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Abstract: Euclidean distance between instances is widely used to capture the manifold structure
of data and for graph-based dimensionality reduction. However, in some circumstances, the basic
Euclidean distance cannot accurately capture the similarity between instances; some instances from
different classes but close to the decision boundary may be close to each other, which may mislead
the graph-based dimensionality reduction and compromise the performance. To mitigate this issue,
in this paper, we proposed an approach called Laplacian Eigenmaps based on Clustering-Adjusted
Similarity (LE-CAS). LE-CAS first performs clustering on all instances to explore the global structure
and discrimination of instances, and quantifies the similarity between cluster centers. Then, it adjusts
the similarity between pairwise instances by multiplying the similarity between centers of clusters,
which these two instances respectively belong to. In this way, if two instances are from different
clusters, the similarity between them is reduced; otherwise, it is unchanged. Finally, LE-CAS performs
graph-based dimensionality reduction (via Laplacian Eigenmaps) based on the adjusted similarity. We
conducted comprehensive empirical studies on UCI datasets and show that LE-CAS not only has a
better performance than other relevant comparing methods, but also is more robust to input parameters.

Keywords: Laplacian Eigenmaps; dimensionality reduction; clustering-adjusted similarity

1. Introduction

Dimensionality reduction is a typical data preprocessing step in data mining and pattern
recognition [1–3]. It aims to project original high-dimensional data into a low-dimensional subspace
while preserving the geometric structure of them as much as possible. These low-dimensional
representations of the original data can be used for different follow-up tasks, such as visualization,
clustering, classification and so on. Dimensionality reduction has been studied for several decades [4–6].
By exploring and exploiting the geometric structure of samples from different perspectives, various
unsupervised dimensionality reduction methods have been proposed [7]. Principal Component
Analysis (PCA) is a representative unsupervised method [8], it seeks to maximize the internal
information of data after dimension reduction, and measures the importance of the direction by
measuring the variance of the data in the direction of projection. However, such projection does not
play a big role in data differentiation, and may make data points undistinguishable by mixing them
together. In this case, Locally linear embedding (LLE) [9] and its variants [10–14] were proposed to
seek the low-dimensional embedding of high-dimensional samples by preserving the local geometric
structure of samples. Further on, to make well use of valuable labeled samples, some semi-supervised
dimensionality reduction methods have also been introduced [15–18].

In this paper, we focus on the Graph Embedding-based Dimensionality Reduction (GEDR),
which can unify most dimensionality reduction solutions [19]. GEDR highlights that the main difference
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between existing dimensionality reduction solutions is the adopted graph structure. GEDR methods
typically rely on the adopted graph structures to capture the geometric relation between samples in
the high-dimensional space. This kind of graph is usually called an affinity graph [20], since its
edge set conveys information about the proximity of the data in the input space. Once the affinity
graph is constructed, these methods derive the low-dimensional samples by imposing that certain
graph properties are preserved in the reduced low-dimensional subspace. This typically results in
an optimization problem, whose solution provides the reduced data, or a mechanism to project data
from the original space to low-dimensional space. For example, Belkin et al. [21] introduced Laplacian
Eigenmaps (LE), which constructs a neighborhood graph (normally are k-nearest-neighbor (kNN) or
ε-nearest-neighbor (εNN) graph [22]) to capture the local structure of samples. Tenenbaum et al. [23]
proposed Isomap, which estimates the geodesic distance between samples and then uses multidimensional
scaling to induce a low-dimensional representation. Weinberger et al. [24,25] introduced an approach
called Maximum Variance Unfolding (MVU) to preserve both the local distances and angles between the
samples. He et al. [13] extends LE for linear dimensionality reduction, which can output a linear projective
matrix to project new samples into the low-dimensional subspace. In these studies, researchers have been
recognizing that the constructed graph on the instances determines the performance of GEDR. However,
how to construct a graph that correctly reflects the similarity between instances is a public problem [2].
The distance between instances becomes isometric as the dimensionality of instances increases [26] and
many traditional similarity metrics are distorted by noisy or redundant features of high-dimensional
data. Thus, researchers have developed several graph construction methods to improve the performance
of GEDR.

