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Abstract: Providing model-generated explanations in recommender systems is important to user
experience. State-of-the-art recommendation algorithms—especially the collaborative filtering
(CF)-based approaches with shallow or deep models—usually work with various unstructured
information sources for recommendation, such as textual reviews, visual images, and various implicit or
explicit feedbacks. Though structured knowledge bases were considered in content-based approaches,
they have been largely ignored recently due to the availability of vast amounts of data and the learning
power of many complex models. However, structured knowledge bases exhibit unique advantages
in personalized recommendation systems. When the explicit knowledge about users and items is
considered for recommendation, the system could provide highly customized recommendations based
on users’ historical behaviors and the knowledge is helpful for providing informed explanations
regarding the recommended items. A great challenge for using knowledge bases for recommendation is
how to integrate large-scale structured and unstructured data, while taking advantage of collaborative
filtering for highly accurate performance. Recent achievements in knowledge-base embedding (KBE)
sheds light on this problem, which makes it possible to learn user and item representations while
preserving the structure of their relationship with external knowledge for explanation. In this work,
we propose to explain knowledge-base embeddings for explainable recommendation. Specifically,
we propose a knowledge-base representation learning framework to embed heterogeneous entities for
recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed
to generate personalized explanations for the recommended items. Experimental results on real-world
e-commerce datasets verified the superior recommendation performance and the explainability power
of our approach compared with state-of-the-art baselines.

Keywords: recommender systems; explainable recommendation; knowledge-base embedding;
collaborative filtering

1. Introduction

Most of the existing collaborative filtering (CF)-based recommendation systems work with
various unstructured data such as ratings, reviews, or images to profile the users for personalized
recommendation. Though effective, it is difficult for existing approaches to model the explicit
relationship between different information that we know about the users and items. In this paper,
we would like to ask a key question, i.e., “can we extend the power of CF upon large-scale structured user
behaviors?”. The main challenge to answer this question is how to effectively integrate different types
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of user behaviors and item properties, while preserving the internal relationship between them to
enhance the final performance of personalized recommendation.

Fortunately, the emerging success on knowledge-base embeddings (KBE) may shed some light on
this problem, where heterogeneous information can be projected into a unified low-dimensional
embedding space. By encoding the rich information from multi-type user behaviors and item
properties into the final user/item embeddings, we can enhance the recommendation performance
while preserving the internal structure of the knowledge.

Equipping recommender systems with structured knowledge also helps the system to generate
informed explanations for the recommended items. Researchers have shown that providing personalized
explanations for the recommendations helps to improve the persuasiveness, efficiency, effectiveness, and
transparency of recommender systems [1–7]. By preserving the knowledge structure about users, items,
and heterogenous entities, we can conduct fuzzy reasoning over the knowledge-base embeddings (KBE)
to generate tailored explanations for each user.

Inspired by the above motivations, in this paper, we design a novel explainable CF framework
over knowledge graphs. The main building block is an integration of traditional CF with the learning
of knowledge-base embeddings. More specifically, we first define the concept of user-item knowledge
graph, which encodes our knowledge about the user behaviors and item properties as a relational
graph structure. The user-item knowledge graph focuses on how to depict different types of user
behaviors and item properties over heterogeneous entities in a unified framework. Then, we extend
the design philosophy of CF to learn over the knowledge graph for personalized recommendation.
For each recommended item, we further conduct fuzzy reasoning over the paths in the knowledge
graph based on soft matching to construct personalized explanations.

Contributions. The main contributions of this paper can be summarized as follows:

• We propose to integrate heterogeneous multi-type user behaviors and knowledge of the items
into a unified graph structure for recommendation.

• Based on the user-item knowledge graph, we extend traditional CF to learn over the heterogeneous
knowledge for recommendation, which helps to capture the user preferences more comprehensively.

• We further propose a soft matching algorithm to construct explanations regarding the recommended
items by searching over the paths in the graph embedding space.

In the following part of the paper, we first present related work in Section 2, and then provide the
problem formalization in Section 3. Section 4 goes over the model for CF over knowledge graphs, and
in Section 5 the soft matching method for generating explanations is illustrated. Experimental setup
and discussion of the results are provided in Section 6 and Section 7, respectively. We conclude the
work and point out some of the future research directions in Section 8.

