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Abstract: Modeling brain dynamics to better understand and control complex behaviors underlying
various cognitive brain functions have been of interest to engineers, mathematicians and physicists
over the last several decades. With the motivation of developing computationally efficient models
of brain dynamics to use in designing control-theoretic neurostimulation strategies, we have
developed a novel data-driven approach in a long short-term memory (LSTM) neural network
architecture to predict the temporal dynamics of complex systems over an extended long time-horizon
in future. In contrast to recent LSTM-based dynamical modeling approaches that make use of
multi-layer perceptrons or linear combination layers as output layers, our architecture uses a single
fully connected output layer and reversed-order sequence-to-sequence mapping to improve short
time-horizon prediction accuracy and to make multi-timestep predictions of dynamical behaviors.
We demonstrate the efficacy of our approach in reconstructing the regular spiking to bursting
dynamics exhibited by an experimentally-validated 9-dimensional Hodgkin-Huxley model of
hippocampal CA1 pyramidal neurons. Through simulations, we show that our LSTM neural
network can predict the multi-time scale temporal dynamics underlying various spiking patterns
with reasonable accuracy. Moreover, our results show that the predictions improve with increasing
predictive time-horizon in the multi-timestep deep LSTM neural network.

Keywords: long short-term memory; brain dynamics; data-driven modeling; complex systems

1. Introduction

Our brain generates highly complex nonlinear responses at multiple temporal scales, ranging
from few milliseconds to several days, in response to an external stimulus [1–3]. One of the
long-time interests in computational neuroscience is to understand the dynamics underlying various
cognitive and non-cognitive brain functions by developing computationally efficient modeling
and analysis approaches. In the last four decades or so, several advancements have been made
in the direction of dynamical modeling and analysis of brain dynamics [4–6]. In the context of
modeling the dynamics of single neurons, several modeling approaches, ranging from detailed
mechanism-based biophysiological modeling to simplified phenomenological/probabilistic modeling,
have been developed to understand the diverse firing patterns (e.g., simple spiking to bursting)
observed in electrophysiological experiments [7,8]. These models provide a detailed understanding of
various ionic mechanisms that contribute to generating specific spiking patterns as well as allowing the
performance of large-scale simulations to understand the dynamics underlying cognitive behaviors.
However, most of these models are computationally expensive from the perspective of developing
novel real-time neurostimulation strategies for controlling neuronal dynamics at single neurons and
network levels. In this paper, we investigate purely data-driven long short-term memory (LSTM)
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based recurrent neural network (RNN) architectures in multi-timestep predictions of a single neuron’s
dynamics for the use in developing novel neurostimulation strategies in an optimal control framework.

The availability of an abundant amount of data and advances in machine learning has recently
revolutionized the field of predictive data-driven dynamical modeling of complex systems using neural
networks (NNs) and deep learning approaches. Various nonlinear system identification approaches
have been developed to map static input-output relations using multi-layer perceptrons (MLPs) [9–12]
and their variations [13,14]. Reinforcement learning has recently been explored in robotics dynamical
modeling in Reference [15]. NN architectures that make use of vanilla recurrent neural network
(RNNs) elements have also been explored for nonlinear system identification and modeling in
References [16–18]. However, network architectures that make use of vanilla recurrent layers often
suffer from the exploding or vanishing gradient problem when used to model dynamics over long
time series horizons [19]. In Reference [18], a highly specialized multi-phase training algorithm
was used to ensure that the network did not suffer from this problem. LSTM based approaches to
modeling dynamical systems [20–22] mitigate the vanishing gradient problem but suffer from poor
early trajectory predictive performance when using long predictive horizons [20,23]. LSTMs have been
used to model high-dimensional chaotic systems [24] but these studies have been limited to single
step prediction applications. Additionally, machine learning techniques have begun to be explored in
neuroscientific modeling applications. Multi-layer Spiking Artificial Neural Networks (SANNs) for
use in spatiotemporal spike pattern transformations have been developed in References [25,26]. This is
achieved by using novel approximations and surrogates of the partial derivatives of the spike train
functions with respect to the weights. This partial derivative is typically problematic when used in
backpropagation, as it is undefined at spike times for many neuronal models, rendering it incompatible
with traditional backpropagation-based approaches. In Reference [27], a novel gated recurrent unit
(GRU) based encoder/decoder approach is used to learn and predict neuronal population dynamics
and kinematic trajectories from single-trial spike train data.

In this paper, we have developed a novel deep LSTM neural network architecture, which
can make multi-timestep predictions in large-scale dynamical systems. In particular, we use a
reversed sequence-to-sequence mapping technique, developed for language translation applications
of multi-layer LSTM networks in Reference [28], and generalize the application of this technique to
dynamical systems time-series forecasting. Figure 1 illustrates our overall approach.

Initial Measured
States and Inputs

Reverse Sequence
States and Inputs

Concatenated Predicted States
and Input Sequences

Multi-Timestep
State Prediction

Arbitrary Sequence
of Inputs

Long Horizon Prediction of System States

Deep LSTM  
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Network

Figure 1. A schematic illustrating the overall data-driven approach developed in this paper for
multi-timestep predictions of high-dimensional dynamical systems’ behavior over a long time-horizon.
An initial sequence of states and inputs are fed to the ”Stacked LSTM Network” in a reverse-order
for multi-timestep prediction of the system’s states (”Reverse-order sequence-to-sequence mapping”).
The predicted output from each stacked LSTM network is concatenated with the next sequence of
inputs and fed into the next stacked LSTM network in a reverse-order to increase the predictive horizon.
This process is iterated an arbitrary number of times, creating long dynamical predictions.
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In contrast to existing approaches in modeling dynamical systems using neural networks,
our architecture uses (1) stacked LSTM layers in conjunction with a single densely connected layer
to capture temporal dynamic features as well as input/output features; (2) sequence-to-sequence
mapping, which enables multi-timestep predictions; and (3) reverse ordered input and measured state
trajectories to the network, resulting in highly accurate early predictions and improved performance
over long horizons. We show the efficacy of our developed approach in making stable multi-timestep
predictions of various firing patterns exhibited by hippocampal CA1 pyramidal neurons, obtained
from simulating an experimentally validated highly nonlinear 9-dimensional Hodgkin-Huxley model
of CA1 pyramidal cell dynamics, over long time-horizons. Our approach is contingent on the network
being trained on the entire state vector of the neuronal model.

