
algorithms

Article

A Finite Regime Analysis of Information Set
Decoding Algorithms

Marco Baldi 1,* , Alessandro Barenghi 2 , Franco Chiaraluce 1 , Gerardo Pelosi 2 and
Paolo Santini 1

1 Department of Information Engineering (DII), Università Politecnica delle Marche, 60131 Ancona, Italy;
f.chiaraluce@univpm.it (F.C.); p.santini@pm.univpm.it (P.S.)

2 Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano,
Italy; alessandro.barenghi@polimi.it (A.B.); gerardo.pelosi@polimi.it (G.P.)

* Correspondence: m.baldi@univpm.it; Tel.: +39-071-2204894

Received: 20 June 2019; Accepted: 25 September 2019; Published: 1 October 2019
����������
�������

Abstract: Decoding of random linear block codes has been long exploited as a computationally
hard problem on which it is possible to build secure asymmetric cryptosystems. In particular,
both correcting an error-affected codeword, and deriving the error vector corresponding to a given
syndrome were proven to be equally difficult tasks. Since the pioneering work of Eugene Prange
in the early 1960s, a significant research effort has been put into finding more efficient methods to
solve the random code decoding problem through a family of algorithms known as information set
decoding. The obtained improvements effectively reduce the overall complexity, which was shown
to decrease asymptotically at each optimization, while remaining substantially exponential in the
number of errors to be either found or corrected. In this work, we provide a comprehensive survey of
the information set decoding techniques, providing finite regime temporal and spatial complexities
for them. We exploit these formulas to assess the effectiveness of the asymptotic speedups obtained
by the improved information set decoding techniques when working with code parameters relevant
for cryptographic purposes. We also delineate computational complexities taking into account the
achievable speedup via quantum computers and similarly assess such speedups in the finite regime.
To provide practical grounding to the choice of cryptographically relevant parameters, we employ as
our validation suite the ones chosen by cryptosystems admitted to the second round of the ongoing
standardization initiative promoted by the US National Institute of Standards and Technology.

Keywords: asymmetric cryptosystems; code-based cryptosystems; information set decoding

1. Introduction

Asymmetric cryptosystems are traditionally built on a mathematical function which is hard to
compute unless the knowledge of a special parameter is available. Typically, such a function is known
as a mathematical trapdoor, and the parameter acts as the private key of the asymmetric cryptosystem.
Decoding a random linear block code was first proven to be equivalent to solve an instance of the three
dimensional matching by Elwyn Berlekamp et al. in 1978 [1]. By contrast, efficient decoding algorithms
for well structured codes have a long history of being available. Therefore, McEliece himself proposed
to disguise an efficiently decodable code as a random code and employ the knowledge of the efficiently
decodable representation as the private key of an asymmetric cryptosystem. In this way, a legitimate
user of the cryptosystem would be able to employ an efficient decoder for the chosen hidden code,
while an attacker would be forced to resort to decoding techniques for a generic linear code.

Since the original proposal, a significant amount of variants of the McEliece cryptosystem were
proposed swapping the original decodable code choice (Goppa codes [2]) with other efficiently

Algorithms 2019, 12, 209; doi:10.3390/a12100209 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-8754-5526
https://orcid.org/0000-0003-0840-6358
https://orcid.org/0000-0001-6994-1448
https://orcid.org/0000-0002-3812-5429
https://orcid.org/0000-0003-0631-3668
http://www.mdpi.com/1999-4893/12/10/209?type=check_update&version=1
http://dx.doi.org/10.3390/a12100209
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 209 2 of 34

decodable codes with the intent of enhancing computational performances of reducing the key
size. The first attempt in this direction was the Niederreiter cryptosystem [3] using generalized
Reed–Solomon (GRS) codes. While the original proposal by Niederreiter was broken by Sidel’nikov
and Shestakov in [4], replacing the hidden code with a Goppa code in Niederreiter’s proposal yields a
cryptosystem which is currently unbroken. More recently, other families of structured codes have been
considered in this framework, such as Quasi Cyclic (QC) codes [5], Low Density Parity Check (LDPC)
codes [6], Quasi Dyadic (QD) codes [7], Quasi Cyclic Low Density Parity Check (QC-LDPC) codes [8]
and Quasi Cyclic Moderate Density Parity Check (QC-MDPC) codes [9].

The significant push in the development of code-based cryptosystems was also accompanied by
a comparably sized research effort in their cryptanalysis. In particular, the best attack technique
that does not rely on the underlying hidden code structure, and thus is applicable to all the
variants, is known as Information Set Decoding (ISD). In a nutshell, ISD attempts at finding enough
error-free locations in a codeword to be able to decode it regardless of the errors which affect the
codeword itself. Such a technique was first proposed by Prange [10] as a more efficient alternative
to decode a general linear block code, with respect to a straightforward guess on the error affected
locations. Since then, a significant amount of improvements to Prange’s original technique were
proposed [11–16], effectively providing significant polynomial speedups on the exponential-time
decoding task. In addition to the former works, where the focus is to propose an operational
description of a general decoding technique based on information set decoding, the works by the
authors of [17–19] provide a more general view on general decoding techniques, including split
syndrome decoding and supercode decoding, and report proven bounds on the complexities of the
said approaches. Finally, we report the work of Bassalygo et al. [20] as the first tackling formally the
complexity of decoding linear codes. For a more comprehensive survey of hard problems in coding
theory, we refer the interested reader to [21–23].

The common praxis in the literature concerning ISD improvements is to evaluate the code
parameters for the worst-case-scenario of the ISD, effectively binding together the code rate and
number of corrected errors to the code length. Subsequently, the works analyze the asymptotic
speedup as a function of the code length alone. While this approach is effective in showing an
improvement in the running time of the ISD in principle, the practical relevance of the improvement
when considering useful parameter sizes in cryptography may be less significant.

We note that, in addition to being the most efficient strategy to perform general random linear code
decoding, ISD techniques can also be employed to recover the structure of the efficiently decodable
code from its obfuscated version for the LDPC, QC-LDPC and QC-MDPC code families.

Recently, the National Institute of Standards and Technology (NIST) has started a selection process
to standardize asymmetric cryptosystems resistant to attacks with quantum computers. Since decoding
a random code is widely believed to require an exponential amount of time in the number of errors,
even in presence of quantum computers, code-based cryptosystems are prominent candidate in the
NIST selection process [24]. Hence, having accurate and shared expressions in the finite length regime,
both in the classical and in the quantum computing setting, for the work factor of attacks targeting
such schemes, it is important to define a common basis for their security assessment. A work sharing
our intent is [25], where a non-asymptotic analysis of some ISD techniques is performed. However,
a comprehensive source of this type is not available in the literature, to the best of our knowledge.

1.1. Contributions

In this work, we provide a survey of the existing ISD algorithms, with explicit finite regime
expressions for their spatial and temporal complexities. We also detail which free parameters have
to be optimized for each of the ISD algorithms, and provide a software tool implementing the said
optimization procedure on a given set of code parameters in [26].

Algorithms 2019, 12, 209 3 of 34

1.2. Paper Organization

This work is organized as follows. Section 2 states the required notation and recollects the
code-based cryptography background required to understand ISD algorithms. Section 3 surveys the
existing ISD algorithms, providing complexity estimates for both the space they require and their
execution time. Section 4 contains a critical discussion of the results obtained in the finite regime in
comparison to the ones available via asymptotic estimates, while Section 5 summarizes our conclusions.

2. Background on Computationally Intractable Coding Theory Problems

In this section, we introduce the notation and background on error correcting codes, and state
which hard problems we focus on, for which best solvers are ISD algorithms.

In the following, we consider the case of binary linear block codes, denoting as C(n, k, d) a code of
length n, dimension k and minimum distance d. This code is thus a subspace of {0, 1}n containing 2k

distinct vectors, and can be represented by a k× n binary matrix G known as the code generator matrix.
It is commonplace to indicate with r = n− k the amount of redundant bits in an element of the code,
i.e., a codeword. The minimum distance of a linear block code corresponds to the minimum weight of
its codewords, apart from the null one (which, clearly, has null weight). An alternative representation
is the one provided by the so-called parity check matrix H, which is obtained through the algebraic
constraint HGT = 0r×k. The parity check is thus an r× n binary matrix for which it is easy to show
that the product of a codeword c by H is a null r-bit-long vector. The quantity obtained multiplying a
generic n-bit vector c̃ by H is called the syndrome s = Hc̃T of c̃ through H. Note that, if the binary
vector c̃ is not a codeword, the syndrome of c̃ through H is not null; in other words, we can write
c̃ = c + e, with c being a codeword, and thus have s = HeT .

Decoding of c̃ through C(n, k, d) consists in finding the codeword c whose distance from c̃ is
minimum. The procedure of finding a length-n binary vector e, with Hamming weight smaller
than or equal to some integer t, given a non-null syndrome s and a parity matrix H is known as
syndrome decoding. The name stems from the fact that decoding a given c̃ becomes possible by
computing the syndrome s of c̃, solving the syndrome decoding, and adding the obtained vector e to c̃,
and corresponds to finding the codeword which is at minimum distance from c̃.

We can now recall the two decisional problems in coding theory which were proven to be
NP-Complete by Berlekamp et al. in [1], and from which the main building blocks of the cryptographic
trapdoors of code-based cryptosystems are derived.

Statement 1 (Coset weights problem). Given a random, r × n binary matrix H, an r bit vector s and a
positive integer t, determine if an n bit vector e with wt(e) ≤ t, where wt(·) is the Hamming weight function,
such that HeT = s exists.

The Coset weights problem is also known as the Decisional Syndrome Decoding Problem (DSDP).

Statement 2 (Subspace weights problem). Given a random, r× n binary matrix H, and a positive integer
w, determine if an n bit vector c with wt(c) = t, where wt(·) is the Hamming weight function, such that
HcT = 0r×1 exists.

The Subspace weights problem is also known as the Decisional Codeword Finding Problem (DCFP).

The typical hard problems which are employed to build code-based cryptographic trapdoors
are the search variants of the aforementioned two problems. Specifically, the Syndrome Decoding
Problem (SDP) asks to find an error vector of weight ≤t, while the Codeword Finding Problem (CFP)
asks to find a codeword with a given weight w. A well known result in computational complexity
theory (e.g., [27] Chap. 2.5) states that any decision problem belonging to the NP-Complete class has a
search-to-decision reduction. In other words, it is possible to solve an instance of the search problem

Algorithms 2019, 12, 209 4 of 34

with a polynomial amount of calls to an oracle for the corresponding decision problem. This, in turn,
states that the difficulty of Syndrome Decoding Problem (SDP) and Codeword Finding Problem (CFP)
is the same of solving their decisional variants Decisional Syndrome Decoding Problem (DSDP) and
Decisional Codeword Finding Problem (DCFP), i.e., they are as hard as an NP-Complete problem.
We note that, in the light of such a reduction, and despite it is a notation abuse, it is commonplace to
state that Syndrome Decoding Problem (SDP) and Codeword Finding Problem (CFP) are NP-Complete,
although only decisional problems belong to the NP-complete class.

2.1. Applications to Cryptography

The class of NP-Complete problems is of particular interest to design cryptosystems, as it is widely
believed that problems contained in such a class cannot be solved in polynomial time by a quantum
computer. Indeed, the best known approaches to solve both the Codeword Finding Problem (CFP) and
the Syndrome Decoding Problem (SDP) have a computational complexity which is exponential in the
weight of the codeword or error vector to be found. A notable example of code-based cryptosystem
relying on the hardness of the Syndrome Decoding Problem (SDP) is the one proposed by Niederreiter
in [3].

Niederreiter cryptosystem generates a public–private key-pair selecting as the private key an
instance of a code from a family for which efficient decoding algorithms are available. The code is
then represented by its parity check matrix Hpriv, which is multiplied by a rank-r random square
binary matrix S obtaining the public key of the cryptosystem Hpub = SHpriv. The assumption made
by Niederreiter is that the multiplication by the random, full rank matrix S makes Hpub essentially
indistinguishable from a random parity matrix. While the original choice to employ a Reed–Solomon
code as private code was found to falsify this assumption and lead to a practical attack, other code
families have proven to be good candidates (e.g., Goppa codes, Low/Medium Density Parity Check
codes [28–31]). A message is encrypted in the Niederreiter cryptosystem encoding it as a fixed weight
error vector e and computing its syndrome through Hpub, s = HpubeT , which acts as the ciphertext.
The owner of the private key (S, Hpriv) is able to decipher the ciphertext through first obtaining
s′ = S−1s and subsequently performing the syndrome decoding of s′ employing Hpriv.

It is easy to note that, under the assumption that Hpub is indistinguishable from a random parity
check matrix, an attacker willing to perform a Message Recovery Attack (MRA) must solve an instance
of the Syndrome Decoding Problem (SDP). We note that, as proven by Niederreiter [3], the Syndrome
Decoding Problem (SDP) is computationally equivalent to the problem of correcting a bounded
amount of errors affecting a codeword, when given a random generator matrix of the code, G. Such a
problem goes by the name of Decoding Problem, and is the mainstay of the original cryptosystem
proposal by McEliece [32]. In such a scheme, the ciphertext thus corresponds to the sum between
a codeword of the public code, obtained as mG, with m being a length-k vector, and a vector e of
weight t. The message can either be encoded into e or into m; in the latter case, Message Recovery
Attack (MRA) is performed by searching for the error vector e and, subsequently, by adding it to the
intercepted ciphertext. We point out that this search can automatically turned into the formulation
of Syndrome Decoding Problem (SDP), by first computing a valid Hpub from G and then by trying to
solve Syndrome Decoding Problem (SDP) on the syndrome of the intercepted ciphertext through Hpub.

One of the most prominent cases where Codeword Finding Problem (CFP) appears in code-based
cryptosystems is represented by a Key Recovery Attack (KRA) against Niederreiter cryptosystems
where the private parity check matrix Hpriv contains rows with a known low weight w. Indeed, in such
a case, considering Hpub as the generator matrix of the dual code, solving the Codeword Finding
Problem (CFP) for such a code reveals the low weight rows of Hpriv. We note that such a Key Recovery
Attack (KRA) is in the same computational complexity class as Syndrome Decoding Problem (SDP),
assuming that the obfuscation of Hpub makes it indistinguishable from a random one.

Two notable cases where solving the Codeword Finding Problem (CFP) is the currently best
known method to perform a Key Recovery Attack (KRA) are the LEDAcrypt [33] and BIKE [34]

Algorithms 2019, 12, 209 5 of 34

proposals to the mentioned NIST standardization effort for post-quantum cryptosystems. Since such a
Codeword Finding Problem (CFP) can also be seen as the problem of finding a binary vector c with
weight w such that HpubcT = 0, the problem is also known as the Homogeneous Syndrome Decoding
Problem (SDP), as it implies the solution of a simultaneous set of linear equations similar to the
Syndrome Decoding Problem (SDP), save for the syndrome being set to zero.

