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Abstract: The problem of electricity pricing for charging stations is a multi-objective mixed integer
nonlinear programming. Existing algorithms have low efficiency in solving this problem. In this
paper, a convex optimization algorithm is proposed to get the optimal solution quickly. Firstly,
the model is transformed into a convex optimization problem by second-order conic relaxation
and Karush–Kuhn–Tucker optimality conditions. Secondly, a polyhedral approximation method is
applied to construct a mixed integer linear programming, which can be solved quickly by branch and
bound method. Finally, the model is solved many times to obtain the Pareto front according to the
scalarization basic theorem. Based on an IEEE 33-bus distribution network model, simulation results
show that the proposed algorithm can obtain an exact global optimal solution quickly compared with
the heuristic method.

Keywords: charging station; convex optimization; multi-objective programming; polyhedral
approximation; scaling method

1. Introduction

With the popularization of traffic electrification, the number of electric vehicles (EVs) is increasing
year by year. It is estimated that the number of EVs will reach 11 million in 2025 and 30 million in
2030 [1]. In order to satisfy the charging demand of EVs, a large number of charging stations (CSs)
have been built in the distribution network. Considering the charging behavior of EV closely related
to people’s daily work and rest, EV users usually charge after work in the evening. In addition,
the operation of the distribution network will be severely impacted by a large number of charging
loads [2]. Therefore, the electric energy plan of CSs must be optimized to ensure the orderly charging
of EVs [3]. Electric vehicle users are guided to change charging time by CSs setting charging prices [4].
The relationship among electric vehicle users, charging station operators, and distribution network
operators (DSO), needs to be taken into consideration. However, existing algorithms are inefficient in
solving this problem [5]. Therefore, it is very meaningful to develop the optimization algorithm for
electric power planning of charging stations.

For the time being, the research on charging price of EVs mainly focuses on time-of-use price [6].
In [7–9], the distribution locational marginal pricing (DLMP) method is applied to optimize the charging
price of EVs to reduce the impact of charging load on distribution network. In [10–12], the electricity
demand and travel characteristics of EV users are considered, and charging price is optimized by the
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price demand elasticity coefficient. In [13], a Stackelberg leadership game model is applied to optimize
the electricity prices for encouraging EV users to participate in the electricity market, improving their
own interests, and promoting the development of smart energy systems. However, the problem
of power planning for charging stations is a multi-objective mixed integer nonlinear programming
(MINLP) and some constraints are nonconvex. Heuristic algorithms are usually used to solve this
problem such as genetic algorithm (GA) in [14] and particle swarm optimization (PSO) in [15], which
take a long time to solve and easily fall into local optimum.

Aiming at getting the global optimal solution quickly, the main contribution of this paper
is to propose a convex optimization algorithm for electricity pricing of charging stations.
Firstly, the model is transformed into a convex optimization problem by second-order conic relaxation
and Karush–Kuhn–Tucker optimality conditions. Secondly, a polyhedral approximation method is
applied to construct a mixed integer linear programming, which can be solved quickly by branch and
bound method. Finally, the model is solved iteratively to obtain the Pareto front according to the
scalarization basic theorem.

On the one hand, the optimal solution can be obtained in the strict sense provided with a convex
optimization problem. The conic problem is approximated to a simple type based on polyhedral
approximation in order to improve the speed of solution. In addition, the tripartite game problem is
decomposed into a Stackelberg leadership game and a cooperative game. Besides, the multi-solution
property of the multi-objective optimization problem is preserved under the scaling method.

The remainder of the paper is organized as follows. Section 2 introduces the model of charging
station electric power planning. Section 3 proposes the convex optimization algorithm based on second
order conic relaxation (SOCR) and polyhedral approximation method. Simulations and analysis are
carried out in Section 4. Finally, a conclusion is drawn in Section 5.