The remaining paper is organized as follows. In Section 2, we describe our developed deep LSTM
neural network architecture and methodological approach to data-driven multi-timestep predictions of
dynamical systems. We show the efficacy of our approach in making stable multi-timestep predictions
over long time-horizons of neuronal dynamics in Section 3, which is followed by a thorough discussion
on the limitations of our approach in Section 4.

2. Neural Network Architecture, Algorithm and Approach

In Section 2.1, we describe our developed deep LSTM neural network architecture which combines
stacked LSTMs with a fully-connected dense output layer. We describe the sequence-to-sequence
mapping with reversed order input sequences used in this paper in Section 2.2. In Section 2.3,
we provide the details on the synthetic data used to train our networks. Finally, in Section 2.4,
we provide the details on the approach used to train the developed neural network architecture.

2.1. Deep LSTM Neural Network Architecture

Long short-term memory (LSTM) neural networks [29] are a particular type of recurrent neural
networks (RNNs) which mitigate the vanishing or exploding gradient problem during the network
training while capturing both the long-term and the short-term temporal features in sequential
time-series data processing [19]. Specifically, LSTM uses multiple gating variables that control the flow
of information of a hidden cell state and assign temporal importance to the dynamical features that are
present in the time series data flowing through the cell state. Figure 2 shows a schematic illustrating
the internal gating operation in a single LSTM cell.

+
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Figure 2. A schematic illustrating the internal gating operation in a single LSTM cell. The ”+” represents
an additive operation and the “◦” represents a multiplicative operation. σg is the sigmoidal activation
function and σc is the hyperbolic tangent activation function.

A forward pass of information through a single LSTM cell is described by the following cell and
gating state equations (reference):

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc), (1a)

ht = ot ◦ σc(ct). (1b)
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ft = σg(W f xt + U f ht−1 + b f ), (1c)

it = σg(Wixt + Uiht−1 + bi), (1d)

ot = σg(Woxt + Uoht−1 + bo), (1e)

in Equations (1a)– (1e), ct ∈ IRh and ht ∈ IRh represent the cell state vector and the hidden state vector,
respectively, at time t. ft ∈ IRh, it ∈ IRh, and ot ∈ IRh are the “forget gate”, “input gate”, and “output
gate” activation vector, respectively, at time t. xt ∈ IRd is the input vector to the LSTM unit at time
t, and ht−1 ∈ IRh is the previous time step hidden state vector passed back into the LSTM unit at
time t. The matrices W f , Wi, and Wo represent the input weights for the “forget gate”, “input gate”,
and “output gate”, respectively. The matrices U f , Ui and Uo represent the weights of the recurrent
connections for the “forget gate”, “input gate”, and “output gate”, respectively. The vectors b f bi,
and bo represent the “forget gate”, “input gate”, and “output gate” biases, respectively. ◦ represents
the element-wise multiplication. The function σg represents the sigmoidal activation function, and σc

is the hyperbolic tangent activation functions.
In this paper, we use stacked LSTM network integrated with a fully connected feedforward output

layer to make multi-timestep state predictions. The use of a single feedforward dense output layer
allows the network to effectively learn the static input-output features, while the stacked LSTM network
captures the temporal dynamical features. To appropriately select the optimum dimensionality of
the hidden states in a single hidden layer, we systematically varied the number of hidden states in
a sequence of {n, n2, 2n2, 4n2, · · · }, where n is the dimension of the system’s state and evaluated
the training performance for each case. We found that for our application (n = 9), a hidden state
dimensionality of 4n2 = 324 was optimal in learning dynamical behaviors while avoiding overfitting.
To select the number of hidden layers, we systematically increased the number of hidden layers of
identical hidden state dimensionality (i.e., 324 states) and compared the network performance during
the training. We found that increasing the number of hidden layers beyond 3 layers did not improve
the network performance on the training and validation dataset. Thus, we fixed the number of hidden
layers to 3 in our study. Throughout this paper, we utilized stateless LSTMs which reset the internal
cell and hidden states to zero after processing and performing gradient descent for a given minibatch.
We initialized the network weights using the Xavier method [30]. Specifically, the initial weights were
drawn from a uniform distribution using

Wij ∼ U
(
− 6√

nj + nj+1
,

6√
nj + nj+1

)
, (2)

where nj is the dimensionality of the input units in the weight tensor, and nj+1 is the dimensionality of
the output units in the weight tensor.

To generate a long time-horizon dynamical prediction beyond the multi-timestep prediction
by a single stacked deep LSTM neural network (shown as “Deep LSTM” in Figure 3), we used an
iterative approach as described here. We made copies of the trained single stacked LSTM network and
connected them in the feedforward manner in a sequence. We concatenated the sequence of predicted
output from the previous stacked LSTM network with an equivalent length sequence of new inputs to
the system and fed them in the reverse sequence order to the next stacked LSTM network. Figure 3
illustrates this iterative approach.

2.2. Sequence to Sequence Mapping with Neural Networks

To make multi-timestep predictions of dynamical systems’ outputs using the deep LSTM neural
network architecture described in the previous section (Section 2.1), we formulate the problem of
mapping trajectories of the network inputs to the trajectories of the predicted outputs as a reverse order
sequence-to-sequence mapping problem. The central idea of the reverse order sequence-to-sequence
mapping approach is to feed the inputs to the network in reverse order such that the network perceives
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the first input as the last and the last input as the first. Although this approach has been developed
and applied in language translation applications [28], it has never been considered in the context
of predicting dynamical systems behaviors from time-series data. Figure 4 illustrates the basic idea
of the reverse order sequence-to-sequence mapping approach for translating letters (inputs) to their
numerical indices (outputs).
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Figure 3. Iterative prediction of the system’s outputs over a long time-horizon. Each “Deep LSTM"
receives the predicted sequence of outputs from the previous “Deep LSTM" and an equivalent length
of new system’s inputs in reverse order and predict the next sequence of outputs of same time duration
in future.

