
algorithms

Article

A Novel Hybrid Ant Colony Optimization for a
Multicast Routing Problem

Xiaoxia Zhang *, Xin Shen and Ziqiao Yu

College of Software Engineering, University of Science and Technology LiaoNing, Anshan 114051, China;
yxy@ustl.edu.cn (X.S.); orfilaperpetual@gmail.com (Z.Y.)
* Correspondence: zhangxiaoxia@ustl.edu.cn; Tel.: +86-188-4121-9708

Received: 8 December 2018; Accepted: 2 January 2019; Published: 10 January 2019
����������
�������

Abstract: Quality of service multicast routing is an important research topic in networks. Research has
sought to obtain a multicast routing tree at the lowest cost that satisfies bandwidth, delay and delay
jitter constraints. Due to its non-deterministic polynomial complete problem, many meta-heuristic
algorithms have been adopted to solve this kind of problem. The paper presents a new hybrid
algorithm, namely ACO&CM, to solve the problem. The primary innovative point is to combine
the solution generation process of ant colony optimization (ACO) algorithm with the Cloud model
(CM). Moreover, within the framework structure of the ACO, we embed the cloud model in the ACO
algorithm to enhance the performance of the ACO algorithm by adjusting the pheromone trail on
the edges. Although a high pheromone trail intensity on some edges may trap into local optimum,
the pheromone updating strategy based on the CM is used to search for high-quality areas. In order
to avoid the possibility of loop formation, we devise a memory detection search (MDS) strategy,
and integrate it into the path construction process. Finally, computational results demonstrate that the
hybrid algorithm has advantages of an efficient and excellent performance for the solution quality.

Keywords: ant colony optimization; multicast routing; memory detection search; cloud model

1. Introduction

At present, with the quick development of networking applications, and the exponentially
growing requirement for high speed data transmission in communication networks,
realizing network-routing in the field of network and distributed systems has gradually become an
important research topic. The implementation of network-routing can usually be divided into three
modes: unicast mode, broadcast, and multicast mode. Implementation of the unicast mode sends
the information data from a data source node to a demanding destination. The demand occurs if
the source is asked privately by the end-user. This is the most common, one-to-one transmission
of unicast on the Internet. On the other hand, implementations of broadcast and multicast refer to
the transmission of the information data from a single source node to many destinations. Broadcast
implementation sends the same information data to the other destinations in a network, whereas a
multicast system transmits the same information data to a given set of destinations, that is, not all
destinations. Therefore, a unicast system might be too expensive in scenarios when massive end-user
destinations exist in the network since each end-user node demands a separate path and a source
node, whereas broadcast and multicast modes should be more economical to meet demand. The goal
of the multicast routing problem is to seek a tree spanning a source node and destinations.

In daily life, the current communication network offers perfect information transmission and
some real-time multimedia communication applications for satisfying their quality of service (QoS)
requirements. The rapid progress of computer communication and multimedia network technology
has made network multimedia applications such as online games, video conferencing, and distance

Algorithms 2019, 12, 18; doi:10.3390/a12010018 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/12/1/18?type=check_update&version=1
http://dx.doi.org/10.3390/a12010018
http://www.mdpi.com/journal/algorithms


Algorithms 2019, 12, 18 2 of 16

learning into common Internet activities. The key issues of these multimedia applications need to
develop efficient and fast multicast routing algorithms. Under severe QoS constraints, multicasting
technology provides convenience for these services, and simultaneously makes full use of resource
utilization [1,2]. Providing a high demand of better QoS is essential for many real-time applications.
The guaranteed QoS in various network applications usually considers constraints such as bandwidth
constraints, delay and delay jitter constraints in order to ensure smooth transmission to destinations.
The establishment of the efficient QoS multicast routing problem has increasingly become one of the
most critical technologies for ensuring QoS in modern integrated networks. The main objective function
is to establish the optimal multicast routing tree covering the source and the multiple destinations
while satisfying all QoS requirements.

The cost of a QoS multicast tree is equal to the cost sum of all the edges in this tree. A Steiner tree
is needed to seek such a tree QoS multicast tree in the network. It is proved that an NP Complete can
build a feasible Steiner tree [3] belongs to a NP Complete. A Steiner tree that considers QoS constraints
is defined as a constrained Steiner tree. Therefore, it is also an NP complete problem [4] to construct a
constrained Steiner tree. Many researchers have been interested in using different methods to solve
the QoS multicast routing problem [5]. Generally, there are exact methods and heuristic algorithms to
solve this problem. Although important advances have been made in the development of exact and
heuristic algorithms for solving the QoS multicast tree, the exact methods to solve the multicast routing
problem are a dynamic programming algorithm by Chow [6] and a branch-and-bound algorithm [7].
These two algorithms are the more practically exact methods to solve the multicast routing problem.

However, exact algorithms are still unable to solve large scale problems because of the high
computational complexity, so in practice, researchers have to pay more attention to heuristic algorithms
in the search for a near optimal solution. Heuristic algorithms such as meta-heuristic algorithms are
actually the best choice to address the multi-constrained routing problem. They are characterized
by simplicity, flexibility, and significant effectiveness. Since meta-heuristics are generally easy to
implement, many researchers often adopt them to solve many complex combinatorial optimization
problems. Many researchers have concentrated on adopting meta-heuristic algorithms [8] such as
simulated annealing (SA) [9], genetic algorithms (GA) [10,11], bee colony algorithm [12], Cuckoo Search
algorithm [13] and particle swarm optimization (PSO) [14] for solving the constrained routing problem.

The ant colony algorithm (ACO) is widely used among these meta-heuristic algorithms. Dorigo,
Maniezzo and Colorni [15] proposed the first ACO algorithm, and they successfully applied it to
solve the traveling salesman problem by finding the shortest path capabilities of ants. The ACO
algorithm simulates the foraging behavior of ants in nature. The ants should be able to find the
shortest possible route from a given food source to their nest. At the same time, these ants can adapt to
changes of the surrounding environment. When they encounter new obstructions on the old shortest
route path, the ants can seek the next shortest route path. This is the primary reason information
is transferred among ants through pheromone trail. It is remarkable to notice that some ants by
choosing the shorter route path can more quickly reconstruct the pheromone trail than those selecting
the longer one. Thus, there are a greater deal of pheromone trails on the shorter paths, which can
attract more ants to choose. Therefore, the Ant’s foraging behavior indicates the positive feedback
pheromones. The more the ants choose a specific path, the more likely that other ants choose this
path later. Because of the complexity of the multicast routing problem, the basic algorithms can’t
meet more requirements. Some researchers have adopted different strategies to enhance basic ACO
algorithm performance. Tseng et al. [16] present an ACO algorithm for solving the delay-constrained
broadcasting problem, and they verify the efficiency of the algorithm by a series of experiments. Wang
et al. [17] also present an ACO algorithm with consideration of the orientation factor to solve the
multicast routing delay problem. Compared with the basic ACO, the solution quality and convergence
rate of the improved algorithm are all enhanced. Wang et al. [18] proposed an adaptive multi-QoS
routing algorithm combining ant quantity system with ACO and improving the ACO algorithm based
on a routing strategy by concentrating on a dynamic topology network graph and concave metric QoS



Algorithms 2019, 12, 18 3 of 16

constraint to avoid networks congestion. Wei et al. [19] adopt a hybrid updating strategy based on
iteration and global optimal solutions to improve the performance of ACO algorithm. Wang and Xie
(2000) [20] presented an algorithm that paid attention to the applications of the basic ACO algorithm
to solve the multicast routing problem under the delay constraint. A routing table which records
routings from a source node to destination nodes is built for every pair of source-destination nodes.
Each ant chooses a route for one destination node. Then combine all the destination node routes and
remove the overlapped edges. A tree connecting all the source and destination nodes should be built,
and this tree satisfies the delay constraint simultaneously. The pheromone trail intensity on edges of
the multicast tree is updated. Yin et al. [21] presented a niched ACO algorithm for solving the QoS
multicast routing problem with respect to the delay and bandwidth requirements. The niched ACO
algorithm first constructs a QoS constrained tree, which guarantees feasible searches with consideration
of QoS requirements. The computational results show that the niched ACO algorithm outperforms the
genetic algorithm on the cost. However, the algorithm only takes into account delay-and-bandwidth
constraints, without considering delay jitter constraint, packet loss rate constraints, etc. Chen et al. [22]
present a difference-elite ant colony algorithm, which can optimize the parameters of ACO algorithm
by differential evolution algorithm so as to increase the convergence speed of the ACO algorithm.
Simulation results show that the new algorithm gains minimal entropy.

