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Abstract: This paper proposes total optimization of energy networks in a smart city by
multi-population global-best modified brain storm optimization (MP-GMBSO). Many countries
have conducted smart city demonstration projects for reduction of total energies and CO, emission.
The energy and environmental problem of smart city can be formulated as a mixed integer nonlinear
programming (MINLP) problem. Therefore, evolutionary computation methods including variations
of recently developed Brain Storm Optimization (BSO) such as Global-best BSO (GBSO), Modified
BSO (MBSO), and Global-best Modified BSO (GMBSO) have been adopted to the problem. However,
there is still room for improvement of quality of solution. Evolutionary computation methods with
multi-population have been applied to various problems and verified to improve quality of solution.
Therefore, the approach can be expected to improve quality of solution. The proposed MS-GMBSO
utilizes only migration for multi-population models instead of abest which is the best individual
among all sub-populations so far and both migration and abest. Various multi-population models,
migration policies, the number of sub-populations, and migration topologies are also investigated.
It is verified that the proposed MP-GMBSO based method with migration using ring topology, the W-B
policy, and 320 individuals is the most effective among all of multi-population parameters.

Keywords: Global-best Modified Brain Storm Optimization; Smart City; Multi-Population Evolutionary
Computation; Reduction of CO, emission; Efficient utilization of energy

1. Introduction

In various environmental problems, global warming is a serious problem all over the world. It is
considered that an increase of greenhouse gas causes global warming. Hence, many countries have
conducted smart city demonstration projects for reduction of total consumption energies and CO,
emission [1,2]. Smart city is an eco-city which can realize low carbon emission and energy consumption
by Internet of Things (IoT), renewable energies, storage batteries, and so on. For example, in Japan,
after the Great East Japan Earthquake, introduction of the smart city was investigated, especially in
Tohoku area [3].

Basically, it is difficult to evaluate the actual CO, emission reduction in the actual smart city.
Therefore, a smart city model including various sector models should be utilized for the evaluation.
Static models which can treat various energy balances and dynamic models which can treat dynamic
behaviors have been developed separately in each sector [4-7]. However, a smart city model, which can
calculate various environmental and energy loads among all sectors considering environmental and

Algorithms 2019, 12, 15; doi:10.3390/a12010015 www.mdpi.com/journal/algorithms


http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-8673-988X
https://orcid.org/0000-0002-6115-1676
http://dx.doi.org/10.3390/a12010015
http://www.mdpi.com/journal/algorithms
http://www.mdpi.com/1999-4893/12/1/15?type=check_update&version=3

Algorithms 2019, 12, 15 2 of 27

energy flow among various sectors, had not been developed. Considering these backgrounds, a smart
city model was developed in order to evaluate energy costs and CO, emission of the whole smart city
considering environmental and energy flow among various sectors in Japan [8-10].

Using the smart city model, the authors have proposed total optimization of energy network
in a whole smart city for minimization of energy costs, electric power loads at peak load hours,
and CO, emission by Particle Swarm Optimization (PSO) [11], Differential Evolution (DE) [12],
Differential Evolutionary PSO (DEEPSO) [13], BSO [14], MBSO [15], GBSO [16], and GMBSO [17].
In addition, considering energy facility characteristics, energy load characteristics, cost characteristics,
and continuity of weekday operation of various energy facilities, the authors have proposed reduction
methods of search space in order to solve the problem effectively [11,12]. Therefore, GMBSO considering
the reduction of search space can obtain the highest quality solution so far [17]. However, there is still
room for improvement of quality of solution.

Multi-population based evolutionary computation methods have been verified to improve quality
of solution [18-26]. Using the methods, one population with numbers of individuals is divided into
several sub-populations with small numbers of individuals. Individuals at each sub-population
perform solution search separately. Interaction models of multi-population can be divided into three
groups: the migration model [18,19,21,23-25], the abest model [20,22], in which abest is the best
searching point so far among all of sub-populations, and a model using both migration and abest.
To the best of the authors' knowledge, since a model using both migration and abest has not been
proposed, the authors propose the model [26]. However, the most suitable model has to be investigated
for each evolutionary computation method.

Considering these backgrounds, this paper proposes total optimization of energy networks in
a smart city by MP-GMBSO with only migration. MP-GMBSO with migration is newly proposed in
order to realize improvement of quality of solution. The proposed MP-GMBSO with migration-based
method is applied to a model of mid-sized city such as Toyama city. The results of the proposed method
are compared with those of the GMBSO based method with a single population, and the MP-GMBSO
based methods with only abest, and with both migration and abest model. Various numbers of
sub-populations, various topologies (trigonal pyramid with four sub-populations, cube with eight
sub-populations, hyper-cube with 16 sub-populations, and ring with 2, 4, 8, 16 sub-populations),
various policies, various interaction models (only using migration, only using abest, and using both
migration and abest), and various numbers of individuals have been investigated in simulation results.

The following gives a summary of the paper contributions:

- A proposal of a new evolutionary computation method, namely MP-GMBSO with migration,
in order to realize improvement of quality of solution,

- An application of MP-GMBSO with migration-based method to total optimization of energy
networks in a smart city,

- Verification of efficacy of the conventional GMBSO based method for total optimization of smart
city by comparing with the conventional DEEPSO, BSO, MBSO, and GBSO based methods,

- Verification of efficacy of the proposed MP-GMBSO based method with migration for total
optimization of smart city by comparing with the original GMBSO (GMBSO with one population)
based method, and the MP-GMBSO based methods with various interaction model (only using
migration, only using abest, and using both migration and abest), various policies, various
topologies, various numbers of individuals, and various numbers of sub-populations,

- It is verified that quality of solution is the most improved by the proposed MP-GMBSO with
migration-based method using the ring topology with 16 sub-populations and 320 individuals,
and the W-B policy (the worst individual of a sub-population is substituted by the best individual
of other sub-populations) among all of multi-population parameters.

The rest of the paper is organized as follows. Section 2 explains a concept of the smart city
model. Section 3 introduces problem formulation. Section 4 explains the details of the conventional
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BSO, MBSO, GBSO, and GMBSO. The proposed MP-GMBSO is also explained as well. Section 5
shows the proposed MP-GMBSO based total optimization method for energy networks in a smart
city. Section 6 compares the conventional GMBSO based method with the conventional DEEPSO, BSO,
MBSO, and GBSO based methods. It also presents a comparison of the proposed MP-GMBSO with
migration-based method with the original GMBSO with a single population, MP-GMBSO with only
abest model, and MP-GMBSO with both migration and abest model, and investigation of various
migration topologies, migration policies, the number of sub-populations, and the number of individuals.
Finally, Section 7 concludes the paper.

2. Smart City Model

2.1. A Summary of the Whole Smart City Model

The smart city model has been developed for quantitative evaluation of a smart city. CO, emission
or energy costs of whole smart city can be quantitatively calculated by the model. Various sectors
are included in the model (see Figure 1). The model deals with energy supply-side and demand-side
groups. Natural gas and electric power utilities, and drinking water and wastewater treatment plant
sectors are categorized into the energy supply-side group. The other sectors are categorized into the
demand-side group [8,27].
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Figure 1. Configuration of a smart city model (© 2018 IEEE [27]).

2.2. Sector Models in the Supply-Side Group

The group interactively supply energies (natural gas, electric power, and drinking water). Namely,
supplied energies by supply-side sectors and energy loads of demand-side sectors should be the same.
The details are shown in [9,27].

2.3. Sector Models in the Demand-Side Group

Various energy supply facilities inside each sector are modeled. Various energy loads such as
electric power, hot and cold heat, and steam loads are also dealt with. The energy supply facilities
supply tertiary energies to the various energy loads when operations of facilities are decided. Hence,
required secondary energies are calculated, and the amount is supplied from the energy supply group
when various hourly energy loads of one day (24 points) are obtained and operations of facilities
(decision variables) are determined. Figure 2 shows an industrial model as an example. The details are
shown in [10,27].
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Figure 2. A configuration of an industrial model (© 2018 IEEE [27]).
3. Problem Formulation of Total Optimization of Energy Networks in a Smart City

This paper considers smart cities such as industrial parks and local governments of cities aiming
at minimization of energy cost, actual electric power at high load hours, and CO, emission. Purchase

costs of various fuels by electric power and gas companies from resource companies are not included
in the problem.