RNN RNN RNN RNN RNN RNN

A B C
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Figure 4. Forward and reversed sequence-to-sequence mapping approach for translating letters
(inputs) to their numerical indices (outputs) in recurrent neural network (RNN). (a) shows the forward
sequence-to-sequence mapping approach. The input is fed into the network in the same sequence as
the desired output. The “distance” between all corresponding inputs and outputs is uniform. (b) shows
the reversed sequence-to-sequence mapping approach. This approach introduces a temporal symmetry
between input and output sequences while keeping the average “distance” between the corresponding
inputs and outputs same as the forward approach. As shown in (b), A→ 1 is the shortest “distance" to
map, B→ 2 the second, and C → 3 the furthest.

As shown in Figure 4, in the forward sequence-to-sequence mapping approach (Figure 4a),
that is, A, B, C → 1, 2, 3, the distance between all mappings is same (i.e., 3 “units”). In the reverse
sequence-to-sequence mapping approach (Figure 4b), the network receives the input in a reverse
order to map to the target output sequence, i.e., C, B, A→ 1, 2, 3. As noted here, the average distance
between the mappings remains the same for both approaches (i.e., 3 “units”) but the reverse order
approach introduces short and long-term symmetric temporal dependencies between inputs and
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outputs. These short and long-term symmetric temporal dependencies provide improved predictive
performance over long temporal horizons [28].

2.3. Synthetic Data

Hippocampal CA1 pyramidal neurons exhibit various multi-timescale firing patterns (from
simple spiking to bursting) and play an essential role in shaping spatial and episodic memory [31].
In the last two decades, several biophysiological models of the CA1 pyramidal (CA1Py) neurons
ranging from single compartmental biophysiological and phenomenological models [32–34] to detailed
morphology-based multi-compartmental models [35–41] have been developed to understand the
contributions of various ion-channels in diverse firing patterns (e.g., simple spiking to bursting)
exhibited by the CA1Py neurons.

In this paper, we use an experimentally validated 9-dimensional nonlinear model of CA1
pyramidal neuron in the Hodgkin-Huxley formalism given in Reference [32] to generate the synthetic
data for the network training and validation. The model exhibits several different bifurcations to
the external stimulating current and has shown its capability in generating diverse firing patterns
observed in electrophysiological recordings from CA1 pyramidal cells under various stimulating
currents. Figure 5 shows three different firing patterns generated from this model based on the three
different regimes of the applied input currents.

(a) (b) (c)

Figure 5. Diversity in the spiking patterns of hippocampal CA1 pyramidal neurons to applied currents.
(a) Regular bursting in response to the external current of 0.23 nA. (b) Irregular bursting in response
to the external current of 1.0 nA. (c) Plateau potentials followed by regular spiking in response to the
external current of 3.0 nA.

To construct the synthetic training and validation dataset for the deep LSTM neural networks
we designed in this paper with different predictive horizons, we simulated the Hodgkin-Huxley
model of CA1 pyramidal neuron given in [32] (see Appendix A for the details of the model) for
1000 ms duration for 2000 constant stimulating currents, sampled uniformly between I = 0.0 nA and
I = 3.0 nA. From these 2000 examples, we randomly and uniformly drew 50 samples (i.e., 104 data
points) of the desired predictive horizon as the input/output sequence data for training and validation.
As described in Section 2.4, we used 1/32 of these data points for validation, that is, 96,875 data points
for the training and 3125 data points for the validation. Since our deep LSTM neural network takes
an initial sequence of outputs of appropriate predictive horizon length (i.e., Np = 1, 50, 100, 200) as
an input sequence to make the next time-horizon prediction of equivalent length of sequence, we
assume that this initial output sequence data is available to the deep LSTM neural network throughout
our simulations.

2.4. Network Training

We formulated the following optimization problem to train a set of network weights θ:

θ∗ = arg min
θ

L(θ), (3)
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where the loss function L(θ) is given by

L(θ) = 1
NP

NP

∑
k=0

(~x(k)− x̂(k|θ))T(~x(k)− x̂(k|θ)). (4)

Here NP represents the length of horizon over which the predictions are made, ~x(k) is the known
state vector at time step k, and x̂(k|θ) is the neural network’s prediction of the state vector at time k,
given θ.

To solve the optimization problem (3) and (4), we used the standard supervised backpropagation
learning algorithm [42–44] along with the Adaptive Moment Estimation (Adam) method [45].
The Adam method is a first-order gradient-based optimization algorithm and uses lower-order
moments of the gradients between layers to optimize a stochastic objective function.

Given the network parameter θ(i) and the loss function L(θ), where i represents the algorithm’s
training iteration, the parameter update is given by Reference [45]

m(i+1)
θ ← β1m(i)

θ + (1− β1)∇θL(i), (5)

ν
(i+1)
θ ← β2m(i)

θ + (1− β2)(∇θL(i))2, (6)

m̂θ =
m(i+1)

θ

1− (β1)i+1 , (7)

ν̂θ =
ν
(i+1)
θ

1− (β2)(i+1)
, (8)

θ(i+1) ← θ(i) − η
m̂θ√
ν̂θ + ε

, (9)

where mθ is the first moment of the weights in a layer, νθ is the second moment of the weights in a
layer, η is the learning rate, β1 and β2 are the exponential decay rates for the moment estimates, ∇ is
the differential gradient operator, and ε is a small scalar term to help numerical stability. Throughout
this work, we used β1 = 0.9, β2 = 0.999 and η = 0.001 [45].

It should be noted that there is a trade-off between the predictive time-horizon of deep LSTM
neural network and the computational cost involved in training the network over the predictive
horizon. As the predictive horizon increases, the computational cost of training the network over
that horizon increases significantly for an equivalent number of examples. To keep the computational
tractability in our simulations, all networks with long predictive horizons (i.e., NP = 50, 100, 200) were
trained for 200 epochs except the one-step predictive network, which was trained for 1000 epochs.

For all training sets throughout this paper, we used the validation to training data ratio as 1/32.
We set the minibatch size for training to 32. We performed all the training and computation in the
TensorFlow computational framework on a discrete server running CentOS 7 with twin Nvidia GTX
1080Ti GPUs equipped with 11 Gb of VRAM.