Some efforts have been made to improve the performance of LE, a classical and representative
GEDR method. Zeng et al. [27] proposed geodesic distance-based generalized Gaussian Laplacian
Eigenmap (GGLE) method using different generalized Gaussian functions to measure the similarity
between high-dimensional data points. Raducanu et al. [28] introduced Self-regulation of
neighborhood parameter for Laplacian Eigenmaps (S-LE) by measuring similarity between instances
via the ratio of geodesic distance and Euclidean distance between the samples and their neighborhood
nodes, and the adopted neighborhood parameters are adjusted and optimized. Ning et al. [29]
developed Supervised Cluster Preserving Laplacian Eigenmap (SCPLE), which constructs an intra-class
graph and an inter-class graph, and determines the edge weights by class label information and
adaptive thresholds. By maximizing the weighted neighbor distances between heterogeneous samples
and minimizing the weighted neighbor distances between homogeneous samples, SCPLE maps
homogeneous samples closer and heterogeneous samples faraway in the low-dimensional space.

Although these approaches improve the performance of LE, they still have problems when
embedding instances close to the decision boundary. For example, as shown in Figure 1a, instances
from different clusters close to the decision boundary may be much closer than instances from the
same cluster. As a result, they will be placed nearby in the reduced low-dimensional space, which
misleads the data distribution and compromises the learning performance.

To remedy the issue illustrated in Figure 1, we proposed Laplacian Eigenmaps dimensionality
reduction based on Clustering-Adjusted Similarity (LE-CAS). LE-CAS applies clustering technique
on the original instances to explore the underlying data distribution and global structure of instances.
At this stage, we initially intended to use k-means clustering [22] as the method to obtain the decision
boundaries. However, as our feature space has large scale and complex structure, the clusters
produced by k-means clustering depends largely on the distribution of samples and may not be
related to the structure of the boundaries. To solve this kind of problem, we decided to employ an
optimization method of k-means clustering called kernel k-means [30]. Kernel k-means maps the data
to a higher-dimensional feature space through a nonlinear mapping and performs cluster analysis
in the feature space. This method of mapping data to high-dimensional space can highlight the
feature differences between sample classes and obtain more accurate clustering results. After that,
LE-CAS uses the cluster structure to adjust the similarity between instances based on Gaussian heat
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kernel. In particular, if pairwise instances belong to different clusters, the similarity between them
will be reduced based on the original, otherwise the similarity is unchanged. As shown in Figure 1b,
the similarities between pairwise samples from different clusters are reduced, while the similarities
between samples from the same cluster remain high. In this way, the global structure information
revealed by clustering is embedded into the adjusted similarity, which can better capture the structure
between samples. Finally, LE-CAS executes Laplacian Eigenmaps dimensionality reduction based
on this clustering-adjusted similarity. Extensive experimental results on UCI datasets from different
domains show that LE-CAS significantly outperforms other approaches, which aim to improve LE by
different techniques.

(a) Euclidean distance-based similarity between
samples

(b) Cluster-adjusted similarity between samples

Figure 1. Comparisons between two types of similarities between samples, shown as (a) and (b). The
clustering-adjusted similarity clearly tunes down the Euclidean-based similarity between two instances
from different clusters.

The structure of this paper is organized as follows. In Section 2, we give the details of how
to adjust similarity between samples and list the procedures of LE-CAS. The preparatory works of
the experiment are introduced in Section 3, experimental results and analysis on UCI datasets are
presented in Section 4, followed with conclusions and future work in Section 5.

2. Methodology

Suppose X = [x1; x2; . . . ; xn] ∈ Rn×d be n instances in the d-dimensional space. LE-CAS targets
to project X into a low-dimensional subspace with new representation Y ∈ Rn×c with c � d.
At the beginning of this section, we would like to introduce the basic idea inside our method called
Clustering-Adjusted Similarity (CAS) [31]. In addition, then we will briefly illustrate the proceeding of
our LE-CAS.

2.1. Clustering-Adjusted Similarity

The GEDR methods often resort to a typical similarity metric to capture the similarity between
samples and structure among them. In this paper, we start with the widely used Gaussian heat kernel
as follows:

Wij = exp

(
−
∥∥xi − xj

∥∥2

σ2
m

)
(1)

where σm > 0 is Gaussian hear kernel width. Wij ∈ (0, 1] represents the similarity between xi and xj,
and Wii = 1. W ∈ Rn×n can be viewed as a weighted adjacency matrix of a graph, which stores the
pairwise similarity between n samples. This way of graph construction is proved to be a simple and
effective solution by previous studies [13].