Although different versions of improved ACO for the multicast routing problems have been
proposed in the literature described as above, these improved algorithms mainly include three aspects.
First, path selection is a main part of ant colony algorithm, so many researchers focus on designing
transition rules for ants. The effects of various transition rules on ACO algorithm were investigated
in [16,17,19]. Second, the pheromone updating strategy is a deterministic factor in the performance
of the ACO algorithm, as shown in references [18,20]. The pheromone updating problem is how the
ants update the pheromone intensity of their path. Third, the development of the ACO algorithm has
led to considerable progress, but also has its strengths and weaknesses. Therefore, much research has
tried to enhance the performance of hybrid algorithms [22] and new meta-heuristics, such as a bee
colony algorithm [12] known as the Cuckoo Search algorithm [13]. The main weaknesses of the ACO
algorithm are the slow convergence speed at the beginning of the step, and that it spends a long time
on converging. While considering applying the ACO algorithm for solving the QoS multicast routing
problem, the common characteristic of these algorithms is to seek the shorter paths between a source
node and every destination. Then these paths are merged into a tree, and the pheromone trails on the
edges of the optimal tree are updated. To improve the performance of the ACO algorithm, we present
a hybrid ACO algorithm to solve the QoS multicast problem.

In this study, we seek to enhance the performance of the ACO algorithm by using the cloud
model (CM) [23]. Since high pheromone trail on some edges may lead to fast convergence and fall into
local optimum, we have designed the pheromone trail updating strategy based on the CM to avoid
overuse of some nodes. In this paper, the main features are different from the previous ACO-based
multicast routing methods described above in the following ways. First, the primary innovative point
is to combine the solution generation process of the ACO algorithm with the CM, which results in a
novel hybrid algorithm, namely, ACO&CM. Within the framework structure of the ACO, we embed a
cloud model in the ACO algorithm to enhance the performance of the ACO algorithm by adjusting a
pheromone trail on the edges. Second, although high pheromone trail intensity on some edges may
trap into local optimum, the pheromone updating strategy based on the CM is used to search for
high-quality areas. To avoid the generation of loops hindering a feasible multicast path construction,
we adopt a memory detection search (MDS) strategy that uses two kinds of data memory structures,
that is, the current list (CL) and the path list (PL). The CL records nodes which the current path routing
reaches to avoid forming the self-loop, whereas the PL stores all the finished routing paths to avoid the
generation of the inter-loop. Finally, computational results show that the proposed algorithm has the
advantages of efficient and excellent of performance for the quality of the solution.



Algorithms 2019, 12, 18 4 of 16

The paper is organized as follows. At first, the QoS problem description is given in Section 2.
In Section 3, first, ACO algorithm is presented, and then the cloud model is introduced briefly. Section 4
introduces details of the proposed hybrid algorithm. Then, the results of numerical experiments are
shown in Section 5. Finally, the Section 6 describes the conclusion remarks.

2. Problem Description

In general, a communication network may be defined as a graph G, G = (V,E), in which V
represents a set of transmission nodes, V = {v1, v2, . . . , vn}, and E is the set of all edges, E = {(i,j)|vi,vj∈V}
denoting physical link of these nodes. We define n = |V| as the network node number, and l = |E|
as the network edge number. Each edge is bidirectional, i.e., the edge e = (u, v) between node u∈V
and node v∈V represents existence of another edge e′ = (v, u) between node v and node u. For each
edge e∈E, let us make some definitions about some metrics: transmission cost C(e): E→R+, edge
delay D(e): E→R+, bandwidth B(e): E→R+, transmission delay jitter J(e): E→R+, packet loss rate PL(e):
E→R+, in which R+ denotes a set of non-negative real numbers. Let D(e) be the transmission delay
on link e, and B(e) denote the bandwidth functions of edge e. Packet loss PL(e) represents the loss
rate of a receiving termination on edge e. Delay jitter J(e) denotes the delay change in different time
intervals between the packets arriving. The cost C(e) represents the cost of transmitting a packet
on edge e, and it may take a measurement to make full use of resource optimization. For multicast
network communications, information messages should be delivered starting from a source node to
every destination node. Let a node s∈V be a transmission source node. A subset M⊆V-{s} represents
destination nodes. Given m = |M| is the destination node number. Let the set M be a destination set,
{s}∪M be a multicast group, and T(s, M) denote a QOS multicast tree. The multicast tree represents
a subgraph of weighted graph G spanning the nodes in {s}∪M. T(s, M) may exist Steiner nodes.
The Steiner nodes belong to a multicast tree, but these nodes do not in {s}∪M. pT(s, d) represents a
route path in a tree T between a node s and a destination d∈M, one of destination nodes.

As an example, consider the graph of Figure 1. The network graph has 9 nodes with node 0
shaded in the Figure 1a being the transmission source node, and M = {d1, d2, d3} being the destination
node set. The destination nodes are marked with yellow shadows. A tree T(s, M) with solid lines is
the minimum spanning tree of sub-graph induced by {0, 2, 4, 5, d1, d2, d3}. The multicast tree includes
three steiner nodes number 2, 4, and 5, see Figure 1b.

Algorithms 2019, 12, x 4 of 16 

computational results show that the proposed algorithm has the advantages of efficient and 
excellent of performance for the quality of the solution. 

The paper is organized as follows. At first, the QoS problem description is given in Section 2. In 
Section 3, first, ACO algorithm is presented, and then the cloud model is introduced briefly. Section 
4 introduces details of the proposed hybrid algorithm. Then, the results of numerical experiments 
are shown in Section 5. Finally, the Section 6 describes the conclusion remarks. 

2. Problem Description 

In general, a communication network may be defined as a graph G, G = (V,E), in which V 
represents a set of transmission nodes, V = {v1, v2, …, vn}, and E is the set of all edges, E = 
{(i,j)|vi,vj∈V} denoting physical link of these nodes. We define n = |V| as the network node number, 
and l = |E| as the network edge number. Each edge is bidirectional, i.e., the edge e = (u, v) between 
node u∈V and node v∈V represents existence of another edge e′ = (v, u) between node v and node u. 
For each edge e∈E, let us make some definitions about some metrics: transmission cost C(e): E→R+, 
edge delay D(e): E→R+, bandwidth B(e): E→R+, transmission delay jitter J(e): E→R+, packet loss rate 
PL(e): E→R+, in which R+ denotes a set of non-negative real numbers. Let D(e) be the transmission 
delay on link e, and B(e) denote the bandwidth functions of edge e. Packet loss PL(e) represents the 
loss rate of a receiving termination on edge e. Delay jitter J(e) denotes the delay change in different 
time intervals between the packets arriving. The cost C(e) represents the cost of transmitting a 
packet on edge e, and it may take a measurement to make full use of resource optimization. For 
multicast network communications, information messages should be delivered starting from a 
source node to every destination node. Let a node s∈V be a transmission source node. A subset 
M⊆V-{s} represents destination nodes. Given m = |M| is the destination node number. Let the set M 
be a destination set, {s}∪M be a multicast group, and T(s, M) denote a QOS multicast tree. The 
multicast tree represents a subgraph of weighted graph G spanning the nodes in {s}∪M. T(s, M) may 
exist Steiner nodes. The Steiner nodes belong to a multicast tree, but these nodes do not in {s}∪M. 
pT(s, d) represents a route path in a tree T between a node s and a destination d∈M, one of 
destination nodes. 

As an example, consider the graph of Figure 1. The network graph has 9 nodes with node 0 
shaded in the Figure 1a being the transmission source node, and M = {d1, d2, d3} being the destination 
node set. The destination nodes are marked with yellow shadows. A tree T(s, M) with solid lines is 
the minimum spanning tree of sub-graph induced by {0, 2, 4, 5, d1, d2, d3}. The multicast tree includes 
three steiner nodes number 2, 4, and 5, see Figure 1b. 

 
Figure 1. Example of constructing multicast tree. 

T(s, M) represents a QOS multicast tree. Let the cost of T(s, M) be the cost sum of its edges, and 
it be described as: 


∈

=
),(

)()),((
MsTe

eCMsTC  
(1)

In this paper, we aim to minimize costs. Thus, the objective function of this paper is to seek a 
tree T(s, M) to minimize costs of C(T(s, M)) with the QoS constraint condition being guaranteed. For 

Figure 1. Example of constructing multicast tree.