2.2. Strategies to Perform MRA

As described in the previous section, security of code-based cryptosystems relies on the hardness
of solving Syndrome Decoding Problem (SDP) or Codeword Finding Problem (CFP) instances. In this
section, we analyze the case of Syndrome Decoding Problem (SDP) and show that the optimal strategy
to perform Message Recovery Attack (MRA) depends on the code parameters. The optimal strategy
for solving Syndrome Decoding Problem (SDP) depends on the relation between the actual parameters
of the instance under analysis. In particular, in the cases where t is above the Gilbert–Varshamov
(GV) distance [35], Generalized Birthday Algorithm (GBA) is the best currently known algorithm
for solving Syndrome Decoding Problem (SDP) [36,37]. However, for the cases we consider in this
paper, practical values of t are significantly smaller than the GV distance; in such cases, the best known
methods to solve Syndrome Decoding Problem (SDP) go by the name of Information Set Decoding
(ISD) algorithms. Such algorithms are aimed at lessening the computational effort required in the
guesswork of an exhaustive search for the unknown error vector e of weight t, given a syndrome and
a parity check matrix. We point out that it is also possible to adapt all Information Set Decoding (ISD)
algorithms, save for the first one proposed by Prange [10], to solve the Codeword Finding Problem
(CFP), as a consequence of the structural similarity of the two problems.

All Information Set Decoding (ISD) algorithms share a common structure where an attempt at
retrieving the error vector corresponding to a given syndrome is repeated, for a number of times whose
average value depends on the success probability of the single attempt itself. The complexity of all
Information Set Decoding (ISD) variants can be expressed as the product between the complexity of
each attempt, which we denote as Citer, and the average number of required attempts. In particular,
such a value can be obtained as the reciprocal of the success probability of each attempt, which we
denote as Prsucc; thus, when considering a code with length n, redundancy r = n− k and Hamming
weight of the sought error bounded to t, we generically denote the time complexity of obtaining one
solution of Syndrome Decoding Problem (SDP) employing the Information Set Decoding (ISD) variant
at hand, i.e.,

CISD(n, r, t) =
Citer

Prsucc
. (1)

As we show in the following, the work factor of a Message Recovery Attack (MRA) performed
through Information Set Decoding (ISD) may actually depend on the system parameters; to this end,
we first exploit the following well-known result. Let C(n, k, d) be a linear binary code with length n,
dimension k and minimum distance d, and let H be a parity-check matrix for C(n, k, d). Let s be a
length-r binary vector and t be an integer ≤n; then, if t <

⌈
d
2

⌉
, there is at maximum one vector e of

weight t such that s = HeT .
Thus, when Hpub is the parity-check matrix of a code with minimum distance d > 2t, then solving

Syndrome Decoding Problem (SDP) guarantees that the found error vector corresponds to the one that
was used to encrypt the message. In this case, the attack work factor corresponds to CISD(n, r, t).

However, when d ≤ 2t, the time complexity of a Message Recovery Attack (MRA) needs to
be derived through a different approach. Indeed, in such a case, the adversary has no guarantee
that the output of Information Set Decoding (ISD) corresponds to the error vector that was actually
used in the encryption phase. Thus, the work factor of a Message Recovery Attack (MRA) cannot
be simply taken as the time complexity of the chosen Information Set Decoding (ISD) algorithm.

Algorithms 2019, 12, 209 6 of 34

Let s be the syndrome corresponding to the intercepted ciphertext and e be the searched error vector,
i.e., s = HpubeT . We define

N(e) =
∣∣∣{e′ ∈ Fn

2 s.t. wt(e′) = t and Hpube′T = s
}∣∣∣ . (2)

Clearly, N(e) corresponds to the number of valid outputs that Information Set Decoding (ISD)
can produce, when applied on the syndrome s corresponding to e. In such a case, the probability that
an Information Set Decoding (ISD) iteration will not find any valid error vector can be estimated as
(1− Prsucc)

N(e). Thus, in such a case, one attempt of Information Set Decoding (ISD) will succeed with
probability Pr′succ(e) = 1− (1− Prsucc)

N(e). In particular, the algorithm will randomly return a vector
among the set of the N(e) admissible ones: thus, the probability that the obtained vector corresponds
to e is 1/N(e).

To obtain a closed-form expression for the attack work factor, we can consider the average value of
N(e), which we obtain by averaging over all the possible vectors e of weight t and length n, and denote
it with N. Then, the attack work factor can be computed as

WFMRA ≈ N
Citer

Pr′succ
= N

Citer

1− (1− Prsucc)
N . (3)

In particular, it can be shown that NP ≥ 1− (1− P)N , so that

WFMRA = αCISD(n, k, t), (4)

with
α =

NPrsucc

1− (1− Prsucc)
N ≥ 1. (5)

We point out that, for the cases we analyze in this paper, we have NPrsucc � 1, so that α ≈ 1.
Thus, from now on, we assume α = 1, i.e., that the time complexity of performing a Message Recovery
Attack (MRA) is equal to that of running an Information Set Decoding (ISD) algorithm in the case in
which a unique solution exists.

3. A Finite Regime Analysis of Information Set Decoding Techniques

In the following, we report an analysis of the best known variants of Information Set Decodings
(ISDs) and their execution on a classical computer, namely the ones proposed by Prange [10], Lee and
Brickell [11], Leon [12], Stern [13], Finiasz and Sendrier [14], May, Meurer and Thomae [15], and Becker,
Joux, May and Meurer [16]. For the sake of clarity, we describe the Information Set Decoding (ISD)
algorithms in their syndrome decoding formulation, highlighting for the first variant amenable to
dual-use, i.e., Lee and Brickell’s, how to adapt the technique to the Codeword Finding Problem
(CFP). For all these algorithms, we provide finite-regime time complexities and space complexities,
with the aim to analyze the actual computational effort and memory resources needed to solve both
the Syndrome Decoding Problem (SDP) and the Codeword Finding Problem (CFP) on instances with
cryptographically sized parameters. We also report lower bounds on the complexities of the execution
of Prange, Lee and Brickell’s and Stern’s variants of the Information Set Decoding (ISD) on a quantum
computer, allowing an evaluation of the corresponding computational efforts.

We provide the exact formulas for the time complexity of ISD variants as a function of the
code length n, the code dimension k and the number of errors t. We note that the ISD algorithms
having the best asymptotic time complexity are also characterized by an exponential space complexity,
which may significantly hinder their efficiency or make their implementation unpractical. In particular,
we also analyze the computational cost of such algorithms with a logarithmic memory access cost
criterion. Indeed, the logarithmic access cost criterion is the one which fits better scenarios where the

Algorithms 2019, 12, 209 7 of 34

spatial complexity of an algorithm is more than polynomial in its input size, therefore resulting in a
non-negligible cost for the memory accesses.

In the reported formulas, we employ the O-notation simply to remove the need to specify the
computing architecture- or implementation-dependant constants.

3.1. Prange

Prange’s algorithm [10] is the first known variant of ISD, based on the idea of guessing a set I
of k error-free positions in the error vector e to be found in the Syndrome Decoding Problem (SDP).
For this purpose, the columns of H are permuted so that those indexed by I are packed to the left.
This operation is equivalent to the multiplication of H by an appropriately sized permutation matrix P.
The column-reordered matrix Ĥ = HP is hence obtained, which can be put in Reduced Row Echelon
Form (RREF), with the identity matrix Ir placed to the right, i.e., [V Ir] = UĤ. If turning Ĥ in Reduced
Row Echelon Form (RREF) is not possible as the r× r rightmost submatrix is not full-rank, a different
permutation is picked. The same transformation U required to bring H in Reduced Row Echelon
Form (RREF) is then applied to the single-bit rows of the column syndrome vector s, obtaining s̄ = Us.
If the weight of the permuted error vector ê obtained as ê = eP = [01×k s̄T], where 01×k is the all-zero
error vector of length k, matches the expected error weight t, then the algorithm succeeds and the
non-permuted error vector êPT is returned. A pseudo-code description of Prange’s ISD algorithm is
provided in Algorithm 1.

Algorithm 1: Syndrome decoding formulation of Prange’s ISD.
Input: s: an r-bit long syndrome (column vector)

H: an r× n binary parity-check matrix

t: the weight of the error vector to be recovered

Output: e: an n-bit binary row error vector s.t. HeT = s, with WEIGHT(e) = t

Data: P: an n× n permutation matrix

s̄ an r-bit long binary column vector

V: an r× k binary matrix V = [v0, . . . , vk−1]

1 repeat

2 repeat

3 P← RANDOMPERMUTATIONGEN(n)

4 Ĥ ← HP // the corresponding error vector is ê = eP

5 〈 U, [V|W] 〉 ← REDROWECHELONFORM(Ĥ) // UH = [V|Wr×r]

6 until W 6= Ir

7 s̄← Us

8 ê← [01×k s̄T]

9 until WEIGHT(ê) = t

10 return êPT

Proposition 1 (Computational complexity of Algorithm 1). Given H, an r× n binary parity-check matrix
and s, an r-bit long syndrome (column vector) obtained through H, the complexity for finding the row error vector
e with length n and weight t such that s = HeT with Algorithm 1 can be computed starting from the probability

Algorithms 2019, 12, 209 8 of 34

of success Prsucc of a single iteration of the loop at Lines 1–9 and the computational requirements of executing

the loop body citer. In particular, the time complexity is CISD(n, r, t) =
1

Prsucc
citer =

(n
t)

(r
t)

(CIS(n, r) + n), with

CIS(n, r) =
1

∏r
i=1(1− 2−i)

CRREF(n, r) + r2 + n,

CRREF(n, r) = O
(

nr2

2
+

nr
2
− r3

6
+ r2 +

r
6
− 1
)

. (6)

The spatial complexity is SISD(n, r, t) = O(rn).

Proof. The loop body of Algorithm 1 is dominated by the cost of finding an information set and
validating it through checking that the matrix W is indeed an identity, i.e., that the corresponding
submatrix of Ĥ indeed has full rank.

Note that, in an r× r binary matrix, the first row has a probability of 1
2r of being linearly dependent

from itself (i.e., zero); the second row has a probability of 2
2r of being linearly dependent (i.e., zero or

equal to the first). With an inductive argument, we obtain that the rth row has a probability of 2r−1

2r of
being linearly dependent from the previous ones. We thus have that the probability of having all the
rows independent from one another is ∏r

i=1(1− 2i−1

2r) = ∏r
i=1(1− 1

2i).
We thus have that the column permutation (Line 4), with computational complexity rn (which

can be lowered to n keeping only the permuted column positions) and the Reduced Row Echelon
Form (RREF) transformation (Line 5), with cost O

(
nr2

2 + nr
2 −

r3

6 + r2 + r
6 − 1

)
have to be repeated

1
∏r

i=1(1−2−i)
times, yielding the first addend of the computational cost CIS(n, r). The cost CRREF(n, r)

is derived considering the Reduced Row Echelon Form (RREF) as an iterative algorithm performing
as many iterations as the rank of the identity matrix in the result (i.e., r in this case). Each iteration
0 ≤ i ≤ r− 2 proceeds to find a pivot, taking O(r− i), swaps it with the (r− i)th row in O(n) and
proceeds to add the pivot to all the remaining r− i− 1 rows which have a one in the (n− i)th column.
The total cost is

CRREF(n, r) = O
(

r−2

∑
i=0

(r− i) + rn +
r−2

∑
i=0

(r− 1− i)(n− i)

)
= O

(
nr2

2
+

nr
2
− r3

6
+ r2 +

r
6
− 1
)

.

The second addend of the cost CIS(n, r) is constituted by the computational complexity of
computing s̄ = Us, which is r2. The total cost of computing an iteration citer is the sum of CIS(n, r) and
the cost of building ê, i.e., O(n).

Prsucc is obtained as the number of permuted error vectors with the error-affected positions such
that they are fitting the hypotheses made by the algorithm, divided by the number of all the possible
error vectors. This fact holds for all ISD algorithms. In the case of Prange’s ISD, the permuted error
vectors admissible by the hypotheses are (r

t), as all the error-affected positions should be within the
last r bits of the permuted error vectors, while the number of error vectors is (n

t).

For the sake of clarity, from now on, we denote as ISEXTRACT(H, s) the procedure computing
〈P, [V Ir], s̄〉, performed on Lines 2–7 of Algorithm 1, with computational time complexity CIS(n, r)
and space complexity O(rn).

3.2. Lee–Brickell

The ISD algorithm introduced by Lee and Brickell in [11] starts with the same initial operations as
in Prange’s, i.e., the computation of the Reduced Row Echelon Form (RREF) of Ĥ and the derivation
of the corresponding syndrome s̄. However, Lee and Brickell improved Prange’s original idea by
allowing p positions in the k selected in the error vector to be error-affected. These p remaining error
positions are guessed. To verify the guess, Lee and Brickell exploit the identity [V Ir] êT = s̄, where ê

Algorithms 2019, 12, 209 9 of 34

is split in two parts, ê = [ê1 ê2], with ê1 being k bit long and with weight p, and ê2 being r bits long and
with weight t− p. The identity is rewritten as VêT

1 + Ir êT
2 = VêT

1 + êT
2 = s̄, from which follows the fact

that VêT
1 + s̄ = êT

2 must have weight t− p. Indeed, this condition is employed by the algorithm to
check if the guess of p positions is correct. The procedure is summarized in Algorithm 2.

Algorithm 2: Syndrome decoding formulation of Lee and Brickell’s ISD.
Input: s: an r-bit long syndrome (column vector)

H: an r× n binary parity-check matrix

t: the weight of the error vector to be recovered

Output: e: an n-bit binary row error vector s.t. HeT = s, with WEIGHT(e) = t

Data: P: an n× n permutation matrix

ê = eP: the error vector permuted by P

p: the weight of the first k bits of ê, 0 ≤ p ≤ t, p = 2 proven optimal

s̄: an r-bit long binary column vector, equal to the syndrome of e through [V Ir]

V: an r× k binary matrix V = [v0, . . . , vk−1]

1 repeat

2 〈P, [V Ir], s̄〉 ← ISEXTRACT(H, s)

3 for j← 1 to (k
p) do

4 I ← INTEGERTOCOMBINATION(j) // I is a set of p distinct integers in {0, . . . , k− 1}

5 if WEIGHT(s̄ + ∑i∈I vi) = t− p then

6 ê← [01×k (s̄ + ∑i∈I vi)
T]

7 foreach i ∈ I do

8 ê← ê + [01×i 1 01×(r+k−1−i)]

9 break

10 until WEIGHT(ê) = t

11 return êPT

Proposition 2 (Computational complexity of Algorithm 2). Given H, an r× n binary parity-check matrix
and s, an r-bit long syndrome (column vector) obtained through H, finding the row error vector e with length n
and weight t such that s = HeT with Algorithm 2 requires an additional parameter 0 ≤ p ≤ t.

The time complexity of Algorithm 2 can be computed starting from the probability of success Prsucc of a
single iteration of the loop at Lines 1–10 and the computational requirements of executing the loop body citer.
In particular, the time complexity is

CISD(n, r, t, p) =
1

Prsucc
citer =

(n
t)

(k
p)(

r
t−p)

(
CIS(n, r) +

(
k
p

)
(CIntToComb + pr)

)
,

where CIS(n, r) is as in Equation (6) and CIntToComb = O((2k − p)(log (k
p))

2) is the cost of decoding an

integer into its combinadics representation, i.e, finding the corresponding combination among all the (k
p) ones.

The spatial complexity is SISD(r, n) = O(rn).

Proof. The probability of success of Lee and Brickell’s ISD is obtained following the same line of
reasoning employed for Prange’s, thus dividing the number of admissible permuted error vectors,
(k

p)(
r

t−p) by the number of the possible error vectors (n
t).

The cost of an iteration of Lee and Brickell’s algorithm can be obtained as the cost of adding
together p + 1 bit vectors of length r, i.e., pr (Line 6), multiplied by the number of such additions,

Algorithms 2019, 12, 209 10 of 34

i.e., (k
p) as they constitute the body of the loop at Lines 4–9. Note that, in a practical implementation

where the value of p is fixed, it is possible to avoid CIntToComb altogether, specializing the algorithm
with a p-deep loop nest to enumerate all the weight p, length k binary vectors.