However, for pairs of instances located close to the decision boundary but from different classes,
they have a high similarity (see two instances in different clusters but with high similarity 0.9674 in
Figure 1a), which mislead them being close in the projected subspace. To mitigate the problem, we aim
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at reducing the similarity between instances close to decision boundary, which are from different
clusters, while remaining the high similarity between samples of the same cluster. To reach that target,
we apply CAS as described below.

CAS is based on the idea that samples in the same cluster are similar and those in different
clusters should be dissimilar as much as much possible. To explore the clusters of the origin instances,
we perform kernel k-means clustering on all instances. Suppose the set of the final clusters is C =

{C1, C2, . . . , Cm}, m is the number of clusters and Ch represents the h-th cluster. Ch1 ∩ Ch2 = ∅ (∀h1 6=
h2, h1, h2 = 1, 2, . . . , m), and ∪m

h=1Ch = X. The cluster centroids (uh ∈ Rd) of the h-th cluster is:

uh =
∑xi∈Ch

xi

|Ch|
(2)

|Ch| is the number of instances placed into the h-th cluster. Then the similarity between two cluster
centroids is similarly defined based on the Gaussian heat kernel as follows:

Sh1h2 = exp

(
−
∥∥uh1 − uh2

∥∥2

σ2
m

)
(3)

Sh1h2 ∈ (0, 1) is the Gaussian heat kernel similarity between uh1 and uh2 . Obviously, the similarity
between two cluster centroids is small when the distance in Euclidian measurement is large.

To facilitate the clustering-based adjustment, we define l as follows:

li = h, if xi ∈ Ch; i = 1, 2, 3, . . . , n

h = 1, 2, 3, . . . , m
(4)

l ∈ Rn×d is the label indicator matrix, each row corresponds to an instance and each column for a
distinct label. d represents the number of clusters of the whole instances. If instance Xi belong to the h
th cluster, li = h, otherwise, li = 0.

Finally, the original Gaussian heat kernel similarity data matrix W is adjusted into W̃ as follows:

W̃ij = Slilj Wij (5)

From the definition of l and S, we can find that for two samples (i and j) placed into the same cluster
Sij = 1, since li = lj, W̃ij = Wij. On the other hand, for two samples from different clusters, W̃ij shrinks
to Slilj Wij, since li 6= lj and Slilj < 1.

2.2. Laplacian Eigenmap-Based Clustering-Adjusted Similarity

Based on the clustering-adjusted similarity, we present the procedure of LE-CAS as follows, and
the influence of our improved method is also shown in Figure 1.

1. Carry out kernel k-means clustering on the original dataset X, the original data is clustered into k1

classes. During the clustering, we first use an nonlinear mapping function to map the instances
from the original space Rn×d to a higher-dimensional space F, and then clustering in this space.

φ : Rn×d → F, x → φ(x) (6)

The instances of the original space becomes

[φ (x1) ; · · · ; φ (xn)] (7)
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On this basis, kernel clustering is to minimize the following criterion function, tφ
i is the class-mean

of i-th cluster.

Jφ =
k1

∑
i=1

∑
p∈Ci

∥∥∥φ(p)− tφ
i

∥∥∥2
(8)

tφ
i =

1
|Ci| ∑

p∈Ci

φ(p) (9)

After clustering, we get the following groups:

C =
{
C1, C2, . . . , Ck1

}
(10)

2. Construct a graph with the edge weight between xi and xj specified as Equation (1) (xi, xj are
instances in X). Set up edges between each point and its nearest k2 points via kNN method, k2 is a
preset value. This graph will continue to be used in the following steps.

3. To determine the weight between points, which is different from typical LE method, the adjusted
weight matrix W̃ij calculated according to Equation (11) before is selected as the final weight
matrix of the previous graph. σm > 0 is Gaussian heat kernel width, uh1 , uh2 represents the cluster
centroids of the cluster which xi and xj belongs to. li, lj are indicative vectors.

