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Abstract: MapReduce is a parallel computing model in which a large dataset is split into smaller
parts and executed on multiple machines. Due to its simplicity, MapReduce has been widely used
in various applications domains. MapReduce can significantly reduce the processing time of a
large amount of data by dividing the dataset into smaller parts and processing them in parallel
in multiple machines. However, when data are not uniformly distributed, we have the so called
partitioning skew, where the allocation of tasks to machines becomes unbalanced, either by the
distribution function splitting the dataset unevenly or because a part of the data is more complex
and requires greater computational effort. To solve this problem, we propose an approach based
on metaheuristics. For evaluating purposes, three metaheuristics were implemented: Simulated
Annealing, Local Beam Search and Stochastic Beam Search. Our experimental evaluation, using
a MapReduce implementation of the Bron-Kerbosch Clique Algorithm, shows that the proposed
method can find good partitionings while better balancing data among machines.

Keywords: MapReduce; partitioning skew; metaheuristics; parallel computing; high performance
computing

1. Introduction

In the past decade, due to the massive growth of data through various application domains,
such as social media, mobile computing, and the Internet of Things (IoT), MapReduce [1] has
emerged as a highly successful framework for distributed and parallel computing on cloud systems.
MapReduce allows the user to build complex computations on the data without having to worry
about synchronization, fault tolerance, reliability or availability. Due to its simplicity, MapReduce
has been widely used in various applications domains, such as search engine, database operations,
machine learning, scientific computations, etc.

In particular, a MapReduce job runs in two main phases: Map and Reduce. In the Map phase, a
master node splits the input dataset into independent smaller sub-tasks, and distributes them to worker
nodes. Then, a worker node processes its sub-tasks in a parallel way and passes the intermediate result
back to the master node. In the reduce phase, the master node distributes the intermediate data to
the workers according to a partition function. Finally, the workers collect the intermediate data and
combine them to form the final output for the original problem. This process allows MapReduce to
process large data sets on distributed clusters.
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The most popular open source implementation of MapReduce is Apache Hadoop. It was
developed primarily by Yahoo and provides a distributed, scalable and portable file system,
called HDFS, across clusters of computers. Both industry and academia, have adopted Apache
Hadoop regularly to process and store large volumes of data [2]. Although it is broadly used for
large scale data processing, one of the major obstacles hindering effective processing on MapReduce
is data skew. Data skew refers to unbalanced computational load, caused by the imbalance in the
amount of data per tasks or by the imbalance in the amount of effort spent by workers to process the
datasets. By default, Hadoop uses a hash function to determine the data partition corresponding to the
reduce tasks. It works well when the data are uniformly distributed. However, in many real-world
applications, the data partitioning method based on hash function results in a non-uniform distribution
of the output data, and further leads to skewing of the input data in the reduce tasks. As a consequence,
some worker nodes may be overloaded while others may be idle, affecting the performance in Hadoop
MapReduce. This phenomenon is called Partitioning Skew.

Partitioning skew may occur naturally in many MapReduce applications. Bron-Kerbosch
Clique [3], for example, is an algorithm for finding maximal Cliques in a undirected graph. It can
exhibit skew when a large Clique is being investigated. Another example is the Inverted Index, a data
structure used for Web search that takes a list of documents as input and generates an inverted index for
these documents. This structure can exhibit skew if a certain content appear in many more documents
than others. A simple WordCount application can also produce this similar skew phenomena if a word
appear many times within a text. Hence, guaranteeing a fair load balancing in the reduce phase of
Hadoop MapReduce framework, considering data skew, is a valuable issue to be addressed.

In recent years, many studies have focused on the partitioning skew problem in MapReduce.
Most of them [4–8] acts at the intermediate data distribution and try to rebalance the key distribution
among reduce tasks. However, in order to obtain the statistics related to the generated intermediate
data, these solutions either wait for all the mappers to finish [4,5,8] or add a sampling phase
prior to the actual job start [6,7]. Thus, they lead to network overhead and I/O excessive costs.
Skewtune [9], a run-time skew mitigation technique, reallocates data that require more computational
power to machines with more resources. Although this strategy improves performance of large data,
it imposes high overhead, mainly on small amounts of data [9]. Recently, some approaches [2,10–12]
have been proposed by using prediction techniques to find the partition size even before the completion
of the map tasks. These solutions dynamically allocate resources for reduce tasks according to their
estimated value. Some of them adopt a linear regression-based prediction [2,12] and can achieve good
accuracy only with the completion of a few mappers. However, predictions are inaccurate due to the
data imbalance in the map phase. If the skew data occur only in the end of the map phase, or much
later in the training model, the accuracy model will be affected, limiting their applicability.