T(s, M) represents a QOS multicast tree. Let the cost of T(s, M) be the cost sum of its edges, and it
be described as:

C(T(s, M)) = ∑
e∈T(s,M)

C(e) (1)



Algorithms 2019, 12, 18 5 of 16

In this paper, we aim to minimize costs. Thus, the objective function of this paper is to seek a tree
T(s, M) to minimize costs of C(T(s, M)) with the QoS constraint condition being guaranteed. For all the
above descriptions, the model of QoS multicast problem should be expressed as the following:

min C(T(s, M)) (2)

s.t. ∑
e∈pT(s,d)

D(e) ≤ Dd (3)

min{B(e), e ∈ pT(s, d)} ≥ Bd (4)

∑
e∈p(s,d)

J(e) ≤ Jd (5)

1− ∏
e∈pT(s,d)

(1− PL(e)) ≤ PLd (6)

In this formulation, delay Dd is an upper limit between a source node and a destination. Constraint (3)
guarantees that the delay total of all edges along pT(s, d) should be less than the upper bound limits.
Let Bd be the bandwidth requirement. To guarantee the existence of feasible paths, the minimum
residual bandwidth on any edge along pT(s, d) must satisfy Constraint (4). Let Jd (jitter) be the packet
delay variation, and PLd the packet loss rate. Constraint (5) ensures that the jitter sum on pT(s, d)
cannot exceed the predefined upper limits. Constraint (6) is the constraint of packet loss. The goal of
this study is to minimize costs of T(s, M) in total. As we shall see, the ACO is flexible enough to handle
more complicated objectives.

3. Ant Colony Optimization and Cloud Model

The ACO algorithm [24] is a popular-based search technique that simulates the foraging behavior
of ants in nature as they find food. When the ants are foraging for food, they deposit a pheromone trail
on the paths they have already passed. With the aid of these pheromones, these ants communicate and
work together with others to discover the shortest route between their nests and food locations. As the
ants move, the constant pheromone trail they deposit can attract other ants to follow them. The faster
the pheromone trail increases, the more likely that other ants will choose that route. Over time,
more ants can complete the shorter path on which pheromone trail accumulates faster. In contrast,
pheromone trails on the longer routes have less pheromones deposited. In the end, the shortest route
will be discovered. Ants can always find efficiently the shortest path from food sources to nests. Also,
they can change the path to adapt to different environments. When new obstacles appear, they can
seek the new shortest route.

The cloud model [25] is a new transition model that can be considered for both qualitative and
quantitative techniques according to both fuzzy and probability theory. It adopts a new method to
illustrate the fuzziness and randomness of concepts. Because the model can effectively integrate
fuzziness and randomness, we can use numerical characteristics for instance, expectation value
Ex, entropy En, hyper entropy He to generate cloud drop with certainty degree by devising ACO
algorithms. Suppose U is defined as the discourse universe, and C denotes a qualitative concept
expressed by the characters (Ex, En, He) related with U. µ(x)∈[0, 1] denotes a stable tendency for any
number x∈U. If a number x represents a random instance of the concept C and accords with normal
distribution x ~ N(Ex,yi), where yi also consistent with normal distribution yi ~ N(En,He), and the
determinate degree of x meets Equation (7). So x is named as a cloud drop. If the µ(x) distribution is
normal in U, it is named as the normal cloud.

u(x) = e
− (x−Ex)2

2y2
i (7)



Algorithms 2019, 12, 18 6 of 16

To illustrate the transformation, the model of normal cloud contains three numerical features,
that is, expectation value Ex, entropy En, and super entropy He. The Ex denotes the expectation
of cloud drops which can be the most representative concept belonging to the qualitative concept.
Considering for a center of cloud gravity, entropy En means the indeterminate measurement of the
qualitative concept according to the arbitrary probability and fuzziness. Super entropy He denotes
the dispersed degree of the entropy En, representing the dispersion extent of cloud droplets. Figure 2
shows the diagram of the cloud model. It can be seen that the greater En represents the greater coverage
of the cloud drops. Similarly, the greater the He, the more dispersed the cloud drops are.

Algorithms 2019, 12, x 6 of 16 

2 shows the diagram of the cloud model. It can be seen that the greater En represents the greater 
coverage of the cloud drops. Similarly, the greater the He, the more dispersed the cloud drops are. 

 
Figure 2. Diagram of the Cloud. 

4. ACO&CM Algorithm 

In order to overcome the drawback that the ACO algorithm may easily fall into local optimum, 
we designed our solution methodology to solve the QoS multicast routing problem. Since solving 
this problem is rather complicated , this can lead the solution method into more difficult conditions. 
High quality solutions should require us to design the algorithm elaborately. To enhance the 
performance of the ACO algorithm, we present the hybrid ACO algorithm, namely, the ACO&CM 
algorithm, which can effectively integrate the solution building mechanism of the ACO algorithm 
and CM. Meanwhile, the cloud model embedded in the ACO framework can avoid overuse of some 
nodes and the algorithm easily getting trapped in a local optimum by adjusting the pheromone trail. 
This method has the outstanding advantage of the ACO algorithm, which can find better 
performance solutions. It also has the advantage of CM, which is capable of searching different 
solution spaces in order to get better solutions. To deal with the probability of forming a loop in the 
search path, we devise a memory detection search (MDS) strategy, and incorporate the MDS 
strategy into the path construction process. Furthermore, in order to obtain high quality solutions, 
we adopt improvement strategies by deleting an edge with the maximum cost to create a 
neighboring solution of the original tree. The framework of proposed algorithm contains a memory 
detection search strategy, path construction, tree construction, pheromone trail updating, and 
solution improvement. 

4.1. Memory Detection Search Strategy 

Many literatures provide heuristic algorithms for constrained tree construction. These heuristic 
algorithms mainly include two types. The first type is to build a spanning tree with minimum-cost. 
Then, to make it satisfy the corresponding requirements, the tree structure should be pruned. The 
second type is to separately generate the constrained routing path starting from a source to every 
destination. After that, one main path is determined as the main fame tree, and other paths should 
be integrated into the tree. When the paths are constructed from a source node to destinations, there 
are two types of forward and backward path construction. The forward path construction starts the 
path search from a source and ends at the destination. The backward path construction proceeds 
from destinations to a source. To avoid forming loops, we adopt a memory detection search (MDS) 
strategy, and embed it into the process of tree construction. The MDS strategy adopts the second 
category to construct trees and we use the forward path construction. 

The MDS strategy can ensure the search towards any feasible path considering QoS constraints. 
To avoid the generation of loops influencing on feasible multicast path construction, we adopt a 
memory detection search (MDS) strategy that uses two kinds of data memory structures: the current 

Figure 2. Diagram of the Cloud.

4. ACO&CM Algorithm

In order to overcome the drawback that the ACO algorithm may easily fall into local optimum,
we designed our solution methodology to solve the QoS multicast routing problem. Since solving this
problem is rather complicated, this can lead the solution method into more difficult conditions. High
quality solutions should require us to design the algorithm elaborately. To enhance the performance of
the ACO algorithm, we present the hybrid ACO algorithm, namely, the ACO&CM algorithm, which
can effectively integrate the solution building mechanism of the ACO algorithm and CM. Meanwhile,
the cloud model embedded in the ACO framework can avoid overuse of some nodes and the algorithm
easily getting trapped in a local optimum by adjusting the pheromone trail. This method has the
outstanding advantage of the ACO algorithm, which can find better performance solutions. It also
has the advantage of CM, which is capable of searching different solution spaces in order to get better
solutions. To deal with the probability of forming a loop in the search path, we devise a memory
detection search (MDS) strategy, and incorporate the MDS strategy into the path construction process.
Furthermore, in order to obtain high quality solutions, we adopt improvement strategies by deleting
an edge with the maximum cost to create a neighboring solution of the original tree. The framework of
proposed algorithm contains a memory detection search strategy, path construction, tree construction,
pheromone trail updating, and solution improvement.

4.1. Memory Detection Search Strategy

Many literatures provide heuristic algorithms for constrained tree construction. These heuristic
algorithms mainly include two types. The first type is to build a spanning tree with minimum-cost.
Then, to make it satisfy the corresponding requirements, the tree structure should be pruned.
The second type is to separately generate the constrained routing path starting from a source to
every destination. After that, one main path is determined as the main fame tree, and other paths
should be integrated into the tree. When the paths are constructed from a source node to destinations,
there are two types of forward and backward path construction. The forward path construction starts
the path search from a source and ends at the destination. The backward path construction proceeds



Algorithms 2019, 12, 18 7 of 16

from destinations to a source. To avoid forming loops, we adopt a memory detection search (MDS)
strategy, and embed it into the process of tree construction. The MDS strategy adopts the second
category to construct trees and we use the forward path construction.