W̃ij =


exp

(
−‖xi−xj‖2

σ2
m

)
, if li = lj

exp

(
−
∥∥∥uh1

−uh2

∥∥∥2

σ2
m

)
× exp

(
−‖xi−xj‖2

σ2
m

)
, if li 6= lj

(11)

4. Construct graph Laplace matrix L, D is a diagonal matrix with its (i, i)-element equal to the sum
of the i th row of W̃ij

Dii =
n

∑
j=1

W̃ij (12)

L = D− W̃ij (13)

5. The objective function of Laplace feature mapping optimization is as follows:

min ∑
i,j

∥∥yi − yj
∥∥2 W̃ij

yi and yj are the representation of instance i, j in the target c-dimensional subspace Y. The
objective function after transform is as follows:

min trace
(

YTLY
)

, s.t. YTLY = I (14)

Where the constraint function s.t. YTLY = I guarantees the optimization problem has solutions.
6. Do feature mapping, and calculate the eigenvectors and eigenvalues of L. The column vectors of Y

that minimize the formula are the eigenvectors corresponding to c minimum non-zero eigenvalues
(including multiple roots) of the generalized eigenvalue problem. The smallest c eigenvectors which
are correspond to the non-zero eigenvalues are used as the output after dimensionality reduction.

Ly = λDy (15)
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3. Experiment Setup

3.1. Datasets

We employ experiments on ten publicly available UCI datasets to quantitatively evaluate the
performance of LE-CAS. The statistics of these datasets are listed in Table 1. These datasets are with
different numbers of features and of samples: Msplice represents dataset on molecular biology splice
online learning, which is used for multiclass clustering. W1a data set records information from a
TV series called W1A. Soccer-sub1 stores the information on players registered in FIFA. Madelon is
an artificial dataset, which was part of the NIPS 2003 feature selection challenge. This is a two-class
classification problem with continuous input variables. FG-NET is a dataset used for face recognition.
ORL contains 400 images of 40 different people, was created by the Olivetti research laboratory in
Cambridge, England, between April 1992 and April 1994. Musk describes a set of 102 molecules of
which 39 are judged by human experts to be musks and the remaining 63 molecules are judged to
be non-musks. CNAE-9 is a data set containing 1080 documents of free text business descriptions
of Brazilian companies categorized into a subset of 9 categories cataloged in a table called National
Classification of Economic Activities. SECOM is about data from a semi-conductor manufacturing
process. DrivFace contains images sequences of subjects while driving in real scenarios. All data sets
are available from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/index.php).

Table 1. Statistics of datasets used for experiments.

Datasets Instance Dimensions

Msplice 3175 240
W1a 2477 300

Soccer-sub1 1735 279
Madelon 2600 500
FG-NET 1002 262

ORL 400 1024
Musk 6598 223

CNAE-9 1080 857
SECOM 1567 591
DrivFace 1606 525

3.2. Comparing Methods

We compare LE-CAS against four different GDR methods: the original LE [21], GGLE [27],
S-LE [28] and SCPLE [29]. The latter three comparing methods try to improve LE from different aspects
and have close connection with our work. These comparing methods were introduced in Section 1.
We first apply these dimensionality reduction methods to project the high-dimensional samples into a
low-dimensional subspace. After that, the widely adopted k-means [22] clustering is applied to cluster
the samples projected in the subspace by the respective comparing method.

In the experiments, we specify (or optimize) the input parameters of these comparing methods
as the authors suggested in the original papers. As to LE-CAS, k1 is determined by calculating the
contour coefficient to obtain a better result of initial clustering. k2 =10 is used to construct kNN graph.
The sensitivity of k2 for these kNN graph-based methods (LE [21], GGLE [27], and LE-CAS) and σm for
Gaussian heat kernel function-based methods (GGLE [27], LE-CAS) will be studied later.

3.3. Evaluation Metrics

To evaluate the performance of different dimensionality reduction methods, we adopt four
frequently used clustering-effect evaluation index: Fowlkes and Mallows Index (FMI) [32],
F-measure [33] and Purity (PU) [34].

http://archive.ics.uci.edu/ml/index.php
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For dataset X = [x1; x2; . . . ; xn], it is assumed that the cluster obtained through clustering is
divided into C = {C1, C2, . . . , Cm}, and the cluster given by the reference model is divided into
C∗ =

{
C∗1 , C∗2 , . . . , C∗m

}
. Accordingly, let λ and λ∗ respectively represent the cluster marker vectors

corresponding to C and C∗. We consider the sample pairwise, as defined below: a = |SS|, SS ={(
xi, xj

)
|λi = λj, λ∗i = λ∗j , i < j

}
, b = |SD|, SD =

{(
xi, xj

)
|λi = λj, λ∗i 6= λ∗j , i < j

}
, c = |DS|, DS ={(

xi, xj
)
|λi = λj, λ∗i = λ∗i , i < j

}
, d = |DD|, DD =

{(
xi, xj

)
|λi = λj, λ∗i 6= λ∗j , i < j

}
.