2. The Model of Electricity Pricing of Charging Stations

The benefits of DSO and EVs should be taken into account when CSs set electricity prices. The
relationship among DSO, CSs, and EVs is shown in Figure 1. Usually, optimizing the power plan
of CSs can not only improve its own revenue, but also reduce the peak-valley difference of the
distribution network. DSO and CSs can achieve a win-win situation, which constitutes a cooperative
relationship [11]. In order to adjust the load curve, DSO guides CSs through marginal price to formulate
an appropriate power plan. Charging fee is a cost for EVs but a revenue for CSs. Therefore, there
is a conflict of benefits between EVs and CSs, which can be considered as a non-cooperative game
relationship [16,17]. A more accurate description should be the Stackelberg game between EVs and CSs
because there is a sequence of decisions between the two sides [18]. After charging station operators
set charging service price, electric vehicle users decide charging mode according to the price. The goal
of EVs is to reduce charging cost and thus EVs will charge when the charging price is low. When CSs
formulate the power plan, guiding EVs to charge orderly by setting an appropriate charging price is
necessary, and the revenue of CSs should also be maximized.
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The electricity pricing problem of charging stations is a classical problem in power systems [2–11],
which can be decomposed into the security checking problem of DSO, charging pricing problem of
CSs, and charging mode optimization problem of EVs. In the security checking problem of DSO,
the objective function of DSO is shown in Equation (1) and the constraints are shown in Equation
(2), including power demand equation constraints, bus power balance constraints, bus voltage safety
constraints, and line power transmission capacity constraints. The variables in this problem are{
PG,t, Pi

c,t, Vi,t,θi j,t} and the purpose of this problem is to ensure the security of the power system [11].

min
Pi

c,t

fDSO = ||PG,t − PG||2, (1)

s.t PG,t =
∑
i∈I

(Pi
L,t + Pi

c,t) +
∑

i j∈L
Gi j(V2

i,t + V2
j,t − 2Vi,tV j,t cosθi j,t),∀t ∈ T

PG = 1
T
∑
t∈T

PG,t

Pi
L,t + Pi

c,t = Gi jV2
i,t −Vi,tV j,t(Gi j cosθi j,t + Bi j sinθi j,t),∀t ∈ T,∀i ∈ I

Qi
L,t = −Bi jV2

i,t + Vi,tV j,t(Bi j cosθi j,t −Gi j sinθi j,t),∀t ∈ T,∀i ∈ I
V ≤ Vi,t ≤ Ṽ,∀t ∈ T,∀i ∈ I

(G2
i j + B2

i j)(V
2
i,t + V2

j,t − 2Vi,tV j,t cosθi j,t + 2Vi,tV j,t sinθi j,t) ≤ Ĩ2
i j,∀t ∈ T,∀i j ∈ L

(2)

where fDSO is the deviation of load in distribution network; PG,t is the total active power of DSO in
period t; PG is the average active power of DSO; Pi

L,t is the basic active power at bus i in period t; Qi
L,t is

the basic reactive power at bus i in period t; Pi
c,t is the charging power at bus i in period t; Gi j is the

conductance of line ij; Line ij stands for transmission line from bus i to bus j; Vi,t is the voltage at bus i
in period t; θi j,t is the power angle difference of line ij in period t; T is the set of dispatching time; Bi j is
the susceptance of line ij; I is the bus set of distribution network; L is the set of transmission lines of
distribution network; Ṽ and V are the boundary of voltage.

In the charging pricing problem of CSs, the objective function of CSs is shown in Equation (3)
and the constraints are shown in Equation (4), including price boundary constraints and average price
equality constraints in order to ensure the fairness of the market when the competition between CSs is
neglected [19]. The variables in this problem are

{
πc,t, Pi

c,t, pn
c,t, Pb,t} and the purpose of this problem is

to maximize the revenue of the CSs [18].

max
πc,t

fCSs =
∑
t∈T

πc,t

∑
i∈I

Pi
c,t −
∑
t∈T

πb,tPb,t, (3)
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s.t Pb,t =
∑
i∈I

Pi
c,t,∀t ∈ T

Pi
c,t =

∑
n∈N(i)

pn
c,t,∀t ∈ T,∀i ∈ I

π
c
≤ πc,t ≤ π̃c,∀t ∈ T

1
T
∑
t∈T
πc,t = πc

(4)

where fCSs is the income of CSs; πc,t is the charging price at period t; πb,t is the price of electricity
purchase Pb,t at period t; N is the set of electric vehicle users; pn

c,t is the charging power of EVn at period
t; π̃c and π

c
are the boundary of charging price; πc is the average charging price.