Different from the previous work, we adopt metaheuristics to address the problem of how to
efficiently partition the intermediate keys in the reduce phase of MapReduce framework, considering
data skew. Our strategy aims to minimize an imbalance function that measures the load allocated
to each machine by using three different metaheuristics: Simulated Annealing, Local Beam Search
and Stochastic Beam Search. With metaheuristics, it is possible to guarantee fair distribution of the
reducers’ inputs without prior knowledge about the data behavior and without explore the entire
solution space. Thus, our strategy, called MAPSKEW, finds solutions close to the global optimum
while having relatively small complexity. Additionally, it allows the user to set the tradeoff between
performance and quality, based on metaheuristic parameters.

The main contributions of the paper are summarized below:

1. A novel approach to balance the workload among the reduce tasks, since the partitioning
problem is NP-hard and our proposal finds, in polynomial time, good partitionings online,
i.e., without needing to stop the execution of any phase of MapReduce.
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2. A new partitioning method for general user-defined MapReduce programs. The method is
highly adaptative since it uses metaheuristics, allowing the system manager to choose between
performance and quality of the solution by adjusting hyperparameters.

3. An implementation of the proposed method in Hadoop 2.7.2 Yarn. Additionally, we have
conducted several experiments with a real dataset, comparing the effects of different
metaheuristics with related work and the native partitioning function of the Hadoop MapReduce
on the Partitioning Skew.

2. Materials and Methods

2.1. MapReduce

MapReduce is a framework introduced by Google for distributed and parallel computing on
cloud environments. It was designed to handle large data volumes and huge clusters and to simplify
synchronization, fault-tolerance, and scalability details from the application developer. MapReduce
can significantly reduce the processing time of a large amount of data by dividing these data into
smaller parts and processing them in parallel by multiple machines as shown in Figure 1. It consists of
two important phases, namely Map and Reduce. In the Map phase, input data is processed according
to some user defined map function. After that, the framework generates a sequence of intermediate
< key, value > pairs and a partitioning function is used to divide the data into multiple partitions,
according to their keys, and allocate them across reduce tasks. This process is called Shuffle. By default,
the partition function adopted is hash(key) mod R, where R is the number of reduce tasks.

Figure 1. MapReduce architecture.

Implementations of MapReduce framework have been written in different programming
languages [13–15]. Apache Hadoop is the most popular open source implementation of MapReduce.

2.2. Partitioning Skew

Currently, in MapReduce implementations, data are allocated to the reduce nodes according to
the following Hash function:

Hash(HashCode) = HashCode mod number_o f _reducers

where HashCode is an integer associated with the key of an intermediary pair and number_o f _reducers
is the number of reduce nodes.

Usually, the Hash function allocates tasks so that the partitions get balanced. When the size of the
key-value pairs is not uniformly distributed, the allocation of tasks becomes unbalanced. This type of
situation characterizes partitioning skew, in which some reduce nodes receive high loads, increasing
the time of response of assigned tasks, and others receive low loads, being idle because they have
more resources allocated than necessary. Many authors studied the partitioning skew in mapreduce
applications [16–19].
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2.2.1. Skewed Key Frequencies

For several applications, some keys occur more frequently in the intermediate data. For example,
in word count application some words appear more frequently than others, such as definite articles.
In this type of application, the default Hadoop partitioning function will allocate tasks overloading the
reduce nodes that receive most keys.

We present the size of ten different partitions measured by the sum of the size of each key of
each partition in Figure 2, this illustrates the partitioning skew generated by skewed key frequencies.
As shown, partitions 3 and 9 either receive more keys or bigger keys than the remaining 8 partitions
and, assuming a linear execution time, partition 10 would finish before the larger partitions reach their
first half.

Figure 2. Skewed key frequencies example.