3.1. Decision Variables

Decision variables in considered sectors are shown in Table 1. Each decision variable has to
consider 24 hourly decision variables per day. Therefore, when the number of each facility at each sector

is set to 1, the total number of decision variables can be 816. Hence, the problem can be considered as
one of the large-scale optimization problems.

Table 1. Decision variables in various sectors.

Sector Decision Variables

Output of electric power of a gas turbine generator (GTG), Heat output of turbo
refrigerators (TRs), Heat output of stream refrigerators (SRs), Charged or discharged
electric power of a storage battery (SB)

Industrial sector

Building sector Output of electric power of a GTG, Heat output of TRs, Heat output of SRs

Residential sector Heat output of SRs, Output of electric power of a fuel cell, Heat output of a heat
pump water heater, Charged or discharged electric power of a SB

The number of passengers/h, Average of journey distance by one passenger/h,
The number of operated trains/h, The numbers of passenger cars/set, Average of
journey distance by one train/h, Average of speed/h, The number of passengers/car

Railroad sector

Drinking water

Inflow from river, Inflow of water into a service reservoir, Output of electric power
treatment plant sector

output of a co-generator (CoGen), Charged or discharged electric power of a SB

Wastewater treatment

Input of Pumped wastewater, Output of electric power of a CoGen, Charged or
plant sector

discharged electric power of a SB

3.2. Objective Function

The objective function of the smart city problem considers three terms. The function considers
minimization of energy costs of whole smart city as the first term. Actual electric power at high load
hours are minimized by the second term of the function. The function also considers minimization of
CO, emission in the whole city as the third term. The functions are shown in the following Equation (1):

) NumSec T NumSec PE NumSec T
min< wy 21 Zl(pgnj X Gun]‘ =+ Penj X Eun]') -+ w»y 21 Zps(elnm) +w3 Z] 'Zl(pg”j X GC + pen;j X EC) (1)
n= = n= m= n= =
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where NumSec is the number of sectors except electric power and natural gas utilities, T is the number
of hours per day (=24), pg,; is natural gas purchase at hour j of sector 1, GU,;; is a natural gas purchase
unit cost at hour j of sector n, pe;; is electric power purchase at hour j of sector n, EU,,; is an electric
power purchase unit cost at hour j of of sector n, el is an actual electric power load at hour m of
sector 11, PS is the start hour of peak load hours of actual electric power loads, PE the end hour of peak
load hours of actual electric power loads, GC is a coefficient between the purchased natural gas and
CO; emission, EC is a coefficient between purchased electric power and CO, emission, and wy, w»,
and w3 are weighting coefficients (w; + wp + w3 = 1).

Authors include one of a member of a smart city model committee in IEE of Japan. In the committee,
a scope of a smart city has been discussed in order to consider a closed community such as industrial
parks and local governments. In such a case, purchase costs of various fuels by electric power and gas
companies from resource companies are not out of the scope of the city and we follow the scope in
(1). After decision variables are calculated, the amounts of natural gas and electric power purchase
are calculated as dependent variables. Hence, when the dependent variables violate limits of the
constraints, penalty function values are calculated and they are added to the objective function values.

3.3. Constraints

(1) Energy balances: Electric power, hot and cold heat, and steam energy balances are considered.
These energy balances are expressed using the following equation:

gur(Yi,zi) =0,(n=1,...,NumSec, r =1,...,NumE,, i = 1,..., NumDim) )

where ¢, (1, z;) is a balance equation of energy r in sector n, y; is a startup or shutdown status
of a facility for decision variable i (€ {0, 1}), and z; is an input or output real value of a facility
for decision variable i (€ R), NumE,, is the number of energies in sector 1, and NumDim is the
number of decision variables.

(2) Facility characteristics: Efficiency functions of facilities, and upper and lower bounds of various
facilities in each sector can be expressed using the following equation:

hug(yi,zi) <0,(n =1,...,NumSec, g =1,...,NumF,, i = 1,..., NumDim) 3)

where hy4(y;, z;) is an efficiency function of facility, or upper and lower bounds of facility g of sector
n, and NumF, is the number of facilities in sector n. Efficiency of facility should be sometimes
expressed with nonlinear functions. Hence, the problem is considered as one of mixed-integer
nonlinear optimization problems (MINLPs) and evolutionary computation methods should be
utilized in order to treat the problem.

4. The Proposed Multi-Population Global-Best Modified Brain Storm Optimization with Migration

MP-GMBSO is based on GMBSO which has been proposed using MBSO and GBSO [17].
Since MP-GMBSO is based on BSO variations, this section summarizes BSO, MBSO, GBSO and GMBSO.

4.1. Overview of BSO
BSO has developed by Shi in 2011 [28]. The BSO’s main procedure is shown below.

Stepl Initialization: Randomly generate NumlInd individuals and calculate the objective function
values of NI individuals.

Step2 Clustering: The k-means method is applied to divide Numind individuals into K clusters.

Step3 Generation of New individual: One or two clusters are randomly selected, and new individuals
are generated.
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Step4 Selection of individuals: Individuals which are newly generated are compared with the
current individuals which have the same individual indices of the newly generated individuals.
Keep the better ones and the individuals are stored as the current individuals.

Step5 Evaluation of individuals: The newly stored NumlInd individuals are evaluated.

Step6 The procedure can be stopped and go to Step 7 when the iteration number reaches the
maximum iteration number which is pre-determined. Otherwise, go to Step 2 and repeat
the procedures.

Step7 The objective function value and the finally obtained variables are output as a set of the
final solution.

Details of Step 2 and 3 are explained below.

4.1.1. Clustering of BSO

BSO utilizes the k-means method as a clustering method for dividing search space into small regions.
A probability pstering is utilized in order to change a cluster center to a randomly generated searching
point. The method can avoid fast convergence, namely premature convergence, and individuals can
escape from the local optima. The clustering algorithm is shown below:

Step 2-1 Clustering: The k-means algorithm is applied to divide NumlInd individuals into K clusters.
Step2-2 A value ¢ystering is randomly generated in random (1,0).

Step 2-3 Individuals are ranked in each cluster.
I Tetustering = Pelustering (@ pre-determined probability),
the best individual is set as the cluster center in each cluster,
Otherwise,
One individual is randomly selected in each cluster, and the selected individual is set as the
cluster center.

4.1.2. Generation of New Individual of BSO

The following equations are utilized in order to generate new individuals based on one or two
current individuals:

xl’;?w = x?}d +&(t) xrand(1, 0) (i=1,...,NumInd, j=1,...,NumDim) 4)
SXITER -1

&(t) = logsig(u) x rand(1, 0) ()

xf}d = rand(t) xxgé.d + (1 —rand(t)) xxgljd (i=1,...,Numlnd, j=1,...,NumDim) (6)

where, x?}?w is decision variable j of the ith new individual, x;’;d
individual, &(¢) is a step size function, ITER is the number of maximum iteration, iter is the current

number of iteration, c is a coefficient to change slope of the log-sigmoid transfer function, x%,d and le.d

are decision variable j of two individuals which are randomly selected two cluster centers or randomly

selected two individuals of the selected two clusters.
old

1
If poeneration > rand(1,0), one cluster is randjomly selected.
If POneCluster = mnd(l, O)r
the cluster center in the selected one cluster is set as x'
generated using (4) and (5).
Otherwise,

is decision variable j of the ith current

Several conditions utilized to determine x%* is shown below:

old

i and one new individual is

one individual is randomly set as x‘l?!d in the selected one cluster and one new individual
is generated using (4) and (5).
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If Pgeneration < mnd(lr 0)/
two clusters are randomly selected.

If PTwoCluster < rand(ll 0)/

Set the two cluster centers as x%,d and x‘éljd
one new individual is generated using the combined x?;d with (4) and (5).
Otherwise,

and the two centers are combined using (6).