In charging mode optimization problem of EVs, the objective function of EVs is shown in Equation
(5) and the constraints are shown in Equation (6), including power demand equation constraints,
maximum charging power constraints, and available charging time constraints. The variables in this
problem are

{
pn

c,t} and the purpose of this problem is to minimize the charging cost of EVs [18].

min
pn

c,t

fEV,n =
∑
t∈T

pn
c,tπc,t,∀n ∈ N, (5)

s.t
∑
t∈T

pn
c,t = En

ev,∀n ∈ N

0 ≤ pn
c,t ≤ pc,∀t ∈ T,∀n ∈ N

pn
c,t = 0,∀t < Te(n),∀n ∈ N

(6)

where f EV,n is the charging cost of EVn; En
ev is the power demand of EVn; pc is the maximum charging

power; Te(n) is the set of rechargeable time of EVn.
From the above formulas, there are three objective functions in the electricity pricing problem and

there are correlations among variables, what lead to the complexity of the model. Hence a series of
equivalent transformations must be applied to the model. According to the Stackelberg leadership
game model, the game between CSs and EVs can be regarded as a bilevel optimization problem [20],
and the subproblems can be expressed as Equation (7).

pn
c,t = argmin

∑
t∈T

pn
c,tπc,t. (7)

In order to obtain the optimal solution of the problem, the Lagrange function is shown in Equation
(8).

Ln =
∑
t∈T

pn
c,tπc,t − λ

n(
∑
t∈T

pn
c,t − En

ev) −
∑
t∈T

µn
lb,tp

n
c,t −
∑
t∈T

µn
ub,t(p

n
c,t − pc) −

∑
t∈T

µn
a,tp

n
c,t,∀n ∈ N, (8)

where, Ln is the Lagrange function of Equations (5) and (6); λn is the dual variable of power demand
equation constraints; µn

lb,t and µn
ub,t are dual variables of maximum charging power constraints; µn

a,t is
the dual variable of available charging time constraints.

According to the linear duality theory [21], the dual expression of Equation (5) is shown in
Equation (9). At the same time, the optimum condition is Equation (10). The optimization problem of
electric vehicle users is transformed into a series of Karush–Kuhn–Tucker (KKT) optimality conditions.

min fEV,n = max(− fEV,n) = max(λnEn
ev +

∑
t∈T

µn
ub,tpc), (9)
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∑
t∈T

pn
c,t − En

ev = 0,∀n ∈ N

0 ≤ pn
c,t ≤ pc

∂L
∂pn

c,t
= πc,t − λn

− µn
lb,t − µ

n
ub,t − µ

n
a,t = 0,∀t ∈ T,∀n ∈ N

0 ≤ µn
lb,t⊥pn

c,t,∀t ∈ T,∀n ∈ N
0 ≥ µn

ub,t⊥(p
n
c,t − pc),∀t ∈ T,∀n ∈ N

(10)

However, Equation (10) includes some complementary constraints, which leads to the nonlinearity
of the model. A big-M method is applied to relax the complementary constraints into mixed integer
constraints, as Equation (11). At the same time, the main problem can be expressed as Equation (12)
according to duality theory.