2. Related Work

Using knowledge base to enhance the performance of recommender system is an intuitive
idea, which has attracted research attention since the very early stage of the recommender system
community. For example, Burke [8] and Trewin [9] discussed the strengths and weaknesses of both
knowledge-based and CF-based recommender systems, and introduced the possibility of a hybrid
recommender system that combines the two approaches. Ghani and Fano [10] presented a case study
of a system that recommends items based on a custom-built knowledge base that consists of products
and associated semantic attributes. Heitmann [11] proposed to conduct cross-domain personalization
and recommendation based on multi-source semantic interest graphs.

More recently, Musto et al. [12] and Noia et al. [13] conducted semantic graph-based recommendation
leveraging linked open data as external knowledge, Oramas et al. [14] adopted knowledge graphs to
produce sound and music recommendations, and Catherine et al. [15] proposed to jointly rank items
and knowledge graph entities using a personalized page-rank procedure to produce recommendations
together with the explanations.
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Though intuitive, the difficulty of reasoning over the hard-coded paths on heterogeneous
knowledge graph prevents existing approaches from leveraging CF on very different entities and
relations, which further makes it difficult to take advantage of the wisdom of crowd.

Fortunately, recent advances on KBE shed light on this problem. In KBE, entities and relations are
learned as vector representations, and the connectivity between entities under a certain relation can
be calculated in a soft manner based on their representations. Early approaches to knowledge-base
embedding are based on matrix factorization [16,17] or non-parametric Bayesian frameworks [18,19].
More recently, the advance of neural embedding methods led to a lot of neural KBE approaches [20].
Bordes et al. [21] designed a translation-based embedding model (transE) to jointly model entities and
relationships within a single latent space, which were later generalized into hyperplane translation
(transH) [22] and translation in separate entity space and relation spaces (transR) [23].

Researchers attempted to leverage knowledge base embeddings for recommendation. For example,
Zhang et al. [24] proposed collaborative KBE to learn the items’ semantic representations from the
knowledge base for recommendation, but the whole knowledge of an item is learned as a single item
vector and the model did not preserve the knowledge-base structure for reasoning; He et al. [25]
leveraged translation-based embedding for recommendation by modeling items as entities and users as
relations, but they did not consider the knowledge information of users and items for recommendation.
Even though many studies have applied neural techniques for recommender systems [26–28], none of
the previous work has leveraged KBE for explainable recommendation [1]. However, we will show that
a great advantage of learning KBEs is to generate very straight forward explanations by soft-reasoning
over the user-to-item paths.

3. Problem Formulation

In this paper, we focus on explainable product recommendation, where the objective of the recommender
system is to recommend products to users and explain why the products are recommended.

Formally, we first construct a knowledge-base as a set of triplets S = {(eh, et, r)} for
recommendation, where eh is a head entity, et is a tail entity, and r is the relationship from eh to
et. Then the goal of explainable recommendation is twofold, 1) for each user u, find one or a set of items
i that are most likely to be purchased by the user, and 2) for each retrieved user-item pair, construct
a natural language sentence based on S to explain why the user should purchase the item.

For simplicity, we consider 5 types of entities (i.e., eh or et) for explainable recommendation:

• user: the users of the recommender system.
• item: the products in the system to be recommended.
• word: the words in product names, descriptions or reviews.
• brand: the brand/producers of the product.
• category: the categories that a product belongs to.

Also, we consider 6 types of relationships (i.e., r) between entities:

• Purchase: the relation from a user to an item, which means that the user has bought the item.
• Mention: the relation from a user or an item to a word, which means the word is mentioned in the

user’s or item’s reviews.
• Belongs_to: the relation from an item to a category, which means that the item belongs to

the category.
• Produced_by: the relation from an item to a brand, which means that the item is produced by

the brand.
• Bought_together: the relation from an item to another item, which means that the items have been

purchased together in a single transaction.
• Also_bought: the relation from an item to another item, which means the items have been purchased

by same users.
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• Also_viewed: the relation from an item to another item, which means that the second item was
viewed before or after the purchase of the first item in a single session.