Randomly select two individuals from the two selected clusters and the selected
Z;d and xg;d and combined using (6). One new individual is
generated using the combined x?;d with (4) and (5).

individuals are set as x

4.2. Overview of MBSO

MBSO has been proposed in order to improve two procedures of BSO [29]: Clustering and
generation of new individuals. The k-means method is utilized for clustering in BSO algorithm and
it takes a long time. Hence, simple grouping method (SGM) is applied in MBSO for reduction of
calculation time. In addition, the method utilizes a different method for generation of new individuals
for increase of individual diversification.

4.2.1. Clustering of MBSO
In MBSO, SGM is utilized as a clustering method. The algorithm of SGM is shown below:

Stepl K different individuals are randomly selected from the current generation as group centers of
K groups.
Step2 Calculate distances between the individuals and each group center. Distances to all group
centers are compared. The individuals are assigned to the closest group.
Step3 Individuals are ranked in each cluster.
I 7 custering = Pelustering (@ pre-determined probability),
the best individual is set as the cluster center in each cluster,
Otherwise,
One individual is randomly selected in each cluster, and the selected individual is set as
the cluster center.

4.2.2. Generation of New Individuals in MBSO
MBSO utilizes the following different equation in order to diversify individuals:

mndom(H]-,L]-) (random(1,0) < pr)
xﬂ?a] —

iji xf}d + rand(1,0) x (xf]l —xf]?) (pr < random(1,0))

(i=1,...,Numnd, j =1,...,NumDim) (7)

where, pr is a probability utilized to determine which equation is utilized, L; is the lower bound of
decision variable i, H; is the upper bound of decision variable 7, and xf]l and xf}z are the randomly
selected individuals for decision variable j of individual i.

4.3. Overview of GBSO

GBSO has been proposed in order to improve BSO [30]. The fitness-based grouping method is
utilized as a clustering method in GBSO. In addition, the global-best idea information is added to
individuals when a condition is satisfied. Details of the fitness-based grouping and the way to update
individuals considering the global-best idea are explained in the next subsections.
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4.3.1. Clustering

GBSO utilizes fitness-based grouping as a clustering method. An algorithm of the fitness-based
grouping method is explained as follows:

Step1l Individuals are ranked using calculated values of the objective function.
Step2 Numlind individuals are divided into K groups using (8).

g(i) = (r(i) —1)%K+1 (i=1,.,Numlnd)) (8)
where, g(i) is the selected group number of individual i, 7(i) is a ranking of an individual i.

4.3.2. Generation of New Individuals of GBSO

GBSO utilizes the same BSO algorithm for generation of new individuals. However, information
of “gbest”, which is the best individual so far among all individuals, is applied to individuals when
a certain condition is satisfied. In such a case, using (11), gbest information is added to x?]ld
one individual or x‘l?{d which is combined with (6) using two selected individuals before new individual
is generate in GBSO. Generally, when evolutionary computation is applied, diversification should be
focused at the early searching iterations and intensification should be focused at the final searching

iterations. Therefore, the authors change the condition (9) [16].

of a selected

C > rand(1,0) 9)
iter
C= Cmin + m X (Cmax - Cmin) (10)

where, C is a probability and utilized to determine whether information of “gbest” is applied or not,
Cmax is the maximum bound of C, Cmin is the minimum bound of C.
When the condition (9) is satisfied, information of “gbest” is applied to x?;d using the following equation:

XM — 01 | rand(1,0) x C (xfb“t - x;’]?d) (i=1,...,Numlnd, j=1,...,NumDim) (1)

4.4. Overview of GMBSO

The GMBSO has been proposed by the authors as a combined method of MBSO [29] and GBSO [30].
For clustering in GBSO, the Fitness-grouping method is utilized, which is proposed in [30]. For new
individual generation, an update equation developed for MBSO is utilized which is proposed in [29]
considering diversification. In addition, information of "gbest", is applied to individuals when a certain
condition is satisfied. In such a case, using (11), information of "gbest" is applied to x%? of a selected

1
one individual or x‘l?ld which is combined with (6) using two selected individuals before new individual

is generate in GMBSO [17]. The procedure of GMBSO is shown below:

Stepl Initialization: Numlind individuals are randomly generated and evaluated.

Step2 Clustering: Numlnd individuals are divided into K clusters by Fitness-based grouping
explained in 4.3.

Step3 Generation of new individuals: Randomly select one cluster or two clusters. When the condition

(9) is satisfied, information of “gbest” is applied to x?}d using (11). Then, new individuals are
generated using Equation (7) explained in 4.2.

Step4 Selection: The individuals which are newly generated are compared with the current
individuals with the same individual indices. The better one is kept and stored as the
current individual.

Step5 Evaluation: The Numind individuals are evaluated.
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Step6 The procedure can be stopped and go to Step 7 if the number of current iteration reaches the
maximum number of iteration which is pre-determined. Otherwise, go to Step 2 and repeat
the procedures.

Step7 The objective function value and the finally obtained variables are output as a final solution.

4.5. Overview of the Proposed MP-GMBSO

Conventionally, the migration model [18,19,21,23-25] (see Figure 3), the abest model [20,22]
(see Figure 4), and a model using both migration and abest [26,31] (see Figure 5) has been considered in
multi-population based evolutionary computation methods. The migration and abest model has been
proposed by the authors because the smart city problem can be considered as one of the large-scale
optimization problems [26]. Evolutionary computation methods with multiple searching points utilize
only one population. On the contrary, the multi-population models divide searching individuals of
one population into several sub-populations, and different searching process is performed at each
sub-population. In addition, multi-population models exchange and replace searching individuals
among sub-populations at certain intervals. The model shares the information of the best searching
point of all sub-populations (abest) among all sub-populations in the abest model, and the combined
migration and abest model. The various parameters of the models are shown below.

- The number of sub-populations: the number of sub-populations which performs GMBSO
independently.

- Migration topology: topological structures of sub-populations. Ring topology with 2, 4, 8,
and 16 sub-populations (see Figure 6a—d), trigonal pyramid topology with four sub-populations,
a cube topology with eight sub-populations, or hyper-cube topology with 16 sub-populations
(see Figure 7a—c) can be utilized.

- Migration interval: how often searching individuals migrate.

- Migration policy: the way to select searching individuals for replacement in the receiving
sub-population and the way to select searching individuals for migration in the sending
sub-population. The worst individual of the receiving sub-population is replaced by the best
individual of the sending sub-populations (W-B) (see Figure 8) , a randomly selected individual
of the receiving sub-population is replaced by the best individual of the sending sub-populations
(R-B) , the best individual of the receiving sub-population is replaced by the best individual
of the sending sub-populations (B-B), the worst individual of the receiving sub-population is
replaced by a randomly selected individual of the sending sub-populations (W-R), a randomly
selected individual of the receiving sub-population is replaced by a randomly selected individual
of the sending sub-populations (R-R), the best individual of the receiving sub-population is
replaced by a randomly selected individual of the sending sub-populations (B-R), the worst
individual of the receiving sub-population is replaced by the worst individual of the sending
sub-populations (W-W), a randomly selected individual of the receiving sub-population is
replaced by the worst individual of the sending sub-populations (R-W), or the best individual of
the receiving sub-population is replaced by the worst individual of the sending sub-populations
(B-W), can be utilized .
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(oo, b o
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Figure 3. A concept of a multi-population model using only migration (© 2018 IEEE [27]).
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Figure 5. A concept of a multi-population model using both migration and abest (© 2018 IEEE [27]).
4.6. Update Equations of The Proposed MP-GMBSO with Migration

This paper proposes MP-GMBSO with migration. Equations for Fitness-based grouping, updating
in order to apply information of “gbest” to xajld, and equations for new individual generation are
shown below.

Following Equation (12) is utilized for fitness-based grouping of MP-GMBSO.

old

2s(1) = (Rs(i) = 1)%Ks + 1 (i=1,.,Numlnd, s =1,..., NumSubPop)) (12)

where g;(i) is a selected group number of individual i in a sub-population s, Rs(i) is the rank of
individual i in a sub-population s, Ks is the number of cluster in a sub-population s, and NumSubPop is
the number of sub-populations.