3.3. Adapting Lee and Brickell to Solve CFP

The structure of Lee and Brickell’s Information Set Decoding (ISD) allows employing substantially
the same algorithm to solve the Codeword Finding Problem (CFP), given a parity matrix H as the
representation of the code where a weight w codeword c should be found. The line of reasoning to
employ Lee and Brickell’s Information Set Decoding (ISD) to solve the Codeword Finding Problem
(CFP) is to note that, by definition, for any codeword c of the code represented by H we have that
HcT = 01×r, i.e., a codeword multiplied by the parity check matrix yields a null syndrome. As a
consequence, we have that 01×r = HcT = HPPTcT = ĤPTcT = ĤĉT = VĉT

1 + ĉT
2 . This implies that

VĉT
1 = ĉT

2 , which can be exploited as an alternative stopping condition to the one of Algorithm 2,
yielding in turn Algorithm 3. The only remaining difference between the Syndrome Decoding Problem
(SDP) solving Lee and Brickell’s ISD and the Codeword Finding Problem (CFP) is represented by the
ISEXTRACT primitive, which no longer needs to compute a transformed syndrome s̄ = Us as it is null.
We thus have a small reduction in CIS(n, r), which becomes CIS(n, r) = 1

∏r
i=1(1−2−i)

CRREF(n, r) + n,

losing an additive r2 term. We note that such a reduction is expected to have little impact in practice as
the dominant portion of the ISEXTRACT function is represented by the Reduced Row Echelon Form
(RREF) computation. This in turn implies that solving the Syndrome Decoding Problem (SDP) on a
code C has practically the same complexity of finding a codeword with weight w = t in the same code.
Therefore, finding low-weight codewords in the code defined by a Niederreiter cryptosystem public
key Hpub has an effort comparable to the one of performing syndrome decoding assuming an error
with the same weight as the codeword to be found. Two families of codes which may be vulnerable to
such an attack unless the parameters are designed taking into account a Codeword Finding Problem
(CFP) ISD are the Low Density Parity Check (LDPC) and Moderate Density Parity Check (MDPC)
codes. Indeed, such code families can be represented with a parity check matrix with low-weight rows,
and such a low-weight representation can be relied upon to perform efficient decoding, leading to
an effective cryptosystem break. Indeed, we now show that, if a code C(n, k, d) can be represented
by a low-weight parity matrix Hpriv, the code will contain low weight codewords. Without loss of
generality, consider k > r. Moreover, consider Hpriv as split in three portions [Al ArB] of size r× (k− r),
r× r and r× r, respectively, with B non-singular. We derive the corresponding generator matrix as

G =

[
I(k−r)×(k−r) 0(k−r)×r (B−1 Al)

T

0r×(k−r) Ir×r (B−1 Ar)T

]

and consider the bottom r rows [0r×(k−r) Ir×r (B−1 Ar)T]. Consider the product of such bottom rows
by BT , yielding [0r×(k−r) Ir×r (B−1 Ar)T]BT = [0r×(k−r) BT AT

r] and note that all the rows of this
product are valid codewords, as they are the result of a linear combination of rows of the generator
matrix G. Moreover, given that the private parity-check matrix Hpriv has low row and column weight
by construction, we have that the aforementioned codewords, i.e., the rows of [0r×(k−r) BT AT

r],
also have a low weight. This fact may thus allow an attacker to perform a Key Recovery Attack (KRA)
retrieving the low-weight codewords and rebuilding Hpriv.

A different attack strategy for the same code families is to try and find codewords in the dual
code with respect to the one represented by the parity check matrix Hpriv. Such a code, by definition,
sees Hpriv as a valid generator matrix, and thus makes it possible to directly reconstruct Hpriv solving
r instances of Codeword Finding Problem (CFP) to obtain the r instances of Hpriv. Solving the
Codeword Finding Problem (CFP) on the dual code implies that Algorithm 3 is called considering the
aforementioned G matrix as a parity check matrix. Thus, if we denote with CISD(n, r, w) the complexity
of solving Codeword Finding Problem (CFP) on the code described by Hpriv, solving the Codeword

Algorithms 2019, 12, 209 11 of 34

Finding Problem (CFP) on the dual code, will have a complexity of CISD(n, k, w′), where w′ is the
weight of the codeword of the dual code. Whether this strategy or the one of solving the Codeword
Finding Problem (CFP) on the primal code is more advantageous depending on the code rate and the
values of w and w′.

Algorithm 3: Codeword finding formulation of Lee and Brickell’s ISD.
Input: H: an r× n binary parity-check matrix

w: the weight of the codeword to be found

Output: c: an n-bit codeword with WEIGHT(c) = w

Data: P: an n× n permutation matrix

ĉ = cP: the error vector permuted by P

p: the weight of the first k bits of ĉ, 0 ≤ p ≤ w,

V: an r× k binary matrix V = [v0, . . . , vk−1]

1 repeat

2 〈P, [V Ir]〉 ← ISEXTRACT(H)

3 for j← 1 to (k
p) do

4 I ← INTEGERTOCOMBINATION(j) // I is a set of p distinct integers in {0, . . . , k− 1}

5 if WEIGHT(∑i∈I vi) = w− p then

6 ĉ← [01×k (∑i∈I vi)
T]

7 foreach i ∈ I do

8 ĉ← ĉ + [01×i 1 01×(r+k−1−i)]

9 break

10 until WEIGHT(ĉ) = w

11 return ĉPT

3.4. Leon

The algorithm proposed by Leon in [12], reported in Algorithm 4, improves the Lee and Brickell’s
Information Set Decoding (ISD) assuming that the contribution to the value of the first ` bits of the
syndrome s̄, s̄up, comes only from columns in V, i.e., there is a run of zeroes of length ` leading the
final r bits of the permuted error vector ê , i.e., ê = [ê101×` ê2], where ê1 is k bits long and ê2 is r− ` bits
long. We thus have that the expected situation after the permutation and RREF computation is

ĤêT =

[
Vup Iup

Vdown Idown

]  êT
1

0T
1×`

êT
down

 =

[
s̄up

s̄down

]
= s̄

where êdown is assumed to have a run of ` zeroes in its first bits. Such an assumption will clearly
reduce the success rate of an iteration, as not all the randomly chosen permutations will select columns
having this property. However, making such an assumption allows performing a preliminary check
of the value of the sum of the ` topmost bits only of each column of V. Indeed, such a sum should
match the value of the corresponding ` topmost bits of s̄, s̄up, because the ` leading null bits in êdown
in turn nullify the contribution of the columns in the topmost ` rows Iup of the identity matrix. Such a
check (Line 5 in Algorithm 4) allows discarding a selection of the p columns from the ones of V, earlier,
saving addition instructions with respect to a full column check. The length ` of the run of zeroes
should be picked so that the trade-off between the reduction in success probability is compensated by
the gain in the speed of a single iteration.

Algorithms 2019, 12, 209 12 of 34

Algorithm 4: Syndrome decoding formulation of Leon’s ISD.
Input: s: an r-bit long syndrome (column vector)

H: an r× n binary parity-check matrix

t: the weight of the error vector to be recovered

Output: e: an n-bit binary row error vector s.t. HeT = s, with WEIGHT(e) = t

Data: P: an n× n permutation matrix

ê = eP: the error vector permuted by P

p: the weight of the first k bits of ê, 0 ≤ p ≤ t,

`: length of the run of zeroes in ê = [ê′1×k 01×` ê′′1×r−`]

s̄: an r-bit long binary column vector, equal to the syndrome of e through [V Ir],

s̄ =

[
s̄up

s̄down

]
V: an r× k binary matrix

V =
[
v0 . . . vk−1

]
=

[
Vup

Vdown

]
=

[
vup 0 . . . vup k−1

vdown 0 . . . vdown k−1

]

1 repeat

2 〈P, [V Ir], s̄〉 ← ISEXTRACT(H, s)

3 for j← 1 to (k
p) do

4 I ← INTEGERTOCOMBINATION(j) // I is a set of p distinct integers in {0, . . . , k− 1}

5 if WEIGHT(s̄up + ∑i∈I vup i) = 0 then

6 if WEIGHT(s̄down + ∑i∈I vdown i) = t− p then

7 ê← [01×(k+`) (s̄down + ∑i∈I vdown i)
T]

8 foreach i ∈ I do

9 ê← ê + [01×i 1 01×(r+k−1−i)]

10 break

11 until WEIGHT(ê) = t

12 return êPT

Proposition 3 (Computational complexity of Algorithm 4). Given H, an r× n binary parity-check matrix
and s, an r-bit long syndrome (column vector) obtained through H, finding the row error vector e with length n
and weight t such that s = HeT with Algorithm 4 requires two additional parameters 0 ≤ p ≤ t, 0 ≤ ` ≤ r.
The time complexity of Algorithm 4 can be computed starting from the probability of success Prsucc of a
single iteration of the loop at Lines 1–11 and the computational requirements of executing the loop body citer.
In particular, the time complexity is

CISD(n, r, t, p, `) =
1

Prsucc
citer =

(n
t)

(k
p)(

r−`
t−p)

CIS(n, r) +
(

k
p

)CIntToComb + p`+
(k

p)

2`
p(r− `)

 ,

where CIS(n, r) is as in Equation (6) and CIntToComb = O((2k − p)(log (k
p))

2) is the cost of decoding an

integer into its combinadics representation, i.e., finding the corresponding combination among all the (k
p) ones.

Note that, if the value of p is fixed, it is possible to avoid CIntToComb, specializing the algorithm with a p-deep
loop nest to generate the combinations. The spatial complexity is SISD(r, n) = O(rn).

Algorithms 2019, 12, 209 13 of 34

Proof. The success probability of an iteration of Leon’s algorithm follows the same line of reasoning
of Prange’s and Lee and Brickell’s, dividing the number of admissible permuted error vectors (k

p)(
r−`
t−p)

by the total one (n
t). The complexity of a single iteration is obtained considering that the loop at Lines

4–10 will perform (k
p) iterations, where p + 1 vectors of length ` are added together (complexity p`),

and, if the result is zero, a further addition of p + 1 bit vectors, each one of length r − ` has to be

performed (complexity p(r − `)). This further addition takes place with a probability of
(k

p)

2`
, as all

possible values for s̄up are 2`, and only (k
p) attempts at hitting the correct one are made, thus yielding

the correct complexity, under the assumption that the sums of ` bit vectors are independent and
uniformly distributed over all the ` bit strings.

3.5. Stern

Stern’s algorithm, introduced in [13], improves Leon’s (Algorithm 4) by employing a
meet-in-the-middle strategy to find which set of size p, containing ` bit portions of columns of

V, adds up to the first ` bits of the syndrome s̄. For the sake of clarity, consider V as V =

[
Vup

Vdown

]
=[

vup 0 . . . vup k−1
vdown 0 . . . vdown k−1

]
where vup i are `-bit column vectors, and vdown i are (r − `)-bit column

vectors, and the transformed syndrome s̄ as s̄ =

[
s̄up

s̄down

]
.

Stern’s strategy splits the p-sized set I ′ of indexes of the columns of Vup, which should add up to
s̄up, into two p

2 sized ones I and J (I ′ = I ∪ J). Stern’s strategy mandates that all columns indexed
by I should be within the leftmost k

2 ones of V, while the ones indexed by J should be within the
rightmost k

2 ones. It then exploits the following equation

∑
i′∈I ′

vup i′ = s̄up ⇔ s̄up = ∑
i∈I

vup i + ∑
j∈J

vup j ⇔ s̄up + ∑
i∈I

vup i = ∑
j∈J

vup j

to precompute the value of s̄up + ∑i∈I vup i for all possible (k/2
p/2) choices of I , and store them into

a lookup table L, together with the corresponding choice of I . The algorithm then enumerates all
possible p

2 sized sets of indexes J , computing for each one ∑j∈J vup j, and checking if the result
is present in L. If this is the case, the algorithm has found a candidate pair (I ,J) for which
∑i∈I∪J vup i = s̄up holds, and thus proceeds to check if ∑i∈I∪J vdown i = s̄down. This strategy
reduces the cost of computing an iteration quadratically at the price of increasing the number of
iterations with respect to Lee and Brickell’s approach, and taking a significant amount of space to store
the lookup table L which contains (k/2

p/2) elements. We note that Stern’s variant of the ISD is the first
one to exhibit non-polynomial memory requirements, due to the size of the set I , which should be
memorized and looked up. Stern’s algorithm is summarized in Algorithm 5.

Algorithms 2019, 12, 209 14 of 34

Algorithm 5: Syndrome decoding formulation of Stern’s ISD.
Input: s: an r-bit long syndrome (column vector)

H: an r× n binary parity-check matrix

t: the weight of the error vector to be recovered

Output: e: an n-bit binary row error vector s.t. HeT = s, with WEIGHT(e) = t

Data: P: an n× n permutation matrix

ê = eP: the error vector permuted by P

p: the weight of the first k bits of ê, 0 ≤ p ≤ t,

`: length of the run of zeroes in ê = [ê′1×k 01×` ê′′1×r−`]

s̄: an r-bit long binary column vector, equal to the syndrome of e through [V Ir],

s̄ =

[
s̄up

s̄down

]
V: an r× k binary matrix

V =
[
v0 . . . vk−1

]
=

[
Vup

Vdown

]
=

[
vup 0 . . . vup k−1

vdown 0 . . . vdown k−1

]
L: list of pairs (I , aI), with I a set of integer indexes between 0 and k

2 − 1, and aI an

`-bit binary column vector

1 repeat

2 〈P, [V Ir], s̄〉 ← ISEXTRACT(H, s)

3 L ← ∅
4 for j← 1 to (k/2

p/2) do

5 I ← INTEGERTOCOMBINATION(j) // I is a set of p/2 distinct integers in {0, . . . , k
2 − 1}

6 L ← L∪ {(I , s̄up + ∑i∈I vup i)}
7 for j← 1 to (k/2

p/2) do

8 J ← INTEGERTOCOMBINATION(j) // J is a set of p/2 distinct integers in {0, . . . , k
2 − 1}

9 if (I , ∑i∈J vup i+k/2) ∈ L then

10 if WEIGHT(s̄down + ∑i∈I∪J vdown i) = t− p then

11 ê← [01×(k+`) (s̄down + ∑i∈I∪J vdown i)
T]

12 foreach i ∈ I do

13 ê← ê + [01×i 1 01×(r+k−1−i)]

14 foreach i ∈ J do

15 ê← ê + [01×i+k/2 1 01×(r+k/2−1−i)]

16 break

17 until WEIGHT(ê) = t

18 return êPT

Proposition 4 (Computational complexity of Algorithm 5). As for Algorithm 4, given H, an r× n binary
parity-check matrix and s, an r-bit long syndrome (column vector) obtained through H, finding the row error
vector e with length n and weight t such that s = HeT with Algorithm 5 requires two additional parameters
0 ≤ p ≤ t, 0 ≤ ` ≤ (k− p).

Algorithms 2019, 12, 209 15 of 34

The time complexity of Algorithm 5 can be computed starting from the probability of success Prsucc of a
single iteration of the loop at Lines 1–17 and the computational requirements of executing the loop body citer.
In particular, the time complexity is

CISD(n, r, t, p, `) =
1

Prsucc
citer

=
(n

t)

(k/2
p/2)

2
(r−`

t−p)

CIS(n, r) +
(

k/2
p/2

)
p
2
`+

(
k/2
p/2

)
(CIntToComb +

p
2
`+

(k/2
p/2)

2`
p(r− `))


where CIS(n, r) is as in Equation (6) and CIntToComb = O((2k − p)(log (k

p))
2) is the cost of decoding

an integer into its combinadics representation, i.e., finding the corresponding combination among all the
(k/2

p/2) ones. Note that, if the value of p is fixed, it is possible to avoid CIntToComb, specializing the
algorithm with a p-deep loop nest to generate the combinations. The spatial complexity is SISD(n, r, t, p, `) =
O
(

rn + (k/2
p/2)(

p
2 log2(

k
2) + `)

)
.