0 ≤ µn
lb,t ≤MXn

t ,∀t ∈ T,∀n ∈ N
0 ≤ pn

c,t ≤M(1−Xn
t ),∀t ∈ T,∀n ∈ N

0 ≤ pc − pn
c,t ≤MYn

t ,∀t ∈ T,∀n ∈ N
M(Yn

t − 1) ≤ µn
ub,t ≤ 0,∀t ∈ T,∀n ∈ N

(11)

max
πc,t

fCSs =
∑
n∈N

(λnEn
ev +

∑
t∈T

µn
ub,tpc) −

∑
t∈T

πb,tPb,t, (12)

where M is a given big value; Xn
t and Yn

t are binary variables for relaxing Equation (10).
So far, the charging station power planning model is a MINLP with integer variables and

non-linear expressions. Additionally, the quadratic equality constraints in Equation (2) make the
model non-convex. At the same time, the benefits of DSO and CSs should be considered, which lead
to multiple solutions of the model. In short, the problem of power planning for charging stations is
a NP-hard problem and existing methods have difficulty in solving this problem.

3. Convex Optimization Algorithm

In this section, the second order conic relaxation method is proposed to transform the model into
a convex optimization problem and the scaling algorithm is proposed to obtain the Pareto front.

3.1. SOCR Method

In [22], a method of equality transformation is proposed to promotion dimension of model like
Equation (13).

Ri j,t = Vi,tV j,t cosθi j,t,∀t ∈ T,∀i j ∈ L
Si j,t = Vi,tV j,t sinθi j,t,∀t ∈ T,∀i j ∈ L
Wi,t = V2

i,t,∀t ∈ T,∀i ∈ I
R2

i j,t + S2
i j,t = Wi,tW j,t,∀t ∈ T,∀i j ∈ L

(13)

where Ri j,t, Si j,t, Wi,t are temporary variables in order to replace the original variables, which have no
practical physical significance.

After this transformation, decision variables have become
{
PG,t, Pi

c,t, Wi,t, Ri j,t, Si j,t
}

in the security
checking problem of DSO. Additionally, Equation (2) becomes a linear form like Equation (14). In this
process, variables are projected into a higher dimensional space. In order to ensure the accuracy of
the original problem, a new set of equality constraints need to be added as Equation (13), which



Algorithms 2019, 12, 208 6 of 14

constitutes a set of rotating conical spaces. In order to transform the model into convex optimization
form, Equation (15) is applied to relax the feasible region to some second order cones.

PG,t =
∑
i∈I

(Pi
L,t + Pi

c,t) +
∑

i j∈L
Gi j(Wi,t + W j,t − 2Ri j,t),∀t ∈ T

Pi
L,t + Pi

c,t = Gi jWi,t − (Gi jRi j,t + Bi jSi j,t),∀t ∈ T,∀i ∈ I
Qi

L,t = −Bi jWi,t + (Bi jRi j,t −Gi jSi j,t),∀t ∈ T,∀i ∈ I
V2
≤Wi,t ≤ Ṽ2,∀t ∈ T,∀i ∈ I

(G2
i j + B2

i j)(Wi,t + W j,t − 2Ri j,t + 2Si j,t) ≤ Ĩ2
i j,∀t ∈ T,∀i j ∈ L

(14)

R2
i j,t + S2

i j,t ≤Wi,tW j,t,∀t ∈ T,∀i j ∈ L. (15)

So far, the original problem has been relaxed into a mixed integer second order conic programming
(MISOCP). The existing commercial solver can solve this convex optimization problem. However,
the existing convex optimization algorithms are weak in solving this problem because the problem
contains a large number of variables [21]. In order to improve the efficiency of solving this problem,
a polyhedral approximation method is proposed to construct a mixed integer linear programming
(MILP), which can be solved quickly by general algorithms like the branch and bound method [23].
At the same time, the literature [22] has confirmed that the polyhedral approximation method can
accurately control model errors and has high efficiency in power flow problems.

At first, Equation (15) is rewritten as Equation (16). And Equation (17) is applied to relax Equation
(16) to a polyhedral space.√

R2
i j,t + S2

i j,t + (
Wi,t −W j,t

2
)

2

≤
Wi,t + W j,t

2
,∀t ∈ T,∀i j ∈ L, (16)

√
R2

i j,t + S2
i j,t + (

Wi,t −W j,t

2
)

2

≤ (1 + ε)(
Wi,t + W j,t

2
),∀t ∈ T,∀i j ∈ Lm (17)

where ε is a relaxation scalar and ε ∈ (0, 0.5].
Secondly, the rotating cones are equivalent to two standard cones like Equations (18) and (19).