2.2.2. Skewed Key Sizes

In applications where value sizes in key-value pairs vary significantly, the distribution of the tasks
to reduce nodes may become unbalanced. Thus, although the number of different values for each key
is approximately the same, the execution time may vary between one key and another, resulting in
some idle nodes while others are overloaded.

In Figure 3, we present the biggest key from each partition shown in the previous figure as well
as the following second and third biggest key from partition nine represented by the last two words,
their size is measured by how many times they appear. Although the biggest key from the ninth
partition is not as big as the key from the third, it alone is the greater than the sum of the smaller ones.
Along with an already large key, other two equally large ones contribute to unbalance the partitions.
If those larger keys where to be separated it would greatly benefit the load distribution.
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Figure 3. Skewed key size example.

2.2.3. Skewed Execution Times

Some tasks may require more computing power than others. An example where this can occur is
in the page classification algorithm that classifies a page according to the links to other pages, which we
call neighboring pages. The greater the number of neighbors pointing to the same page, the longer it
will take to process it.

Figure 4 shows two simple example of a page rank execution where page 6 is reached by the same
pages. In the first example, page 1 must pass through all other pages to reach page 6 meaning their
distance is five. In the second example, all pages are directly linked to page 6 meaning their distance is
one. In the end, example one is computationally heavier than example 2 since it need to check all links
from each page to find the path that links page 1 to page 6.

Figure 4. Skewed execution times example.

2.3. Metaheuristics

Our main problem is to balance the load of the partitions to the reduce phase in search of
an optimal configuration. A general solution for an optimization problem consists in exploring
a (sub)set of solutions in order to find among them one that approximates the global optimum.
Sometimes, like in the partitioning problem, the solution search space is very large and finding the
global optimum by verifying every candidate solution takes an impracticable amount of time. In this
context, metaheuristics may be used to find a good solution in a polynomial amount of time by
searching a sample of the solution set.

In a metaheuristic, we look for a solution from small variations of a candidate solution, which can
be generated in a random way. This variation is compared with the candidate solution for evaluation
according to some criterion of acceptance. The best evaluated solution is maintained and the process is
repeated until a stopping criterion is satisfied.
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2.3.1. Simulated Annealing

In metallurgy, annealing is a process for hardening metals or glass by heating and cooling them
gradually, allowing the material to reach a low-energy crystalline state [20]. Simulated Annealing (SA)
can be seen as the process of making a ping-pong ball reach the bottom of an irregular surface. If we
just let the ball roll, it can get stuck at a point other than the bottom, because the surface is uneven.
In order to the ball to leave the current point and continue rolling, it is necessary for someone to shake
the surface.

In our problem, we want to attenuate the imbalance of the intermediate data allocated to the
reducers. The solution based on SA is done as follows. An initial temperature and a cooling factor
are defined. According to the intermediate data given as input, a key partitioning is created using the
standard Hadoop partitioning function. We call this partitioning current partitioning. From this,
we compare the current with a randomly generated neighbor partitioning. If the neighboring
partitioning better balances the intermediate data allocated to each reducer, it becomes the current
partitioning. Otherwise, the neighboring partitioning will become the current partitioning with a
probability less than 1. This probability decreases proportionally to the current temperature. Finally,
the current temperature is updated according to the cooling factor. This process is repeated until the
temperature reaches 0. To facilitate understanding, we will show the pseudocode of this procedure.

In the Algorithm 1, we aim to reduce the imbalance, which is the load of the reducer with the
highest volume of data allocated. That is, in order to balance the load, we must partition the keys
between the reducers so that the allocated load of the machine with the highest allocation is minimal.

Our implementation consists of integrating Simulated Annealing to Hadoop, using it as the
partitioning function. The partitioning phase works as follows: as the dataset is processed and the
intermediate data is generated, Hadoop accumulates a portion of that data and the SA algorithm is
executed to find an allocation that minimizes the unbalance of the reducers. This process will repeat
itself until the end of the map phase.