Proof. The success probability of an iteration of Stern’s algorithm follows the same line of reasoning

of the previous ones, dividing the number of admissible permuted error vectors (k/2
p/2)

2
(r−`

t−p) by the
total one (n

t). The complexity of a single iteration is obtained considering that the loop at Lines 5–7
will compute (k/2

p/2) additions of p
2 + 1 vectors, each one ` bits in length (complexity (k/2

p/2)
p
2 `). The loop

at Lines 8–16 performs (k/2
p/2) iterations, where p

2 + 1 vectors of length ` are added together (complexity
p`), and the result is looked up in table L. If the result is found, a further addition of p + 1 bit vectors,
each one r− ` bits long is performed (complexity p(r− `)). This further addition takes place with

a probability of
(k/2

p/2)

2`
, as all the possible values for the computed ` bit sum are 2`, and only (k/2

p/2) are
present in L.

The spatial complexity of Stern’s algorithm is the result of adding together the space required
for the operations on the H matrix (i.e., rn) with the amount of space required by the list L, which is
(k/2

p/2) elements long. Each element of the list takes p
2 log2(

k
2) bits to store the set of indexes, and ` bits

to store the partial sum, yielding a total spatial cost for the list of (k/2
p/2)(

p
2 log2(

k
2) + `) bits.

The aforementioned temporal complexity is obtained assuming a constant memory access cost
which, given the exponential amount of memory required is likely to be ignoring a non-negligible
amount of time spent to perform memory accesses. Indeed, it is possible to take into account such a
time employing a logarithmic memory access cost model. Recalling that the address decoding logic for
an n element digital memory of any kind cannot have a circuit depth smaller than log2(n), we consider
that the operations involved in the computation of an iteration will require such an access, in turn
obtaining a cost per iteration equal to citer−logcost = citer log2(SISD(n, r, t, p, `)).

3.6. Finiasz–Sendrier

Finiasz and Sendrier in [14] proposed two improvements on Stern’s Information Set Decoding
(ISD) algorithm, obtaining Algorithm 6. The first improvement is represented by removing the
requirement for the presence of a run of ` zeroes in the permuted error vector ê and allowing the p
error bits to be guessed to be present also in that region of ê. Such an approach raises the success
probability of an iteration. Following the fact that the p positions which should be guessed are picked
among the first k + ` ones of the error vector, Finiasz and Sendrier computed only a partial Reduced
Row Echelon Form (RREF) transformation obtaining a smaller, (r− `)× (r− `), identity matrix in

the lower rightmost portion of UĤ =

[
Vup 0`×(r−`)

Vdown Ir−`

]
, and leaving a zero submatrix on top of the

Algorithms 2019, 12, 209 16 of 34

identity. As a consequence, the cost of computing such an Reduced Row Echelon Form (RREF) is
reduced to

CRREF−FS(n, r, `) = − `3

3
− `2n

2
+

`2r
2
− 3`2

2
− 3`n

2
+

`r
2
− 13`

6
+

nr2

2
+

nr
2
− r3

6
+ r2 +

r
6
− 1.

Algorithm 6: Syndrome decoding formulation of Finiasz–Sendrier ISD.
Input: s: an r-bit long syndrome (column vector)

H: an r× n binary parity-check matrix

t: the weight of the error vector to be recovered

Output: e: an n-bit binary row error vector s.t. HeT = s, with WEIGHT(e) = t

Data: P: an n× n permutation matrix

ê = eP: the error vector permuted by P

p: the weight of the first k bits of ê, 0 ≤ p ≤ t,

`: a free parameter 0 ≤ ` ≤ r− (t− p)

s̄: an r-bit long binary column vector, equal to the syndrome of e through

[
Vup 0`×(r−`)

Vdown Ir−`

]
,

s̄ =

[
s̄up

s̄down

]

V: an r× (k + `) binary matrix V =
[
v0 . . . vk−1

]
=

[
Vup

Vdown

]
=

[
vup 0 . . . vup k+`−1

vdown 0 . . . vdown k+`−1

]
L: list of pairs (I , aI), with I a set of integer indexes between 0 and k+`

2 − 1, and aI an `-bit binary

column vector

1 repeat

2 〈P,

[
Vup 0`×(r−`)

Vdown Ir−`

]
, s̄〉 ← ISEXTRACT-FS(H, s, `)

3 L ← ∅
4 for j← 1 to ((k+`)/2

p/2) do

5 I ← INTEGERTOCOMBINATION(j) // I is a set of p/2 distinct int.s in {0, . . . , k+`
2 − 1}

6 L ← L∪ {(I , s̄up + ∑i∈I vup i)}
7 for j← 1 to ((k+`)/2

p/2) do

8 J ← INTEGERTOCOMBINATION(j) // J is a set of p/2 distinct int.s in {0, . . . , k+`
2 − 1}

9 if (I , ∑i∈J vup i+(k+`)/2) ∈ L then

10 if WEIGHT(s̄down + ∑i∈I∪J vdown i) = t− p then

11 ê← [01×(k+`) (s̄down + ∑i∈I∪J vdown i)
T]

12 foreach i ∈ I do

13 ê← ê + [01×i 1 01×(r+k−1−i)]

14 foreach i ∈ J do

15 ê← ê + [01×i+(k+`)/2 1 01×(r+(k+`)/2−1−i)]

16 break

17 until WEIGHT(ê) = t

18 return êPT

Considering that the invertibility condition is required only for an (r− `)× (r− `) submatrix,
we have that

CIS−FS(n, r, `) =
1

∏r−`
i=1(1− 2−i)

CRREF(n, r, `) + r2

Algorithms 2019, 12, 209 17 of 34

for a use of the ISD to solve Syndrome Decoding Problem (SDP), while the last r2 term is not present
in case the method is employed to solve the Codeword Finding Problem (CFP).

Proposition 5 (Computational complexity of Algorithm 6). Given H, an r× n binary parity-check matrix
and s, an r-bit long syndrome (column vector) obtained through H, finding the row error vector e with length
n and weight t such that s = HeT with Algorithm 6 also requires two additional parameters 0 ≤ p ≤ t,
0 ≤ ` ≤ (k− p).

The time complexity of Algorithm 6 can be computed starting from the probability of success Prsucc of a
single iteration of the loop at Lines 1–17 and the computational requirements of executing the loop body citer.
In particular, the time complexity is

CISD(n, r, t, p, `) = 1
Prsucc

citer =
(n

t)

((k+`)/2
p/2)

2
(r−`

t−p)
(CIS−FS(n, r, `)

+ ((k+`)/2
p/2)

p
2 `+ ((k+`)/2

p/2)

(
CIntToComb +

p
2 `+

((k+`)/2
p/2)

2`
p(r− `)

))
,

where CIntToComb = O((2k − p)(log (k
p))

2) is the cost of decoding an integer into its combinadics

representation, i.e., finding the corresponding combination among all the ((k+`)/2
p/2) ones. Note that, if the value

of p is fixed, it is possible to avoid CIntToComb, specializing the algorithm with a p-deep loop nest to generate the
combinations. The spatial complexity is SISD(n, r, t, p, `) = O

(
rn + ((k+`)/2

p/2)(
p
2 log2(

k+l
2) + `)

)
.

With a line of reasoning analogous to Stern’s ISD, we consider the complexity of Finiasz and
Sendrier’s ISD with a logarithmic memory access cost, multiplying the cost of the iteration by the
binary logarithm of the size of the required memory.

3.7. May–Meurer–Thomae

The variant of ISD proposed by May, Meurer and Thomae in [15] improves Finiasz and Sendrier’s
variant by introducing two tweaks, resulting in Algorithm 7. The first tweak changes the way in which
the p error positions in the permuted error vector ê are chosen. Instead of splitting them equally as
p
2 in the leftmost k+`

2 columns and p
2 in the subsequent k+`

2 ones, the selection is made picking two
disjoint sets of indexes I ,J ⊂ {0, . . . , k + `− 1}. Such an approach increases the number of possible
permutations which respect this constraint.

The second tweak considers Vup as logically split into two submatrices Vup =

[
Vup−`1

Vup−`2

]
dividing

it row-wise into two parts, the first one with `1 rows and the second one with `2 = ` − `1 rows.
After performing the same partial RREF, as it is done in the Finiasz and Sendrier’s ISD, we obtain

UĤ =

Vup−`1 0`1×(r−`)
Vup−`2 0`2×(r−`)
Vdown Ir−`

 and the corresponding s̄ =

s̄up−`1

s̄up−`2

s̄down

.

Such a subdivision is employed to further enhance the efficiency of the checks on the columns of
V with respect to the idea of matching bit strings with a precomputed set introduced by Stern. To this
end, the sets I and J are in turn obtained as the disjoint union of a pair subsets with cardinality p

4 .
Let I be I1 ∪ I2 and J be J1 ∪ J2. For the sake of simplicity, the disjoint union is realized picking the
elements of I1,J1 in {0, . . . , k+`

2 − 1} and the ones of I2,J2 in { k+`
2 , . . . , k + `− 1}.

The May–Meurer–Thomae (MMT) algorithm thus proceeds to exploit a time to memory trade-off
deriving from the same equation employed by Stern, applying twice the precomputation strategy.
The derivation from the test equality on the syndrome is done as follows

s̄up = ∑
i∈I

vup i + ∑
j∈J

vup j ⇔

Algorithms 2019, 12, 209 18 of 34

[
s̄up−`1

s̄up−`2

]
=

[
aup−`1

s̄up−`2

]
+

[
bup−`1

0`2×1

]
,

[
aup−`1

s̄up−`2

]
= ∑

j∈J

[
vup−`1 j
v̄up−`2 j

]
,

[
bup−`1

0`2×1

]
= ∑

i∈I

[
vup−`1 i
v̄up−`2 i

]
.

May, Meurer and Thomae exploited the strategy described by Stern to derive candidate values for
the elements of I and J , rewriting the last two equalities as[

aup−`1

s̄up−`2

]
+ ∑

j∈J1

[
vup−`1 j
v̄up−`2 j

]
= ∑

j∈J2

[
vup−`1 j
v̄up−`2 j

]
,

[
bup−`1

0`2×1

]
+ ∑

i∈I1

[
vup−`1 i
v̄up−`2 i

]
= ∑

i∈I2

[
vup−`1 i
v̄up−`2 i

]

and exploiting their form to build two lists of candidate values for I and J , Ī and J̄ , such that for
the elements of the first list, it holds that 0`2×1 + ∑i∈Ī1

v̄up−`2 i = ∑i∈I2
v̄up−`2 i, and for the elements

of the second list it holds that s̄up−`2 + ∑j∈J̄1
v̄up−`2 j = ∑j∈J̄2

v̄up−`2 j. We note that, through a
straightforward implementation optimization, matching the one employed in Stern’s algorithm,
only the first list needs to be materialized (appearing as L in Algorithm 7).

The second observation made in the MMT algorithm relates to the possibility of reducing the
size of the list involved in Stern’s algorithm to compute the value of the sought error vector via a
meet-in-the-middle strategy. The observation relies on the fact that it is possible to obtain the first
k + ` bits of the permuted error vector ê, ê[k + `] as the sums of two k + ` long bit vectors, ê1, ê2 with
weight p

2 each. Stern’s algorithm limits the positions of the ones in ê1, ê2 to be in the first half of the
bits for ê1 and in the second half for ê2, yielding a single valid pair ê1, ê2 for a given ê. By contrast
May–Meurer–Thomae does not constrain the positions of the two sets of p

2 positions to be picked
from different halves of the k + ` region of the error vector, but instead it only constrains the choice to
non-overlapping positions. In such a fashion, considering the correct guess of p positions, we have that
they can be split into the two p

2 sets in (p
p/2) possible valid ways, in turn increasing the likelihood of a

correct guess. If this choice is made, it is possible to reduce the size of the lists employed to compute
the man in the middle approach by a factor of (p

p/2), while retaining (on average), at least a solution.

To this end, the authors suggested picking the value of l2 as (
k+`

2
p
4
), in a way to reduce the size of the

lists by the proper factor.

Proposition 6 (Computational complexity of Algorithm 7). Given H, an r× n binary parity-check matrix
and s, an r-bit long syndrome (column vector) obtained through H, finding the row error vector e with length n
and weight t such that s = HeT with Algorithm 7 requires three additional parameters 0 ≤ p ≤ t, `1 and `2

such that `1 + `2 = `, 0 ≤ ` ≤ (k− p).
The time complexity of May–Meurer–Thomae is

CISD(n, r, t, p, `1, `2) =

(n
t)

(k+`
p)(r−`

t−p)

(
CIS−FS(n, r, `) + ((k+`)/2

p/4)
p
4 `2 + min

(
((k+`)/2

p/4),
((k+`)/2

p/2)

(p
p/2)

)
·
(

p
4 `2 +

((k+`)/2
p/4)

2`2

p
2 `1

)
+

+((k+`)/2
p/4)

p
4 `2 + ((k+`)/2

p/4)

(
p
4 `2 +

((k+`)/2
p/4)

2`2

(
p
2 `1 +

((k+`)
p/2)(p

p/2)

2`1
p(r− `)

)))
.

The spatial complexity of May–Meurer–Thomae is

SISD(n, r, t, p, `) =

O
(

rn + ((k+`)/2
p/4)(

p
4 log2(

k+l
2) + `2) + min

(
((k+`)/2

p/4),
((k+`)/2

p/2)

(p
p/2)

)
(p

2 log2(k + `) + `)

)
.