The MDS strategy can ensure the search towards any feasible path considering QoS constraints.
To avoid the generation of loops influencing on feasible multicast path construction, we adopt a
memory detection search (MDS) strategy that uses two kinds of data memory structures: the current
list (CL) and the path list (PL). The CL records nodes, which the current path routing reaches during the
depth-first search process to impede the self-loop generation, while the PL stores all the built routing
paths to avoid the generation of the inter-loop.

Figure 3 illustrates the process for avoiding generating the self-loop. The network graph has
nine nodes, in which node 0 is a source node, and M = {d1, d2, d3} represents the destinations. At the
beginning of the path construction, the search process starts from source node 0 and selects the next
nodes based on the proposed ACO algorithm mechanism. When there are no given destinations
to choose from, the search process will not continue going with a deeper search without returning
nodes in CL, and the search progress should be traced back to one level before starting another search
branch. Meanwhile, the MDS strategy records visited nodes in CL during the current path construction.
In Figure 3a, assume the path process arrives at node 1. Then, all the nodes {0, 4, 5, 3, 1} on the current
path have been recorded in CL. Because node 4 and node 0 have been recorded in CL, the two nodes
are not accessible to avoid the self-cross loop. There are no other nodes from the current node 1, so the
traceback operation is executed by considering nodes in CL till the routing path process returns to
node 5 as given in Figure 3b,c. When tracing back to node 5, the path process searches for destination
node d3, completes the path search, and records the path in PL, i.e., PL = {{0, 4, 5, d3}} as illustrated
in Figure 3d.

Algorithms 2019, 12, x 7 of 16 

list (CL) and the path list (PL). The CL records nodes, which the current path routing reaches during 
the depth-first search process to impede the self-loop generation, while the PL stores all the built 
routing paths to avoid the generation of the inter-loop. 

Figure 3 illustrates the process for avoiding generating the self-loop. The network graph has 
nine nodes, in which node 0 is a source node, and M = {d1, d2, d3} represents the destinations. At the 
beginning of the path construction, the search process starts from source node 0 and selects the next 
nodes based on the proposed ACO algorithm mechanism. When there are no given destinations to 
choose from, the search process will not continue going with a deeper search without returning 
nodes in CL, and the search progress should be traced back to one level before starting another 
search branch. Meanwhile, the MDS strategy records visited nodes in CL during the current path 
construction. In Figure 3a, assume the path process arrives at node 1. Then, all the nodes {0, 4, 5, 3, 
1} on the current path have been recorded in CL. Because node 4 and node 0 have been recorded in 
CL, the two nodes are not accessible to avoid the self-cross loop. There are no other nodes from the 
current node 1, so the traceback operation is executed by considering nodes in CL till the routing 
path process returns to node 5 as given in Figure 3b,c. When tracing back to node 5, the path 
process searches for destination node d3, completes the path search, and records the path in PL, i.e., 
PL = {{0, 4, 5, d3}} as illustrated in Figure 3d. 

d2

d3

3

1

2

d1

0 4

5

CL={0,4,5,3,1},PL={ }

d2

d3

3

1

2

d1

0 4

5

d2

d3

1

2

d1

0 4

5

3

CL={0,4,5,d3},PL={{0,4,5,d3}}

d2

d3

1

2

d1

0 4

5

3

CL={0,4,5,3}, PL={ }

CL={0,4,5},PL={ }

a. b.

c. d.

 
Figure 3. An instance of producing the self-loop. 

We adopt the MDS strategy for avoiding the generation of the inter-loop using PL. Figure 4a 
shows an example, in which a path {0, 4, 5, d3} has been built. The CL records visited nodes in the 
process of the current path construction. Before starting a next path, store CL to PL and set CL = ∅. 
The PL stores the nodes constituting all previously built paths, PL = {{0, 4, 5, d3}}. We can begin with 
the next path. Suppose in Figure 4a that the routing process begins the path search from a source 
and moves to node 2. In the scenario, because node 4 is recorded in PL, it is not accessible to avoid 
forming the inter-loop, which is formed by the current path and the completed paths. Next, the 
path construction process points to node d1 directly, one of the destinations, which has not added to 
the multicast route paths as shown in Figure 4c, and then a current routing path CL = {0, 2, d1} has 
been built. Add CL to PL, that is PL = {{0, 4, 5, d3}, {0, 2, d1}}. Then, we can proceed with the routing 
for the next path starting from node 0 and proceeding to the next destination. At this time, we have 

Figure 3. An instance of producing the self-loop.

We adopt the MDS strategy for avoiding the generation of the inter-loop using PL. Figure 4a
shows an example, in which a path {0, 4, 5, d3} has been built. The CL records visited nodes in the
process of the current path construction. Before starting a next path, store CL to PL and set CL = ∅.
The PL stores the nodes constituting all previously built paths, PL = {{0, 4, 5, d3}}. We can begin with



Algorithms 2019, 12, 18 8 of 16

the next path. Suppose in Figure 4a that the routing process begins the path search from a source
and moves to node 2. In the scenario, because node 4 is recorded in PL, it is not accessible to avoid
forming the inter-loop, which is formed by the current path and the completed paths. Next, the path
construction process points to node d1 directly, one of the destinations, which has not added to the
multicast route paths as shown in Figure 4c, and then a current routing path CL = {0, 2, d1} has been
built. Add CL to PL, that is PL = {{0, 4, 5, d3}, {0, 2, d1}}. Then, we can proceed with the routing for
the next path starting from node 0 and proceeding to the next destination. At this time, we have no
way to extend the current path without considering the nodes in PL that have been visited. When the
routing path process aids a constructed path, we have to trace the nodes that are in PL can be accessed
again. Although node 4 is contained in PL, there are no other nodes to choose from the source node 0.
The routing path process would have to proceed back to node 4. Then, let the current routing path
process directly move to d2, the last node of the destinations, and the current path is completed as
{0, 4, d2} (see Figure 3d). Add CL to PL, that is PL = {{0, 4, 5, d3}, {0, 2, d1}, {0, 4, d2}}. When all the
destinations have been added to the multicast route paths, the path search stops.

Algorithms 2019, 12, x 8 of 16 

no way to extend the current path without considering the nodes in PL that have been visited. 
When the routing path process aids a constructed path, we have to trace the nodes that are in PL 
can be accessed again. Although node 4 is contained in PL, there are no other nodes to choose from 
the source node 0. The routing path process would have to proceed back to node 4. Then, let the 
current routing path process directly move to d2, the last node of the destinations, and the current 
path is completed as {0, 4, d2} (see Figure 3d). Add CL to PL, that is PL = {{0, 4, 5, d3}, {0, 2, d1}, {0, 4, 
d2}}. When all the destinations have been added to the multicast route paths, the path search stops. 

 
Figure 4. An instance of producing the inter-loop. 

4.2. Path Construction 

In the process of constructing paths, ants sequentially find the minimum cost path proceeding 
from a source node s to destination nodes. It is necessary for one path to determine a nice sequence 
of nodes with the least cost. Each individual ant starting at the source node s simulates a path. The 
ants sequentially choose nodes to construct paths. Initially, the ant k successively chooses the node j 
and forms the sequence of nodes in the path until the ant completes the path. The selected nodes 
should first satisfy QoS multicast route constraints in the delay, residual bandwidth and the delay 
jitter as defined in constraints (3), (4) and (5), and then packet loss as described in constraints (6). If 
a node violates one or more of the constraints, the node should not be chosen, and the next node 
will be selected to check whether the constraint condition is satisfied. When ant k is building the 
path, at the node i the ant would select node j according to the following rules: 





 ≤⋅

= ∉
otherwise     ,    

 if   },][ max{arg 0

S

qq
j kMu

ilil
βητ  (8)

in which ilτ  represents pheromone trail concentration between i and j nodes, and β represents a 
parameter determining the comparative effect of visibility. The value q denotes a random variable, 
and it is a uniform value in [0, 1]. q0∈[0, 1] is a user-specified parameter value. The visibility ilη  is 
an inverse of an edge. Mk is the collection set including all the nodes that the ant k has already 
visited. Other ants cannot select the nodes in the set Mk. If the 0qq ≤  condition is satisfied, an edge 

Figure 4. An instance of producing the inter-loop.