Therefore, for explainable product recommendation, the first goal is to retrieve item i that are
likely to have the Purchase relationship with user u, and the second goal is to provide explanations for
the (u, i) pair based on the relations and entities related to them.

4. Collaborative Filtering on Knowledge Graphs

We now describe our model for explainable recommendation. Our model is a CF model built
on user-item knowledge graph. In this section, we first introduce how to model the entities and
relations as a product knowledge graph, and then we discuss how to optimize the model parameters
for recommendation.

4.1. Relation Modeling as Entity Translations

As discussed previously, we assume that the product knowledge can be represented as a set of
triplets S = {(eh, et, r)}, where r is the relation from entity eh to entity et. Because an entity can be
associated with one or more other entities through a single or multiple relations, we propose to separate
the modeling of entity and relation for CF. Specifically, we project each entity to a low-dimensional
latent space and treat each relation as a translation function that converts one entity to another. Inspired
by [21], we represent eh and et as latent vectors eh ∈ Rd and et ∈ Rd, and model their relationship r as
a linear projection from eh to et parameterized by r ∈ Rd, namely,

et = trans(eh, r) = eh + r (1)

To learn the entity embeddings, we can construct a product knowledge graph by linking entities
with the translation function in the latent space. An example generation process of such a graph is
shown in Figure 1.

User 
Embedding

User
Add all entities 
and relations

Relation 
Embedding

Purchase Bought_together,Also_bought,Also_viewedBelongs_toMention

+ + + + +or or or or or

Produced_by

Figure 1. The construction process of knowledge graph with our model. Each entity is represented
with a latent vector, and each relation is modeled as a linear translation from one entity to another
entity parameterized by the relation embedding.

Solving Equation (1) for all (eh, et, r) ∈ S, however, is infeasible in practice. On one hand, a trivial
solution that constructs a single latent vector for all entities with the same type will lead to inferior
recommendation performance as it ignores the differences between users and items. On the other
hand, deriving a solution that assigns different latent vectors for all entities in S is mathematically
impossible because an entity can be linked to multiple entities with a single relationship. For example,
we cannot find a single vector for Also_viewed that translates an item to multiple items that have
different latent representations.

To solve the problems, we propose to relax the constrains of Equation (1) and adopt an embedding-
based generative framework to learn it. Empirically, we want the translation model trans(eh, r) ≈ et

for an observed relation triplet (eh, et, r) ∈ S and trans(eh, r) 6= e′t for an unobserved triplet
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(eh, e′t, r) /∈ S. In other words, we want trans(eh, r) to assign high probability for observing et but low
probability for observing e′t, which is exactly the goal of the embedding-based generative framework.
The embedding-based generative framework is first proposed by Mikolov et al. [29] and has been
widely used in word embedding [29,30], recommendation [31,32], and information retrieval tasks [33,34].
Formally, for an observed relation triplet (eh, et, r) ∈ S, we can learn the translation model trans(eh, r)
by optimizing the generative probability of et given trans(eh, r), which is defined as:

P(et|trans(eh, r)) =
exp(et · trans(eh, r))

∑e′t∈Et
exp(e′t · trans(eh, r))

(2)

where Et is the set of all possible entities that share the same type with et.
Because Equation (2) is a softmax function of et over Et, the maximization of P(et|trans(eh, r)) will

explicitly increase the similarity of trans(eh, r) and et but decease the similarity between trans(eh, r)
and other entities. In this way, we convert Equation (1) into an optimization problem that can be solved
with iterative optimization algorithms such as gradient decent. Another advantage of the proposed
model is that it provides a theoretically principled method to conduct soft match between tail entities
and the translation model. This is important for the extraction of recommendation explanations,
which will be discussed in Section 5.

4.2. Optimization Algorithm

For model optimization, we learn the representations of entities and relations by maximizing the
likelihood of all observed relation triplets. Let S be the set of observed triplets (eh, et, r) in the training
data, then we can compute the likelihood of S defined as

L(S) = log ∏
(eh ,et ,r)∈S

P(et|trans(eh, r)) (3)

where P(et|trans(eh, r)) is the posterior probability of et computed with Equation (2).
The computation cost of L(S), however, is prohibitive in practice because of the softmax function.