OO0

(a) 2 sub-populations (b) 4 sub-swarms (c) 8 sub-populations (d) 16 sub-populations

Figure 6. Examples of ring topologies using various numbers of sub-populations (© 2018 IEEE [27]).

A, L

(a) Trigonal pyramid with 4 sub-populations  (b) Cube with 8 sub-populations (c) Hyper-cube with 16 sub-populations

Figure 7. Topologies with three and more connections using various numbers of sub-populations
(© 2018 IEEE [27]).
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old old
ij ij
multi-population. There are two equations. One is for the only migration model. Another one is for
the only abest model, and the combined migration and abest model.

An equation for updating x in order to apply information of “gbest” to x?# is expanded for

- the proposed MP-GMBSO with only migration model (see Figure 3):

¥ = x0 1 pand(1,0) x C x (xgbm - xo’d)(i =1,...,Numlnd, j=1,...,NumDim, s = 1,..., NumSubPop) (13)
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variable j of the best individual in sub-population s.
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where x7: is decision variable j of the ith individual in sub-population s, and xi “"is decision

- only abest model (see Figure 4), and a model using both migration and abest (see Figure 5):

X0 — X0l 1 yapd(1,0) x C x (x‘;b”f - x”ld)(i =1,...,Numl, j=1,...,NumDim, s = 1,...,NumSubPop)  (14)

ijs ifs ifs

where x?t is decision variable j of the best individual among all individuals. (14) is utilized for

comparison in Simulations.
An equation for new individual generation is expanded for multi-population as shown below.

mndom(Hj, L]-) (random(1,0) < pr)

e = i=1,...,Numlnd, j =1,...,NumDim, s = 1,..., NumSubP 15
ijs x??{i—o—mnd(l,o) x(x?,l —xs.?‘) (i uming, j M, s umsubPop) - (15)

js ijs ijs
where x?jesw is decision variable j of the ith newly generated individual in sub-population s, and x?].ls and

xf}zs are decision variable j of the randomly selected two individuals of individual 7 in sub-population s.

5. Total Optimization of Energy Networks in a Smart City by Multi-Population Global-Best
Modified Brain Storm Optimization with Migration

5.1. Cutout Transformation Function

Both discrete and continuous variables are dealt as the decision variables of the problem. In order
to easily utilize evolutionary computation method, decision variables should be only continuous
variables. Therefore, the authors utilize a cutout transformation function which changes both discrete
and continuous variables to only continuous variables. In addition, the function can reduce the number
of decision variables. Startup and shutdown status of facilities can be expressed as discrete variables
yi(i=0,...,NumDim) (0 and 1). Operational values of facilities are expressed as continuous variables
z;. Discrete variable y; is expressed as follows:

yi(zi) = { 0 (Zi‘ _0) (i=1,...,NumDim) (16)
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Shutdown status (y; = 0) of facilities cannot be searched effectively considering (16), because y; is
equal to 0 if and only if z; is equal to 0. Hence, new continuous variables x; (i = 1,..., NumDim) are
utilized and the relationship between z; and x; are expressed as follows:

0 (xl- < ,Bz)
N li (ﬁini<0) - ,
zi(x;) = L+ (-l  (0<x<1) (i=1,...,NumDim) (17)
uj (xi > 1)
@ <x; <Y (18)

where /; is a minimum bound of z; (the minimum input/output value of a facility), ; is an maximum
bound of z; (the upper input/output bound of a facility), ; is a parameter of x; for shutdown status of
a facility, a; is a lower limit of x;, and y; is an upper limit of x;.

Both discrete and continuous variables are utilized in the problem. However, the function can
change both the discrete and continuous variables to only continuous variables and the evolutionary
computation can be easily utilized.

5.2. Reduction of Search Space

Conventionally and usually, from the current operating conditions of various facilities, search
space is calculated using the maximum decrease/increase of energy output/input values of facilities,
upper/lower bounds of energy output/input values of facilities. The authors have proposed a reduction
method of search space considering not only characteristics of various facilities but also considering
electric and natural gas hourly cost and hourly load characteristics, and smooth transition to the next
day facility operation in weekdays. As an example, the reduction of search space of the heat storage
tank is explained in this section. The upper and lower bounds of the stored heat energies are calculated
from the initial condition (HSTjyti,) [11,12]. The bounds are calculated by the equations shown below:

HSTo = HSTinitial 19)
ForMax; = HST;_1 — HinMax; + Hout; + Loss (20)
ForMin; = HST;_1 — HinMin; + Hout; + Loss (21)

where HST; is the stored heat energies at hour i, ForMax; is the upper bound of stored heat energies in
the heat storage tank at hour i, ForMin; is the lower bound of stored heat energies in the heat storage
tank at hour i, HinMax; is the upper bound of heat input value at hour i, HinMin; is the lower bound of
heat input value at hour i, Hout,; is heat output at hour i, and Loss is hourly heat loss.

Solid lines in Figure 9 show ForMax; and ForMin; and dash-dotted lines in Figure 9 show BackMax;
and BackMin;. Using the same calculation concept of (20) and (21), BackMax; and BackMin; can be
calculated using the opposite direction from T hour considering smooth transition to the next day
facility operation in weekdays. Finally, considering the upper and lower bounds explained above, the
following (22) and (23) shows the reduced search space at each hour.

TMax; = Min {ForMax;, BackMax;, HST Max} (22)

TMinx; = Max{ForMin;, BackMin;, HSTMin} (23)

where TMayx; is the upper bound of the stored heat energies in the heat storage tank in the reduced
search space at hour i, TMinx; is the lower bound of the stored heat energies in the heat storage tank in
the reduced search space at hour i, HSTMax is an upper bound of heat energies in the heat storage
tank, and HSTMin a lower bound of heat energies in the heat storage tank.
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The reduced search space is shown with a shaded area in Figure 9 considering not only
characteristics of various facilities but also smooth transition to the next day facility operation
in weekdays and heat hourly load characteristics. Consequently, the reduction of search space can
realize effective search to the target problem.

. = -BackMax:
= &
S Tos
-
= -
Z) ............................... h...g ...............................
— HSTMax
)
E secesscccsscscsscesmE eI e et es w '..-.----.-.-.------.-.-.-HSTMM
<
S BackMini
B ForMini
@
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Time [h]

Figure 9. A conventional search space (inside solid lines) and a reduced search space (shaded area) of
a heat storage tank (© 2018 IEEE [27]).

5.3. The Proposed Total Optimization Algorithm of Smart City by MP-GMBSO with Migration

The proposed total optimization algorithm by MP-GMBSO with migration is shown below:

Stepl Inmitialization: Divide all individuals into NumSubPop sub-populations. Generate initial
individuals at each sub-population considering the reduced search space for a smart city.

Step2 Calculate the objective function at all individuals in sub-populations.

Step3 Clustering:

Step 3-1 Generate clusters using FbG in all sub-populations.

Step 3-2 Calculate objective functions of all individuals in each cluster in all sub-populations.

Step 3-3 Rank individuals ascending order.

Step 3-4 The highest rank individuals at each cluster of all sub-populations are set as cluster
centers. If peygtering > rand(1,0), randomly generate a new individual and replace
a cluster center with the newly generated individual.

Step4 Generation of new individual: When condition (9) is satisfied, information of “gbest” is

applied to x‘l?lg using (13) or (14). New individuals are generated considering several conditions
explained in 4.1.2 using Equation (15).

Step5 Selection:

Step 5-1 The objective function values are calculated for all individuals.

Step 5-2 The new individual is compared with the current individual with the same individual
index. Keep the better one and the individual is stored as the current individual in
all sub-populations.

Step6 Evaluation: Calculate objective function values of individuals in all sub-populations. The best
individual is updated when the objective function value of the individual is better than the
current best individual.

Step7 Individuals are migrated when the current iteration number reaches the migration interval
which is pre-determined.