3. Simulation Results

In this section, we present our simulation results on predicting the multi-timescale spiking
dynamics exhibited by hippocampal CA1 pyramidal neurons over a long time-horizon using our
developed deep LSTM neural network architecture described in Section 2. We trained 4 LSTM networks
for making one timestep prediction (equivalently, 0.1 ms), 50 timesteps prediction (equivalently, 5 ms),
100 timesteps prediction (equivalently, 10 ms), and 200 timesteps prediction (equivalently, 20 ms).
Figure 6 shows the training and validation loss for these 4 LSTM networks.
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(a) (b)

(c) (d)

Figure 6. Training and validation loss for the deep long short term memory (LSTM) neural network
with multi-timestep predictive horizon. (a) 1 timestep predictive horizon. (b) 50 timesteps predictive
horizon. (c) 100 timesteps predictive horizon. (d) 200 timesteps predictive horizon.

Using the iterative approach described in Section 2.1, we simulated the LSTM networks over
500 ms of time duration under different initial conditions and stimulating input currents between three
different regimes of dynamical responses (“Regular Spiking” (I ∈ [2.3, 3.0] nA), “Irregular Bursting”
(I ∈ [0.79, 2.3) nA), and “Regular Bursting” (I ∈ [0.24, 0.79)) nA) and compared the predicted state
trajectories with the Hodgkin-Huxley model. We provide a link to download simulation codes to
replicate our presented results in this section in the Supplementary Materials section.

3.1. Regular Spiking

In this section, we demonstrate the efficacy of our trained deep LSTM neural network over the
range of external current between 2.3 nA and 3 nA in predicting the regular spiking dynamics shown
by the biophysiological Hodgkin-Huxley model of CA1 pyramidal neuron in response to the external
current I ≥ 2.3 nA. In this range, we observe firing rates between approximately 165 Hz and 187 Hz.
For clarity, we here show our results only for the membrane potential traces. We provide the complete
set of simulation results on the LSTM network performance in predicting the dynamics of all the
9 states of the Hodgkin-Huxley model in Appendix B.1 (see Figures A1–A5).

Figure 7 shows a comparison of the membrane potential traces simulated using the
Hodgkin-Huxley model and the 4 different predictive horizons of the LSTM network (i.e., 1 timestep,
50 timesteps, 100 timesteps and 200 timesteps, which we represent as Np = 1, 50, 100, 200) for the
external stimulating current I = 3.0 nA. Note that all the simulations are performed using the same
initial condition as provided in Appendix A. Since our LSTM network uses the initial sequence of
outputs of appropriate predictive horizon (i.e., Np = 1, 50, 100, 200) from the Hodgkin-Huxley model
to make future time predictions, the LSTM network predictions (shown by dashed red line) start after
0.1 ms, 5 ms, 10 ms, and 20 ms in Figure 7a–d, respectively.
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(a)

(b)

(c)

(d)

Figure 7. Comparison of predicted membrane potential traces by the deep LSTM neural network
(“LSTM Network”) to the regular spiking pattern exhibited by the Hodgkin-Huxley model (“HH
Model”) in response to the external stimulating current I = 3.0 nA. (a) Prediction using 1 timestep
predictive LSTM network (Np = 1). (b) Prediction using 50 timesteps predictive LSTM network
(Np = 50). (c) Prediction using 100 timesteps predictive LSTM network (Np = 100). (d) Prediction
using 200 timesteps predictive LSTM network (Np = 200).

As shown in Figure 7, the iterative prediction of the membrane potential traces by the LSTM
network did not differ significantly over a short time horizon (up to 200 ms) for Np = 1, 50, 100, 200,
but it significantly improved afterward with the increased predictive horizon of the LSTM network
(i.e., Np = 1 to Np = 200). In particular, the LSTM network performance significantly improved
in predicting the timing of the occurrence of spikes, but the magnitude of the membrane potential
traces during spikes degraded as we increased Np from 1 to 200. For clarity, we also computed
the time-averaged root mean squared error (RMSE) of the membrane potential traces between the
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Hodgkin-Huxley model and the LSTM network for Np = 1, 50, 100, 200 over 500 ms of simulation time.
Figure 8a shows that the time-averaged RMSE decreased consistently with the increased predictive
horizon of the LSTM network. Overall, these results show that our LSTM network with a longer
predictive horizon prefers to capture temporal correlations more accurately over the amplitude while
an LSTM network with a shorter predictive horizon prefers to capture the amplitude more accurately
over the temporal correlations.

(a)

(b)
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Figure 8. The effect of the length of predictive horizon of the deep LSTM neural network on the
accuracy of regular spiking patterns prediction. (a) shows the time-averaged root mean squared error
(RMSE) versus predictive horizon of the LSTM network (Np = 1, 50, 100, 200) for the simulation results
shown in Figure 7; (b) shows the RMSE versus simulation time for 5000 independent realizations,
drawn from the predicted membrane potential trajectories of 50 randomly selected stimulating currents
from a Uniform distribution U (2.3, 3.0) and 100 random initial conditions for each stimulating current.

To systematically evaluate whether the designed LSTM networks provide reasonable predictions
of the membrane potential traces of the regular spiking dynamics across the range of external input
currents between 2.3 nA and 3.0 nA, we performed simulations for 50 random stimulating currents
drawn from a Uniform distribution U (2.3, 3.0). For each stimulating current, we chose 100 initial
conditions drawn randomly from the maximum and minimum range of the Hodgkin-Huxley state
variables (Note that the network was not trained over this wide range of initial conditions). Figure 8b
shows the LSTM network performance, represented in terms of the root mean squared error vs time
over 5000 realizations, for Np = 1, 50, 100, 200. As shown in this figure, the root mean squared error
decreased with the increased predictive horizon of the LSTM network for all time, which is consistent
with the result shown in Figure 8a.

In conclusion, these results suggest that our deep LSTM neural network with a longer predictive
horizon feature can predict the regular (periodic) spiking patterns exhibited by hippocampal CA1
pyramidal neurons with high accuracy over a long-time horizon.
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3.2. Irregular Bursting

In this section, we demonstrate the efficacy of our trained deep LSTM neural network over the
range of external current between 0.79 nA and 2.3 nA in predicting the irregular bursting dynamics
shown by the biophysiological Hodgkin-Huxley model of CA1 pyramidal neuron in response to the
external current I ∈ [0.79, 2.3) nA. In this range, we observe firing rates between approximately 53 Hz
and 164 Hz. For clarity, we here show our results only for the membrane potential traces. We provide
the complete set of simulation results on the LSTM network performance in predicting the dynamics
of all the 9 states of the Hodgkin-Huxley model in Appendix B.2 (see Figures A6–A10).