4.2. Path Construction

In the process of constructing paths, ants sequentially find the minimum cost path proceeding
from a source node s to destination nodes. It is necessary for one path to determine a nice sequence of
nodes with the least cost. Each individual ant starting at the source node s simulates a path. The ants
sequentially choose nodes to construct paths. Initially, the ant k successively chooses the node j and
forms the sequence of nodes in the path until the ant completes the path. The selected nodes should
first satisfy QoS multicast route constraints in the delay, residual bandwidth and the delay jitter as
defined in constraints (3), (4) and (5), and then packet loss as described in constraints (6). If a node
violates one or more of the constraints, the node should not be chosen, and the next node will be



Algorithms 2019, 12, 18 9 of 16

selected to check whether the constraint condition is satisfied. When ant k is building the path, at the
node i the ant would select node j according to the following rules:

j =

 argmax{τil · [ηil
u/∈Mk

]β

}
, if q ≤ q0

S, otherwise

(8)

in which τil represents pheromone trail concentration between i and j nodes, and β represents a
parameter determining the comparative effect of visibility. The value q denotes a random variable,
and it is a uniform value in [0, 1]. q0∈[0, 1] is a user-specified parameter value. The visibility ηil is an
inverse of an edge. Mk is the collection set including all the nodes that the ant k has already visited.
Other ants cannot select the nodes in the set Mk. If the q ≤ q0 condition is satisfied, an edge with the
minimum cost is determined according to Equation (8); otherwise, choose an edge depending on S.
S is a random variable using the random distribution given as the following:

Pk
ij =


[τij]

α
[
ηij

]β

∑
l /∈Mk

[τil ]
α[ηil ]

β , j /∈ Mk

0, otherwise

(9)

where α is a parameter. α denotes the relative effect of the pheromone concentration, indicating the
influence of accumulated pheromone trail in the process of ant movement. The bigger the value of α,
the more inclined other ants are to choose the same paths. pk

ij is the transition probability of the ant k.
In ACO algorithms, the path construction process is similar to a greedy rule, except for choosing the
next node by the probabilistic formula rule rather than the deterministic one.

In the process of constructing the node sequence of the path, each individual ant not only considers
the QoS constraint conditions, but also adopts the MDS strategy to avoid the generation of a loop.
The MDS strategy uses the current list (CL), and the path list (PL) memory structures to avoid the
generation of a loop. The CL records current path nodes in case of forming the self-loop, and the PL
stores all the routing paths to avoid the generation of the inter-loop. Every path is put in PL set and
every element represents a path in this set. Nant denotes the number of ants, which is the same with a
destination node number. Every ant simulates a path starting from a given source node to a destination.
In the process of constructing the paths, these paths are searched by the ACO mechanism and every
path should satisfy the QoS constraint. Path construction procedure steps are given as the following:

Step 1: Initialize CL = ∅; path set PL = ∅; Initialize set S = {s}; Sm = M, Nant = |M|;
Step 2: Select randomly an ant from the ant set Nant;
Step 3: Set CL = ∅;
Step 4: Let the source node s be the current point, vi = s. Each ant begins from the node vi to find

the path to the destination node;
Step 5: Each ant chooses the next node vj which connects with current node using formula (8).

Every path satisfies the QoS constraint conditions.
Step 6: Check self-loop or inter-loop. If vj is neither in set CL nor in set PL, then add vj to set CL =

CL∪{vj}; otherwise go to Step 5;
Step 7: If vj is included in Sm then add vj to set CL = CL∪{vj}, and move vj from Sm, Sm = Sm/{vj},

add the CL to PL, PL = PL∪CL; otherwise, the node vj is regarded as the current node, vi = vj, go to
Step 5;

Step 8: If the termination condition Sm = ∅ is met, all the destination nodes are put into the paths
and Nant paths have been constructed; otherwise, go to go to Step 2.



Algorithms 2019, 12, 18 10 of 16

4.3. Tree Construction

Though the paths discovered cover a source node and destination nodes, these paths can not
directly form a multicast tree because they include some repeated edges. Therefore, to obtain a real
multicast tree, we should prune the paths to remove these repeated edges. The completed routing
paths PL is defined as the input parameter of tree construction. Let VT be a node set, and T be an edge
set. Randomly choose a route path from the path set PL and add the nodes and edges of this path
to VT and T, respectively. Repeat this procedure until the terminating criterion is met. The output
parameter would be a multicast tree spanning a source nodes s and destinations in M. The steps of tree
construction procedure should be described as the following:

Step 1: Initialize T = ∅, VT = ∅;
Step 2: Choose a route path p randomly from the set PL and suppose p is defined as v0,v1, . . . vk

node sequence;
Step 3: i = 0;
Step 4: Check whether the node vi is in VT. If the node vi is in VT, then go to Step 5; otherwise,

put vi into VT, VT = VT ∪{vi}, and add the edge (vi, vi−1) to T, T = T∪{ (vi, vi−1) };
Step 5: i++;
Step 6: Check whether the condition i < k is met, if i < k, then go to step 4;
Step 7: Delete p from PL, PL = PL/{p};
Step 8: If the termination condition PL = ∅ is met, and then return to T; if not go to Step 2.

4.4. Pheromone Trail Updating

In ACO, there are local and global updates in pheromone updating. Local pheromone trail
updating is executed while constructing a multicast tree, and global pheromone updating is executed
at the end of completing the multicast tree. The main purpose of local pheromone updating is to avoid
producing very high pheromone links being selected by other ants. These links use more pheromone
on the trail to make the ACO algorithm fall into a local optimum. The local pheromone trail is updated
using the following formulation:

τij = (1− ρ)τij + ∆τ (10)

where ρ ∈ [0, 1] represents a pheromone evaporation parameter, ∆τ =
m
∑

k=1
∆τk

ij, ∆τk
ij is the incremental

pheromone trail on the edge between i and j nodes, and m means the ant number. To avoid overuse of
some nodes and hinder the ants from exploring new paths, we adjust parameter ρ by cloud model
to avoid the ACO algorithm trapping into local optimum. The parameter ρ is performed using the
following formula,

ρ =


k1e

−(x−Ex)2

2y2
i , τmin < x < τmax

ρ1, x > τmax

ρ2, x < τmin

(11)

where ρ1, ρ2∈[0, 1] are pheromone decay parameters, and k1 denotes a parameter. Other parameters
refer to the description of formula (7).

Besides, the pheromone of global solution is updated according to global pheromone updating,
which is intended to strengthen the neighborhood search of the optimum solution. The global
pheromone updating can not only accelerate convergence by increasing differences between better and
worse solutions, but also avoid the fast accumulation of pheromones on relatively optimal paths at an
early stage. In the basic ACO algorithm, only the pheromone trails on the edges of the best solution
have the chances to be updated using the following formula,

τij = (1− ϕ) · τij +
ϕ

Lbest
(12)



Algorithms 2019, 12, 18 11 of 16

in which ϕ ∈ [0, 1] is a decay parameter, Lbest is the cost value of the best-so-far solution.

4.5. Solution Improvement

After the feasible solution has been obtained, we try to enhance the solution quality by using
improvement strategies. Figure 5 illustrates the process of solution improvement. Figure 5a illustrates
an example where a multicast tree has been built. The primary concept behind improvement strategies
is trying to seek improved solutions by deleting an edge with the maximum cost. Then a multicast
tree is split into two parts of {0, 2, 1, 4, d2, 3, 5, d3} and {d1} by deleting edge (2, d1) with the maximum
cost as shown in Figure 5b. Choose a node from the part, in which there is no source node. Extend
the node to link the part in which the source node exists until a new tree is produced, see Figure 5c.
The new tree must satisfy the multicast constraint. Although the new tree spans all the source node
and destination nodes, it does not belong to a multicast tree because there are some excrescent edges
after connecting the tree, and the nodes connected by excrescent edges have some leaf nodes which
are not multicast members. Therefore, to obtain a true multicast tree, we should prune the leaf nodes,
which do not belong to the multicast members in Figure 5d.Algorithms 2019, 12, x 11 of 16 

d2

d3

3

1

2

d1

0 4

5

a.  The multicast tree 

d2

d3

3

1

2

d1

0 4

5

b.  Deleting an edge with the maximum cost 

d2

d3

3

1

2

d1

0 4

5

d.  Pruning excrescent edge 

d2

d3

3

1

2

d1

0 4

5

c.  Connecting 

 
Figure 5. Illustration of solution improvement process. 