Algorithms 2019, 12, 209 19 of 34

Algorithm 7: Syndrome decoding formulation of May–Meurer–Thomae ISD.
Input: s: an r-bit long syndrome (column vector)

H: an r× n binary parity-check matrix
t: the weight of the error vector to be recovered

Output: e: an n-bit binary row error vector s.t. HeT = s, with WEIGHT(e) = t
Data: P: an n× n permutation matrix

ê = eP: the error vector permuted by P
p: the weight of the first k bits of ê, 0 ≤ p ≤ t, p = 2 proven optimal
`1, `2: two parameters with `1 + `2 = `, 0 ≤ ` ≤ r− (t− p)

s̄: an r-bit long binary column vector, equal to the syndrome of e through

Vup−`1 0`1×(r−`)
Vup−`2 0`2×(r−`)
Vdown Ir−`

, s̄ =

s̄up−`1
s̄up−`2
s̄down


V: an r× (k + `) binary matrix V =

[
v0 . . . vk−1

]
=

Vup−`1
Vup−`2
Vdown

 =

vup−`1 0 . . . vup−`1 k+`−1

vup−`2 0 . . . vup−`2 k+`−1

vdown 0 . . . vdown k+`−1


L: list of pairs (I , aI), with I a set of integer indexes between 0 and k + `− 1, and aI an `-bit binary column vector; length of L
is kept at most ((k+`)

p/2)
/
(p

p/2)

L1,L2: lists of pairs (I1, aI1), and (J1, aJ1) with I1,J1 sets of integer indexes between 0 and k+`
2 − 1, and aI1 , aJ1 , `1 and `2 bit

binary column vectors

1 repeat

2 〈P,

Vup−`1 0`1×(r−`)
Vup−`2 0`2×(r−`)
Vdown Ir−`

 , s̄〉 ← ISEXTRACT-FS(H, s, `)

3 L1 ← ∅
4 for j← 1 to ((k+`)/2

p/4) do

5 I1 ← INTEGERTOCOMBINATION(j) // I1 is a set of p/4 int.s in {0, . . . , k+`
2 − 1}

6 L1 ← L1 ∪ {(I1, s̄up−`2 + ∑i∈I1
vup−`2 i)}

7 L ← ∅
8 for i← 1 to ((k+`)/2

p/4) do

9 I2 ← INTEGERTOCOMBINATION(i) // I2 is a set of p/4 int.s in {0, . . . , k+`
2 − 1}

10 if (I1, ∑i∈I2
vup−`2 i+(k+`)/2) ∈ L1 then

11 I ← I1

12 for j ∈ I2 do
13 I ← I ∪ {j + k+`

2 }
14 L ← L∪ {(I , ∑i∈I vup−`1 i)}
15 if |L| ≥ ((k+`)

p/2)
/
(p

p/2) then
16 break

// L1 is no longer needed from here onwards

17 L2 ← ∅
18 for j← 1 to ((k+`)/2

p/4) do

19 J1 ← INTEGERTOCOMBINATION(j) // J1 is a set of p/4 int.s in {0, . . . , k+`
2 − 1}

20 L2 ← L2 ∪ {(J1, ∑i∈J1
vup−`2 i)}

21 for a← 1 to ((k+`)/2
p/4) do

22 J2 ← INTEGERTOCOMBINATION(a) // J2 is a set of p/4 int.s in {0, . . . , k+`
2 − 1}

23 if (J1, s̄up−`2 + ∑i∈J2
vup−`2 i+(k+`)/2) ∈ L2 then

24 J ← J1

25 for j ∈ J2 do
26 J ← J ∪ {j + k+`

2 }
27 if (I , s̄up−`1 + ∑j∈J vup−`1 j) ∈ L then
28 if WEIGHT(s̄down + ∑i∈I∪J vdown i) = t− p then
29 ê← 01×(k+`) (s̄down + ∑i∈I∪J vdown i)

T]

30 foreach i ∈ I ∪ J do
31 ê← ê + [01×i 1 01×(r+k−1−i)]

32 break
33 until WEIGHT(ê) = t
34 return êPT

Proof. The computational complexity is derived considering the number of iterations of the loops in
the algorithm, taking into account the probability of the checks being taken. The spatial complexity is
obtained as the sum of the size of the matrix H, the size requirements of L1 (as L2 has the same size
and can reuse its space) and the expected size of L considering how many pairs may survive the check
performed when building it.

Algorithms 2019, 12, 209 20 of 34

3.8. Becker–Joux–May–Meurer

The Becker–Joux–May–Meurer (BJMM) algorithm introduced in [16] improves the MMT algorithm
in two ways: the former is a recursive application of the list building strategy, and the latter is a change
to the list element generation employed. We discuss the latter first, forsaking for the sake of clarity its
recursive application at first. We then describe the adaptations needed to adopt the recursive splitting
strategy without issues.

The BJMM algorithm considers that it is possible to represent a vector e of weight p, length k + `,
as the sum of two vectors e1, e2 of weight p

2 + ε, and with the same length, under the assumption that
the ε extra ones cancel out during the addition. We recall that the MMT approach demands that both e1

and e2 have weight strictly equal to p
2 . The BJMM algorithm thus raises the number of valid pairs e1, e2

employed to represent e by a factor equal to (k+`−p
ε). Such an improvement is employed to further

reduce the size of the lists of values which need to be computed to find e with a meet-in-the-middle
approach on checking that the condition Ve1 + Ve2 = s̄up. Indeed, since R = (

p
p
2
)(k+`−p

ε) pairs (e1, e2)

which respect e = e1 + e2 exist, searching a 1
R fraction of the (k+l

p
2 +ε)

2
exhaustively will yield (on average)

a solution, assuming that the solution pairs are uniformly distributed over all the (k+l
p
2 +ε)

2
ones.

Willing to employ a strategy to enumerate only a 1
R fraction of the pairs, while doing useful

computation instead of a simple 1
R sub-sampling of the space of the pairs, the BJMM algorithm opts

for performing a partial check of the Ve1 + Ve2 = s̄up equation, on a smaller number of bits than ` and
discarding the pairs which do not pass the check.

Let us denote with Vup[ρ] the first ρ rows of Vup and with s̄up[ρ] the first ρ bits of the syndrome s̄up

The BJMM algorithm thus employs the test Vup[ρ]e1 + Vup[ρ]e2 = s̄up[ρ] to obtain a twofold objective:
discard a fraction of the (e1, e2) pairs, and select the portion to be kept among the pairs which at
least have the first ρ bits of the sum of the columns of Vup[ρ] matching the value of the corresponding
syndrome bits. Such an approach has the advantage over a random sampling that the pairs which
are selected have already been checked for compliance on a part of the Ve1 + Ve2 = s̄up equation, i.e.,
it performs a random subsampling while doing useful computation. The BJMM paper suggests that
the value of ρ should be ρ ≈ log2(R): under the assumption that the r bit sums being performed are
made of random values, and that the sum should match a given r bit value, only a fraction equal to
1
2ρ , i.e., ≈ 1

R survives. Note that, regardless of the choice of ρ, a selection of the correct positions will
always survive the preliminary checks on ρ bits, while wrong solutions are filtered out on the basis that
they will not match on the first ρ bits. In the complete algorithm, the aforementioned line of reasoning
is applied twice, as the list-building strategy is recursively applied, leading to two different reduction
factors depending on the recursion depth itself.

We now come to the second improvement of the BJMM algorithm, the recursive application of
the meet-in-the-middle strategy employed by all the ISDs since Stern’s. Stern’s meet-in-the-middle
approach starts from rewriting Vup[l]e1 + Vup[l]e2 = s̄up as Vup[l]e1 = Vup[l]e2 + s̄up. The original BJMM
proceeds to build two lists of pairs. The first list contains, for all possible e1, the pairs (Vup[l]e1, e1).
The second list contains, for all possible e2, the pairs (Vup[l]e2 + s̄up, e2). The BJMM algorithm sorts
lexicographically the two lists on the first elements of the pairs and then checks for the matching pairs
in essentially linear time in the length of the lists.

We note that a more efficient (memory saving) way of performing the same computation involves
inserting in a (open hash) hashmap which employs as the key Vup[l]e1 for the value e1. Subsequently,
computing on the fly Vup[l]e2 + s̄up, and looking it up in the hashmap, yields all the matching pairs for
e2. Let N be the number of possible pairs and M the number of matching pairs, the original strategy
requires O(2

√
N + 2

√
N log2 2

√
N + M) vector sized operations, while the modified one requires

O(
√

N +
√

N + M).
The BJMM algorithm employs the meet-in-the-middle strategy to generate the values for the

candidate vectors e more than once. In particular, a candidate for e, e(0), weight p, length k + `,

Algorithms 2019, 12, 209 21 of 34

is generated from two vectors e(1)1 , e(1)2 , weight p1 = p
2 + ε1, length k+ `. The e(1)1 , e(1)2 vectors are in turn

generated by pairs e(2)1 , e(2)2 and e(2)3 , e(2)4 , which all have weight p2 = p1 + ε2. Finally, e(2)1 , e(2)2 , e(2)3 , e(2)4 ,

are generated by pairs e(3)1+2i, e(3)2+2i, i ∈ {0, 1, 2, 3}, which have length k + `, and weight p3 = p2
2 + 0,

i.e., no extra ones which will cancel out are allowed when generating e(2)’s.
In adopting this approach, two issues must be coped with: no overlapping positions for the ones

should be present between any e(3)1+2i, e(3)2+2i pair, and the values all the Vup[l]e
(1)
i , Vup[l]e

(2)
i , Vup[l]e(1) are

matched against should be unrelated, so that the sampling of pairs during the merge action of two lists
is indeed picking items independently from another list merger on the same level. This allows a list
merger at a lower level to consider the elements from above to be picked at random. The first issue is
solved picking the positions of the ones for a e(3)1+2i, e(3)2+2i pair from disjoint sets. Since the independence
among the inputs of two level-3 list mergers should still hold, a pair of disjoint sets is generated for
each level-3 list pair. In other words, for a given e(3)1+2i, e(3)2+2i pair, the position of the ones of e(3)1+2i,
belong to a k+`

2 sized set which has null intersection with the set of positions from which the ones of

e(3)2+2i are picked. This constraint may cause a given target permuted error not to be representable as a
combination of the aforementioned pairs. Indeed, consider the fact that the aforementioned strategy

implies that there are possible (
k+`

2
p3
)

2
pairs, while the vectors to be represented are (k+`

2p3
).

The second issue is solved slightly modifying the matching equations as follows

Vup[`]e
(1)
1 = Vup[`]e

(1)
2 + s̄up[`] → no change

Vup[r1]
e(2)1 = Vup[r1]

e(2)2 + s̄up[r1]
→ Vup[r1]

e(2)1 = Vup[r1]
e(2)2 + s̄up[r1]

+ rnd1

Vup[r1]
e(2)3 = Vup[r1]

e(2)4 + 0[r1]
→ Vup[r1]

e(2)3 = Vup[r1]
e(2)4 + rnd1

Vup[r2]
e(3)1 = Vup[r2]

e(3)2 + s̄up[r2]
→ Vup[r2]

e(3)1 = Vup[r2]
e(3)2 + s̄up[r2]

+ rnd1 + rnd2

Vup[r2]
e(3)3 = Vup[r2]

e(3)4 + 0r2 → Vup[r2]
e(3)3 = Vup[r2]

e(3)4 + rnd2

Vup[r2]
e(3)5 = Vup[r2]

e(3)6 + 0r2 → Vup[r2]
e(3)5 = Vup[r2]

e(3)5 + rnd1 + rnd2

Vup[r2]
e(3)7 = Vup[r2]

e(3)8 + 0r2 → Vup[r2]
e(3)7 = Vup[r2]

e(3)7 + rnd2

so that the checks at each level also act in such a fashion that the total sum over r2, r1, ` matches the
syndrome already, while retaining the desired randomness.

Proposition 7 (Computational complexity of Algorithm 8). Given H, an r× n binary parity-check matrix
and s, an r-bit long syndrome (column vector) obtained through H, finding the row error vector e with length n
and weight t such that s = HeT with Algorithm 8 requires three additional parameters 0 ≤ p ≤ t, `1 and `2

such that `1 + `2 = `, 0 ≤ ` ≤ (k− p).
The time complexity of the algorithm is

CISD(n, r, t, p, `1, `2) = P−1
success−BJMMCiter

where the probability of an iteration to succeed, Psuccess−BJMM, is equal to the one in May–Meurer–Thomae (i.e.,
(n

t)

(k+`
p)(r−`

t−p)
), multiplied by a factor which quantifies the fact that it is possible, picking the two disjoint sets over

the subsets of pi positions from the error vector are selected may result in a set which does not contain enough

Algorithms 2019, 12, 209 22 of 34

positions. Such a factor, considered in all the splits in the BJMM is

(
((k+`)/2

p3
)

2

(k+`
p2

)

)4

. The cost of an iteration of the

loop at Lines 1–27 of the BJMM is as follows

4
(

k + `+ 2(
k+`

2
p3
) + `2 + (

k+`
2

p3
)

2
(2p3`2)

)
+ 2

((
p1

p1/2)(
k+`−p1

ε2
)

2`2
(

k+`
2

p3
)

2
)2

(2p2`1)



+

 (p
p/2)(

k+`−p
ε1

)

2`1

(
(

p1
p1/2)(

k+`−p1
ε2

)

2`2
(

k+`
2

p3
)

2
)2
2

(2p1`) +

 (
p

p/2)(
k+`−p

ε1
)

2`1

 (
p1

p1/2)(
k+`−p1

ε2
)

2`2
(

k+`
2

p3
)

2
2


2

2`
(p(r− `)).

The first line constitutes the cost of the loop at Lines 4–16, the second line is the cost of the loop at Lines
17–23, the third line is the cost of the loop at Lines 24–27 save for the portion related to the branch at Line 25
being taken. The last line is the cost of computing the body of the taken branch, multiplied by the probability of
such a branch being taken.

The BJMM variant of the ISD shares with the Stern, Finiasz and Sendrier, and May–Meurer–
Thomae ISDs the fact that the exponential memory requirements should be taken into account by a
logarithmic access cost, instead of a constant one. We do so following the same method employed for
the aforementioned variants, i.e., augmenting the cost of the iteration accordingly.

3.9. Speedups in ISD Algorithms Due to Quasi-Cyclic Codes

A common choice to reduce the size of the keys in a McEliece or Niederreiter cryptosystem is to
employ a so-called quasi-cyclic code. Such a code is characterized by a parity-check matrix composed
by circulant block matrices, i.e., matrices where all the rows are obtained as a cyclic shift of the first one.

It is possible to exploit such a structure to provide a polynomial speedup factor to both the
solution of Codeword Finding Problem (CFP) and Syndrome Decoding Problem (SDP). The speedup
in the solution of the Codeword Finding Problem (CFP) can be derived in a straightforward fashion
observing that, in the case of both the Codeword Finding Problem (CFP) against the primal and the
one against the dual code, for each codeword to be found in a quasi cyclic code with p sized circulant
blocks, p− 1 more codewords can be derived simply as a block-wise circulant shift of the first one.
As a consequence, for a given codeword with weight w sought by the algorithm, it is guaranteed that at
least p many of them are present in the code. Thus, in this case. the success probability of each iteration
can be obtained as 1− (1− Prsucc)

p; when p Prsucc � 1, this in turn implies that the probability of
success approximately grows by a factor p, in turn speeding up any ISD by the same factor.

An analogous line of reasoning leads to exploit the Decoding One Out of Many (DOOM) algorithm
proposed by Sendrier in [38] to speed up the solution of the Syndrome Decoding Problem (SDP).
Decoding One Out of Many (DOOM) relies on the fact that a set of syndromes S through the same
parity check matrix are provided to the attacker, and he attempts at decoding at least one of them.
In case of a quasi cyclic code, cyclically shifting the syndrome yields a different, valid syndrome, and a
predictable cyclic shift on the corresponding (unknown) error vector. It is therefore possible for an
attacker to derive p different syndromes, starting from one and, in case one of them is successfully
decoded, no matter which one, he will be able to reconstruct the sought error vector. Essentially,
Decoding One Out of Many (DOOM) performs multiple ISD instances, taking care of duplicating only
the checks which involve the syndrome, thus pooling the considerable amount of effort required in the
rest of the iteration. The overall speedup achieved by Decoding One Out of Many (DOOM) for a quasi
cyclic code with block size p is

√
p.