|SS| set contains sample pairs which belong to the same cluster in C are still belong to the same
cluster in C∗, |SD| set contains sample pairs which belong to the same cluster in C are not belong to
the same cluster in C∗. |DS| set contains sample pairs which not belong to the same cluster in C are
belong to the same cluster in C∗, |DD| set contains sample pairs which not belong to the same cluster
in C are still not belong to the same cluster in C∗. a, b, c, d represents the number of data pairs in set
|SS|, |SD|, |DS|, |DD|. Thus,

FMI =
√

a
a + b

· a
a + c

(16)

F-measure is based on precision and recall of clustering results:

F−measure =
2× Precision×Recall

Precision× Recall
(17)

Purity represents the number of samples with correct clustering in the total number of samples. N
represents total number of samples, C = {C1, C2, . . . , Cm} is the collection of cluster, Ch represents h-th
cluster, X = {X1, X2, . . . , Xn} is the collection of sample, Xi represents i-th sample. Computational
formula is shown as below:

PU(C, X) =
1
N ∑

h
max

i
|Ch ∩ Xi| (18)

4. Results

4.1. Results on Different Datasets

Figure 2 (for FMI’s performance), Figure 3 (for F-measure’s performance) and Figure 4 (for PU’s
performance) show the results with respect to different fixed target dimensionality after applying
different dimensionality reduction solutions and with the same k-means clustering. To avoid random
effects, we repeated the experiment for 30 times and calculated the mean and variance of the results
of LE-CAS and comparing methods with respect to four evaluation metrics on respective datasets,
which is shown on Table 2.

According to the table and figures, we can observe that the performances of all methods increases
with the target dimensionality rising and LE-CAS always outperforms other comparing methods
across all the evaluation metrics and six datasets. LE-CAS and LE both uses Laplacian Eigenmaps,
while LE-CAS achieves better performance on four evaluation indices than that of the LE. That is
because LE-CAS changes the similarity calculation method of the instances on the decision boundary,
and the adjacent instances are still close enough and the clusters they belong to remain the same after
dimensionality reduction. The fact indicates the clustering similarity adjustment (CAS) can improve
the performance of GEDR methods.

LE-CAS and GGLE both uses Gaussian kernel function (LE-CAS calculated the similarity between
clusters and instances by Gaussian kernel function, GGLE measures similarity between instances
via different generalized Gaussian kernel functions), while the performance of GGLE is much lower
than that of LE-CAS. This fact shows that CAS used by LE-CAS can better reflect the real relationship
between the instances than generalized Gaussian kernel functions used by GGLE.
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The performance of LE-CAS is better than that of S-LE and SCPLE, which use the ratio of
Euclidean distance to geodesic distance between two instances adjusts the number of nearest neighbors.
That is because the clustering-adjusted similarity can more well explore the geometric structure of
instances than adaptive adjustment of neighborhood parameters. SCPLE performs better than S-LE,
which verifies that SCPLE is an improved method based on S-LE via concerning neighborhood
parameter of instances from same or different clusters.

As for stability, LE-CAS performs well, the variance is basically stable and its effect of cluster
can maintain good stability in different target dimensions, while the variance of other improved LE
methods fluctuates and its effect of cluster has a complex turbulence into different target dimensions at
the same time. That is because the similarity without CAS can be easily destroyed by noisy featured.

Table 2. Results (average± std) of comparing methods on different datasets (Msplice, W1a, Soccer-sub1,
Medelon, FG-NET, ORL, Musk, CNAE-9, SECOM, DrivFace). The target dimensionality c is set to 10.
The best (or comparable to the best) results are in boldface.

FMI F-measure PU

Msplice

LE-CAS 0.6133 ± 0.0124 0.5425 ± 0.0302 0.7284 ± 0.0638
LE 0.3247 ± 0.0233 0.1871 ± 0.0292 0.4914 ± 0.0647

S-LE 0.5552 ± 0.0296 0.2956 ± 0.0239 0.5324 ± 0.0734
GGLE 0.4925 ± 0.0334 0.4025 ± 0.0108 0.6354 ± 0.0619
SCPLE 0.5852 ± 0.0190 0.3928 ± 0.0099 0.6203 ± 0.0594