The framework of the ACO&CM algorithm consists of two main procedures which connect the 
parts together, including as the MDS strategy, pheromone updating, and solution improvement. In 
this study, the two main procedures are called path construction and tree construction, respectively, 
which are developed to build feasible multicast trees. The first procedure basically starts from a 
source node to search for the paths of destinations and each path should satisfy the Qos constraint. 
Then, the second procedure integrates m routing paths obtained by applying the first one to build a 
multicast tree T. The stopping criterion consists of the convergence rule and the maximum 
iterations. The process stops when the stopping criterion is satisfied. The main steps of hybrid 
algorithm would be formulated as below: 

Step 1: Initialization. Input the pheromone trails on all edges, edge cost c(e), link delay d(e)，
link bandwidth b(e), and Dd, Bd, Jd, and PLd parameters. Let s be the starting node, and M = {d1, d2,…, 
dm} as destination nodes. Set population number as TreeNum. Set iter = 0 where iter counts the 
number of iteration and will be compared to the maximum number of iterations, CNmax . 

Step 2: Initialize the tree set ST = ∅; 
Step 3: Execute path construction procedure to obtain m routing paths starting from the node s 

to destination nodes. Record the completed routing path in PL. 
Step 4: Execute tree construction procedure to produce a multicast tree T, which is created by 

merging m paths. Store the multicast tree in T. Update local pheromone trail accord to formula (10). 
Step 5: Improvement solutions. 
Step 6: Calculate the fitness values of T and check whether to update the current best solution 

Tbestsol. If condition C(T) < C( Tbestsol) then Tbestsol = T. 
Step 7: Add T to ST, i.e., ST = ST∪T. 
Step 8: Repeat Steps 3–7 until |ST|>TreeNum. 
Step 9: Update global pheromone trail on the edges of Tbestsol using formula (12). 
Step 10: Set iter = iter + 1; 
Step 11: Repeat Steps 2–11 until the algorithm converges or iter > CNmax. 

5. Computational Results 

We present an experimental study to verify the performance of the hybrid algorithm. We have 
implemented a basic ACO algorithm and hybrid algorithm using visual C++. To evaluate the 

Figure 5. Illustration of solution improvement process.

The framework of the ACO&CM algorithm consists of two main procedures which connect
the parts together, including as the MDS strategy, pheromone updating, and solution improvement.
In this study, the two main procedures are called path construction and tree construction, respectively,
which are developed to build feasible multicast trees. The first procedure basically starts from a source
node to search for the paths of destinations and each path should satisfy the Qos constraint. Then,
the second procedure integrates m routing paths obtained by applying the first one to build a multicast
tree T. The stopping criterion consists of the convergence rule and the maximum iterations. The process
stops when the stopping criterion is satisfied. The main steps of hybrid algorithm would be formulated
as below:

Step 1: Initialization. Input the pheromone trails on all edges, edge cost c(e), link delay d(e),
link bandwidth b(e), and Dd, Bd, Jd, and PLd parameters. Let s be the starting node, and M = {d1, d2,
. . . , dm} as destination nodes. Set population number as TreeNum. Set iter = 0 where iter counts the
number of iteration and will be compared to the maximum number of iterations, CNmax.



Algorithms 2019, 12, 18 12 of 16

Step 2: Initialize the tree set ST = ∅;
Step 3: Execute path construction procedure to obtain m routing paths starting from the node s to

destination nodes. Record the completed routing path in PL.
Step 4: Execute tree construction procedure to produce a multicast tree T, which is created by

merging m paths. Store the multicast tree in T. Update local pheromone trail accord to formula (10).
Step 5: Improvement solutions.
Step 6: Calculate the fitness values of T and check whether to update the current best solution

Tbestsol. If condition C(T) < C( Tbestsol) then Tbestsol = T.
Step 7: Add T to ST, i.e., ST = ST∪T.
Step 8: Repeat Steps 3–7 until |ST|>TreeNum.
Step 9: Update global pheromone trail on the edges of Tbestsol using formula (12).
Step 10: Set iter = iter + 1;
Step 11: Repeat Steps 2–11 until the algorithm converges or iter > CNmax.

5. Computational Results

We present an experimental study to verify the performance of the hybrid algorithm. We have
implemented a basic ACO algorithm and hybrid algorithm using visual C++. To evaluate the
effectiveness of the ACO&CM algorithm, we have carried out numerical experiments on the network
topology for the QoS routing problem. Figure 6 shows a test network topology with 30 nodes. Some
parameter values in the ACO&CM algorithm directly or indirectly influence the final results. Therefore,
these parameter values may be measured on the test instance. We set parameter values as follows:
q0∈[0.65, 0.80], β∈[3, 4, 5], α = ρ∈[0.35, 0.50], TreeNum = 30. Notably, for each edge, the initial value
of τij is a very small constant, τij = (n·Lbest)−1, where n denotes the node number of multicast tree,
and Lbest represents the minimum cost of QoS multicast tree, and. All the experiments should be
executed for CNmax = 1000. The edges are generated randomly. c(e) is defined as actual distance
between two nodes of the edge e. d(e) and b(e) of the edge e are set to sqrt(c(e)), c(e)/2, respectively.

Algorithms 2019, 12, x 12 of 16 

effectiveness of the ACO&CM algorithm, we have carried out numerical experiments on the 
network topology for the QoS routing problem. Figure 6 shows a test network topology with 30 
nodes. Some parameter values in the ACO&CM algorithm directly or indirectly influence the final 
results. Therefore, these parameter values may be measured on the test instance. We set parameter 
values as follows: q0∈[0.65, 0.80], β∈[3, 4, 5], α = ρ∈[0.35, 0.50], TreeNum = 30. Notably, for each 
edge, the initial value of ijτ  is a very small constant, ijτ  = (n⋅Lbest)−1, where n denotes the node 

number of multicast tree, and Lbest represents the minimum cost of QoS multicast tree, and. All the 
experiments should be executed for CNmax = 1000. The edges are generated randomly. c(e) is defined 
as actual distance between two nodes of the edge e. d(e) and b(e) of the edge e are set to sqrt(c(e)), 
c(e)/2, respectively. 

 
Figure 6. A test network topology. 

To investigate the convergence properties of ACO and ACO&CM algorithms, we test their 
convergence performance on the 30 nodes. Due to publishing space restrictions, we only provide the 
convergence performance of two algorithms averaged over 20 runs on this test problem. Figure 7 
traces the dynamic changes of best cost with the iteration variation for two algorithms. From the 
results in Figure 7, the convergence process of ACO&CM is shown to be faster than that of ACO. It 
demonstrates that ACO&CM algorithm has a higher search ability than the ACO algorithm on this 
problem. 

 
Figure 7. Comparison of the convergence of ACO and ACO&CM. 

Figure 6. A test network topology.

To investigate the convergence properties of ACO and ACO&CM algorithms, we test their
convergence performance on the 30 nodes. Due to publishing space restrictions, we only provide the
convergence performance of two algorithms averaged over 20 runs on this test problem. Figure 7 traces
the dynamic changes of best cost with the iteration variation for two algorithms. From the results in
Figure 7, the convergence process of ACO&CM is shown to be faster than that of ACO. It demonstrates
that ACO&CM algorithm has a higher search ability than the ACO algorithm on this problem.



Algorithms 2019, 12, 18 13 of 16

Algorithms 2019, 12, x 12 of 16 

effectiveness of the ACO&CM algorithm, we have carried out numerical experiments on the 
network topology for the QoS routing problem. Figure 6 shows a test network topology with 30 
nodes. Some parameter values in the ACO&CM algorithm directly or indirectly influence the final 
results. Therefore, these parameter values may be measured on the test instance. We set parameter 
values as follows: q0∈[0.65, 0.80], β∈[3, 4, 5], α = ρ∈[0.35, 0.50], TreeNum = 30. Notably, for each 
edge, the initial value of ijτ  is a very small constant, ijτ  = (n⋅Lbest)−1, where n denotes the node 

number of multicast tree, and Lbest represents the minimum cost of QoS multicast tree, and. All the 
experiments should be executed for CNmax = 1000. The edges are generated randomly. c(e) is defined 
as actual distance between two nodes of the edge e. d(e) and b(e) of the edge e are set to sqrt(c(e)), 
c(e)/2, respectively. 

 
Figure 6. A test network topology. 

To investigate the convergence properties of ACO and ACO&CM algorithms, we test their 
convergence performance on the 30 nodes. Due to publishing space restrictions, we only provide the 
convergence performance of two algorithms averaged over 20 runs on this test problem. Figure 7 
traces the dynamic changes of best cost with the iteration variation for two algorithms. From the 
results in Figure 7, the convergence process of ACO&CM is shown to be faster than that of ACO. It 
demonstrates that ACO&CM algorithm has a higher search ability than the ACO algorithm on this 
problem. 