For efficient training, we adopt a negative sampling strategy to approximate P(et|trans(eh, r)) [35].
Specifically, for each observed relation triplet (eh, et, r), we randomly sample a set of “negative” entities
with the same type of et. Then the log likelihood of (eh, et, r) is approximated as

log P(et|trans(eh, r)) ≈ log σ(et · trans(eh, r)) + k ·Ee′t∼Pt
[log σ(−e′t · trans(eh, r))] (4)

where k is the number of negative samples, Pt is a predefined noisy distribution over entities with the
type of et, and σ(x) is a sigmoid function as σ(x) = 1

1+e−x . Therefore, L(S) can be reformulated as the
sum of the log-likelihood of (eh, et, r) ∈ S as

L(S) = ∑
(eh ,et ,r)∈S

log σ(et · trans(eh, r)) + k ·Ee′t∼Pt
[log σ(−e′t · trans(eh, r))] (5)

We also tested the `2-norm loss function used in TransE model and it does not provide any
improvement compared to our inner product-based model with log-likelihood loss, and it is also
difficulty for `2-norm loss to generate expansions, as a result, we adopt our loss function for embedding,
recommendation, and explanation in this work. To better illustrate the relationship between our model
and a traditional CF method based on matrix factorization, we conduct the following analysis. Inspired
by [36], we derive the local objective for the maximization of Equation (5) on a specific relation
triplet (eh, et, r):

`(eh, et, r) = #(eh, et, r) · log σ(et · trans(eh, r)) + k · #(eh, r) · Pt(et) · log σ(−et · trans(eh, r)) (6)
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where #(eh, et, r) and #(eh, r) are the frequency of (eh, et, r) and (eh, r) in the training data. If we further
compute the partial derivative of `(eh, et, r) with respect to x = et · trans(eh, r), we have

∂`(eh, et, r)
∂x

= #(eh, et, r) · σ(−x)− k · #(eh, r) · Pt(et) · σ(x) (7)

When the training process has converged, the partial derivative of `(eh, et, r) should be 0, and
then we have

x = et · trans(eh, r) = log(
#(eh, et, r)

#(eh, r)
· 1

Pt(et)
)− log k (8)

As we can see, the left-hand side is the product of the latent vectors for et and trans(eh, r); and the
right-hand side of Equation (8) is a shifted version of the pointwise mutual information between et

and (eh, r). Therefore, maximizing the log likelihood of observed triplet set S with negative sampling
is actually factorizing the matrix of mutual information between the head-tail entity pairs (eh, et) of
relation r. From this perspective, our model is a variation of factorization methods that can jointly
factorize multiple relation matrix on a product knowledge graph.

As shown in Equation (8), the final objective of the proposed model is controlled by the noisy
distribution Pt. Similar to previous studies [30,33,35], we notice that the relationships with tail entities
that have high frequency in the collection reveal less information about the properties of the head
entity. Therefore, we define the noisy probability Pt(et) for each relation r (except Purchase) as the
frequency distribution of (eh, et, r) in S so that the mutual information on frequent tail entities will be
penalized in optimization process. For Purchase, however, we define Pt as a uniform distribution to
avoid unnecessary biases toward certain items.

5. Recommendation Explanation with Knowledge Reasoning

In this section, we describe how to create recommendation explanations with the proposed model.
We first introduce the concept of explanation path and describe how to generate natural language
explanations with it. Then we propose a soft matching algorithm to find explanation path for any
user-item pair in the latent space.

An overview of our algorithm is shown in Algorithm 1. In the algorithm, we first conduct breath
first search (BFS) with maximum depth z from the user eu and the item ei to find an explanation
path that can potentially link them. We memorize the paths and compute the path probability with
soft matching (Equations (10) and (11)). Finally, we rank the explanation paths by their probabilities
and return the best path to create the natural language explanation. In this work, we take z as
a hyper-parameter and tune the parameter by increasing its value in the experiments to search for
non-empty intersections.

5.1. Explanation Path

The key to generate an explanation of the recommendation is to find a sound logic inference
sequence from the user to the item in the knowledge graph. In this work, we propose to find
such a sequence by constructing an explanation path between the user and the item in the latent
knowledge space.