Figure 9 shows a comparison of the membrane potential traces simulated using the
Hodgkin-Huxley model and the 4 different predictive horizons of the LSTM network (i.e.,
Np = 1, 50, 100, 200) for the external stimulating current I = 1.5 nA. Note that all the simulations
are performed using the initial condition used for I = 3.0 nA in Figure 7. Since our LSTM network
uses the initial sequence of outputs of appropriate prediction horizon (i.e., Np = 1, 50, 100, 200) from
the Hodgkin-Huxley model to make future time predictions, the LSTM network predictions (shown
by dashed red line) start after 0.1 ms, 5 ms, 10 ms, and 20 ms in Figure 9a–d, respectively.

As shown in Figure 9, the LSTM performance significantly improved in predicting the timing
of the occurrence of spikes up to 100 ms with the increased predictive horizon of the LSTM network
from Np = 1 to Np = 200, but the performance degraded in capturing the magnitude of the membrane
potentials during spiking with an increased value of Np. Although the time-averaged root mean
squared error of the membrane potential traces between the Hodgkin-Huxley model and the LSTM
network for Np = 1, 50, 100, 200 showed an improved performance with the increased value of Np

(see Figure 10a), none of the LSTM networks showed a reasonable prediction of the timing of the
occurrence of spikes in this regime beyond 100 ms of the time-horizon.

To systematically evaluate whether the designed LSTM networks provide reasonable predictions
of the membrane potential traces of the regular spiking dynamics across the range of external input
currents between 0.79 nA and 2.3 nA, we performed simulations for 50 random stimulating currents
drawn from a Uniform distribution U (0.79, 2.3). For each stimulating current, we chose 100 initial
conditions drawn randomly from the maximum and minimum range of the Hodgkin-Huxley state
variables (note that the network was not trained over this wide range of initial conditions). Figure 10b
shows the LSTM network performance, represented in terms of the root mean squared error vs time
over 5000 realizations, for Np = 1, 50, 100, 200. As shown in this figure, the root mean squared error
decreased with the increased predictive horizon of the LSTM network for all time, which is consistent
with the result shown in Figure 10a.

In conclusion, these results suggest that our deep LSTM neural network with a longer predictive
horizon feature can predict the irregular bursting patterns exhibited by hippocampal CA1 pyramidal
neurons with high accuracy over only a short-time horizon.

3.3. Regular Bursting

In this section, we demonstrate the efficacy of our trained deep LSTM neural network over the
range of external current between 0.24 nA and 0.79 nA in predicting the regular bursting dynamics
shown by the biophysiological Hodgkin-Huxley model of CA1 pyramidal neuron in response to the
external current I ∈ [0.24, 0.79) nA. In this range, we observe firing rates between approximately 8 Hz
and 52 Hz. For clarity, we here show our results only for the membrane potential traces. We provide
the complete set of simulation results on the LSTM network performance in predicting the dynamics
of all the 9 states of the Hodgkin-Huxley model in Appendix B.3 (see Figures A11–A15).
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(a)

(b)

(c)

(d)

Figure 9. Comparison of predicted membrane potential traces by the deep LSTM neural network
(“LSTM Network”) to the irregular bursting spiking patterns exhibited by the Hodgkin-Huxley model
(“HH Model”) in response to the external stimulating current I = 1.5 nA. (a) Prediction using 1 timestep
predictive LSTM network (Np = 1). (b) Prediction using 50 timesteps predictive LSTM network
(Np = 50). (c) Prediction using 100 timesteps predictive LSTM network (Np = 100). (d) Prediction
using 200 timesteps predictive LSTM network (Np = 200).
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Figure 10. The effect of the prediction horizon of the deep LSTM neural network on the accuracy of
irregular bursting dynamics prediction. (a) shows the time-averaged root mean squared error (RMSE)
versus predictive horizon of the LSTM network (Np = 1, 50, 100, 200) for the simulation results shown
in Figure 9. (b) shows the RMSE versus simulation time for 5000 independent realizations, drawn from
the predicted membrane potential trajectories of 50 randomly selected stimulating currents from a
Uniform distribution U (0.79, 2.3) and 100 random initial conditions for each stimulating current.

Figure 11 shows a comparison of the membrane potential traces simulated using the
Hodgkin-Huxley model and the 4 different predictive horizons of the LSTM network (i.e.,
Np = 1, 50, 100, 200) for the external stimulating current I = 0.5 nA. Note that all the simulations
are performed using the initial condition used for I = 3.0 nA in Figure 7. Since our LSTM network
uses the initial sequence of outputs of appropriate prediction horizon (i.e., Np = 1, 50, 100, 200) from
the Hodgkin-Huxley model to make future time predictions, the LSTM network predictions (shown
by dashed red line) start after 0.1 ms, 5 ms, 10 ms and 20 ms in Figure 11a–d, respectively.

By analyzing the results shown in Figure 11, we found that the LSTM network performance in
predicting the timing of spikes during bursts as well as tracking the subthreshold potential improved
significantly from Np = 1 to Np = 200, but the performance substantially degraded in capturing the
magnitude of the membrane potentials during spiking. In conclusion, the 200 timesteps prediction
horizon based LSTM network (see Figure 11d) predicts the temporal dynamics with reasonable
accuracy over the first 300 ms of prediction.