 
Figure 7. Comparison of the convergence of ACO and ACO&CM. Figure 7. Comparison of the convergence of ACO and ACO&CM.

To evaluate the stability of our proposed ACO&CM algorithm, we further test the algorithm
independently 20 runs on the problem instances with 30 nodes. For each independent run, the best
cost values of the objective function are depicted in Figure 8. From the result in Figure 8, it can also be
observed that ACO&CM yields a much lower cost than that produced by ACO. Both of ACO&CM
and ACO algorithms can obtain a feasible solution in 20 runs. Once again, this result illustrates the
effectiveness of ACO&CM.

Algorithms 2019, 12, x 13 of 16 

To evaluate the stability of our proposed ACO&CM algorithm, we further test the algorithm 
independently 20 runs on the problem instances with 30 nodes. For each independent run, the best 
cost values of the objective function are depicted in Figure 8. From the result in Figure 8, it can also 
be observed that ACO&CM yields a much lower cost than that produced by ACO. Both of 
ACO&CM and ACO algorithms can obtain a feasible solution in 20 runs. Once again, this result 
illustrates the effectiveness of ACO&CM. 

 
Figure 8. Comparison of the cost of ACO and ACO&CM. 

To give further evidence concerning the conclusion, we evaluated scalability of algorithms with 
the instance size according to the execution time in seconds and the corresponding best cost of a 
multicast tree. Table 1 shows the best cost and corresponding run time of ACO and ACO&CM 
algorithms for the problem instance. The node number column shows the number of testing instance 
nodes. These testing instances are from small size with 30 nodes to large size with 175 nodes. In 
Table 1, ACO represents the basic ant colony optimization without combining with some other 
algorithms, and ACO&CM refers to the proposed algorithm. Table 1 has also shown the gap 
between the ACO and ACO&CM algorithms. The gap is specified as percentage improvement in 
the cost values of the two algorithms. Form Table 1, we discover that the hybrid proposed algorithm 
can yield best performance of the minimum cost objective. Concerning solution quality, we can 
conclude that the average cost of multicast tree obtained by ACO&CM is much less than that by 
basic ACO, and the ACO&CM algorithm can easily find the better solution with significantly shorter 
computation times. The average improvement gap is 2.78%, and the percentage shows that our 
proposed ACO&CM algorithm is much better and more efficient than ACO algorithm for the 
minimum cost objective to solve the QoS multicast routing problem. 

In order to a make further comparative analysis of the proposed algorithm’s performance on 
the QoS routing problem, the proposed algorithm is also compared with performance of GA. The 
GA proposed by Wang et al. [11] adopted the coding method with a tree structure. A chromosome 
represented a feasible multicast tree. The GA has the following parameter values: crossover 
probability pc∈[0.8, 1], mutation probability pm∈[0.1, 0.5], the maximum number of iterations CNmax 
= 1000, population number TreeNum = 30. A randomized algorithm based on depth-first search was 
used for building a random Steiner tree to construct the initial population. Then, the multicast tree 
changed through adopting crossover and mutation. Since ACO and GA methods are both random 
algorithms, the same procedure in the same instance may generate different results due to different 
random numbers in each run. We thus repetitively executed each instance 20 times and the average 

Figure 8. Comparison of the cost of ACO and ACO&CM.

To give further evidence concerning the conclusion, we evaluated scalability of algorithms with
the instance size according to the execution time in seconds and the corresponding best cost of a
multicast tree. Table 1 shows the best cost and corresponding run time of ACO and ACO&CM
algorithms for the problem instance. The node number column shows the number of testing instance
nodes. These testing instances are from small size with 30 nodes to large size with 175 nodes. In Table 1,
ACO represents the basic ant colony optimization without combining with some other algorithms,
and ACO&CM refers to the proposed algorithm. Table 1 has also shown the gap between the ACO
and ACO&CM algorithms. The gap is specified as percentage improvement in the cost values of
the two algorithms. Form Table 1, we discover that the hybrid proposed algorithm can yield best
performance of the minimum cost objective. Concerning solution quality, we can conclude that the



Algorithms 2019, 12, 18 14 of 16

average cost of multicast tree obtained by ACO&CM is much less than that by basic ACO, and the
ACO&CM algorithm can easily find the better solution with significantly shorter computation times.
The average improvement gap is 2.78%, and the percentage shows that our proposed ACO&CM
algorithm is much better and more efficient than ACO algorithm for the minimum cost objective to
solve the QoS multicast routing problem.

In order to a make further comparative analysis of the proposed algorithm’s performance on the
QoS routing problem, the proposed algorithm is also compared with performance of GA. The GA
proposed by Wang et al. [11] adopted the coding method with a tree structure. A chromosome
represented a feasible multicast tree. The GA has the following parameter values: crossover probability
pc∈[0.8, 1], mutation probability pm∈[0.1, 0.5], the maximum number of iterations CNmax = 1000,
population number TreeNum = 30. A randomized algorithm based on depth-first search was used for
building a random Steiner tree to construct the initial population. Then, the multicast tree changed
through adopting crossover and mutation. Since ACO and GA methods are both random algorithms,
the same procedure in the same instance may generate different results due to different random
numbers in each run. We thus repetitively executed each instance 20 times and the average values over
these times are depicted in Figure 9. Figure 9 shows the illustration of comparison of the cost attained
by ACO&CM, ACO, and GA against different numbers of nodes. It also can be shown from the curves
that in nearly all scales of topology ACO&CM outperforms ACO and GA in an extremely important
way. Besides, ACO yields less total cost than GA, so ACO shows a significantly better performance
than GA. The computational results also prove that ACO&CM outperforms ACO, and the multicast
trees obtained are feasible if these results meet the QoS constraints.

Table 1. The comparison of ACO with ACO&CM Algorithm.

Number Node Number
ACO ACO&CM % Gap

Best Cost Time (s) Best Cost Time (s)

1 30 443.80 8.86 420.14 8.29 5.63
2 50 435.79 59.78 428.47 52.25 1.63
3 75 554.75 139.83 551.74 105.00 0.55
4 100 766.25 388.24 756.18 361.38 1.31
5 125 830.22 465.31 798.12 436.50 4.02
7 150 926.15 570.73 900.31 538.28 2.87
8 175 998.14 716.26 965.65 665.17 3.36

Algorithms 2019, 12, x 14 of 16 

values over these times are depicted in Figure 9. Figure 9 shows the illustration of comparison of 
the cost attained by ACO&CM, ACO, and GA against different numbers of nodes. It also can be 
shown from the curves that in nearly all scales of topology ACO&CM outperforms ACO and GA in 
an extremely important way. Besides, ACO yields less total cost than GA, so ACO shows a 
significantly better performance than GA. The computational results also prove that ACO&CM 
outperforms ACO, and the multicast trees obtained are feasible if these results meet the QoS 
constraints. 

Table 1. The comparison of ACO with ACO&CM Algorithm. 

Number Node Number 
ACO ACO&CM 

% Gap 
Best Cost Time (s) Best Cost Time (s) 

1 30 443.80 8.86 420.14 8.29 5.63 
2 50 435.79 59.78 428.47 52.25 1.63 
3 75 554.75 139.83 551.74 105.00 0.55 
4 100 766.25 388.24 756.18 361.38 1.31 
5 125 830.22 465.31 798.12 436.50 4.02 
7 150 926.15 570.73 900.31 538.28 2.87 
8 175 998.14 716.26 965.65 665.17 3.36 

 
Figure 9. Comparison of the cost in different nodes. 

6. Conclusions 

In this article, we present a hybrid ant colony optimization (ACO&CM) for solving the QoS 
multicast routing problem. The primary innovation is to combine the solution generation process of 
the ACO algorithm with the CM. Since a high pheromone trail on some edges may lead to fast 
convergence and fall into local optimum, within the framework structure of the ACO, we embed a 
cloud model in the ACO algorithm to enhance the performance of the ACO algorithm by adjusting 
the pheromone concentration on edges. To avoid the possibility of loop formation in the process of 
constructing a feasible multicast path, we devise a memory detection search (MDS) strategy, that is, 
the current list (CL) and the path list (PL), and integrate it into the path construction. The simulation 
results have demonstrated that our ACO&CM algorithm was able to attain better or competitive 
performance. The main limitations in this study mainly lie in that the test instances are not large 
enough, and the self-adaptive adjustment of principal parameters is not considered. These key 

Figure 9. Comparison of the cost in different nodes.