Ei j,t ≥
√

R2
i j,t + S2

i j,t,∀t ∈ T,∀i j ∈ L, (18)

Wi,t + W j,t

2
≥

√
(

Wi,t −W j,t

2
)

2

+ E2
i j,t,∀t ∈ T,∀i j ∈ L. (19)

Finally, the smooth edges of cones are replaced with polyhedrons by Equations (21)–(23).
The dimensions of a polyhedron depend on the accuracy required in Equation (20).

ε(υ) =
1

cos( π
2υ+1 )

− 1. (20)

The boundary of a polyhedron is calculated by recursion. The initial boundary can be calculated
by Equation (21) and the recursive expression is shown in Equation (22). These expressions form a set
of linear spaces when υ is given.

ς0
i j,t ≥ |Ri j,t|,∀t ∈ T,∀i j ∈ L

η0
i j,t ≥ |Si j,t|,∀t ∈ T,∀i j ∈ L

ξ0
i j,t ≥ |

Wi,t−W j,t
2 |,∀t ∈ T,∀i j ∈ L

σ0
i j,t ≥ |Ei j,t|,∀t ∈ T,∀i j ∈ L

(21)
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ςk
i j,t = cos( π

2k+1 )ς
k−1
i j,t + sin( π

2k+1 )η
k−1
i j,t , k ∈ 1, . . . , υ,∀t ∈ T,∀i j ∈ L

ηk
i j,t ≥ | − sin( π

2k+1 )ς
k−1
i j,t + cos( π

2k+1 )η
k−1
i j,t |, k ∈ 1, . . . , υ,∀t ∈ T,∀i j ∈ L

ξk
i j,t = cos( π

2k+1 )ξ
k−1
i j,t + sin( π

2k+1 )σ
k−1
i j,t , k ∈ 1, . . . , υ,∀t ∈ T,∀i j ∈ L

σk
i j,t ≥ | − sin( π

2k+1 )ξ
k−1
i j,t + cos( π

2k+1 )σ
k−1
i j,t |, k ∈ 1, . . . , υ,∀t ∈ T,∀i j ∈ L

(22)

Finally, the upper bound of the polyhedron is defined by Equation (23).

ςυi j,t ≤ Ei j,t,∀t ∈ T,∀i j ∈ L

ηυi j,t ≤ tan( π
2υ+1 )ς

υ,∀t ∈ T,∀i j ∈ L

ξυi j,t ≤
Wi,t+W j,t

2 ,∀t ∈ T,∀i j ∈ L

συi j,t ≤ tan( π
2υ+1 )ξ

υ
i j,t,∀t ∈ T,∀i j ∈ L

(23)

The details of polyhedral approximation method are described in Algorithm 1.

Algorithm 1: Polyhedral approximation algorithm

1: υ: = 0, obtain ε by Equation (20), construct model by Equations (11), (12), and (14)
2: while ε > 10−7 do
3: υ++, obtain ε by Equation (20)
4: end while
5: for t = 1 to T do
6: for ij = 1 to L do
7: add Equations (21) and (23) into model
8: for k = 1 to υ do
9: add Equation (22) into model
10: end do
11: end do
12: end do
13: solve MILP by branch and bound method
14: return PG,t, Pc,t, πc,t, Rij,t, Sij,t, Wi,t, fDSO, fCSs and fEV,n

The relaxation process is shown in Figure 2. The original non-convex feasible region is first
relaxed to a second order cone and then to a series of polyhedrons, which can be solved quickly by
simplex method.
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The original solution variables are projected into high-dimensional space by SOCR, so it is
necessary to get the original variables by returning the mapping. Firstly, the voltage can be returned
by Equation (24).