Step8 the whole procedure is stopped and go to Step 9 when the current number of iterations reaches
the maximum number of iterations which is pre-determined. Otherwise, go to Step 3 and
repeat the procedures.
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Step9 The finally obtained objective function value and the best operational values are output as
a final solution.

6. Simulations

6.1. Simulation Conditions

The proposed MP-GMBSO with migration is applied to a typical mid-sized city model referring
to data of Toyama city in Japan. The numbers of models in each sector in the model are shown below.
They are determined so that sector load ratios of the model are approximately the same as the sector
load ratios of Toyama city [32]:

Industry model: 15, Building model: 50, Residential model: 45,000, Railroad: 1, Drinking water
treatment plant: 1, Wastewater treatment plant: 1.

Usually, each smart city has each goal. Therefore, this paper considers the following three cases in
order to consider different goals of smart cities:

Casel: a goal of a general smart city considering all three terms of the objective function equally,
wy : 0.333, wy : 0.333, w3 : 0.333
Case2: a goal of an industrial park which usually concentrates only minimization of total energy cost
w1:1, ZUZZO, ZU3:0
Case3: a goal of local government of a city which usually concentrates only minimization of
CO; emission.
w1:0, ZUZZO, ZU3:1

The results of GMBSO based method are compared with those by the conventional DEEPSO,
BSO, MBSO, and GBSO based methods. In addition, the results of the MP-GMBSO based method
are compared with those by the originally proposed GMBSO based method with a single population,
the MP-GMBSO based methods with only migration (the proposed method), with only abest, and with
both migration and abest.

The following parameters are utilized for conventional DEEPSO:

7: 0.2, 7': 0.006, p: 0.75, the initial weight coefficients (A, B, and C): 0.5, the number of clones: 1.
The following parameters are utilized for conventional BSO, MBSO, GBSO, and GMBSO:

Pclustering * 0.5, Pgeneration * 0.5, poneciuster = 0-2, PTwoCluster = 0.2, pr : 0.2 (for MBSO, GMBSO), ¢y : 0.7,
Cmin : 0.2 (for GBSO and GMBSO).

The following parameters are utilized for the conventional and the proposed MP-GMBSO
based method.

- The initial weight coefficients of each term (D) is set to 0.5,

- The number of sub-populations (NumSubPop): 2, 4, 8, and 16,

- The total number of individuals (Numlnd): 1280 (640 individuals/sub-population
for 2 sub-populations, 320 individuals/sub-population for 4 sub-populations,
160 individuals/sub-population for 8 sub-populations, and 80 individuals/sub-population
for 16 sub-populations), 640 (320 individuals/sub-population for 2 sub-populations,
160 individuals/sub-population for 4 sub-populations, 80 individuals/sub-population
for 8 sub-populations, and 40 individuals/sub-population for 16 sub-populations),
320 (160 individuals/sub-population for 2 sub-populations, 80 individuals/sub-population
for 4 sub-populations, 40 individuals/sub-population for 8 sub-populations,
and 20 individuals/sub-population for 16 sub-populations), 160 (80 individuals/sub-population
for 2 sub-populations, 40 individuals/sub-population for 4 sub-populations,
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20 individuals/sub-population for 8 sub-populations, and 10 individuals/sub-population
for 16 sub-populations), and 80 (40 individuals/sub-population for 2 sub-populations,
20 individuals/sub-population for 4 sub-populations, 10 individuals/sub-population for
8 sub-populations).

- Migration topology: Ring with various numbers of sub-populations (see Figure 7a—d), trigonal
pyramid (MTT), cube (MT¢), and hyper-cube (MTp) (see Figure 8a—),

- Migration interval: 10 to 100 in 10 increments,

- Migration policy: W-B, R-B, B-B, W-R, R-R, B-R, W-W, R-W, B-W.

The following parameters are utilized for all methods.

- The number of trials: 50
- The maximum iteration number for BSO, GBSO, MBSO, and GMBSO based methods: 2000
- The maximum iteration number for DEEPSO based method is set to 1000

The conventional DEEPSO based method evaluates the objective function twice at each iteration
for both new and clone individuals. Therefore, the maximum iteration number for DEEPSO is set
to be half in order to keep the same number of objective function evaluation among all methods.
Initial searching points are randomly generated for all methods. The simulation software has been
developed using C language (gcc version 4.4.7) on a PC (Intel Xeon E5-2660 (2.20 GHz)).

6.2. Simulation Results

Firstly, the comparison of the mean, the minimum, the maximum, and the standard deviation
of the objective function values for Case 1 among DEEPSO, BSO, MBSO, GBSO, and GMBSO based
methods are shown in Table 2. Eighty individuals are utilized in Table 2. The number of individuals is
set to 80 because the condition is the most severe for all methods. The results in the table are percentages
of the objective function value when the mean of the objective function value by DEEPSO is set to
100%. It is verified that the mean, the minimum, the maximum, and the standard deviation of GMBSO
based method can be the most reduced among all methods.

Table 3 shows results of the mean ranks for Friedman test and p-value among the conventional
DEEPSO, BSO, GBSO, MBSO, and GMBSO based methods. It is verified that there are significant
differences at 0.05 significance level among all methods and the mean ranks by the GMBSO based
method for each case are the best in Table 2.

Table 2. Comparison of the mean, the minimum, the maximum, and the standard deviation of the
objective function value among conventional DEEPSO, BSO, MBSO, GBSO, and the proposed GMBSO
based methods with 80 individuals. !

Case Mean  Min. Max. Std.
DEEPSO  100.00 98.75  101.63 0.57

BSO 97.13 96.46 97.96 0.30

1 GBSO 95.94 95.55 97.03 0.26

MBSO 97.20 96.75 97.66 0.20
GMBSO 95.06 94.90 95.29 0.09
DEEPSO  100.00 99.53  100.58 0.20

BSO 99.28 98.98 99.60 0.14
2 GBSO 98.29 98.22 98.42 0.04

MBSO 99.38 99.15 99.50 0.06

GMBSO 98.26 98.17 98.36 0.04
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Table 2. Cont.

Case Mean  Min. Max. Std.
DEEPSO  100.00 99.44  100.88 0.32

BSO 99.64 99.38 99.87 0.09

3 GBSO 99.36 99.12 99.53 0.10

MBSO 98.37 98.30 98.46 0.04
GMBSO 98.10 98.05 98.16 0.03

1 All values are calculated when the mean of the objective function value of the proposed method with a single
population is set to 100%.

Table 3. Results of average ranks and Friedman Test through 50 trials among the conventional DEEPSO,
BSO, GBSO, MBSO, and the proposed GMBSO based methods.

DEEPSO BSO GBSO MBSO GMBSO p-value

Case 1 5 3.34 2 3.66 1 2.26 x 10730
Case 2 5 3.22 1.6 3.78 14 9.75x 10737
Case 3 492 4.08 3 2 1 2.26 x107%

Secondly, the best multi-population model is investigated among three models, namely, only
migration model, only abest model, or a model using both migration and abest. Table 4 shows
comparison of the mean, the minimum, the maximum, the standard deviation, and the mean rank
of the objective function value among various numbers of sub-populations, and topologies using
both migration with the W-B policy and abest, only migration with the W-B policy, and only abest
with 640 individuals for Case 1 through 50 trials and a p-value by Friedman test. Six hundred and
forty individuals are utilized in the table because there is a possibility to obtain better results by the
MP-GMBSO based method through previous studies. The results of Table 4 are calculated when the
mean of the objective function value using one sub-population is set to 100%. It is verified that the
mean, the minimum, the maximum, and the standard deviation can be the most reduced by the only
migration model with 16 sub-populations (bold numbers). It can be considered that the GMBSO based
method can focus on intensification more than the other methods including the multi-swarm DEEPSO
based method with a model using both migration and abest [26]. Therefore, the only migration model is
the best model especially for the proposed MP-GMBSO based model in order to balance diversification
and intensification. In addition, the mean rank by the only migration model with 16 sub-populations
is the best among all parameters in the table.