Algorithms 2019, 12, 18 15 of 16

6. Conclusions

In this article, we present a hybrid ant colony optimization (ACO&CM) for solving the QoS
multicast routing problem. The primary innovation is to combine the solution generation process
of the ACO algorithm with the CM. Since a high pheromone trail on some edges may lead to fast
convergence and fall into local optimum, within the framework structure of the ACO, we embed a
cloud model in the ACO algorithm to enhance the performance of the ACO algorithm by adjusting
the pheromone concentration on edges. To avoid the possibility of loop formation in the process of
constructing a feasible multicast path, we devise a memory detection search (MDS) strategy, that is,
the current list (CL) and the path list (PL), and integrate it into the path construction. The simulation
results have demonstrated that our ACO&CM algorithm was able to attain better or competitive
performance. The main limitations in this study mainly lie in that the test instances are not large
enough, and the self-adaptive adjustment of principal parameters is not considered. These key issues
are to be solved in future research work. Therefore, in the future, we are planning to further improve
the performance of the ACO&CM algorithm, especially in large-scale instances. We will study the
comparison between this algorithm and other algorithms, such as cuckoo search, particle swarm
optimization, etc. Besides, according to the search characteristics of ACO&CM, our future work
includes designing a new self-adaptive adjustment strategy of principal parameters to improve the
adaptability of the algorithm to different practical conditions.

Author Contributions: X.Z. designed the algorithms and wrote the paper; X.S. performed the experiments;
Z.Y. was responsible for the reviews and discussed the results.

Funding: This work is supported by National Science Foundation of Liaoning (Grant No. 20170540471) and
Foundation of Liaoning Educational Committee (Grant No. L2015265).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Oliveira, C.A.S.; Pardalos, P.M. A survey of combinatorial optimization problems in multicast routing.
Comput. Oper. Res. 2005, 32, 1953–1981. [CrossRef]

2. Alrabiah, T.; Znati, T. Delay-constrained, low-cost multicast routing in multimedia networks. J. Parallel
Distrib. Comput. 2005, 61, 1307–1336. [CrossRef]

3. Drake, D.E.; Hougardy, S. On approximation algorithms for the terminal Steiner tree problem. Inf. Process.
Lett. 2004, 89, 15–18. [CrossRef]

4. Kompella, V.P.; Pasquale, J.C.; Polyzos, G.C. Multicast routing for multimedia communication. IEEE/ACM
Trans. Netw. 1993, 1, 286–292. [CrossRef]

5. Baradaran, A.A.; Navi, K. CAST-WSN: The Presentation of New Clustering Algorithm Based on Steiner
Tree and C-Means Algorithm Improvement in Wireless Sensor Networks. Wirel. Pers. Commun. 2017, 97,
1323–1344. [CrossRef]

6. Chow, C.H. On multicast path finding algorithms. In Proceedings of the IEEE Infocom 91 Tenth Joint
Conference of the IEEE Computer & Communications Societies Networking in the 90s (INFOCOM), Miami,
FL, USA, 7–11 April 1991; pp. 1274–1283.

7. Salama, H.F.; Reeves, D.S.; Viniotis, Y. Evaluation of multicast routing algorithms for real-time
communication on high-speed net works. IEEE J. Sel. Areas Commun. 1997, 15, 332–345. [CrossRef]

8. Li, W.; Li, K.; Huang, Y.; Yang, S.; Yang, L. A EA- and ACA-based QoS multicast routing algorithm with
multiple constraints for ad hoc networks. Soft Comput. 2016, 21, 5717–5727. [CrossRef]

9. Zhang, L.; Cai, L.B.; Li, M.; Wang, F.H. A method for least-cost QoS multicast routing based on genetic
simulated annealing algorithm. Comput. Commun. 2009, 32, 105–110. [CrossRef]

10. Lu, T.; Zhu, J. A genetic algorithm for finding a path subject to two constraints. Appl. Soft Comput. 2013, 13,
891–898. [CrossRef]

11. Wang, Z.Y.; Shi, B.X.; Zhao, E. Bandwidth-delay-constrained least-cost multicast routing based on heuristic
genetic algorithm. Comput. Commun. 2001, 24, 685–692.

http://dx.doi.org/10.1016/j.cor.2003.12.007
http://dx.doi.org/10.1006/jpdc.2001.1752
http://dx.doi.org/10.1016/j.ipl.2003.09.014
http://dx.doi.org/10.1109/90.234851
http://dx.doi.org/10.1007/s11277-017-4572-x
http://dx.doi.org/10.1109/49.564132
http://dx.doi.org/10.1007/s00500-016-2149-3
http://dx.doi.org/10.1016/j.comcom.2008.09.023
http://dx.doi.org/10.1016/j.asoc.2012.10.018


Algorithms 2019, 12, 18 16 of 16

12. Zhang, X.; Zhang, X.; Gu, C. A micro-artificial bee colony based multicast routing in vehicular ad hoc
networks. Ad Hoc Netw. 2017, 58, 213–221. [CrossRef]

13. Mandhare, V.V.; Thool, V.R.; Manthalkar, R.R. QoS Routing enhancement using metaheuristic approach in
mobile ad-hoc network. Comput. Netw. 2016, 110, 180–191. [CrossRef]

14. Wang, H.; Meng, X.; Li, S.; Xu, H. A tree-based particle swarm optimization for multicast routing.
Comput. Netw. 2010, 54, 2775–2786. [CrossRef]

15. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans.
Syst. Man Cybern. Part B 1996, 26, 29–41. [CrossRef] [PubMed]

16. Tseng, S.Y.; Lin, C.C.; Huang, Y.M. Ant colony-based algorithm for constructing broad-casting tree with
degree and delay constraints. Expert Syst. Appl. 2008, 35, 1473–1481. [CrossRef]

17. Wang, H.; Shi, Z.; Li, S. Multicast routing for delay variation bound using a modified ant colony algorithm.
J. Netw. Comput. Appl. 2009, 32, 258–272. [CrossRef]

18. Wang, P.; Chen, B.; Gu, X.; Liu, G. Multi-constraint quality of service routing algorithm for dynamic topology
networks. J. Syst. Eng. Electron. 2008, 19, 58–64.

19. Wei, Y.; Zhao, K.X.; Zhang, S.Q.; Wang, D.S. Research of Improved Ant Colony Algorithm in QoS Multicast
Routing. Bull. Sci. Technol. 2017, 33, 183–186.

20. Wang, Y.; Xie, J.Y. Algorithm for multimedia multicast routing based on ant colony optimization. J. Shanghai
Jiaotong Univ. 2002, 36, 526–528.

21. Yin, P.Y.; Chang, R.I.; Chao, C.C.; Chu, Y.T. Niched ant colony optimization with colony guides for QoS
multicast routing. J. Netw. Comput. Appl. 2014, 40, 61–72. [CrossRef]

22. Chen, S.; Xu, B.; Xu, B.G. Qos multicast routing optimization algorithm based on difference-elite ant colony.
Comput. Eng. 2015, 41, 117–125.

23. Wu, L.H.; Zuo, C.L.; Zhang, H.Q. A cloud model based fruit fly optimization algorithm. Knowl.-Based Syst.
2015, 89, 603–617. [CrossRef]

24. Dortgo, M.; Gambarde, L.M. Ant colony system: A cooperative learning approach to the traveling salesman
problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66.

25. Zhang, R.L.; Shan, M.Y.; Liu, X.H.; Zhang, L.H. A novel fuzzy hybrid quantum artificial immune clustering
algorithm based on cloud model. Eng. Appl. Artif. Intell. 2014, 35, 1–13. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.adhoc.2016.06.009
http://dx.doi.org/10.1016/j.comnet.2016.09.023
http://dx.doi.org/10.1016/j.comnet.2010.05.006
http://dx.doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://dx.doi.org/10.1016/j.eswa.2007.08.018
http://dx.doi.org/10.1016/j.jnca.2008.03.002
http://dx.doi.org/10.1016/j.jnca.2013.08.003
http://dx.doi.org/10.1016/j.knosys.2015.09.006
http://dx.doi.org/10.1016/j.engappai.2014.06.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Description 
	Ant Colony Optimization and Cloud Model 
	ACO&CM Algorithm 
	Memory Detection Search Strategy 
	Path Construction 
	Tree Construction 
	Pheromone Trail Updating 
	Solution Improvement 

	Computational Results 
	Conclusions 
	References