Formally, let Er
h and Er

t be the sets of all possible head entities and tail entities for a relation r.
We define an explanation path from entity eu to entity ei as two sets of relation Rα = {rα|α ∈ [1, m]}
and Rβ = {rβ|β ∈ [1, n]} such that

eu +
m

∑
α=1

rα = ei +
n

∑
β=1

rβ (9)
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where eu ∈ Erα
h for α = 1, ei ∈ E

rβ

h for β = 1, Erα−1
t = Erα

h for α ∈ [2, m], E
rβ−1
t = E

rβ

h for β ∈ [2, n], and
Erα

t = E
rβ

t for α=m, β= n. In other words, there is an explanation path between eu and ei if there is
an entity that can be inferred by both eu (with Rα) and ei (with Rβ) with the observed relations in the
knowledge graph.

Algorithm 1: Recommendation Explanation Extraction
Input: S = {(Eh, Et, r)}, eu, ei, maximum depth z
Output: ex, Rα, Rβ

Procedure Main()
1 Vu, Pu,Ru = BFS(S, eu, z).
2 Vi, Pi,Ri = BFS(S, ei, z).
3 P← {}.
4 for e ∈ Vu ∩Vi do
5 P[e] = Pu(e) · Pi(e).

end
6 Pick up ex ∈ Vu ∩Vi with the largest P[e].
7 Rα = Ru[ex], Rβ = Ri[ex].
8 return ex, Rα, Rβ

Function BFS(S, e, z)
9 Ve ← all entities in the entity set Et within z hops from e.

10 Pe ← the probability of each entity in Ve computed by Equation (10).
11 Re ← the paths from e to the space of each entity in Ve.
12 return Ve, Pe,Re;

For better illustration, we depict a recommendation example where an item (iPad) is recommended
to a user (Bob) in Figure 2. As we can see, the word “IOS” can be inferred by iPad and Bob using the
relation Mention; the brand Apple can be inferred by iPad using Produced_by, and by Bob using Purchase
+ Produced_by. Thus, we have two explanation paths that link Bob with iPad.

“IOS”

Mention Produced_by

Apple

iPadBob

Purchase

Words

Users

Brands

Items

Figure 2. Example explanation paths between a user Bob and a recommended item iPad in the product
knowledge graph.

To generate explanations, we can create simple templates base on the relation type and apply
them to the explanation paths. For example, we can say that Bob may be interested in iPad because he
often mentions “IOS” in his reviews, and “IOS”is often mentioned in the reviews of iPad; or that Bob may
be interested in iPad because he often purchases products produced by Apple, and iPad is also produced by
Apple. In these explanations, the italic words are entities and relations on the explanation path.

5.2. Entity Soft Matching

Finding a valid explanation path with observed relations, however, is often difficult for an arbitrary
user-item pair. In practice, product knowledge graphs tend to be sparse. For example, the density of
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user-item matrix in Amazon review datasets is usually below 0.1% [37]. Thus, the available relation
triplets in the observed data are limited. To solve the problem, we propose to conduct entity soft
matching in the latent space for explanation construction.

As discussed in Section 4.1, we learn the distributed representations of entities and relations
by optimizing the generative probability of observed relation triplets in Equation (2). Thus, we can
extend the softmax function to compute the probability of entity ex ∈ Erm

t given eu and the relation set
Rα = {rα|α ∈ [1, m]} as

P(ex|trans(eu, Rα)) =
exp(ex · trans(eu, Rα))

∑e′∈Erm
t

exp(e′ · trans(eu, Rα))
(10)

where Erm
t is the tail entity set of rm, and trans(eu, Rα) = eu + ∑m

α=1 rα. Therefore, we can construct
an explanation path for an arbitrary user eu and item ei with relation sets Rα = {rα|α ∈ [1, m]}
and Rβ = {rβ|β ∈ [1, n]} through any intermediate ex ∈ Erm

t , and compute the probability of this
explanation path as:

P(ex|eu, Rα, ei, Rβ)=P(ex|trans(eu,Rα))P(ex|trans(ei,Rβ)) (11)

To find the best explanation for (eu, ei), we can rank all paths by P(ex|eu, Rα, ei, Rβ) and pick up
the best one to generate natural language explanations with predefined templates. It should be noted
that learning with single hops may not guarantee the quality of multiple hops matching, but it also
significantly simplifies the design of the training algorithm and increases the generalizability of the
model, and helps to generate explanations more easily. Besides, using the single-hop training strategy
has already been also to compete with many of the baselines. However, we believe that model training
with multiple hops directly is a promising problem and we will design new models for this problem as
a future work.