Table 5 shows the mean, the minimum, the maximum, the standard deviation, and the average
rank of the objective function value of the optimal objective function values of each migration model
with 640 individuals through 50 trials for Case 1 and a p-value by Friedman test. It is verified that
the mean, the minimum, the maximum value, and the average rank using only migration model are
the best among all multi-population models. It is also verified that there are significant differences at
0.05 significance level among all parameters in Table 4.
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Table 4. Comparison of the mean, the minimum, the maximum, the standard deviation, and average

rank of the objective function value of the optimal objective function values among various numbers of

sub-populations, and topologies using both migration with the W-B policy and abest, only migration

with the W-B policy, and only abest with 640 individuals through 50 trials for Case 1 and a p-value by

Friedman test. !

Model Plzlllé :-0 ¢ Ring — Trigonal Pyramid/Cube/Hyper-Cul:, -
Yy SUDPOP-  pNean  Min. Max. Std. ' Mean  Min. Max. Std. :
Rank Rank
- - 1 10000 9990 10017 006  18.82 - - - - -
2 9994 9982 10006 005 1744 - - - - -
bt - 4 99.89 9979 9999 004 1622 - - - - -
8 99.80 9973 9989 003 1166 - - - - -
16 9971 9959  99.83 004 564 - - - - -
2 99.85 9973 9992 005 1428 - - - - -
Abest & 4 9979 9967 9987 005 1052 99.80 9971 9991 005  11.02
Mig. W 8 973 9962 9986 005 676 9975 9953 9986 006 83
16 9967 995 9983 008 452 9973 9953 9987 008  7.04
2 99.86 9978 9997 004 1546 - - - - -
Mg, . 4 9978 9969 9989 005 994 9979 9971 9987 004 1118
8 9972 9959 9982 006 618 9973 996 9989 006 68
16 99.63 9945 9982 009 314 9968 9952 9991 008 508
p-value 4.89 x 107120

1 All values are calculated when the mean of the objective function value of the proposed method with a single

population is set to 100%.

Table 5. The best values of the mean, the minimum, the maximum, the standard deviation, and the

average rank of the objective function value of the optimal objective function values of each migration

model with 640 individuals through 50 trials for Case 1 from Table 4 and a p-value by Friedman test. !

Model Mig. Policy  # of sub-pop. Ring
Mean  Min. Max. Std. Ave. Rank
- - 1 100.00 99.90 100.17 0.06 4
Abest - 16 99.71 99.59 99.83 0.04 24
Abest & Mig. W-B 16 99.67 99.5 99.83  0.08 2.02
Mig. W-B 16 99.63 99.45 99.82 0.09 1.58
p-value 1.48 x 10721

1 All values are calculated when the mean of the objective function value of the proposed method with a single

population is set to 100%.

Next, the best migration policy and topology are investigated in Table 6 when the only migration

model is utilized. Table 6 shows comparison of the mean, the minimum, the maximum, the standard

deviation values, and the average rank of the optimal objective function values using only migration

model among various migration policies, various topologies, and various numbers of sub-populations

with 640 individuals through 50 trials for Case 1 and a p-value by Friedman test. The results of the
table are calculated when the average of the objective function value using one sub-population is set to
100%. It is studied that, using only migration, the results can be the most reduced by the “W-B” policy
with 16 sub-populations and the ring topology (bold numbers), and the average rank by the “W-B”
policy with 16 sub-populations and the ring topology is the best among all parameters in the table.
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Table 6. Comparison of the mean, the minimum, the maximum, the standard deviation values, and the average rank of the optimal objective function values using

only migration model among various migration policies, various topologies, and various numbers of sub-populations with 640 individuals through 50 trials for Case 1

and a p-value by Friedman test. !

Ring Cube/Trigonal Pyramid/Hypercube
Policy  NSP Ave. Rank Ave. Rank
Mean Min. Max. Std. Mean Min. Max. Std.
- 1 100 99.9 100.17 0.06 38.78 - - - - -
2 99.93 99.82 100.08 0.05 33.48 - - - - -
BB 4 99.89 99.75 100.05 0.05 28.48 99.89 99.8 100 0.05 27.94
8 99.82 99.72 99.88 0.04 19.14 99.81 99.72 99.95 0.05 18.78
16 99.71 99.61 99.85 0.06 8.2 99.71 99.61 99.79 0.04 7.88
2 654x100  1.17x10° 1.89x10"1  5.06x 10 48.12 - - - - -
W 4 735x 1010  441x108 325x10M  542x1010 48.82 856x 1010  1.62x10° 228x10" 5.49x 100 49.46
8 1.13x 1011 8.82x108 329x10M  7.45x 1010 51.2 9.55x1010  1.11x100 248x101  6.09 x 1010 50.32
16 1.27x10!! 101.55 2.80x 101 8.34x 1010 52.24 1.36 x 101! 102.12 413x 10" 8.45x 1010 52.52
2 99.86 99.78 99.97 0.04 25.6 - - - -
W.B 4 99.78 99.69 99.89 0.05 14.96 99.79 99.71 99.87 0.04 16.62
8 99.72 99.59 99.82 0.06 8.98 99.73 99.6 99.89 0.06 10.42
16 99.63 99.45 99.82 0.09 4.54 99.68 99.52 99.91 0.08 7.54
2 1.59x 10" 4.60x1010 3.63x10""  7.17x 1010 54.6 - - - - -
bW 4 1.95x10""  375%x10'0 3.39x10"  7.09x10% 56.8 2.00x 10" 3.67x10'0 3.74x 10  8.06 x 100 56.98
8 264x10""  538x1010 4.89x10"  9.61x10%0 59.36 212x 10" 4.96x1010 4.06x10"  8.03x 100 57.22
16 358x10""  6.11x100 625x10"  1.49x 10 61.16 3.18x 10 226x100 583x101 1.21x10" 60.44
2 99.92 99.81 99.99 0.04 31.46 - - - - -
BR 4 100.14 100.02 100.25 0.05 4256 100.11 100.02 100.22 0.05 42.26
8 99.95 99.84 100.05 0.06 34.72 99.95 99.83 100.06 0.05 35.32
16 99.92 99.81 99.99 0.04 31.46 99.88 99.79 99.96 0.04 27.84
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Ring Cube/Trigonal Pyramid/Hypercube
Policy = NSP Ave. Rank Ave. Rank
Mean Min. Max. Std. Mean Min. Max. Std.
2 99.96 99.83 100.05 0.06 35.46 - - - - -
RB 4 99.89 99.76 99.98 0.05 28.2 99.91 99.8 100.05 0.05 30.84
8 99.82 99.72 99.92 0.05 19.16 99.81 99.69 99.9 0.04 18.88
16 99.7 99.58 99.84 0.06 7.34 99.7 99.58 99.89 0.06 7.3
99.99 99.87 100.09 0.06 38 - - - - -
WR 4 99.91 99.83 100 0.04 31.04 99.9 99.75 99.96 0.04 29.84
8 99.82 99.7 99.89 0.04 19.24 99.76 99.65 99.84 0.04 12.58
16 99.69 99.61 99.77 0.03 6.14 99.64 99.55 99.77 0.05 3.74
2 858x1010 925x108 3.48x101 7.48x 100 49.42 - - - - -
W 4 1.17x101  8.86x10®  4.16x 10" 9.66 x 1010 51.16 1.11x10"  772x108  355x 10" 8.10x 10 51
8 1.61x 101 1.62x1010 7.86x10" 1.49x 10 52.92 142x 1011 7.88x10° 5.17x10"  1.13x 10! 52.6
16 3.07x10" 537x1019 1.19x10? 225x10'! 58.84 2.85x 1011 4.49x 1010 1.02x1012 1.85x 101 58.78
2 99.93 99.85 100.05 0.04 33.42 - - - - 26.56
&R 4 99.87 99.79 99.99 0.04 26.54 99.94 99.85 100.07 0.04 18.48
8 99.81 99.74 99.89 0.03 18.32 99.81 99.66 99.93 0.05 9.4
16 99.7 99.62 99.84 0.05 7.56 99.71 99.6 99.87 0.06 26.56
p-value 0

1 All values are calculated when the mean of the objective function value of the proposed method with a single population is set to 100%. NSP stands for number of sub-populations.
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Table 7 shows the best values of the mean, the minimum, and the maximum, the standard
deviation values, and the average rank of the results calculated using optimal objective function values
using only migration model of each migration policy with 640 individuals through 50 trials for Case 1
and a p-value by Friedman test. It is studied that the mean, the minimum, and the maximum values,
and the average rank using W-B policy are the best among all migration policies (bold numbers). It is
also studied that there are significant differences at 0.05 significance level among all parameters in
Table 6.