W1a

LE-CAS 0.9285 ± 0.0514 0.4691 ± 0.0375 0.9608 ± 0.0461
LE 0.6429 ± 0.0285 0.2488 ± 0.0215 0.6541 ± 0.0427

S-LE 0.7042 ± 0.0342 0.3158 ± 0.0261 0.7028 ± 0.0395
GGLE 0.8731 ± 0.0427 0.4021 ± 0.0125 0.7936 ± 0.0409
SCPLE 0.8392 ± 0.0307 0.4210 ± 0.0325 0.8333 ± 0.0326

Soccer-sub1

LE-CAS 0.4268 ± 0.0014 0.3172 ± 0.0025 0.4774 ± 0.0259
LE 0.1242 ± 0.0062 0.1573 ± 0.0029 0.2358 ± 0.0291

S-LE 0.1995 ± 0.0051 0.2319 ± 0.0015 0.2936 ± 0.0245
GGLE 0.2452 ± 0.0024 0.2906 ± 0.0015 0.3534 ± 0.0208
SCPLE 0.3052 ± 0.0099 0.3173 ± 0.0024 0.3726 ± 0.0213

Medelon

LE-CAS 0.6967 ± 0.0416 0.3024 ± 0.0252 0.7804 ± 0.1860
LE 0.5852 ± 0.0437 0.1921 ± 0.0207 0.5046 ± 0.1643

S-LE 0.6082 ± 0.0367 0.2235 ± 0.0200 0.5478 ± 0.1302
GGLE 0.6552 ± 0.0345 0.3023 ± 0.0132 0.6532 ± 0.1033
SCPLE 0.6923 ± 0.0570 0.3008 ± 0.0219 0.6378 ± 0.1126

FG-NET

LE-CAS 0.6515 ± 0.0200 0. 5042 ± 0.0016 0.7520 ± 0.0619
LE 0.4952 ± 0.0138 0.3895 ± 0.0021 0.5923 ± 0.0573

S-LE 0.4652 ± 0.0207 0.4014 ± 0.0015 0.6752 ± 0.0592
GGLE 0.5558 ± 0.0169 0.4977 ± 0.0020 0.6936 ± 0.0499
SCPLE 0.5874 ± 0.0245 0.5044 ± 0.0021 0.7233 ± 0.0601

ORL

LE-CAS 0.5635 ± 0.0452 0.3388 ± 0.0092 0.6710 ± 0.0229
LE 0.1398 ± 0.0226 0.1247 ± 0.0084 0.4215 ± 0.0198

S-LE 0.2635 ± 0.0356 0.1964 ± 0.0078 0.5024 ± 0.0099
GGLE 0.4545 ± 0.0279 0.2311 ± 0.0065 0.5924 ± 0.0187
SCPLE 0.4933 ± 0.0281 0.2295 ± 0.0081 0.6011 ± 0.0125
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Table 2. Cont.

FMI F-measure PU

Musk

LE-CAS 0.6832 ± 0.0216 0.4724 ± 0.0222 0.8804 ± 0.1846
LE 0.4956 ± 0.0375 0.2121 ± 0.0247 0.5376 ± 0.1643

S-LE 0.5982 ± 0.0299 0.3055 ± 0.0200 0.5895 ± 0.1302
GGLE 0.6458 ± 0.0321 0.3623 ± 0.0132 0.6989 ± 0.1033
SCPLE 0.6823 ± 0.0370 0.4078 ± 0.0219 0.7277 ± 0.1023

CNAE-9

LE-CAS 0.9285 ± 0.0514 0.7051 ± 0.0193 0.9409 ± 0.1860
LE 0.6541 ± 0.0427 0.4621 ± 0.0237 0.6746 ± 0.1283

S-LE 0.7028 ± 0.0365 0.5738 ± 0.0224 0.5478 ± 0.2302
GGLE 0.8731 ± 0.0417 0.7023 ± 0.0122 0.8032 ± 0.1053
SCPLE 0.8392 ± 0.0347 0.6708 ± 0.0238 0.7978 ± 0.1926

SECOM

LE-CAS 0.6967 ± 0.0416 0.5930 ± 0.0192 0.7931 ± 0.1427
LE 0.5852 ± 0.0437 0.3247 ± 0.0233 0.4388 ± 0.1904

S-LE 0.6082 ± 0.0367 0.5552 ± 0.0296 0.5478 ± 0.1309
GGLE 0.6552 ± 0.0345 0.4925 ± 0.0334 0.6546 ± 0.1071
SCPLE 0.6923 ± 0.0570 0.5892 ± 0.0270 0.6339 ± 0.1286