Vi,t =
√

Wi,t,∀t ∈ T,∀i ∈ I. (24)
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Then the power angle difference of the line can be obtained by Equations (25) and (26). Based on
the agreement of θ0,t = 0, all angles can be obtained by solving the matrix.

tan(θi,t − θ j,t) = tanθi j,t =
Si j,t

Ri j,t
,∀t ∈ T,∀i j ∈ L, (25)

θi,t − θ j,t = tan−1 Si j,t

Ri j,t
,∀t ∈ T,∀i j ∈ L. (26)

The details of return mapping method are described in Algorithm 2.

Algorithm 2: Return mapping algorithm

1: Rij,t, Sij,t, and Wi,t: calculated by Algorithm 1
2: for t = 1 to T do
3: for i = 1 to N do
4: Vi,t: calculated by Equation (24)
5: end do
6: θN0,t:=0
7: for ij = 1 to L do
8: θi,t: calculated by Equation (26)
9: end do
10: end do
11: return Vi,t and θi,t

In order to verify the accuracy of relaxation, relaxation errors are defined as Equation (27) to check
whether constraints are satisfied.

gapi j,t = |R2
i j,t + S2

i j,t −Wi,tW j,t|,∀t ∈ T,∀i j ∈ L. (27)

3.2. Scaling Algorithm

DSO and CSs are cooperative game relations, but both sides have their own benefits. The problem
of power planning for charging stations is a multi-objective programming, and the Pareto front can
balance the benefits of DSO and CSs well. According to the Pareto front, all the cooperation results
can be obtained, and then the appropriate cooperation decision can be selected [24]. Therefore,
the key to the problem is how to get the Pareto front of the model. According to the scalarization
basic theorem [21], the Pareto front can be obtained by transforming the objective function into a set
of constraints and solving the model many times. In this paper, the objective function of DSO is
transformed into a constraint like Equation (28). By changing DL, the model is solved many times to
obtain the Pareto front.

||PG,t − PG||2 ≤ DL. (28)

In order to simplify the model, standard deviation as Equation (29) is used to simplify Equation
(28), which can be rewritten as a set of linear constraints.

1
T

∑
t∈T

|PG,t − PG| ≤ DL. (29)

The details of scaling method are described in Algorithm 3.
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Algorithm 3: Scaling algorithm

1 DL: = +∞, PG,t: obtain by Algorithm 1, fDSO: obtain by Algorithm 1, fCSs: obtain by Algorithm 1
2 DL: = 1

T
∑
t∈T
|PG,t − PG|, t: = 0, obj1[t]: = fDSO, obj2[t]: = fCSs

3 repeat
4 solve MILP by algorithm 1, fDSO: obtain by Algorithm 1, fCSs: obtain by Algorithm 1
5 if fCSs == obj2[t] then
6 break
7 else then
8 t: t++

9 obj1[t]: = fDSO, obj2[t]: = fCSs
10 end if
11 until the problem is infeasible
12 return obj1 and obj2

4. Case Studies

4.1. Data Generation

The case uses an IEEE 33-bus system [25], and the urban area is divided into residential area,
commercial area, and industry area [26]. The total load is 3715 kVA and there are three types of EVs in
the distribution network. The structure of the distribution network and the location of the charging
station are shown in Figure 3 and the electricity price of DSO is shown in Figure 4. The data of electric
vehicles can be obtained in [20]. The battery capacity of EVs is assumed to be 42 kWh, and the initial
state of charge (SOC) is 30%. There are 60 charging piles in the CS and the maximum charging power
of each charging pile is 30 kW. In order to simplify the problem, this paper assumes that there are
three types of EVs in distribution network and their parking time is shown in Figure 5. Additionally,
the number of three types of electric vehicles is 200, 150, and 50 respectively. All simulations are
implemented on a laptop with Intel® Core(TM) i5-7300HQ CPU@2.5 GHz, 8 GB memory, and the
algorithms are compiled by MATLAB. YALMIP tools [23] are used to model and CPLEX [27] is called
to solve the MILP model by branch and bound method. Branch and bound method is a common
method, whose process only briefly described in this article can be seen in [28].
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4.2. Discussion