Table 7. The best values of the mean, the minimum, the maximum, the standard deviation values,
and the average rank of the optimal objective function values using only migration model of each
migration policy with 640 individuals through 50 trials for Case 1 from Table 6 and a p-value by
Friedman test. !

Policy = NSP Ring Ave. Rank
Mean Min. Max. Std.
- 1 100 99.9 100.17 0.06 6.9
B-B 16 99.71 99.61 99.85 0.06 3.42
W-W 16 1.27 x 1010 101.55 2.80x 101 8.34x 1010 8.32
W-B 16 99.63 99.45 99.82 0.09 2.16
B-W 2 1.59x 10" 4.60x 100  3.63x 10"  7.17x10% 9.58
B-R 16 99.92 99.81 99.99 0.04 6.04
R-B 16 99.7 99.58 99.84 0.06 3.16
W-R 16 99.69 99.61 99.77 0.03 3
R-W 16 3.07x1011  537x101° 1.19x10? 225x10! 9.1
R-R 16 99.7 99.62 99.84 0.05 3.32
p-value 9.02x 1077

1 All values are calculated when the mean of the objective function value of the proposed method with a single
population is set to 100%.

The best topology, the best number of individuals, and the best number of sub-populations are
investigated in Table 8. Table 8 explains the comparison of the mean, the minimum, the maximum
the standard deviation values, and average rank of the results calculated using objective function
values using only migration model with the W-B policy among various topologies, various numbers of
individuals, and various number of sub-populations and a p-value by Friedman test. When the number
of individuals is 40 with 4 or 8 sub-population, the results include penalty value because dependent
variables are out of allowable ranges. On the contrary, when the number of individuals is more than
80 or equal to 80, the results do not include penalty because dependent variables are inside allowable
ranges. Especially, when the number of individuals is set to 320 with 16 sub-populations using ring
topology, the mean, the minimum, and the maximum values can be the most reduced (bold numbers).
Namely, the proposed method with such conditions can balance diversification and intensification
the most effectively for the problem. In addition, the average rank is the best when the number of
individuals is set to 320 with 16 sub-populations using ring topology among all parameters in Table 8.
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Table 8. Comparison of the mean, the minimum, the maximum, the standard deviation, and average rank of the objective function value of the optimal objective

function values among various migration topologies with W-B policy, and various numbers of sub-populations using only migration with various number of

individuals through 50 trials for Case 1 and a p-value by Friedman test. !

Ring Cube/Trigonal Pyramid/Hypercube
NI NSP Mean Min. Max. Std. Ave.Rank Mean Min. Max. Std. Ave.Rank
1 99.85 99.73 100.06 0.06 38.8 - - - - -
2 99.93 99.73 100.21 0.11 34.1 - - - - -
0 4 3.71 x 107 99.78 532x 108  1.26x108 39.42 100.03 99.79 100.33 0.12 38.8
8 571x107  100.08  6.02x100 1.06x10% 45.64 5.72x 108 99.96 6.81x10° 1.34x10° 44.24
1 99.91 99.81 100.02 0.04 34.32 - - - - -
2 99.79 99.64 100.03 0.08 22.84 - - - - -
80 4 99.81 99.63 100.01 0.09 24.02 99.86 99.65 100.09 0.10 12.1
8 99.87 99.64 100.18 0.12 29.06 99.86 99.71 100.11 0.09 19.08
16 99.72 99.54 99.89 0.08 14.72 99.91 99.70 100.12 0.10 31.56
1 99.95 99.82 100.14 0.07 36.64 - - - - -
2 99.77 99.68 99.90 0.05 31.34 - - - - -
160 4 99.77 99.58 99.99 0.08 16.42 99.77 99.61 100.03 0.08 15.78
8 99.73 99.56 99.89 0.08 7 99.73 99.52 99.98 0.11 8.48
16 99.57 99.42 99.86 0.09 3.64 99.67 99.53 99.92 0.09 7.66
1 99.97 99.83 100.10 0.06 38.38 - - - - -
2 99.81 99.68 99.97 0.05 36.56 - - - - -
320 4 99.77 99.64 99.88 0.05 27.64 99.77 99.64 99.87 0.05 27.52
8 99.71 99.56 99.81 0.06 13.74 99.69 99.54 99.82 0.07 10.02
16 99.56 99.41 99.77 0.09 2 99.66 99.51 99.93 0.09 4.38
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Table 8. Cont.

Ring Cube/Trigonal Pyramid/Hypercube
N NSP Mean Min. Max. Std. AveRank Mean Min. Max. Std. Ave Rank
1 100.00 99.90 100.17 0.06 39.64 - - - - -
2 99.86 99.78 99.97 0.04 31.02 - - - - -
640 4 99.78 99.69 99.89 0.05 21.46 99.79 99.71 99.87 0.04 23.24
8 99.72 99.59 99.82 0.06 14.88 99.73 99.60 99.89 0.06 16.12
16 99.63 99.45 99.82 0.09 8.58 99.68 99.52 99.91 0.08 12.16
1 100.75 100.59 100.91 0.07 44.66 - - - - -
2 99.88 99.79 99.96 0.04 32.34 - - - - -
1280 4 99.83 99.76 99.89 0.04 25.9 99.84 99.75 100.03 0.05 27.6
8 99.77 99.66 99.84 0.04 18.86 99.77 99.68 99.88 0.04 19.7
16 99.68 99.57 99.82 0.06 12.74 99.70 99.51 99.82 0.06 15.2
p-value 0

22 of 27

1 All values are calculated when the mean of the objective function value of the proposed method with a single population and 640 individuals is set to 100%. NI stands for number

of individuals.
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Table 9 shows the best values of the mean, the minimum, the maximum, the standard deviation,
and average rank of the objective function value of the optimal objective function values of each number
of individuals with W-B policy using only migration and ring topology through 50 trials for Case 1 and
a p-value by Friedman test. It is verified that the mean, the minimum, the maximum value, and the
average rank with 320 individuals and 16 sub-populations are the best among all multi-population
models (bold numbers). It is also verified that there are significant differences at 0.05 significance level
among all methods.

Tables 10 and 11 investigate the above results (Tables 2-9) from a facility operation point of view.
In order to clarify these results, Table 10 shows comparison of the optimal operation of the facilities in
an industrial model of Case 2 by MP-GMBSO using migration model, and W-B migration policy with
ring topology when the number of individuals is set to 320 among various numbers of sub-populations.
Column A indicates electric power output of a GTG and column B indicates electric power which
is purchased from electric power utility at each hour. From 8 to 22 h, in the model, electric power
which is purchased from electric power utility is expensive and electric power which is output of
a GTG is inexpensive and purchased electricity is expensive. Hence, electric power which is purchased
from electric power utility should be reduced and electric power which is output of a GTG should
be increased from 8 to 22 h for reduction of energy cost. It is investigated that the electric power
which is purchased from electric power utility can be the most reduced and electric power which is
output of a GTG can be the most increased from 8 to 22 h by the proposed method (MP-GMBSO using
migration model) with 16 sub-populations (bold numbers). Table 11 shows comparison of the best
facility operation of an industrial model for Case 3 using only migration model, and W-B migration
policy with ring topology when the number of individuals is set to 320 among various numbers of
sub-populations. Electric power which is purchased from electric power utility should be reduced
and electric power which is output of a GTG should be increased a whole day for reduction of CO,
emission in the model. It was verified that electric power which is purchased from electric power
utility can be reduced and electric power output of a GTG can be increased at most a whole day by the
proposed method with 16 (bold numbers).