DrivFace

LE-CAS 0.6738 ± 0.0227 0.5771 ± 0.0280 0.7563 ± 0.0470
LE 0.3691 ± 0.0322 0.1917 ± 0.0267 0.4614 ± 0.0234

S-LE 0.4452 ± 0.0237 0.3156 ± 0.0193 0.5324 ± 0.0193
GGLE 0.5892 ± 0.0334 0.4622 ± 0.0138 0.6474 ± 0.0291
SCPLE 0.6037 ± 0.0190 0.5112 ± 0.0142 0.6890 ± 0.0391

After detailed observations of the results on different datasets, we found that the FMI results on
several datasets are much lower than others (Look at the FMI values on dataset soccer-sub1, ORL,
DrivFace). Since FMI is an evaluation index which measures the consistency between the clustering
results and the real labels as we mentioned before, there are good reasons to believe that clustering occur
in these datasets are not so perfect, which means that the clusters identified by the clustering method
we used in LE-CAS (kernel k-means) are not well suitable for the true decision boundaries. Fortunately,
even though the clusters we obtained are not so satisfied, the performance of the LE-CAS is still better
than the performance of GGLE, S-LE, SCPLE and LE, we can still get relatively good results.
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Figure 2. Results of FMI on ten datasets (Msplice, W1a, Soccer-sub1, Medelon, FG-NET, ORL, Musk,
CNAE-9, SECOM, DrivFace) under different target dimensionalities (c).
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Figure 3. Results of F-measure on ten datasets (Msplice, W1a, Soccer-sub1, Medelon, FG-NET, ORL,
Musk, CNAE-9, SECOM, DrivFace) under different target dimensionalities (c).
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Figure 4. Results of PU on ten datasets (Msplice, W1a, Soccer-sub1, Medelon, FG-NET, ORL, Musk,
CNAE-9, SECOM, DrivFace) under different target dimensionalities (c).

4.2. Parameter Sensitivity Analysis

Because we adopted kernel k-means just as data preprocessing in our approach, so for the
determination of k1 value, we make the k1 from 2 to 10, repeat several times kernel k-means on each k1

value (to avoid local optimal solution), and calculate the current average contour coefficient. Finally,
the k1 corresponding to the maximum contour coefficient is selected as the final number of clusters.

LE-CAS, LE, and GGLE make use of a kNN graph to set up the adjacency matrix and the weights
between samples, and hence for graph-based dimensionality reduction. To study the sensitivity of
these methods to the input value of k2, we increase k2 from 5 to 12, and report the FMI values of these
algorithms under each input value of k2 (number of neighbors) in Figure 5 .

From this figure, we can observe that no matter how the k2 value changes, the results of LE-CAS
on these datasets are better than those of another two comparing algorithms. Fluctuations mainly
happen in LE and GGLE, while LE-CAS gets a relatively smooth curve. GGLE adopts the kNN
graph constructed in the original high-dimensional space to explore the local geometric structure of
samples. It uses the k2 nearest neighbors of a sample to seek the linear relationships between k2 nearest
neighbors. Therefore, it still focuses on the local manifold, and is sensitive to k2. As k2 increase, the
linear relationship between them becomes increasingly complicated, which causes the increase of error
rate. LE and LE-CAS also adopt the kNN graph, LE-CAS additionally uses the global cluster structure
of samples to adjust the similarity between neighborhood samples. The performance margin between



Algorithms 2019, 12, 210 11 of 14

LE-CAS and LE, and the better stability of LE-CAS proves the effectiveness of clustering-adjusted
similarity. From these results, we can conclude LE-CAS is robust to noise and can work well under a
wide range of input values of k2.
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Figure 5. Results (FMI) vs. k2 on ten datasets (Msplice, W1a, Soccer-sub1, Medelon, FG-NET, ORL,
Musk, CNAE-9, SECOM, DrivFace).