Algorithm 1 Simulated Annealing

1: procedure PARTITIONER(D,T,C,R)
2: current← partitioning of the keys of D using Hash(HashCode(D) mod |R|).
3: t← T
4: c← C
5: while T 6= 0 do
6: neighbor ← generateNeighbor(current)
7: b1 ← unbalance(current)
8: b2 ← unbalance(neighbor)
9: if b2 < b1 then

10: current← neighbor
11: else if random(0, 1) < e

b1−b2
t then

12: current← neighbor
13: t = t− c
14: return current

2.3.2. Local Beam Search

While in Simulated Annealing only one partitioning candidate is maintained, Local Beam Search
(LBS) maintains k partitions, using more computing resources while covering a larger number of
candidate solutions.

Intuitively, LBS acts as a group search, which group members divide through space in order to
find an object. When one of the members suspects that he is close to the object, he calls the others
to search in his area. Formally, the algorithm starts by generating a key partitioning is created using
the standard Hadoop partitioning function, according to the intermediate data provided as input.
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Then, the algorithm generates 2 ∗ k random neighbors of the initial partitioning and selects among
those the k partitions that present less imbalance. The partitions selected in the previous step will
be called current partitions. From this, the algorithm will generate a random neighbor for each of the
current partitions and will select k partitions that present less imbalance among current and generated
partitions. The current partitions will be updated as the k partitions selected in the previous step.
This process is repeated until a maximum number of iterations is reached. Then, the most balanced
partitioning will be chosen. The pseudocode of this procedure is presented in Algorithm 2.

Algorithm 2 Local Beam Search

1: procedure PARTITIONER(k,D,I ,R)
2: init← partitioning of the keys of D using Hash(HashCode(D) mod |R|).
3: temp← createArray()
4: current← createArray()
5: for q← 1 to 2 ∗ k do
6: temp.add(generateNeighbor(init))
7: current← selectBest(k, temp)
8: i← I
9: while i 6= 0 do

10: temp← createArray()
11: temp← current
12: for q← 1 to k do
13: temp.add(generateNeighbor(current[q]))
14: current← selectBest(k, temp)
15: i = i− 1
16: return selectBest(1, current)

2.3.3. Stochastic Beam Search

In some situations, Local Beam Search can focus the search on a particular region of the solution
space and get stuck in a local optima. A variation of Local Beam Search is Stochastic Beam Search,
which reduces the possibility of occurring this kind of problem. Instead of choosing the k best
partitions in terms of intermediate data balancing, Stochastic Beam Search chooses k partitions at
random, with the most balanced partitions having most chances of being chosen. The pseudocode is
presented in Algorithm 3.

Algorithm 3 Stochastic Beam Search

1: procedure PARTITIONER(k,D,I ,R)
2: init← partitioning of the keys of D using Hash(HashCode(D) mod |R|).
3: temp← createArray()
4: current← createArray()
5: for q← 1 to 2 ∗ k do
6: temp.add(generateNeighbor(init))
7: current← selectRandom(k, temp)
8: i← I
9: while i 6= 0 do

10: temp← createArray()
11: temp← current
12: for q← 1 to k do
13: temp.add(generateNeighbor(current[q]))
14: current← selectRandom(k, temp)
15: i = i− 1
16: return selectBest(1, current)
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2.4. Bron-Kerbosch Clique

The Bron-Kerbosch Clique [3] is a problem where, given an initial graph, the algorithm returns
the biggest sub-graphs where all nodes are connected with one another. As an example of Figure 5,
nodes 1, 2 and 3 form a Clique, as well as nodes 1, 3 and 6, nodes 4, 5 and 6, and nodes 3, 4 and 5.
Furthermore, the nodes 3, 4, 5 and 6 form a bigger Clique. We choose Clique due to its NP-completeness,
which means that worst results are expected in skewed scenarios. The more complex the reduction
function is, the more important it is to avoid placing large keys on the same partition.

Figure 5. Example of a graph with 3 Cliques.

2.5. Problem Definition

As previously discussed in Section 2.1, MapReduce is a parallel computational model composed
of a set of machines to process large amounts of data by its division between the machines. However,
the division of the data may entail an unbalanced partitioning, also known as the partitioning skew.
This problem has many several causes. Among them, we highlight the skewed key frequencies,
the kewed key sizes and the skewed execution times. Except for the skew caused by the processing
time of each key, which depends on the complexity of the reduce function, the data skew problem
in MapReduce architectures can be addressed through of the data balancing between the cluster
machines. The following definition will present the problem of finding an optimal partitioning as an
optimization problem.