6. Experimental Setup

In this section, we introduce the test bed of our experiments and discuss our evaluation settings
in details.

6.1. Datasets

We conducted experiments on the Amazon review dataset [37], which contains product reviews
in 24 categories on Amazon.com and rich metadata such as prices, brands, etc. Specifically, we used
the 5-core data of CDs and Vinyl, Clothing, Cell Phones, and Beauty, in which each user or item has at
least 5 associated reviews.

Statistics about entities and relations used in our experiments are shown in Table 1. Overall,
the interactions between users, items and other entities are highly sparse. For each dataset, we randomly
sampled 70% of user purchase as the training data and used the rest 30% as the test set. This means that
each user has at least 3 reviews observed in the training process and 2 reviews hidden for evaluation
purposes. Thus, the objective of product recommendation is to find and recommend items that are
purchased by the user in the test set.
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Table 1. Statistics of the 5-core datasets for CDs & Vinyl, Clothing, Cell Phones & Accessories, and Beauty
in Amazon.

CDs & Vinyl Clothing Cell Phones &
Accessories Beauty

Entities
#Reviews 1,097,591 278,677 194,439 198,502
#Words per review 174.57 ± 177.05 62.21 ± 60.16 93.50 ±131.65 90.90 ± 91.86
#Users 75,258 39,387 27,879 22,363
#Items 64,443 23,033 10,429 12,101
#Brands 1414 1182 955 2077
#Categories 770 1,193 206 248
Density 0.023% 0.031% 0.067% 0.074%

Relations
#Purchase per user 14.58 ± 39.13 7.08 ± 3.59 6.97 ± 4.55 8.88 ± 8.16
#Mention per user 2545.92 ± 10,942.31 440.20 ± 452.38 652.08 ± 1335.76 806.89 ± 1344.08
#Mention per item 2973.19 ± 5490.93 752.75 ± 909.42 1743.16 ± 3482.76 1491.16 ± 2553.93
#Also_bought per item 57.28 ± 39.22 61.35 ± 32.99 56.53 ± 35.82 73.65 ± 30.69
#Also_viewed per item 0.27 ± 1.86 6.29 ± 6.17 1.24 ± 4.29 12.84 ± 8.97
#Bought_together per item 0.68 ± 0.80 0.69 ± 0.90 0.81 ± 0.77 0.75 ± 0.72
#Produced_by per item 0.21 ± 0.41 0.17 ± 0.38 0.52 ± 0.50 0.83 ± 0.38
#Belongs_to per item 7.25 ± 3.13 6.72 ± 2.15 3.49 ± 1.08 4.11 ± 0.70

6.2. Evaluation

To verify the effectiveness of the proposed model, we adopt six representative and state-of-the-art
methods as baselines for performance comparison. Three of them are traditional recommendation
methods based on matrix factorization (BPR [38], BPR-HFT [39], and VBPR [40]), and the other three
are deep models for product recommendation (DeepCoNN [32], CKE [24], and JRL [31]).

• BPR: The Bayesian personalized ranking [38] model is a popular method for top-N recommendation
that learns latent representations of users and items by optimizing the pairwise preferences between
different user-item pairs. In this paper, we adopt matrix factorization as the prediction component
for BPR.

• BPR-HFT: The hidden factors and topics (HFT) model [39] integrates latent factors with topic
models for recommendation. The original HFT model is optimized for rating prediction tasks.
For fair comparison, we learn the model parameters under the pairwise ranking framework of
BPR for top-N recommendation.

• VBPR: The visual Bayesian personalized ranking [40] model is a state-of-the-art method that
incorporate product image features into the framework of BPR for recommendation.