Algorithms 2019, 12, 209 23 of 34

Algorithm 8: Syndrome decoding formulation of Becker–Joux–May–Meurer ISD.
Input: s: an r-bit long syndrome (column vector)

H: an r× n binary parity-check matrix

t: the weight of the error vector to be recovered

Output: e: an n-bit binary row error vector s.t. HeT = s, with WEIGHT(e) = t

Data: P: an n× n permutation matrix

ê = eP: the error vector permuted by P

p: the weight of the first k bits of ê, 0 ≤ p ≤ t

`: a free parameter 0 ≤ ` ≤ r− (t− p)

s̄: an r-bit long binary column vector, equal to the syndrome of e through

[
Vup 0`×(r−`)

Vdown Ir−`

]
, s̄ =

[
s̄up

s̄down

]

V: an r× (k + `) binary matrix V =
[
v0 . . . vk−1

]
=

[
Vup

Vdown

]
=

[
vup 0 . . . vup k+`−1

vdown 0 . . . vdown k+`−1

]
L(a)

b : list of set of indexes I (a), at layer a, (root layer: a = 0, leaf layer a = 3)

|I (a)| = pa = pa−1/2 + εa, a ∈ 1, 2, 3, p0 = p, ε3 = 0; the elements of I (a) are integers in {0, . . . , k + `− 1}
`1, `2: parameters respecting 0 ≤ `2 ≤ `1 ≤ `, stated as optimized for l1 ≈ log2 (

p
p/2)(

k+l−p
ε1

),

l2 ≈ log2 (
p1

p1/2)(
k+l−p1

ε2
)

1 repeat

2 〈P,

[
Vup 0`×(r−`)

Vdown Ir−`

]
, s̄〉 ← ISEXTRACT-FS(H, s, `)

3 for i← 0 to 3 do

4 L(3)2i ← ∅
5 I2i ← RANDOMEXTRACT(k + `) // populates I2i with k+`

2 values in {0, . . . , k + `− 1}

6 I2i+1 ← {0, . . . , k + `− 1} \ I2i

7 for j← 1 to ((k+`)/2
p3

) do

8 I ← ENUMERATECOMB(I2i , p3, j) // Picks the jth comb. of p3 items of I2i

9 L(3)2i ← L
(3)
2i ∪ {(I , ∑i∈I vup−`2 i)}

10 for i← 0 to 1 do

11 x ← RANDBITSTRING(`2) + s̄up−`2

12 L(2)2i ← ∅
13 foreach j← 1 to ((k+`)/2

p3
) do

14 J ← ENUMERATECOMB(I2i+1, p3, j)

15 a← x + ∑j∈J vup−`2 j

16 if (I , a) ∈ L(3)4i then

17 L(2)2i ← L
(2)
2i ∪ {(I ∪ J , x + ∑i∈I∪J vup−`1 i)}

18 if |L(2)2i | > (k+`
p2
)
/ (

(p1
p1/2)(

k+l−p1
ε2

)
)

then

19 break

20 foreach (I ,J) ∈ L(1)0 ×L
(1)
1 do

21 if ∑i∈I vup i + ∑j∈J vup j = s̄[`] then

22 if WEIGHT(s̄down + ∑i∈I∪J vdown i) = t− p then

23 ê← [01×(k+`) (s̄down + ∑i∈I∪J vdown i)
T]

24 foreach i ∈ I ∪ J do

25 ê← ê + [01×i 1 01×(r+k−1−i)]

26 break

27 until WEIGHT(ê) = t

28 return êPT

3.10. Speedups from Quantum Computing

While there is no known polynomial time algorithm running on a quantum computer able to
solve either Syndrome Decoding Problem (SDP) or Codeword Finding Problem (CFP), it is still possible

Algorithms 2019, 12, 209 24 of 34

to achieve a significant speedup in the attacks exploiting Grover’s zero-finding algorithm. Grover’s
algorithm [39] finds a zero of an n-input Boolean function with a computational cost of

√
2n function

computations, instead of the 2n required with a classical computer. The first instance of a proposed
exploitation of Grover’s algorithm to speed up ISDs was made by Bernstein in [40], observing that one
iteration of Prange’s algorithm can be rewritten as a Boolean function having a zero iff the iteration
is successful in finding a valid error vector. The essence of the observation is that the Reduced Row
Echelon Form (RREF) computation, and the weight check on the resulting syndrome can be expressed
as Boolean functions, and it is straightforward to extend them so that a single bit output indicating
the success of the iteration is added. Such an approach allows reducing the number of iterations to
be performed to the square root of the one for the classical algorithm, since each iteration of Prange’s
algorithm is essentially trying (exhaustively) to find a zero of the aforementioned Boolean function.
We therefore rephrase the computational complexity of Prange’s algorithm on a quantum computer.
For the sake of simplicity in the analysis, we forgo the overhead of implementing the Boolean function
as a reversible circuit, obtaining a conservative estimate of the actual complexity.

Proposition 8 (Quantum computational complexity of Algorithm 1). Given H, an r × n binary
parity-check matrix and s, an r-bit long syndrome (column vector) obtained through H, finding the row
error vector e with length n and weight t such that s = HeT with Algorithm 1 running on a quantum computer
can be computed starting from the probability of success Prsucc of a single iteration of the loop at Lines 1–7
and the computational requirements of executing the loop body citer. In particular, the time complexity is

CISD(n, r, t) =
√

1
Prsucc

citer =

√
(n

t)

(r
t)
(CIS(n, r) +O(n)), with

CIS(n, r) =
1

∏r
i=1(1− 2−i)

CRREF(n, r) + r2,

CRREF(n, r) = O
(

nr2

2
+

nr
2
− r3

6
+ r2 +

r
6
− 1
)

.

The spatial complexity is SISD(n, r, t) = O(rn).

Following an argument similar to the one for Prange, we note that there is essentially no difficulty
in interpreting Lee and Brickell’s variant of the ISD as computing a slightly more complex Boolean
function at each iteration, allowing to reformulate its complexity (Proposition 2) for the quantum case
as follows.

Proposition 9 (Quantum computational complexity of Algorithm 2). Given H, an r × n binary
parity-check matrix and s, an r-bit long syndrome (column vector) obtained through H, finding the row
error vector e with length n and weight t such that s = HeT with Algorithm 2 requires an additional parameter
0 ≤ p ≤ t.

The time complexity of Algorithm 2 running on a quantum computer can be computed starting from the
probability of success Prsucc of a single iteration of the loop at Lines 1–14 and the computational requirements of
executing the loop body citer. In particular, the time complexity is

CISD(n, r, t, p) =

√
1

Prsucc
citer =

√√√√ (n
t)

(k
p)(

r
t−p)

(
CIS(n, r) +

(
k
p

)
(CIntToComb + pr)

)
,

where CIntToComb = O((2k − p)(log (k
p))

2) is the cost of decoding an integer into its combinadics

representation, i.e., finding the corresponding combination among all the (k
p) ones. The spatial complexity

is SISD(r, n) = O(rn).

Algorithms 2019, 12, 209 25 of 34

Similarly, we also reformulate Leon’s Algorithm 4 as follows.

Proposition 10 (Quantum computational complexity of Algorithm 4). Given H, an r × n binary
parity-check matrix, s, an r-bit long syndrome (column vector) obtained through H, and the two parameters
0 ≤ p ≤ t, 0 ≤ ` ≤ (k − p), the complexity of finding the row error vector e with length n and
weight t such that s = HeT with Algorithm 4 running on a quantum computer can be computed starting
from the probability of success Prsucc of a single iteration of the loop at Lines 1–10 and the computational
requirements of executing the loop body citer. In particular, the time complexity is CISD(n, r, t, p, `) =√

1
Prsucc

citer =
√

(n
t)

(k
p)(

r−`
t−p)

(
CIS(n, r) + (k

p)

(
CIntToComb + p`+

(k
p)

2`
p(r− `)

))
, where CIntToComb =

O((2k− p)(log (k
p))

2) is the cost of decoding an integer into its combinadics representation, i.e., finding the

corresponding combination among all the (k
p) ones. Note that, if the value of p is fixed, it is possible to avoid

CIntToComb, specializing the algorithm with a p-deep loop nest to generate the combinations. The spatial
complexity is SISD(r, n) = O(rn).

Finally, we tackle the reformulation of Stern’s ISD for the quantum case.

Proposition 11 (Quantum computational complexity of Algorithm 5). As for Algorithm 4, given H,
an r × n binary parity-check matrix and s, an r-bit long syndrome (column vector) obtained through H,
finding the row error vector e with length n and weight t such that s = HeT with Algorithm 5 requires two
additional parameters 0 ≤ p ≤ t, 0 ≤ ` ≤ (k− p).

The time complexity of Algorithm 5 running on a quantum computer can be computed starting from the
probability of success Prsucc of a single iteration of the loop at Lines 1–14 and the computational requirements of
executing the loop body citer. In particular, the time complexity is

CISD(n, r, t, p, `) =

√
1

Prsucc
citer =

√√√√ (n
t)

(k/2
p/2)

2
(r−`

t−p)

CIS(n, r) +
(

k/2
p/2

)
p
2
`+

(
k/2
p/2

)
(CIntToComb +

p
2
`+

(k/2
p/2)

2`
p(r− `))


where CIntToComb = O((2k − p)(log (k

p))
2) is the cost of decoding an integer into its combinadics

representation, i.e., finding the corresponding combination among all the (k/2
p/2) ones. Note that, if the value of

p is fixed, it is possible to avoid CIntToComb, specializing the algorithm with a p-deep loop nest to generate the
combinations. The spatial complexity is SISD(n, r, t, p, `) = O

(
rn + (k/2

p/2)(
p
2 log2(

k
2) + `)

)
.

Since advanced ISD algorithms reduce the overall complexity by reducing the number of iterations
at the cost of an increased complexity per iteration, the speedup due to Grover’s algorithm is less
evident for modern variants than for classical forms of ISD. Indeed, for all cases where the trade-off
on a classical computer reduces by a factor α the number of iterations, at the cost of raising by α the
cost of the iteration itself, we have that the trade-off turns out to be disadvantageous on a quantum
computer where the speedup factor α is cut down to

√
α by Grover, while the single iteration slowdown

stays the same. This was already observed in [41], where it was found that the quantum variant of
Stern’s algorithm does not achieve smaller work factors than the quantum variant of Lee and Brickell’s
algorithm. Indeed, in the same work, it is noted that the complexity of the quantum-computer variant
of Stern’s algorithm achieves a smaller complexity than the straightforward quantized version of the
BJMM ISD. Finally, we note that the authors of [42] reported a re-elaboration of the MMT and BJMM
ISDs for quantum computers which succeeds in effectively lowering their asymptotic complexities.
We however do not take them into account in this work, as no finite regime complexity formulas are
provided in [42] for the proposed algorithms. We report, in Table 1, a summary of all the computational
complexities of the examined Information Set Decoding (ISD) algorithms, together with the parameters
which should be optimized to achieve the best running time for each one of them.

Algorithms 2019, 12, 209 26 of 34

Table 1. Overview of ISDs costs in terms of execution time complexities, considering a constant access
memory cost model, expressed as: Cost = NumberOfIterations× Costsingle iteration.

Name No.of Iterations Parameters to Optimize(i.e., 1/ Prsucc)

Prange [10] (n
t)
(r

t)
none

Lee–Brickell [11] (n
t)

(k
p)(

r
t−p)

0 ≤ p ≤ t (p = 2 is asymp. optimal)

Leon [12] (n
t)

(k
p)(

r−`
t−p)

0 ≤ p ≤ t, 0 ≤ ` ≤ r− (t− p)

Stern [13] (n
t)

(k/2
p/2)

2
(r−`

t−p)
0 ≤ p ≤ t, 0 ≤ ` ≤ r− (t− p)

Finiasz–Sendrier [14] (n
t)

((k+`)/2
p/2)

2
(r−`

t−p)
0 ≤ p ≤ t, 0 ≤ ` ≤ r− (t− p)

MMT [15] (n
t)

(k+`
p)(r−`

t−p)
, 0 ≤ p ≤ t, `1 + `2 = `, 0 ≤ ` ≤ r− (t− p), `2 ≈ log2 (

k+`
2

p/4)

BJMM [16] (n
t)

(k+`
p)(r−`

t−p)

 (
k+`

2
p3

)
2

(k+`
p2
)

−4
`2 ≈ log2

(
(p1

p1/2)(
k+`−p1

ε2
)
)

,

`1 ≈ log2

(
(p

p/2)(
k+`−p

ε1
)
)

, 0 ≤ p ≤ t,
0 ≤ ` ≤ r, 0 ≤ `2 ≤ `1 ≤ `,
0 ≤ ε1 ≤ t− p, 0 ≤ ε2 ≤ t− p1,
p3 =

p2
2 , p2 =

p1
2 + ε2, p1 =

p
2 + ε1

Name Single Iteration Cost

Prange [10] CIS(n, r) +O(n)
Lee–Brickell [11] CIS(n, r) + (k

p)(pr)

Leon [12] CIS(n, r) + (k
p)(pr)

Stern [13] CIS(n, r) + (k
p)

(
p`+

(`p)

2` p(r− `)

)
Finasz-Sendrier [14] CIS(n, r) + (k/2

p/2)

(
p`+

(k/2
p/2)

2` p(r− `)

)

MMT [15]


CIS−FS(n, r, `) + min

(
((k+`)/2

p/4),
((k+`)/2

p/2)

(p
p/2)

)
·
(

p
4 `2 +

((k+`)/2
p/4)

2`2

p
2 `1

)
+((k+`)/2

p/4)
p
2 `2 + ((k+`)/2

p/4)

(
p
4 `2 +

((k+`)/2
p/4)

2`2

p
2 `1 +

((k+`)/2
p/4)(k+`

p/2)

2`1+`2 (p
p/2)

p(r− `)

)

BJMM [16]



CIS−FS(n, r, `)

+4
(

k + `+ 2(
k+`

2
p3
) + `2 + (

k+`
2

p3
)

2
(2p3`2)

)
+ 2

((
(p1

p1/2)(
k+`−p1

ε2
)

2`2
(

k+`
2

p3
)

2
)2

(2p2`1)

)

+

(
1

2`1
(p

p/2)(
k+`−p

ε1
)

(
1

2`2
(p1

p1/2)(
k+`−p1

ε2
)(

k+`
2

p3
)

2
)2
)2

(2p1`)

+ 1
2`

(
1

2`1
(p

p/2)(
k+`−p

ε1
)

(
1

2`2
(p1

p1/2)(
k+`−p1

ε2
)(

k+`
2

p3
)

2
)2
)2

(p(r− `))

4. Quantitative Assessment of ISD Complexities

In this section, we analyze the computational complexities to solve the Syndrome Decoding
Problem (SDP) and the Codeword Finding Problem (CFP) for sets of code parameters relevant to post
quantum cryptosystems. To this end, we select the proposals which were admitted to the second
round of the NIST post quantum cryptography standardization effort [24] relying on a Niederreiter
cryptosystem, or its McEliece variant.

In particular, we consider Classic McEliece [43] and NTS-KEM [44], which employ Goppa codes,
and BIKE [34] and LEDAcrypt [31], which employ quasi cyclic codes, to assess our finite domain
approach on both quasi-cyclic codes and non-quasi-cyclic codes. The parameters for the reported
cryptosystems are designed to match the computation effort required to break them to the one required
to break AES-128 (Category 1), AES-192 (Category-3), and AES-256 (Category 5). We report the code
length n, code dimension k, number of errors to be corrected t and size of the circulant block p for

Algorithms 2019, 12, 209 27 of 34

all the aforementioned candidates in Table 2. Furthermore, for the cryptosystems relying on low- or
moderate-density parity check codes, we also report the weight of the codeword to be found, w, in the
case of a Codeword Finding Problem (CFP).

We implemented all the complexity formulas from Section 3 employing Victor Shoup’s NTL
library, representing the intermediate values either as arbitrary precision integers, or as NTL::RR
selectable precision floating point numbers. We chose to employ a 128 bit mantissa and the default
64 bit exponent for the selectable precision.