Definition 1. Optimal partitioning of a dataset
Let:

• C A cluster of machines.
• D A dataset.
• t =< k, v > a pair consisting of a key k and a value v obtained from D.
• pi = {t1 =< k1, v1 >, t2 =< k2, v2 >, . . . , tm =< km, vm >} a partition consisting of a set of pairs t.
• P = {p1, p2, . . . , pn} a partitioning of D where n is the number of partitions.
• T(pi) = {|pi|} a function that returns the size of a partition. The size of the partition is equal to its

cardinality.
• F(P) = {max{T(pa)− T(pb)} | pa, pb ∈ P} a function that returns the unbalance of a partitioning P.

The unbalance of P is defined as the biggest difference of the sizes of a pair of partitions in P.
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• R = {P1, P2, . . . Pw} the set of possible partitionings of D in n partitions.

Popt is the optimal partitioning of D if and only if F(Popt) ≤ F(Py), ∀Py ∈ R, i.e., Popt is the partitioning with
the smallest unbalance among all partitionings of R.

As we have a definition of an optimal partitioning of a dataset, we can find it by searching the one
with the smallest unbalance among the set of all possible partitionings. Although this method ensures
the optimal partitioning, it is computationally expensive, since the number of partitionings of a dataset
is exponential regarding its cardinality. Another method for finding the optimal partitioning is to use a
greedy algorithm to find the smallest partition p′ ∈ P, such that T(p′) ≤ T(p), ∀p ∈ P, in the moment
that every element of the dataset arrives at the system. However, this method may fail to achieve good
results depending on the order that the data is allocated to the partitions.

Before presenting the method proposed in this work, we will show the definition of
neighboring partitions.

Definition 2. Neighboring Partitions.
Let Pi, Pj two partitions. Pi and Pj are neighboring partitions if and only if they differ by the allocation of only
one key or the exchange of the allocation of two keys, i.e., they are identical except for a key k such that k ∈ pa in
Pi and k ∈ pb in Pj or they are identical except for the keys k1, k2 such that k1 ∈ pa, k2 ∈ pb in Pi and k1 ∈ pb,
k2 ∈ pa in Pj.

Please note that a possible solution for finding the optimal partitioning lays in creating a random
partitioning P and verifying if one of its neighboring partitionings P′ has a better balancing than P and
repeat this process using P′ as the initial partitioning. This process may be repeated a finite number
of iterations in order to find a good partitioning. This strategy is similar to the execution of the Hill
Climbing metaheuristic. Although this process may return good partitionings, it may return local
optima results depending on the initial partitioning.

Our strategy, named MAPSkew, is a metaheuristic-based approach for online load balancing in
MapReduce environments with skewed data. MAPSkew works in the shuffle phase, accumulating a
percentage of the input data processed by the map phase and executing a metaheuristic for finding
a partitioning over this accumulated data searching for minimizing the unbalancing defined in
Definition 1. This process is repeated respecting the key already allocated until all the input data is
processed. The Figure 6 shows the architecture of MAPSkew.

Figure 6. MAPSKEW architecture.

Our changes in Hadoop core consist of the addition of data structures to hold the additional
information required by the metaheuristics as well as their code. The parameters passing is made by
an extra archive read by the system when a job is launched. Our compiled version of hadoop can be
found through the Dropbox service [21].

2.6. Tests Setup and Comparisons

Our experiments have been performed on one master and nine worker processing nodes, each one
with 16 GB of RAM, 16 virtualized CPUs, and 160 GB of permanent storage. All virtual machines
are running in an OpenStack cloud environment hosted at the LSBD/UFC. We have executed a
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Bron-Kerbosch Clique application over a modified version of Facebook egonets dataset [22] made up
of a series of nodes and edges, forming a graph of integers. To force data skew, we have selected a set
of random nodes whose hash key value are sent to a predetermined partition. We have decided to
build an artificial skewed dataset because the original data set is originally balanced, which would
remove the need for a new partitioning process. The number of nodes in our skewed dataset is 1000.
Combined with the complexity of the Bron-Kerbosch algorithm, this is enough to create a sufficiently
complex scenario for our experiments.