The Pareto front obtained is shown in Figure 6a, and an equilibrium solution is selected to show
the results. As shown in Figure 6b, charging price is higher in the peak period and lower in the valley
period, so as to guide electric vehicle users to charge in the valley period. However, charging prices
are the same as in many periods of time, in order to avoid users concentrating on charging at the
low price period, resulting in new load peaks. Under the guidance of charging price, the charging
power of different electric vehicles is shown in Figure 6c. It can be seen that charging load is mainly
concentrated in the night time and some electric vehicles charge in the afternoon, due to their parking
characteristics. The load curve of distribution network after orderly charging of electric vehicles is
shown in Figure 6d. Under the guidance of charging price, charging load mainly concentrates on
the period of low power consumption, which greatly reduces the load fluctuation of the distribution
network. It can be seen that the cooperative game between DSO and CSs can achieve win-win situation
and maximize social welfare.
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Figure 6. Simulation results. (a) shows the Pareto front. (b) shows the charging prices. (c) shows the
charging load of charging stations. (d) shows the total load of distribution system.
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The voltage distribution in the distribution network is shown in Figure 7. It can be seen that the
return mapping algorithm can correctly restore the original variables. At the same time, the minimum
voltage of distribution network is 0.9921 pu, which occurs at 9 a.m. on bus 31. The minimum operating
voltage allowed in the distribution network is 0.93 pu. In other words, the voltage security of the
distribution network can be guaranteed under the scheduling strategy in this paper. As shown in
Figure 8, the relaxation error of MILP is larger than that of MISOCP but both are less than 10−7.
Compared with the numerical value of decision variables, this part of the error can be neglected.
It can be seen that the second order cone relaxation has high accuracy. At the same time, polyhedral
approximation will not greatly reduce the accuracy of the model.
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In this paper, the proposed algorithm was compared with GA [14] and PSO [15]. As can be seen
from Table 1, the performance of GA and PSO is not ideal in solving this problem. In contrast, MISOCP
and MILP can obtain the optimal solution in a very short time. Besides, MISOCP and MILP get the
global optimal solution according to the convex optimization theory. Moreover, MILP is more efficient
than MISOCP without losing accuracy. Therefore, the polyhedral approximation algorithm proposed
in this paper can effectively improve the efficiency of solving this problem.
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Table 1. Comparisons of calculation results.

Algorithm fDSO (kW) fCSs ($) The Sum of fEVs ($) CPU Time (s)

GA 183.5642 133.1157 1207.11 892.4
PSO 178.7535 127.5048 1244.34 411.5

MISOCP 177.1124 135.1261 1142.67 10.843
MILP 177.1121 135.1372 1143.12 0.172

5. Conclusions

In this paper, a convex optimization algorithm was proposed to solve the problem of power
planning for charging station. Second-order conic relaxation and Karush–Kuhn–Tucker optimality
conditions were proposed to transform the model into a convex optimization problem. Further,
a polyhedral approximation method was applied to construct a MILP and the model was solved
iteratively to obtain the Pareto front according to the scalarization basic theorem. The simulation
results of IEEE 33-bus test system show that some conclusions can be drawn as follows:

(1) The proposed second-order conic relaxation is accurate, which can transform the original model
into a convex optimization model in order to obtain the global optimal solution. At the same
time, the original variables can be easily restored.

(2) The proposed polyhedral approximation method can speed up the solution of the model.
Compared with other algorithms, the polyhedral approximation algorithm can get the global
optimal solution with the minimum CPU time.

(3) The proposed scaling algorithm can obtain the Pareto front by solving the problem iteratively,
which can preserve the multi-solution of the model and obtain the equilibrium solution.

However, this study ignores the competitive relationship between charging stations, which may
lead to an unfair market. Therefore, the game between charging stations needs further consideration,
which is the focus of our future work.
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