• TransRec: The translation-based recommendation approach proposed in [25], which takes items
as entities and users as relations, and leveraged translation-based embeddings to learn the
similarity between user and items for personalized recommendation. We adopted L2 loss
function, which was reported to have better performance in [25]. Notice that TransRec is
different from our model because our model treats both items and users as entities, and learns
embedding representations for different types of knowledge (e.g., brands, categories) as well as
their relationships.

• DeepCoNN: The Deep Cooperative Neural Networks model for recommendation [32] is a neural
model that applies a convolutional neural network (CNN) over the textual reviews to jointly
model users and items for recommendation.

• CKE: The collaborative KBE model is a state-of-the-art neural model [24] that integrates text,
images, and knowledge base for recommendation. It is similar to our model as they both use
text and structured product knowledge, but it builds separate models on each type of data to
construct item representations while our model constructs a knowledge graph that jointly embeds
all entities and relations.
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• JRL: The joint representation learning model [31] is a state-of-the-art neural recommender, which
leverage multi-model information including text, images and ratings for Top-N recommendation.

The performance evaluation is conducted on the test set where only purchased items are
considered to be relevant to the corresponding user. Specifically, we adopt four ranking measures
for top-N recommendation, which are the Normalized Discounted Cumulative Gain (NDCG),
Precision (Prec.), Recall, and the percentage of users that have at least one correct recommendation
(Hit-Ratio, HR). All ranking metrics are computed based on the top-10 results for each test user.
Significant test is conducted based on the Fisher randomization test [41].

6.3. Parameter Settings

Our model is trained with stochastic gradient decent on a Nvidia Titan X GPU. We set the initial
learning rate as 0.5 and gradually decrease it to 0.0 during the training process. We set the batch size
as 64 and clip the norm of batch gradients with 5. For each dataset, we train the model for 20 epochs
and set the negative sampling number as 5. We tune the dimension of embeddings from 10 to 500
([10, 50, 100, 200, 300, 400, 500]) and report the best performance of each model in Section 7.

We also conduct five-fold cross-validation on the training data to tune the hyper-parameters for
baselines. For BPR-HFT, the best performance is achieved when the number of topics is 10. For BPR
and VBPR, the regularization coefficient λ = 10 worked the best in most cases. Similar to our model,
we tune the number of latent factors (the embedding size) from 10 to 500 and only report the best
performance of each baseline.

7. Results and Discussion

In this section, we discuss the experimental results. We first compare the performance of our
model with the baseline methods on top-N recommendation. Then we conduct case studies to show
the effectiveness of our model for recommendation explanation.

7.1. Recommendation Performance

Our experiments mainly focus on two research questions:

• RQ1: Does incorporating knowledge-base in our model produce better recommendation performance?
• RQ2: Which types of product knowledge are most useful for top-N recommendation?
• RQ3: What is the computational efficiency of our model compared to other recommendation

algorithms?

To answer RQ1, we report the results of our model and the baseline methods in Table 2. As shown
in Table 2, the deep models with rich auxiliary information (DeepCoNN, CKE, and JRL) perform
better in general than the shallow methods (BPR, BPR-HFT, VBPR, TransRec) on most datasets,
which is coherent with previous studies [24,31,32]. Among different neural baselines, JRL obtains
the best performance in our experiments. It produced 80% or more improvements over the matrix
factorization baselines and 10% or more over the other deep recommendation models. Overall,
our model outperformed all the baseline models consistently and significantly. It obtained 5.6% NDCG
improvement over the best baseline (i.e., JRL) on CDs and Vinyl, 78.16% on Clothing, 23.05% on Cell
Phones, and 45.56% on Beauty. This shows that the proposed model can effectively incorporate product
knowledge graph and is highly competitive for top-N recommendation.

Figure 3 depicts the recommendation performance of our model and baseline methods with
different embedding sizes on CDs & Vinyl and Beauty datasets. Observations on the other two
datasets are similar. As shown in Figure 3, the recommendation methods based on shallow
models (BPR, BPR-HFT, and VBPR) obtain the best NDCG when the embedding size is fairly small
(from 10 to 100), and larger embedding sizes usually hurt the performance of these models. In contrast
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to the shallow models, the results of neural models (i.e., JRL, DeepCoNN, CKE, and our model)
show positive correlations with the increase of embedding sizes. For example, the NDCG of the best
baseline (JRL) and our model improves when the embedding size increases from 10 to 300, and remains
stable afterwards. Overall, our model is robust to the variation of embedding sizes and consistently
outperformed the baselines.
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Figure 3. The NDCG@10 performance of our model (ECFKG, Explainable Collaborative Filtering over
Knowledge Graph) and the baseline methods under different embedding sizes.