Both LE-CAS and GGLE specify edge weight by Gaussian heat kernel function.
From Equation (11), we can see that they both rely on a suitable Gaussian heat kernel width σm.
σm should not be too small or too large. If σm is too small, the similarity in Equation (11) will be close
to 0, On the other hand, σm should not be too big. If σm is too big, the similarity in Equation (11) will be
close to 1. In our previous experiments, we set σm as the mean of square Euclidean distance between
all training instances for both LE-CAS and GGLE. To investigate the sensitivity of σm on LE-CAS
and GGLE, we conduct experiments to investigate the influence of σm. In the following experiments,
we increase σm from 1× 10−2 to 1× 105 for LE-CAS and GGLE. Other parameter settings are kept the
same with previous experiments. Similarly, we run 30 independent experiments for each fixed σm and
report the FMI under each σm in Figure 6.
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Figure 6. Results (FMI) vs. σm on ten datasets (Msplice, W1a, Soccer-sub1, Medelon, FG-NET, ORL,
Musk, CNAE-9, SECOM, DrivFace).
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From Figure 6, we can find that LE-CAS outperforms LGC in a wide range of σm. Both GGLE
and LE-CAS depend on a suitable σm. The performance of two methods reaches relatively stable with
the increase in σm. The FMI of LE-CAS is similar to GGLE when σm is too small. This is because
if σm is too small, the clustering-adjusted similarity is similar to the original Gaussian heat kernel
similarity. The performance of both LE-CAS and GGLE becomes relatively stable when σm ≥ 100
in our experiments, and LE-CAS performs significantly better than GGLE. The reason is that the
clustering-adjusted similarity has its effect. From the above results, we can conclude that LE-CAS
effectively improves the performance of GEDR methods and makes stable performance in a wide
range of σm.

4.3. Robustness Analysis

Since our method combines clustering with dimensionality reduction, the performance of LE-CAS
seems heavily depends on whether the clustering method used in previous steps. To clarify the robustness
of our method, we employed two different clustering methods, k-means and kernel k-means, as the initial
clustering method in the course of LE-CAS. The performance of these methods are shown as Figure 7.

From Figure 7, we can illustrate that the performances of two clustering methods are merely close
to each other on ten datasets and each method performs better than LE method, which indicates that the
performance of our LE-CAS cannot be influenced much by the clustering method used in initial steps.

50 75 100 125 150 175 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Target Dimensionality (c)

F
M

I

Msplice

50 75 100 125 150 175 200
0.75

0.8

0.85

0.9

0.95

1

Target Dimensionality (c)

F
M

I

W1a

50 75 100 125 150 175 200
0

0.05

0.1

0.15

0.2

0.25

Target Dimensionality (c)

F
M

I

Soccer−sub1

100 150 200 250 300 350 400
0.55

0.6

0.65

0.7

0.75

Target Dimensionality (c)

F
M

I

Madelon

50 75 100 125 150 175 200
0.5

0.55

0.6

0.65

0.7

Target Dimensionality (c)

F
M

I

FG−NET

50 75 100 125 150 175 200
0

0.05

0.1

0.15

0.2

0.25

Target Dimensionality (c)

F
M

I

ORL

50 75 100 125 150 175 200
0.5

0.55

0.6

0.65

0.7

Target Dimensionality (c)

F
M

I

Musk

50 75 100 125 150 175 200
0.75

0.8

0.85

0.9

0.95

1

Target Dimensionality (c)

F
M

I

CNAE−9

100 150 200 250 300 350 400
0.55

0.6

0.65

0.7

0.75

Target Dimensionality (c)

F
M

I

SECOM

50 75 100 125 150 175 200
0

0.05

0.1

0.15

0.2

0.25

DrivFace

Target Dimensionality (c)

F
M

I

 

 

LE−CAS
LE
LE−CAS(Kmeans)

Figure 7. Results of FMI on ten datasets (Msplice, W1a, Soccer-sub1, Medelon, FG-NET, ORL, Musk,
CNAE-9, SECOM, DrivFace) under different target dimensionalities (c).

5. Conclusions

In this paper, we introduced the Laplacian Eigenmaps dimensionality reduction based on
Clustering-Adjusted Similarity(LE-CAS), which leverages local manifold structure and global cluster
structures to adjust the similarity between neighborhood samples. In particular, the adjusted similarity
can reduce the similarity between pairwise samples from different clusters while maintain the similarity
between samples of the same cluster. Experimental results on public benchmark datasets show that
that the clustering-adjusted similarity improve the performance of classical LE and outperforms other
related competitive solutions.

In our future work, we want to explore other principle ways to refine the similarity between
instances and further improve the performance of GEDR methods. In addition, we will pay more
attention to weakly supervised graph-based dimensionality reduction. Otherwise, for problems
happened near the decision boundary, fuzzy set theory may also can help. We are willing to compare
our method to fuzzy set theory in the future.
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