For the performance evaluation, we varied the hyper-parameters of the metaheuristics by
changing the number of iterations (1000, 3000 and 5000 iterations) and the number of simultaneous
candidate solutions (1, 5, 9 simultaneous candidates). Please note that the last hyperparameter
is not used in the Simulated Annealing. Furthermore, our method uses an extra parameter that
defines the amount of data that is accumulated at every execution of the selected metaheuristic.
In percentages of the input data, such a parameter may assume the following values: 5%, 10%, 20%
and 30%. The total number of experiments, taking into consideration the three metaheuristics and
their respective hyperparameters, is 85. Each experiment was repeated 5 times in order to remove
outliers and other random factors that may interfere with the execution.

3. Results and Discussion

3.1. Balancing

As shown in Table 1, the metaheuristics reduced the skew by up to 96.5428%. Local and Stochastic
Beam Search Achieved great results with threshold percentage being a major factor while K and
temperature being not so relevant at a first sight. To improve our investigation about the most relevant
attribute, in Figure 7 we set the number of iterations to 1000 and analyze the threshold and number of
candidates per iterations. Every time the threshold reach 20% the difference between partitions suffers
a huge drop, especially when only one candidate is selected per iteration.

Table 1. The ten best balancing results compared with the base hash approach.

Method Threshold Iterations K Difference between Partitions

Base Hash none none none 1938
local beam search 20 3000 5 67
local beam search 20 5000 1 67

stochastic beam search 20 3000 1 68
local beam search 20 1000 9 69
local beam search 30 1000 9 69
local beam search 20 5000 9 69
local beam search 20 1000 5 69

stochastic beam search 30 5000 1 69
stochastic beam search 20 3000 9 69
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Figure 7. Comparison of local beam search between threshold and number of candidates per iteration
fixing the number of iterations in 1000.

In terms of balancing, Simulated Annealing achieved the worst results among the three
metaheuristics, as shown in Table 2. The configuration with the best result, representing about
79% decrease in partitions size, is slightly worse than the worst result of Stochastic Beam Search.
However, the worst result of the metaheuristics is still better than the base hash partitioning method,
meaning that even the slightly change may help reduce the existent skew. It is important to notice that
the Simulated Annealing configurations with a threshold of 20% or 30% achieved better results than
the ones with a threshold of 5% or 10%.

Table 2. Simulated Annealing compared to Base Hash and the worst Stochastic and Local Beam Search.

Method Threshold Iterations K Difference between Partitions

Stochastic Beam Search 5 1000 1 397
Simulated Annealing 30 5000 none 401
Simulated Annealing 30 1000 none 415
Simulated Annealing 20 1000 none 430
Simulated Annealing 20 5000 none 431
Simulated Annealing 30 3000 none 431
Simulated Annealing 20 3000 none 448

Local Beam Search 5 3000 1 513
Local Beam Search 10 5000 1 568
Local Beam Search 10 1000 1 570
Local Beam Search 5 1000 1 634
Local Beam Search 5 5000 1 688

Simulated Annealing 10 3000 none 917
Simulated Annealing 5 1000 none 1339
Simulated Annealing 5 5000 none 1340
Simulated Annealing 10 1000 none 1432
Simulated Annealing 5 3000 none 1648
Simulated Annealing 10 5000 none 1668

Base Hash none none none 1938

It is clear that, in terms of skewness reduction, the size of the threshold is more important than the
number of iterations or the number of candidates per iteration (K). Furthermore, it would be possible
to test with even less iterations to reduce the overhead in this particular scenario, although it does not
seem to be necessary. It would also be interesting to try other threshold values between 10% and 20%
to see how those would fare in the table.
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Local Beam Search performs better than Stochastic Beam Search when tested with a sufficient
large threshold percentage and enough number of iterations. Contrariwise, Local Beam Search seems
to perform worse than Stochastic Beam Search when tested with small Threshold percentage and
small K. This can conclude that: with a sufficient number of iterations and a sufficient number of
accumulated keys, Local Beam Search is not impaired by a small number of candidates per iteration.
However, when we reduce the number of accumulated keys in our threshold, the number of candidates
per iteration becomes more important than the number of iterations, since it represents the number of
possible paths within each step.