Figure 12a shows the time-averaged root mean squared error of the membrane potential traces
between the Hodgkin-Huxley model and the LSTM network for Np = 1, 50, 100, 200. As noted in this
figure, the root mean squared error decreased substantially between 100 timesteps and 200 timesteps
prediction horizon compared to the regimes of regular spiking (Figure 8a) and irregular bursting
(Figure 10a), which indicates that a longer predictive horizon based LSTM network is necessary
to capture the two different timescales (i.e., short intraburst spiking intervals and long interburst
subthreshold intervals) presented in these dynamics.
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(a)

(b)

(c)

(d)

Figure 11. Comparison of predicted membrane potential traces by the LSTM network (“NN Prediction”)
to the irregular bursting spiking patterns exhibited by the Hodgkin-Huxley model (“HH Model”) in
response to the external stimulating current I = 0.5 nA. (a) Prediction using 1 timestep predictive LSTM
network (Np = 1); (b) Prediction using 50 timesteps predictive LSTM network (Np = 50); (c) Prediction
using 100 timesteps predictive LSTM network (Np = 100); (d) Prediction using 200 timesteps predictive
LSTM network (Np = 200).
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Figure 12. The effect of the prediction horizon of the multi-timestep LSTM network on the accuracy of
regular bursting dynamics prediction. (a) shows the time-averaged root mean squared error (RMSE)
versus predictive horizon of the LSTM network (Np = 1, 50, 100, 200) for the simulation results shown
in Figure 11. (b) shows the RMSE versus simulation time for 5000 independent realizations, drawn
from the predicted membrane potential trajectories of 50 randomly selected stimulating currents from
a Uniform distribution U (0.24, 0.79) and 100 random initial conditions for each stimulating current.

Figure 12b shows the LSTM networks performances, represented in terms of the root mean
squared error vs time over 5000 realizations, for Np = 1, 100, and 200 timestep prediction horizon
LSTM network. As shown in this figure, the root mean squared error decreased with the increased
predictive horizon of the LSTM network for all time, which is consistent with the result shown in
Figure 12a. Note that we have excluded the simulation result for Np = 50 as we found out in our
detailed analysis that the trained LSTM network for Np = 50 led to instability in predicting spiking
responses for some of the initial condition values in this regime. The reason for this may be that the
network may not have seen these initial conditions during the training.

4. Discussion

In this paper, we developed and presented a new data-driven long short-term memory (LSTM)
based neural network (NN) architecture to predict the dynamical spiking patterns of single neurons.
Compared to other LSTM-based NN architectures for forecasting dynamical systems behavior reported
in the literature, our architecture incorporated a single dense feedforward output layer with an
activation function and a reverse-order sequence-to-sequence mapping approach into traditional
LSTM based neural networks to enable truly multi-timestep stable predictions of the dynamics over a
long time-horizon. We demonstrated the efficacy of our architecture in predicting the multi-time scale
dynamics of hippocampal CA1 pyramidal neurons and compared the predictions from our model with
the ground truth synthetic data obtained from an experimentally validated biophysiological model of
CA1 pyramidal neuron in the Hodgkin-Huxley formalism. Through simulations, we showed that (1)
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the presented architecture can learn multi-timescale dynamics; and (2) the predictive accuracy of the
network increases with the increase in the predictive horizon of the LSTM network.

Our results for irregular bursting regime showed the limitation of the designed deep LSTM neural
network architecture in making an accurate prediction of the timing of the occurrence of spikes over
a long-time horizon compared to regular spiking and regular bursting regimes. A possible reason
for this may be the architecture itself or the dataset used for training these networks, which requires
further investigations by training the networks on the dataset explicitly generated from this regime.
In addition, it has been shown that this regime of bursting exhibits chaotic dynamics [46], which may
provide further explanation for the network’s struggle to accurately predict this bursting behavior,
as the system exhibits a high sensitivity to the initial conditions. Hybrid approaches that combine
LSTM networks with mean stochastic models (MSM) have been explored for predictively modeling
chaotic dynamical systems in Reference [24]. However, this LSTM-MSM approach is limited to iterative
single step prediction, and the application of this technique falls beyond the scope of this paper.

Another limitation of our presented approach in modeling neuronal dynamics as currently
constructed is the inclusion of the full state vector in both training and predictive evaluation.
In experiment, it may be infeasible to have the entire state vector of the neuron measured for any given
time. This should provide a valuable direction for future research, as partially observed systems or
neuronal spike train recordings are much more feasible to measure in vivo or vitro and merit further
consideration in combination with this approach.

In all dynamical regimes, our results showed a degraded performance of the deep LSTM neural
network in predicting the amplitude of membrane potentials during the timing of the occurrence
of spikes with the increased predictive horizon of the LSTM network. This issue may be related to
the equally weighted norm-2 loss function used for training the networks. A further investigation
is required by considering different loss functions, such as norm-1 or weighted norm-2, which we
consider as our future work.

In addition, we make a note on the computational requirement of our presented approach.
The computational cost of inference with an artificial neural network can effectively be boiled down
to the number of multiplications and additions needed to complete a forward pass of information.
The inference complexity for an LSTM is roughly O(di · d · h + d · h2), as described in Reference [24],
where di is the dimensionality of each input, d is the number of inputs, and h is the dimensionality of
the hidden states. Using this, we estimated the inference complexity of our LTSM network, represented
by O(I), for the prediction horizon of 1, 50, 100, and 200. Using a single Nvidia GTX 1080Ti, we have
also calculated the average computation time required for each of the predictive horizons used to
predict 500 ms of state values from 1000 examples. We report these values in Table 1.

Table 1. Comparison of computational requirement for the iterative approach presented in this paper.

NP (∆t = 0.1 ms) Prediction Time (ms) Iterations On-Line Computation Time (s) O(I)

1 500 5000 8.896 5.3× 109

50 500 100 3.778 1.6× 108

100 500 50 3.679 1.1× 108

200 500 25 3.565 8.0× 107

Although the data-driven approach developed in this paper showed the ability of the designed
LSTM-based neural network in learning multi-timescale dynamics, we note that the network struggles
to accurately capture the dynamics of some state variables where the magnitude of the state variable
is comparable to the numerical precision of our simulations. This can particularly be seen in
Figures A2–A4 and A14, where the network is not able to reconstruct the dynamics of the state
variable qsAHP with a reasonable accuracy. One possible way to alleviate this issue may be to increase
the tolerance of the numerical errors in simulations, which may increase the overall computational
cost during training.
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In conclusion, our results showed that a longer predictive horizon-based LSTM network can
provide a more accurate prediction of multi-time scale dynamics, but at the expense of extensive offline
training cost.