To minimize the error in computing a large amount of binomial coefficients, while retaining
acceptable performance, we precompute the exact values for all the (n

k) binomials for all pairs n, k
up to (3,000

200). Furthermore, to minimize the error of Stirling’s approximation whenever n � k we
also precompute all the exact values for the binomials up to (10,000

10), and compute the exact value
whenever k < 10. To provide a fast approximated computation for all the binomials which do not
fall in the aforementioned intervals, we compute the binomials employing the logarithm of Stirling’s
series approximated to the fourth term.

Table 2. Summary of the code parameters for the second round submissions: code length n,
code redundancy n− k = r , and number of errors expected to be corrected t.

Category Cipher Variant n k t w p

1

Classic McEliece 3488 2720 64 - 1
NTS-KEM 4096 3328 64 - 1

BIKE-2 KEM-CPA 20,326 10,163 134 142 10,163
KEM-CCA 23,558 11,779 134 142 11,779

LEDAcrypt

KEM, n0 = 2 29,878 14,939 136 154 14,939
KEM, n0 = 3 24,807 16,538 86 243 8269
KEM, n0 = 4 30,188 22,641 69 364 7547

KEM-LT, n0 = 2 71,798 35,899 136 154 35,899
KEM-XT, n0 = 2 104,294 52,147 136 154 52,147

3

Classic McEliece 4608 3360 96 - 1
NTS-KEM 8192 7152 80 - 1

BIKE-2 KEM-CPA 39,706 19,583 199 206 19,583
KEM-CCA 49,642 24,821 199 206 24,821

LEDAcrypt

KEM, n0 = 2 51,386 25,693 199 210 25,693
KEM, n0 = 3 48,201 32,134 127 363 16,067
KEM, n0 = 4 57,364 43,023 101 540 14,341

KEM-LT, n0 = 2 115,798 57,899 199 210 57,899
KEM-XT, n0 = 2 192,442 96,221 199 210 96,221

5

Classic McEliece n = 6688 6688 5024 128 - 1
n = 6960 6960 5413 119 - 1
n = 8192 8192 6528 128 - 1

NTS-KEM 8192 6424 136 - 1

BIKE-2 KEM-CPA 65,498 32,749 264 274 32,749
KEM-CCA 81,194 40,597 264 274 40,597

LEDAcrypt

KEM, n0 = 2 73,754 36,877 267 286 36,877
KEM, n0 = 3 82,311 54,874 169 495 27,437
KEM, n0 = 4 90,764 68,073 134 676 22,691

KEM-LT, n0 = 2 178,102 89,051 267 286 89,051
KEM-XT, n0 = 2 304,534 152,267 267 286 152,267

We explored the parameter space of each algorithm considering the fact that the different
parameters drive different trade-off points in each algorithm. To this end, we explored an appropriately
sized region of the parameter space, which we report in Table 3. To determine the explored region,
we started from a reasonable choice and enlarged the region until the value of the parameters
minimizing the attack complexity was no longer on the region edge for all the involved parameters.
We employed, for the choice of the `2 parameter in the MMT ISD variant and the `1 and `2 parameters
in the BJMM variant, the choices which were advised in the respective works.

Algorithms 2019, 12, 209 28 of 34

Table 3. Explored parameter range for the different ISD variants.

ISD Variant Parameter Range

Prange [10] none
Lee–Brickell [11] 1 ≤ p ≤ 12 (p = 2 is asymp. optimal)
Leon [12] 1 ≤ p ≤ 12, 0 ≤ ` ≤ min(100, r− (t− p))
Stern [13] 2 ≤ p ≤ 18, 0 ≤ ` ≤ min(100, r− (t− p))
Finasz-Sendrier [14] 2 ≤ p ≤ 18, 0 ≤ ` ≤ min(100, r− (t− p))

MMT [15]

4 ≤ p ≤ 34, 110 ≤ ` ≤ min(350, r− (t− p))

`1 + `2 = `, `2 = blog2 (
k+`

2
p/4)e

BJMM [16]
10 ≤ p ≤ 24, 90 ≤ ` ≤ min(330, r− (t− p)),

`2 = log2b((
p1

p1/2)(
k+`−p1

ε2
)e, `1 = log2b((

p
p/2)(

k+`−p
ε1

)e,
0 ≤ ε1 ≤ 4, 0 ≤ ε2 ≤ 4,

We took into account the advantage provided by a quasi cyclic code in both the Syndrome
Decoding Problem (SDP) and the Codeword Finding Problem (CFP) solution complexity, reducing it by
a factor equal to

√
p, the square root of the cyclic block size for the Syndrome Decoding Problem (SDP),

and p for the Codeword Finding Problem (CFP), in accordance with the point raised in Section 3.9.
Table 4 reports the computational costs of solving both Syndrome Decoding Problem (SDP) and

Codeword Finding Problem (CFP) by means of the described variants of the Information Set Decoding
(ISD). In addition to the computational complexities obtained, the value of a simple asymptotic cost
criterion for the Information Set Decoding (ISD)s, described in [34], is reported. Such a criterion states
that the asymptotic complexity of an ISD is 2− log2(1−

k
n)t, for the case of the use in solving a Syndrome

Decoding Problem (SDP). A noteworthy point to observe is that, considering the finite regime value
of the complexities, the May–Meurer–Thomae algorithm attains a lower time complexity than the
Becker–Joux–May–Meurer algorithm in most cases. Indeed, while the Becker–Joux–May–Meurer
Information Set Decoding (ISD) variant has a lower asymptotic cost, considering a worst-case-scenario
for the solution of the Syndrome Decoding Problem (SDP), i.e., code rate close to 0.5, and a large
enough value for n, a finite regime estimate of its cost reports that employing the May–Meurer–Thomae
approach should result in a faster computation. Concerning the space complexities of the approaches
with exponential (in the code length n) space requirements, we report the obtained values in Table 5.
We note that the Information Set Decoding (ISD) variants proposed by Stern and Finiasz and Sendrier
have an overall lower memory consumption that their more advanced counterparts. In particular,
the space complexities of the aforementioned variants start as low as 16 Gib for Category 1 parameters,
and are thus amenable to an implementation which keeps the entire lists in main memory on a
modern desktop. By contrast, the May–Meurer–Thomae and Becker–Joux–May–Meurer Information
Set Decoding (ISD) variants require a significantly higher amount of memory, with the latter being less
demanding than the former in all cases but the one of LEDAcrypt in its n0 = 2 parameterization for
extremely long term keys (LEDAcrypt-XT). In all cases, the space complexities of May–Meurer–Thomae
and Becker–Joux–May–Meurer exceed 250, pointing strongly to the need of a significant amount of
mass storage to implement a practical attack. Such a requirement is even more stringent in the case of
higher security levels, where the memory requirements exceed 2100 for most parameter choices.

Algorithms 2019, 12, 209 29 of 34

Table 4. Computational costs expressed as log2(bit_operations), for each ISDs applied to NIST round-2 code-based cryptosystems. Information Set Decoding (ISD)
variants are labeled as: Prange (Pr), Lee and Brickell (LB), Leon (Le), Stern (St), Finiasz and Sendrier (FS), May–Meurer–Thomae (MMT), and Becker–Joux–May–Meurer
(BJMM); quantum accelerated variants prefixed by “Q-”. The quantum complexities are expressed in log2(bit_operations) for the corresponding non-reversible
circuit, and thus provide a lower bound on the actual quantum circuit complexity. The table also reports a simple approximation for the asymptotic cost of classical
ISDs, − log2(1−

k
n)t, computed for all parameters

Category 1—Security Level Equivalent to Break AES-128 on a Classical Machine
Problem Cipher Variant Pr LB Le St FS MMT BJMM Q-LB Q-St − log2(1 − k

n)t

Codeword Finding Problem (CFP)

BIKE-2 CPA 167.28 156.31 154.66 146.56 146.54 123.92 151.01 92.28 93.696 142.00
CCA 167.61 156.65 154.91 146.84 146.82 124.29 151.38 92.66 94.074 142.00

LEDAcrypt

n0 = 2 180.25 169.06 167.24 158.76 158.75 135.21 163.79 99.21 100.62 154.00
n0 = 3 169.46 157.89 156.60 147.79 147.76 126.45 151.12 94.06 95.469 142.15
n0 = 4 179.86 167.79 165.69 157.13 157.10 135.17 160.35 99.71 101.12 151.07

LT, n0 = 2 182.44 171.27 169.16 160.88 160.88 137.96 169.02 101.5 102.98 154.00
XT, n0 = 2 183.44 172.28 170.09 161.91 161.91 138.90 172.14 102.6 104.02 154.00

Syndrome Decoding Problem (SDP)

Classic McEliece 170.82 160.38 160.43 152.51 152.46 118.61 149.91 96.41 97.15 139.73
NTS-KEM 186.03 175.33 175.33 166.76 166.72 127.52 162.54 104.11 104.81 154.56

BIKE-2 CPA 165.86 155.06 153.37 145.60 145.58 123.78 150.36 94.98 96.39 134.00
CCA 166.30 155.51 153.74 146.00 145.99 124.28 150.86 95.48 96.88 134.00

LEDAcrypt

n0 = 2 169.05 158.23 156.35 148.59 148.57 126.83 154.30 97.26 98.67 136.00
n0 = 3 167.89 157.53 154.65 147.82 147.81 123.66 152.31 96.31 97.72 136.31
n0 = 4 169.62 159.40 155.86 149.32 149.31 123.17 155.49 97.47 98.22 138.00

LT, n0 = 2 171.95 161.15 159.00 151.46 151.45 129.63 160.32 100.30 101.70 136.00
XT, n0 = 2 173.24 162.44 160.23 152.78 152.78 130.88 163.75 101.62 103.02 136.00

Category 3—Security Level Equivalent to Break AES-192 on a Classical Machine
Problem Cipher Variant Pr LB Le St FS MMT BJMM Q-LB Q-St − log2(1 − k

n)t

Codeword Finding Problem (CFP)

BIKE-2 CPA 229.29 217.29 215.52 205.50 205.49 176.73 210.18 123.7 125.17 201.99
CCA 233.76 221.73 219.83 209.79 209.78 181.12 215.22 126.2 127.68 206.00

LEDAcrypt

n0 = 2 237.86 225.78 223.87 213.72 213.72 184.67 219.33 128.3 129.76 210.00
n0 = 3 241.70 228.98 227.03 216.59 216.57 188.66 220.93 130.5 131.96 212.34
n0 = 4 254.92 241.73 238.97 228.80 228.78 200.04 232.76 137.6 139.01 224.12

LT, n0 = 2 239.86 227.79 225.65 215.68 215.68 188.81 224.99 130.5 131.93 210.00
XT, n0 = 2 241.21 229.15 226.93 217.08 217.07 190.88 227.63 131.9 133.34 210.00

Algorithms 2019, 12, 209 30 of 34

Table 4. Cont.

Category 3—Security Level Equivalent to Break AES-192 on a Classical Machine
Problem Cipher Variant Pr LB Le St FS MMT BJMM Q-LB Q-St − log2(1 − k

n)t

Syndrome Decoding Problem (SDP)

Classic McEliece 214.70 203.45 203.36 194.36 194.32 155.09 190.53 118.71 120.18 180.91
NTS-KEM 272.34 260.40 259.95 248.01 247.91 190.18 240.63 147.85 148.46 238.21

BIKE-2 CPA 229.50 217.61 215.82 205.99 205.98 178.12 210.87 127.49 128.89 195.12
CCA 234.01 222.09 220.17 210.33 210.32 182.57 215.95 130.11 131.51 199.00

LEDAcrypt

n0 = 2 234.12 222.20 220.26 210.43 210.42 182.79 216.33 130.23 131.63 199.00
n0 = 3 235.32 223.84 220.82 211.91 211.90 180.13 217.56 130.67 132.07 201.29
n0 = 4 235.98 224.66 220.97 212.39 212.39 177.94 218.56 131.26 132.66 202.00

LT, n0 = 2 236.74 224.83 222.67 213.02 213.02 187.02 222.64 133.01 134.41 199.00
XT, n0 = 2 238.47 226.57 224.33 214.80 214.80 189.40 225.67 134.79 136.19 199.00

Category 5—Security Level Equivalent to Break AES-256 on a Classical Machine
Problem Cipher Variant Pr LB Le St FS MMT BJMM Q-LB Q-St − log2(1 − k

n)t

Codeword Finding Problem (CFP)

BIKE-2 CPA 302.77 289.92 288.03 276.41 276.40 239.96 281.57 160.7 162.18 274.00
CCA 303.23 290.38 288.41 276.83 276.83 241.65 282.72 161.3 162.72 274.00

LEDAcrypt

n0 = 2 315.08 302.11 300.19 288.35 288.34 250.97 293.22 167.0 168.44 286.00
n0 = 3 320.55 306.93 304.48 292.78 292.77 257.64 297.70 170.3 171.71 289.56
n0 = 4 312.68 298.84 295.66 284.59 284.58 250.96 289.06 166.8 168.22 280.57

LT, n0 = 2 317.16 304.20 302.03 290.38 290.37 257.62 299.52 169.3 170.76 286.00
XT, n0 = 2 318.57 305.61 303.37 291.83 291.83 261.01 302.47 170.8 172.24 286.00

Syndrome Decoding Problem (SDP)

Classic McEliece n = 6688 293.55 281.32 281.17 270.46 270.42 219.80 263.74 158.38 159.84 256.89
Classic McEliece n = 6960 294.49 282.29 282.05 271.18 271.13 218.79 264.39 158.87 160.33 258.18
Classic McEliece n = 8192 331.64 319.08 318.77 306.63 306.54 249.74 299.89 177.55 179.01 294.34

NTS-KEM 338.58 325.94 325.68 313.52 313.44 256.88 306.72 181.02 182.48 300.85

BIKE-2 CPA 300.21 287.47 285.56 274.15 274.15 239.12 279.52 163.30 164.70 264.00
CCA 300.83 288.10 286.11 274.75 274.74 240.81 280.84 164.00 165.40 264.00

LEDAcrypt

n0 = 2 303.56 290.79 288.84 277.40 277.39 242.63 282.64 165.18 166.58 267.00
n0 = 3 303.84 291.53 288.42 277.98 277.98 238.73 284.34 165.48 166.88 267.86
n0 = 4 303.68 291.54 287.78 277.67 277.67 234.66 282.96 165.52 166.92 268.00

LT, n0 = 2 306.33 293.58 291.40 280.14 280.14 249.21 289.67 168.16 169.55 267.00
XT, n0 = 2 308.15 295.39 293.14 282.00 282.00 252.61 293.04 170.03 171.43 267.00

Algorithms 2019, 12, 209 31 of 34

Table 5. Memory costs expressed as log2(memory_size_in_bits), for each list-based ISDs (i.e., St [13],
FS [14], MMT [15], and BJMM [16]) applied to NIST round-2 code-based cryptosystems. Information
Set Decoding (ISD) variants are labeled as: Stern (ST), Finiasz and Sendrier (FS), May–Meurer–Thomae
(MMT), and Becker–Joux–May–Meurer (BJMM)

Category 1—Security Level Equivalent to Break AES-128 on a Classical Machine
Problem Cipher Variant St FS MMT BJMM

Codeword Finding Problem (CFP)

BIKE-2 CPA 40.72 40.74 53.47 52.59
CCA 41.38 41.40 54.34 53.08

LEDAcrypt

n0 = 2 42.46 42.48 55.74 55.48
n0 = 3 39.81 39.83 52.26 50.51
n0 = 4 39.40 39.43 51.73 50.59

LT, n0 = 2 46.40 46.40 48.41 61.44
XT, n0 = 2 48.06 48.07 50.08 64.26

Syndrome Decoding Problem (SDP)

