in Multistage Hybrid Flow-shops: An Ant Colony

System Approach. Int. J Prod. Res. 2006, 44, 3161–3177. [CrossRef]
26. Wang, X.; Tang, L. A Tabu Search Heuristic for the Hybrid Flow-shop Scheduling with Finite Intermediate

Buffers. Comput. Oper. Res. 2008, 36, 907–918. [CrossRef]
27. Alaykyran, K.; Engin, O.; Doyen, A. Using Ant Colony Optimization to Solve Hybrid Flow Shop Scheduling

Problems. Int. J. Adv. Manuf. Technol. 2007, 35, 541–550. [CrossRef]
28. Tseng, C.T.; Liao, C.J. A Particle Swarm Optimization Algorithm for Hybrid Flow-shop scheduling with

Multiprocessor Tasks. Int. J. Prod. Res. 2008, 46, 4655–4670. [CrossRef]
29. Wu, J.H.; Yang, T. Improved grey wolf optimization algorithm for flexible shop scheduling problem. Manuf.

Autom. 2019, 41, 107–111. (In Chinese)
30. Meng, G.J.; Yang, D.C.; Tao, X.P. Study on multi-objective flexible Job-Shop scheduling problem based on

hybrid artificial bee colony algorithm. Appl. Res. Comput. 2019, 36, 18–20, 25. (In Chinese)
31. Liu, F.; Zhang, X.P.; Zou, F.X.; Zeng, L.L. Immune clonal selection algorithm for hybrid flow-shop scheduling

problem. In Proceedings of the Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009;
pp. 2605–2609.

32. Wang, Q.B.; Zhang, W.X.; Wang, B.L.; Wu, Z.X. Research on Agent-based Hybrid Flow Shop Dynamic
Scheduling Problem. J. Comput. Appl. 2017, 37, 2991–2998. (In Chinese)

33. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. arXiv 2018, arXiv:1801.01290.

34. Haarnoja, T.; Pong, V.; Zhou, A.; Dalal, M.; Abbeel, P.; Levine, S. Composable deep reinforcement learning for
robotic manipulation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 6244–6251.

35. Gao, Y.; Lin, J.; Yu, F.; Levine, S.; Darrell, T. Reinforcement learning from imperfect demonstrations. arXiv
2018, arXiv:1802.05313.

36. Gu, S.; Lillicrap, T.; Sutskever, I.; Levine, S. Continuous deep q-learning with model-based acceleration. In
Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016;
Volume 48, pp. 2829–2838.

37. O’Donoghue, B.; Munos, R.; Kavukcuoglu, K.; Mnih, V. Combining policy gradient and Q-learning. arXiv
2016, arXiv:1611.01626.

38. Bertsekas, D.P. Dynamic Programming and Optimal Control; Athena Scientific: Belmont, MA, USA, 2005;
Volume 1.

39. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529–533. [CrossRef] [PubMed]

http://dx.doi.org/10.1162/neco.1994.6.2.215
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1007/s00186-006-0066-4
http://dx.doi.org/10.1080/00207540210159536
http://dx.doi.org/10.1016/j.cor.2006.04.004
http://dx.doi.org/10.1007/s005000100109
http://dx.doi.org/10.1080/00207540500536939
http://dx.doi.org/10.1016/j.cor.2007.11.004
http://dx.doi.org/10.1007/s00170-007-1048-2
http://dx.doi.org/10.1080/00207540701294627
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

Algorithms 2019, 12, 222 15 of 15

40. Wang, W.L.; Yao, M.H.; Wu, Y.G.; Wu, Q. Hybrid flow-shop scheduling approach based on genetic algorithm.
J. Syst. Simul. 2002, 14, 863–865.

41. Su, X.C.; Li, C.Y.; Chen, Z.G. Hybrid differential evolution algorithm for sortie scheduling of carrier aircraft.
Comput. Simul. 2015, 32, 74–78. (In Chinese)

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Description of the Hybrid Flow-Shop Scheduling Problem
	MDP Framework for HFSP
	Description of MDP
	Abstraction of State and Action for HFSP
	Exploration and Exploitation
	Improved -Greedy Policy
	Boltzmann Exploration Policy

	Reward Function Representation Based on Machining Time
	Reinforcement Learning Process for HFSP

	Case Validation
	Case Description
	Parameters Setting
	Case Results
	Results Discussion

	Application
	Description of Carrier Aircraft Deck Operations Problem
	Simulation Results

	Conclusions
	References