Supplementary Materials: Codes and supplementary materials can be found at https://webpages.uidaho.edu/
gkumar/Research/publications.html
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Appendix A. Hodgkin-Huxley Model of CA1 Pyramidal Neuron Dynamics

We used the following Hodgkin-Huxley model of CA1 pyramidal neuron from [32] to demonstrate
the efficacy of our data-driven modeling approach presented in this paper:

C
dV
dt

= −gL(V −VL)− INa − INaP − IKdr − IA − IM − ICa − IC − IsAHP + Iapp, (A1)

where the ionic currents INa, INaP, IKdr, IA, IM, IsAHP, IC, and ICa are given by

INa = gNam3
∞(V)hNa(V −VNa), (A2a)

INaP = gNaP p∞(V)(V −VNa), (A2b)

IKdr = gKdrn4
Kdr(V −VK), (A2c)

IA = gAa3
∞(V)bKdr(V −VK), (A2d)

IM = gMzM(V −VK), (A2e)

ICa = gCar2
Ca(V −VCa), (A2f)

IC = gCd∞([Ca2+]i)cC(V −VK), (A2g)

IsAHP = gsAHPqsAHP(V −VK), (A2h)

here, V is the membrane potential in mV, C is the membrane capacitance, VL is the reversal potential
of the leak current, gL is the conductance of the leak current, and Iapp is the externally applied
stimulating current. The ionic currents INa, INaP, IKdr, IA, IM, IsAHP, IC, and ICa represent the
transient sodium current, persistent sodium current, delayed rectifier potassium current, A-type
potassium current, muscarinic-sensitive potassium current, slow calcium-activated potassium current,
fast calcium-activated potassium current, and high threshold calcium current respectively. gi, i ∈
{Na, NaP, Kdr, A, M, Ca, C, sAHP} represents the conductance of the ion channel i. Vi, i ∈ {Na, K, Ca}
is the reversal potential of the ion channel i.

The dynamics of the transient activation/deactivation variables of the ionic and calcium currents,
i.e., hNa, nKdr, bKdr, zM, rCa, cC, qsAHP, and [Ca2+]i, are given by:

dhNa
dt

= φ
h∞(V)− hNa

τhNa(V)
, (A3a)

dnKdr
dt

= φ
n∞(V)− nKdr

τnKdr (V)
, (A3b)

dbKdr
dt

=
b∞(V)− bKdr

τbKdr

, (A3c)

https://webpages.uidaho.edu/gkumar/Research/publications.html
https://webpages.uidaho.edu/gkumar/Research/publications.html
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dzM
dt

=
z∞(V)− zM

τz
, (A3d)

drCa
dt

=
r∞(V)− rCa

τrCa

, (A3e)

dcC
dt

=
c∞(V)− cC

τcC

, (A3f)

dqsAHP
dt

=
q∞(V)− qsAHP

τqsAHP

, (A3g)

d[Ca2+]i
dt

= −νICa −
[Ca2+]i

τCa
, (A3h)

here, m∞(V), h∞(V), n∞(V), p∞(V), a∞(V), b∞(V), z∞(V), r∞(V), c∞(V), q∞([Ca2+]i),
and d∞([Ca2+]i) are the steady-state activation/deactivation functions. φ is a scaling parameter.
τhNa(V), τnKdr (V), τbKdr

, τrCa , τcC , and τqsAHP are the time constants. The steady-state
activation/deactivation functions are given by:

m∞(V) =
1

1 + e−(V−θm)/σm
, (A4a)

n∞(V) =
1

1 + e−(V−θn)/σn
, (A4b)

h∞(V) =
1

1 + e−(V−θh)/σh
, (A4c)

p∞(V) =
1

1 + e−(V−θp)/σp
, (A4d)

b∞(V) =
1

1 + e−(V−θb)/σb
, (A4e)

z∞(V) =
1

1 + e−(V−θz)/σz
, (A4f)

a∞(V) =
1

1 + e−(V−θa)/σa
, (A4g)

r∞(V) =
1

1 + e−(V−θr)/σr
, (A4h)

c∞(V) =
1

1 + e−(V−θc)/σc
, (A4i)

d∞([Ca2+]i) =
1

(1 + ac/[Ca2+]i)
, (A4j)

q∞([Ca2+]i) =
1

1 + (a4
q/[Ca2+]4i )

, (A4k)

here, ac, aq, θi, σi for i ∈ {m, n, h, p, b, z, a, r, c} are the model parameters. The voltage dependent time
constants τhNa(V) and τnKdr (V) are given by

τhNa(V) = 1 +
7.5

1 + e−(V−θht)/σht
, (A5a)

τnKdr (V) = 1 +
5

1 + e−(V−θnt)/σnt
, (A5b)

where θht, θnt, σht, and σnt are model parameters.
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Throughout this paper, we used the following numerical values for the unknown model
parameters [32]: C = 1 µF/cm2, gL = 0.05 mS/cm2, VL = −70 mV, ν = 0.13 cm2/(ms × µA),
gNa = 35 mS/cm2, VNa = 55 mV, gNaP = 0.4 mS/cm2, gKdr = 6.0 mS/cm2, VK =−90 mV, gA = 1.4 mS/cm2,
gM = 0.5 mS/cm2, gCa = 0.08 mS/cm2, gC = 10 mS/cm2, VCa = 120 mV, and gsAHP = 5 mS/cm2,
θm =−30 mV, σm = 9.5 mV, θh =−45 mV, σh =−7 mV, θht =−40.5 mV, σht =−6 mV, φ = 10, θP =−47 mV,
σP = 3 mV, θn =−35 mV, σn = 10 mV, θnt =−27 mV, σnt =−15 mV, θa =−50 mV, σa = 20 mV, θb =−80 mV,
σb = −6 mV, θz = −39 mV, σz = 5 mV, θr = −20 mV, σr = 10 mV, τr = 1 ms, θc = −30 mV, σc = 7 mV,
θc = 2 ms, ac = 6, τq = 450 ms, and aq = 2.

Unless otherwise stated, we used the following initial conditions to simulate the Hodgkin-Huxley
model for generating the synthetic data: V0 = −71.81327 mV, hNa0 = 0.98786, nKdr0 = 0.02457,
bKA0 = 0.203517, uKM0 = 0.00141, rCa0 = 0.005507, [Ca]i0 = 0.000787, cC0 = 0.002486, qCa0 = 0.0.