Classic McEliece 34.68 34.76 78.03 68.19
NTS-KEM 35.60 35.65 80.29 70.36

BIKE-2 CPA 40.72 40.74 53.47 52.59
CCA 41.38 41.40 54.34 53.08

LEDAcrypt

n0 = 2 42.46 42.48 55.74 55.48
n0 = 3 42.89 42.91 56.33 55.51
n0 = 4 44.31 44.32 69.63 58.72

LT, n0 = 2 46.40 46.40 48.41 61.44
XT, n0 = 2 48.06 48.07 50.08 64.26

Category 3—Security Level Equivalent to Break AES-192 on a Classical Machine
Problem Cipher Variant St FS MMT BJMM

Codeword Finding Problem (CFP)

BIKE-2 CPA 43.67 43.68 79.51 57.23
CCA 44.74 44.75 81.58 58.66

LEDAcrypt

n0 = 2 44.90 44.90 81.89 59.01
n0 = 3 42.80 42.81 77.78 56.22
n0 = 4 42.30 42.31 76.79 55.07

LT, n0 = 2 48.54 48.54 76.54 65.32
XT, n0 = 2 50.81 50.81 66.74 68.52

Syndrome Decoding Problem (SDP)

Classic McEliece 35.66 35.71 80.41 70.51
NTS-KEM 77.63 77.74 88.99 80.42

BIKE-2 CPA 43.67 43.68 79.51 57.23
CCA 44.74 44.75 81.58 58.66

LEDAcrypt

n0 = 2 44.90 44.90 81.89 59.01
n0 = 3 45.88 45.89 83.84 61.30
n0 = 4 47.18 47.18 98.20 63.29

LT, n0 = 2 48.54 48.54 63.74 65.32
XT, n0 = 2 50.81 50.81 66.74 68.52

Category 5—Security Level Equivalent to Break AES-256 on a Classical Machine
Problem Cipher Variant St FS MMT BJMM

Codeword Finding Problem (CFP)

BIKE-2 CPA 45.98 45.98 106.61 61.50
CCA 46.95 46.96 109.11 62.69

LEDAcrypt

n0 = 2 46.51 46.52 108.00 61.71
n0 = 3 45.20 45.21 104.56 59.68
n0 = 4 44.35 44.36 102.36 58.74

LT, n0 = 2 50.46 50.46 92.80 68.73
XT, n0 = 2 52.86 52.86 83.64 72.22

Syndrome Decoding Problem (SDP)

Classic McEliece n = 6688 37.48 47.18 84.97 75.83
Classic McEliece n = 6960 47.58 57.02 85.81 77.02
Classic McEliece n = 8192 67.64 76.82 87.95 79.97

NTS-KEM 67.50 67.59 87.77 79.72

BIKE-2 CPA 45.98 45.98 106.62 61.50
CCA 46.95 46.96 97.62 62.69

LEDAcrypt

n0 = 2 46.51 46.52 108.00 61.71
n0 = 3 48.27 48.28 112.62 64.77
n0 = 4 49.23 49.24 115.13 65.98

LT, n0 = 2 50.46 50.46 92.80 68.73
XT, n0 = 2 52.86 52.86 83.64 72.22

Algorithms 2019, 12, 209 32 of 34

5. Conclusions

In this work, we survey the current approaches to solve efficiently the Information Set Decoding
(ISD) problem, providing a complete procedural description of the algorithms at hand. We provide
finite regime expressions to estimate both the computational demand and the space requirements of
the different Information Set Decoding (ISD) alternatives. To provide insights on the effectiveness of
asymptotic estimates for the Information Set Decoding (ISD) complexities, we evaluate them on a set
of parameters chosen by code-based cryptosystems submitted to the current NIST standardization
effort for post quantum cryptography. Our results show that the May–Meurer–Thomae variant of
the Information Set Decoding (ISD) may be preferable in the case an actual attack is implemented
against the cryptosystems at hand. Moreover, we also report that the simple approximation provided
in [34] for the asymptotic cost of an Information Set Decoding (ISD) appears to be overestimating the
complexity of the attack in the finite regime, by a small but significant amount. In light of the obtained
results, we deem a practical evaluation of the complexities of the described algorithms on reduced
security instances of the cryptosystems at hand an interesting topic for further investigation.

Author Contributions: Conceptualization, M.B., A.B., F.C., G.P. and P.S.; Writing – original draft, M.B., A.B., F.C.,
G.P. and P.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Berlekamp, E.R.; McEliece, R.J.; van Tilborg, H.C.A. On the inherent intractability of certain coding problems.
IEEE Trans. Inf. Theory 1978, 24, 384–386.

2. Goppa, V.D. A new class of linear correcting codes. Probl. Pered. Inf. 1970, 6, 24–30.
3. Niederreiter, H. Knapsack-type cryptosystems and algebraic coding theory. Probl. Contr. Inf. Theory 1986,

15, 159–166.
4. Sidel’nikov, V.M.; Shestakov, S. On insecurity of cryptosystems based on generalized Reed-Solomon codes.

Discret. Math. Appl. 1978, 2, 439–444.
5. Gaborit, P. Shorter Keys for Code Based Cryptography. In Proceedings of the International Workshop on

Coding and Cryptography 2015, Bergen, Norway, 14–18 March 2005; pp. 81–90.
6. Monico, C.; Rosenthal, J.; Shokrollahi, A. Using Low Density Parity Check Codes in the McEliece

Cryptosystem. In Proceedings of the IEEE International Symposium on Information Theory (ISIT 2000),
Sorrento, Italy, 25–30 June 2000; p. 215.

7. Misoczki, R.; Barreto, P.S.L.M. Compact McEliece keys from Goppa codes. In Selected Areas in Cryptography;
Springer: Berlin/Heidelberg, Germany, 2009; Volume 5867, pp. 376–392.

8. Baldi, M.; Bodrato, M.; Chiaraluce, F. A new analysis of the McEliece cryptosystem based on QC-LDPC
codes. In Security and Cryptography for Networks; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5229,
pp. 246–262.

9. Misoczki, R.; Tillich, J.P.; Sendrier, N.; Barreto, P.S.L.M. MDPC-McEliece: New McEliece Variants from
Moderate Density Parity-Check Codes. In Proceedings of the IEEE International Symposium on Information
Theory (ISIT 2013), Istanbul, Turkey, 7–12 July 2013; pp. 2069–2073.

10. Prange, E. The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 1962, 8, 5–9.
11. Lee, P.J.; Brickell, E.F. An Observation on the Security of McEliece’s Public-Key Cryptosystem. In Proceedings of

the Advances in Cryptology—EUROCRYPT ’88, Workshop on the Theory and Application of of Cryptographic
Techniques, Davos, Switzerland, 25–27 May 1988; pp. 275–280.

12. Leon, J.S. A probabilistic algorithm for computing minimum weights of large error-correcting codes.
IEEE Trans. Inf. Theory 1988, 34, 1354–1359.

13. Stern, J. A Method for Finding Codewords of Small Weight. In Proceedings of the Coding Theory and
Applications, 3rd International Colloquium, Toulon, France, 2–4 November 1988; pp. 106–113.

Algorithms 2019, 12, 209 33 of 34

14. Finiasz, M.; Sendrier, N. Security Bounds for the Design of Code-Based Cryptosystems. In Proceedings of the
Advances in Cryptology—ASIACRYPT 2009, 15th International Conference on the Theory and Application
of Cryptology and Information Security, Tokyo, Japan, 6–10 December 2009; pp. 88–105.

15. May, A.; Meurer, A.; Thomae, E. Decoding random linear codes in Õ(20.054n). In Proceedings of the
Advances in Cryptology—ASIACRYPT 2011—17th International Conference on the Theory and Application
of Cryptology and Information Security, Seoul South Korea, 4–8 December 2011; pp. 107–124.

16. Becker, A.; Joux, A.; May, A.; Meurer, A. Decoding Random Binary Linear Codes in 2n/20: How 1 + 1 =
0 Improves Information Set Decoding. In Proceedings of the Advances in Cryptology—EUROCRYPT
2012—31st Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, 15–19 April 2012; pp. 520–536.

17. Coffey, J.T.; Goodman, R.M. The complexity of information set decoding. IEEE Trans. Inf. Theory 1990,
36, 1031–1037.

18. Kruk, E. Decoding complexity bound for linear block codes. Probl. Peredachi Inf. 1989, 25, 103–107.
19. Barg, A.; Kruk, E.; van Tilborg, H. On the complexity of minimum distance decoding of long linear codes.

IEEE Trans. Inf. Theory 1999, 45, 1392–1405.
20. Bassalygo, L.; Zyablov, V.; Pinsker, M. Problems of complexity in the theory of correcting codes.

Probl. Peredachi Inf. 1977, 13, 5–17.
21. Barg, A. Complexity Issues in Coding Theory. Electronic Colloquium on Computational Complexity (ECCC) -

Reports Series 1997 1997, TR97-096. Available online: https://eccc.weizmann.ac.il/eccc-reports/1997/TR97-
046/Paper.pdf (accessed on 27 September 2019).

22. Pless, V.S. (Ed.) Handbook of Coding Theory; Elsevier Science Inc.: New York, NY, USA, 1998.
23. Kabatiansky, G.; Krouk, E.; Semenov, S. Error Correcting Coding and Security for Data Networks: Analysis of the

Superchannel Concept; Wiley Inc.: New York, NY, USA, 2005.
24. U.S.A. National Institute of Standards and Technology. Post-Quantum Crypto Project; U.S.A. National

Institute of Standards and Technology: Gaithersburg, MA, USA, 2016.
25. Hamdaoui, Y.; Sendrier, N. A non asymptotic analysis of information set decoding. IACR Cryptol. EPrint Arch.

2013, 2013, 162.
26. Baldi, M.; Barenghi, A.; Chiaraluce, F.; Pelosi, G.; Santini, P. LEDAtools. 2019. Available online: https:

//github.com/LEDAcrypt/LEDAtools (accessed on 27 September 2019).
27. Arora, S.; Barak, B. Computational Complexity—A Modern Approach; Cambridge University Press: Cambridge,

UK, 2009.
28. Baldi, M.; Barenghi, A.; Chiaraluce, F.; Pelosi, G.; Rosenthal, J.; Santini, P.; Schipani, D. Design and

implementation of a digital signature scheme based on low-density generator matrix codes. arXiv 2018,
arXiv:1807.06127.

29. Baldi, M.; Barenghi, A.; Chiaraluce, F.; Pelosi, G.; Santini, P. LEDAkem: A post-quantum key encapsulation
mechanism based on QC-LDPC codes. arXiv 2018, arXiv:1801.08867.

30. Baldi, M.; Barenghi, A.; Chiaraluce, F.; Pelosi, G.; Santini, P. LEDAkem: A Post-Quantum Key Encapsulation
Mechanism Based on QC-LDPC Codes. In Proceedings of the Post-Quantum Cryptography—9th
International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, 9–11 April 2018; Volume 10786,
pp. 3–24.

31. Baldi, M.; Barenghi, A.; Chiaraluce, F.; Pelosi, G.; Santini, P. LEDAcrypt: QC-LDPC Code-Based
Cryptosystems with Bounded Decryption Failure Rate. In Proceedings of the Code-Based Cryptography,
7th International Workshop, CBC 2019, Darmstadt, Germany, 18–19 May 2019.

32. McEliece, R.J. A Public-Key Cryptosystem Based on Algebraic Coding Theory; DSN Progress Report; 1978;
pp. 114–116. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780016269.pdf
(accessed on 27 September 2019)

33. Baldi, M.; Barenghi, A.; Chiaraluce, F.; Pelosi, G.; Santini, P. LEDAcrypt Website. 2019. Available online:
https://www.ledacrypt.org/ (accessed on 27 September 2019).

34. Aragon, N.; Barreto, P.S.L.M.; Bettaieb, S.; Bidoux, L.; Blazy, O.; Deneuville, J.C.; Gaborit, P.; Gueron, S.;
Guneysu, T.; Aguilar Melchor, C.; et al. BIKE: Bit Flipping Key Encapsulation, 2017. NIST Post-Quantum
Cryptography Project: First Round Candidate Algorithms. Available online: https://bikesuite.org/
(accessed on 27 September 2019).

https://eccc.weizmann.ac.il/eccc-reports/1997/TR97-046/Paper.pdf
https://eccc.weizmann.ac.il/eccc-reports/1997/TR97-046/Paper.pdf
https://github.com/LEDAcrypt/LEDAtools
https://github.com/LEDAcrypt/LEDAtools
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780016269.pdf
https://www.ledacrypt.org/
https://bikesuite.org/

Algorithms 2019, 12, 209 34 of 34

35. MacKay, D.J.C. Information Theory, Inference and Learning Algorithms, 1st ed.; Cambridge University Press:
Cambridge, UK, 2003.

36. Kirchner, P. Improved generalized birthday attack. IACR Cryptol. EPrint Arch. 2011, 2011, 377.
37. Niebuhr, R.; Cayrel, P.L.; Buchmann, J. Improving the Efficiency of Generalized Birthday Attacks against

Certain Structured Cryptosystems. In Proceedings of the Workshop on Coding And Cryptography (WCC
2011), Paris, France, 11–15 April 2011; pp. 163–172.

38. Sendrier, N. Decoding One Out of Many. In Proceedings of the Post-Quantum Cryptography—4th
International Workshop, PQCrypto 2011, Taipei, Taiwan, 29 November–2 December 2011; pp. 51–67.

39. Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the 28th Annual
ACM Symposium on the Theory of Computing, Philadephia, PA, USA, 22–24 May 1996; pp. 212–219.

40. Bernstein, D.J. Grover vs. McEliece. In Post-Quantum Cryptography; Sendrier, N., Ed.; Springer: Berlin/
Heidelberg, Germany, 2010; pp. 73–80.

41. de Vries, S. Achieving 128-Bit Security Against Quantum Attacks in OpenVPN. Master’s Thesis,
University of Twente, Enschede, The Netherlands, 2016.

42. Kachigar, G.; Tillich, J. Quantum Information Set Decoding Algorithms. In Proceedings of the Post-Quantum
Cryptography—8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, 26–28 June 2017;
Volume 10346; pp. 69–89.

43. Bernstein, D.J.; Chou, T.; Lange, T.; Maurich, I.V.; Misoczki, R.; Niederhagen, R.; Persichetti, E.;
Peters, C.; Schwabe, P.; Sendrier, N.; et al. Classic McEliece: Conservative code-based cryptography,
2019. NIST Post-Quantum Cryptography Project: Second Round Candidate Algorithms. Available
online: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions (accessed on 27
September 2019).

44. Albrecht, M.; Cid, C.; Paterson, K.G.; Tjhai, C.J.; Tomlinson, M. NTS-KEM, 2019. NIST Post-Quantum
Cryptography Project: Second Round Candidate Algorithms. Available online: https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/Round-2-Submissions (accessed on 27 September 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Contributions
	Paper Organization

	Background on Computationally Intractable Coding Theory Problems
	Applications to Cryptography
	Strategies to Perform MRA

	A Finite Regime Analysis of Information Set Decoding Techniques
	Prange
	Lee–Brickell
	Adapting Lee and Brickell to Solve CFP
	Leon
	Stern
	Finiasz–Sendrier
	May–Meurer–Thomae
	Becker–Joux–May–Meurer
	Speedups in ISD Algorithms Due to Quasi-Cyclic Codes
	Speedups from Quantum Computing

	Quantitative Assessment of ISD Complexities
	Conclusions
	References