Consequently, the proposed MP-GMBSO with only migration-based method with the W-B policy,
the ring topology, 320 individuals, and 16 sub-populations is the most effective to the total optimization
of energy networks in the smart city problem.

Table 9. The best values of the mean, the minimum, the maximum, the standard deviation, and average
rank of the objective function value of the optimal objective function values of each number of
individuals with WB policy using only migration and ring topology through 50 trials for Case 1 from
Table 8 and a p-value by Friedman test. !

Ring

N NSP Mean  Min. Max. Std. Ave. Rank

40 1 99.85 99.73  100.06 0.06 6

80 16 99.72 99.54 99.89 0.08 1.42
160 16 99.57 99.42 99.86 0.09 3.08
320 16 99.56 99.41 99.77 0.09 2.2
640 16 99.63 99.45 99.82 0.09 4.06
1280 16 99.68 99.57 99.82 0.06 6

1 All values are calculated when the mean of the objective function value of the proposed method with a single
population and 640 individuals is set to 100%.
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Table 10. Comparison of the best facility operation in an industrial model of Case 2 using migration
model, and W-B migration policy with ring topology when the number of individuals is set to 320 among

1,2, 4, 8, and 16 sub-populations.

# of

Pop. 1 16
Hours A B A B A B A B A B
1 000 710 000 738 000 700 000 725 000 729
2 000 714 000 708 000 712 000 713 000 7.0
3 000 718 000 713 000 716 000 717 000 727
4 000 700 000 714 000 721 000 717 000  7.10
5 000 908 000 910 000 927 000 929 000 920
6 000 922 000 890 000 924 000 899 000 9.0
7 000 908 000 917 000 916 600 305 000 890
8 693 197 874 016 853 051 898 000 883  0.16
9 1043 052 1018 069 1034 079 967 140 1054 036
10 1444 044 1483 016 1452 041 1258 230 1424  0.67
11 1627 253 1511 359 1688 197 1729 156 17.86  1.04
12 1843 636 1917 556 2000 484 1998 462 19.92 499
13 1306 465 1712 064 1602 173 1624 159 1744 0.3
14 1833 397 2000 200 2000 200 2000 219 1950 2.60
15 1782 518 1941 380 1880 420 1858 451 1923  3.77
16 1875 225 2000 113 1940 176 2000 112 19.80 1.29
17 1966 328 1768 530 2000 270 2000 281 1958 3.32
18 2000 222 1806 384 1832 371 1887 310 2000 2.16
19 1822 475 2000 312 2000 290 1895 413 19.67 3.23
20 2000 139 2000 125 1967 149 1932 177 1976  1.32
21 1489 243 1655 053 1702 005 1708 014 1718  0.16
22 1202 025 1155 059 1072 145 1149 082 1098 110
23 000 13.02 000 1289 000 1291 000 1282 000 1293
24 000 1045 000 1045 000 1045 000 1045 000 1045
Total 23926 4219 24840 3236 25023 3049 249.03 32.07 25452 26.39

1 Column A shows the amount of electric power output by a gas turbine generator, Column B shows the amount of
purchased electric power, and total is the summation of each column from 8 to 22 h.

Table 11. Comparison of the best facility operation in an industrial model of Case 3 using migration
model, and W-B migration policy with ring topology when the number of individuals is set to 320 among
1,2, 4,8, and 16 sub-populations. 1

# of Pop. 1 16
Hours A B A B A B A B A B
1 6.23 0.90 0.00 7.14 6.64 0.36 6.00 1.27 7.04 0.21
2 6.28 0.97 0.00 7.00 6.56 0.81 6.32 0.89 6.56 0.75
3 6.65 0.64 6.72 0.47 6.00 1.20 7.04 0.23 6.28 1.02
4 6.00 1.18 0.00 7.30 6.14 1.19 6.30 0.94 7.06 0.26
5 7.52 1.82 8.69 0.57 7.84 1.47 9.00 0.22 6.00 3.23
6 6.77 2.49 6.00 3.11 6.68 2.45 6.73 2.17 7.99 1.24
7 7.10 2.02 7.38 1.52 6.77 2.13 8.10 1.04 8.55 0.61
8 7.37 1.73 7.13 2.13 7.66 1.35 8.86 0.31 7.40 1.71
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Table 11. Cont.

# of Pop. 1 2 4 8 16
Hours A B A B A B A B A B
9 10.16 0.91 9.12 191 9.65 1.38 9.86 1.25 10.32 0.87
10 13.65 1.33 13.52 1.28 13.22 1.74 13.89 1.21 14.94 0.11
11 16.67 2.03 15.53 3.25 17.07 1.79 18.31 0.64 17.02 2.06
12 20.00 4.75 17.79 7.22 17.73 7.24 15.46 9.41 19.39 5.45
13 16.65 0.95 17.09 0.67 16.82 0.97 17.70 0.15 16.79 1.11
14 19.29 2.84 18.92 3.15 18.81 3.38 19.53 2.56 19.49 2.72
15 20.00 3.18 20.00 342 18.98 424 19.30 3.86 19.34 3.81
16 15.72 543 19.24 1.94 18.69 2.67 18.07 3.25 19.47 1.83
17 20.00 3.05 19.24 3.78 19.92 2.87 19.56 3.32 18.31 4.65
18 20.00 2.05 16.25 5.79 18.79 3.39 18.73 3.40 20.00 2.21
19 18.79 424 18.98 4.08 16.80 6.41 19.87 3.21 19.98 3.23
20 12.76 8.43 20.00 1.13 20.00 1.00 20.00 1.23 19.51 1.57
21 16.91 0.41 15.54 1.63 16.52 0.64 17.33 0.03 15.71 1.36
22 9.20 3.04 10.55 1.88 11.39 0.90 11.75 0.53 10.96 1.22
23 11.35 1.56 11.83 1.22 11.45 1.51 12.51 0.34 12.32 0.63
24 8.00 2.40 7.27 2.90 10.01 0.24 9.00 1.34 9.27 1.18

Total 237.18 4439 23890 4327 242.06 3996 24823 3435 248.64 33.92

1 Column A shows the amount of electric power output by a gas turbine generator, Column B shows the amount of
purchased electric power, and Total is the summation of each column whole of a day.

7. Conclusions

This paper proposes total optimization of energy networks in a smart city by multi-population
global-best modified brain storm optimization (MP-GMBSO) with migration. A new evolutionary
computation technique, called MP-GMBSO is proposed in order to obtain better results and the
MP-GMBSO based method is proposed for total optimization of energy networks in a smart city.
Effectiveness of the conventional GMBSO based method for total optimization of smart city by
comparing with the conventional DEEPSO, BSO, MBSO, and GBSO based methods is verified.
Moreover, effectiveness of the proposed MP-GMBSO based method for total optimization of smart city
with migration is verified by comparing with the original GMBSO (MP-GMBSO with a sub-population)
based method, and the MP-GMBSO based methods with various migration model (only using migration,
only using abest, and using both migration and abest), various policies, various topologies, various
numbers of individuals, and various numbers of sub-populations. It is verified that the quality of
solution is the most improved by the proposed MP-GMBSO with migration-based method using the
ring topology with 16 sub-populations and 320 individuals, and the W-B policy (the worst individual
of a sub-population is replaced by the other sub-populations) among all multi-population parameters.
Solutions by the proposed method can be changed by tuning weighting coefficients of the objective
function considering the purpose of the target smart city.

As future works, several challenges can be considered. The smart city problem can be considered
as one of the large-scale MINLP problems and it is hard to obtain solutions effectively. Therefore, firstly,
state-of-the-art techniques of evolutionary computation will be applied in order to improve quality of
solution. Secondly, various uncertainties of the problem will be considered. For example, uncertainty
of renewable energy output depends on weather conditions. Uncertainty of various energy loads
depends on various sector conditions. Hence, stochastic approaches such as a Monte Carlo simulation
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and robust optimization techniques should be applied. Thirdly, robustness of the proposed method
will be investigated with various scale smart city models with different purposes.
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