Appendix B. Simulation Results on Full State Predictions of Hodgkin-Huxley Model

In Section 3, we showed our simulation results only for the membrane potential traces. Here, we
provide the simulation results for all the 9 states of the Hodgkin-Huxley model of CA1 pyramidal
neuron (HHCA1Py) predicted by the deep LSTM neural network over a long-time horizon and show
the comparison between these predictions and the simulated dynamics from HHCA1Py.

Appendix B.1. Regular Spiking

In this section, we show the simulation results on predicting the dynamics of all the 9 states of
HHCA1Py over a long-time horizon using the deep LSTM neural network for the regular periodic
spiking regime (I ∈ [2.3, 3.0] nA). Figures A1–A4 show the comparison between the state’s dynamics
simulated using the Hodgkin-Huxley model and the deep LSTM neural network model developed for
1 timestep, 50 timesteps, 100 timesteps, and 200 timesteps (equivalently, Np = 1, 50, 100, 200) predictive
horizon, respectively.

As shown in these figures, the performance of the deep LSTM neural network model in predicting
state dynamics significantly improved with the increased predictive horizon of the LSTM network
(i.e., Np = 1 to Np = 200) for all the states except qsAHP for which we found that the magnitude is
comparable to the numerical precision of the performed simulations. Figure A5 shows the root mean
squared error between the states of HHCA1Py and the deep LSTM neural network model as a function
of simulation time over 5000 random realizations, for Np = 1, 50, 100, 200. These results show that the
root mean squared error decreases from Np = 1 to Np = 200.

Appendix B.2. Irregular Bursting

In this section, we show the simulation results on predicting the dynamics of all the 9 states of
HHCA1Py over a long-time horizon using the deep LSTM neural network for the irregular bursting
regime (I ∈ [0.79, 2.3) nA). Figures A6–A9 show the comparison between the state’s dynamics
simulated using the Hodgkin-Huxley model and the deep LSTM neural network model developed for
1 timestep, 50 timesteps, 100 timesteps, and 200 timesteps (equivalently, Np = 1, 50, 100, 200) predictive
horizon, respectively.

As shown in these figures, the deep LSTM neural network model provides a reasonable prediction
of the dynamics of all the states except qsAHP over the initial 100 ms of simulations. Moreover,
the prediction improved from Np = 1 to Np = 200, which is consistent with the results for the regular
spiking regime (see Figures A1–A5). We found that the magnitude of qsAHP was comparable to the
numerical precision of our simulations, which hindered the capability of the LSTM network in making
a reasonable prediction for this state.

Figure A10 shows the root mean squared error between the states of HHCA1Py and the
deep LSTM neural network model as a function of simulation time over 5000 random realizations,
for Np = 1, 50, 100, 200. As shown here, the root mean squared error decreased with the increased
predictive horizon of the LSTM network (i.e., Np = 1 to Np = 200).
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Figure A1. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 1 timestep predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 3.0 nA.
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Figure A2. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 50 timesteps predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 3.0 nA.
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Figure A3. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 100 timesteps predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 3.0 nA.



Algorithms 2019, 12, 203 23 of 38

Figure A4. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 200 timesteps predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 3.0 nA.
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Figure A5. The root mean squared error (RMSE) versus simulation time for 5000 independent
realizations, drawn from the predicted membrane potential trajectories of 50 randomly selected
stimulating currents from a Uniform distribution U (2.3, 3.0) and 100 random initial conditions for each
stimulating current.
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Figure A6. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 1 timestep predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 1.5 nA.
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Figure A7. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 50 timesteps predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 1.5 nA.
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Figure A8. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 100 timesteps predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 1.5 nA.
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Figure A9. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 200 timesteps predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 1.5 nA.
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Figure A10. The root mean squared error (RMSE) versus simulation time for 5000 independent
realizations, drawn from the predicted membrane potential trajectories of 50 randomly selected
stimulating currents from a Uniform distribution U (0.79, 2.3) and 100 random initial conditions for
each stimulating current.
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Appendix B.3. Regular Bursting

In this section, we show the simulation results on predicting the dynamics of all the 9 states of
HHCA1Py over a long-time horizon using the deep LSTM neural network for the regular bursting
regime (I ∈ [0.24, 0.79) nA). Figures A11–A14 show the comparison between the state’s dynamics
simulated using the Hodgkin-Huxley model and the deep LSTM neural network model developed for
1 timestep, 50 timesteps, 100 timesteps, and 200 timesteps (equivalently, Np = 1, 50, 100, 200) predictive
horizon, respectively.

As shown in these figures, the performance of the deep LSTM neural network model in predicting
state dynamics significantly improved between 1 timestep predictive horizon (Figure A11) and 200
timesteps predictive horizon (Figure A14) across all the states except qsAHP for the similar reason we
provided for the regular spiking and irregular bursting regimes. More importantly, the LTSM network
predicted the temporal correlations with high accuracy over the time-horizon of 300 ms for Np = 200.
The extrapolation of these results suggest that increasing the predictive horizon beyond Np = 200
could improve the prediction beyond 300 ms of time-horizon.

In Figure A10, we show the root mean squared error between the states of HHCA1Py and the
deep LSTM neural network model as a function of simulation time over 5000 random realizations,
for Np = 1, 50, 100, 200. As shown here, the root mean squared error decreased with the increased
predictive horizon of the LSTM network (i.e., Np = 1 to Np = 200), which is consistent with the results
of the regular spiking and irregular bursting regimes.
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Figure A11. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and
the iterative predictions of states’ dynamics using the 1 timestep predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 0.5 nA.
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Figure A12. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 50 timesteps predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 0.5 nA.
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Figure A13. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 100 timesteps predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 0.5 nA.
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Figure A14. Comparison between the Hodgkin-Huxley model (“HH Model”) states’ dynamics and the
iterative predictions of states’ dynamics using the 200 timesteps predictive horizon-based deep LSTM
neural network (“LSTM Network”) in response to I = 0.5 nA.
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Figure A15. The root mean squared error (RMSE) versus simulation time for 5000 independent
realizations, drawn from the predicted membrane potential trajectories of 50 randomly selected
stimulating currents from a Uniform distribution U (0.24, 0.79) and 100 random initial conditions
for each stimulating current.
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