The same observations of Local Beam Search are valid to Stochastic Beam Search. In addition to
what has been already pointed out, Stochastic Beam Search seems to perform a little more consistently
than Local Beam Search, presenting itself as a more reliable alternative when focusing in partitioning.
Simulated Annealing, however, has not been performed well in this experiments. This behavior may
have been caused by the fact that it always select only one path per iteration. This, in case of a bad
choice, it will keep that bad choice, without much alternatives to work around.

3.2. Time

Table 3 shows the ten best and the ten worst execution times across configurations. Firstly, it can be
noticed that even in the worst case, metaheuristic configurations are fast than the base hash. However,
we may not conclude what attribute(s) mostly contributes to the improvement in execution time, since
all ranges of metaheuristics and hyperparameters can be found among the best and the worst results.
We think this can be explained by the NP-completeness of Bron-Kerbosch Clique, so that the keys do
not follow a rule to determine the time spent with each clique search. Furthermore, the improvement
in execution time seems to be caused more by the separation of large keys than by the balancing itself.

Table 3. The ten best and ten worst time results.

Method Threshold Iterations K Time Difference between Partitions

Local Beam Search 10 1000 9 0:07:20 87
Simulated Annealing 10 3000 none 0:07:22 917

Stochastic Beam Search 20 1000 1 0:07:26 72
Stochastic Beam Search 10 1000 9 0:07:26 84

Local Beam Search 10 5000 1 0:07:28 568
Local Beam Search 20 1000 9 0:07:30 69
Local Beam Search 20 3000 9 0:07:30 70

Stochastic Beam Search 5 5000 1 0:07:30 185
Stochastic Beam Search 30 5000 9 0:07:31 78

Local Beam Search 10 3000 1 0:07:31 354
...

...
...

...
...

...
Stochastic Beam Search 20 5000 5 0:08:43 86
Stochastic Beam Search 5 1000 5 0:08:48 385

Local Beam Search 5 5000 9 0:08:50 361
Local Beam Search 5 1000 1 0:08:53 634
Local Beam Search 30 3000 1 0:08:54 69

Stochastic Beam Search 30 5000 5 0:09:00 72
Local Beam Search 5 5000 1 0:09:02 688

Stochastic Beam Search 30 3000 5 0:09:04 173
Simulated Annealing 5 5000 none 0:09:13 1340

Base Hash none none none 0:09:13 1938

As an extension to the metaheuristics, it would be possible to assign another weight calculation to
the keys as a way to give more importance to larger keys and decrease the chances of two large keys
being allocated on the same partition. Since these keys are responsible for most of time spent during
processing, it is crucial to handle them with special care during partitioning.
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4. Conclusions

In this paper, we have presented a solution to mitigate the skew problem originated in the reduce
phase of MapReduce computations, by better distributing the keys to the partitions and improving the
time by separating large keys. As long as the partitioning keep being left as secondary, skewed data
will keep being a problem in terms of optimization and load management. The research works reported
in the literature often address this problem with a previous knowledge about the key distribution,
gathered in past executions. Another approach is to reallocate the load during the reduction phase.
Our approach works during the map phase together with the system, in order to allocate the data in
the best possible way. Although an optimal allocation is preferred, our approach attempts to deliver a
good distribution without being necessary to wait for all keys to be processed before the partitioning.

As discussed in Section 3, the experimental evaluation has shown that the accumulated threshold
percentage is the leading factor for a good balancing. Moreover, the number of candidates per iteration
is only relevant when the threshold is small, and the number of iterations is highly dependant of
the total size of the problem. Furthermore, there are still numerous configurations, as well as other
algorithms, which we can use to analyze the impact of skew and skew reduction. We have noticed that
the more complex the function, the better it is to test our solution.

To reach an optimal number of iterations, we are planning a model based on percentage instead
of setting a fixed number. Such a dynamic approach would avoid unnecessary iterations, which would
increase the overhead caused by partitioning. Also, for further works, we discussed the idea of a weight
system mentioned in Section 3.2. We plan to keep refining our solution until we are satisfied with
how it can interact with the system. Finally, other further works include automatizing the selection of
parameters and a possible data pre-partitioning to accelerate the shuffle phase.
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