In Table 2, we see that the CKE model did not perform as well as we expected. Although it
has incorporated reviews, images and all other product knowledge described in this paper, the CKE
model did not perform as well as JRL and our model. One possible reason is that CKE only considers
heterogeneous information in the construction of item representations, but it does not directly leverage
the information for user modeling. Another potential reason is that CKE separately constructs three
latent spaces for text, image and other product knowledge, which makes it difficult for information
from different types of data to propagate among the entities. Either way, this indicates that the
embedding-based relation modeling of our model is a better way to incorporate structured knowledge
for product recommendation.

From the results we can also see that datasets of different density result in different performance
in our model. In particular, denser datasets (Cell Phone and Beauty) generally get better ranking
performance than sparser datasets (CD & Vinyl and Clothing) in our model, which means more
sufficient information can help to learn better models in our algorithm.

To answer RQ2, we experiment the performance of our model when using different relations.
Because we eventually need to provide item recommendations for users, our approach would at least
need the Purchase relation to model the user purchase histories. As a result, we train and test our model
built with only the Purchase relation, as well as Purchase plus one another relation separately. As shown
in Table 3, the relative performance of our models built on different relations varies considerably on
the four datasets, which makes it difficult to conclude which type of product knowledge is the globally
most useful one. This, however, is not surprising because the value of relation data depends on the
properties of the candidate products. On CDs and Vinyl, where most products are music CDs, the CD
covers did not reveal much information, and people often express their tastes and preferences in the
reviews they wrote. Thus Mention turns out to be the most useful relation. On Clothing, however,
reviews are not as important as the appearance or picture of the clothes, instead, it is easier to capture
item similarities from the items that have been clicked and viewed by the same user. Therefore, adding
Also_view relation produces the largest performance improvement for our model on Clothing.
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Table 2. Performance of the baselines and our model on top-10 recommendation. All the values in the table are percentage numbers with ‘%’ omitted, and all
differences are significant at p < 0.05. The stared numbers (*) indicate the best baseline performances, and the bolded numbers indicate the best performance of each
column. The last line shows the percentage improvement of our model against the best baseline (i.e., JRL), which are significant at p < 0.001.

Dataset CDs and Vinyl Clothing Cell Phones Beauty

Measures (%) NDCG Recall HR Prec. NDCG Recall HR Prec. NDCG Recall HR Prec. NDCG Recall HR Prec.

BPR 2.009 2.679 8.554 1.085 0.601 1.046 1.767 0.185 1.998 3.258 5.273 0.595 2.753 4.241 8.241 1.143
BPR-HFT 2.661 3.570 9.926 1.268 1.067 1.819 2.872 0.297 3.151 5.307 8.125 0.860 2.934 4.459 8.268 1.132
VBPR 0.631 0.845 2.930 0.328 0.560 0.968 1.557 0.166 1.797 3.489 5.002 0.507 1.901 2.786 5.961 0.902
TransRec 3.372 5.283 11.956 1.837 1.245 2.078 3.116 0.312 3.361 6.279 8.725 0.962 3.218 4.853 9.867 1.285
DeepCoNN 4.218 6.001 13.857 1.681 1.310 2.332 3.286 0.229 3.636 6.353 9.913 0.999 3.359 5.429 9.807 1.200
CKE 4.620 6.483 14.541 1.779 1.502 2.509 4.275 0.388 3.995 7.005 10.809 1.070 3.717 5.938 11.043 1.371
JRL 5.378 * 7.545 * 16.774 * 2.085 * 1.735 * 2.989 * 4.634 * 0.442 * 4.364 * 7.510 * 10.940 * 1.096 * 4.396 * 6.949 * 12.776 * 1.546 *
Our model 5.563 7.949 17.556 2.192 3.091 5.466 7.972 0.763 5.370 9.498 13.455 1.325 6.399 10.411 17.498 1.986
Improvement 3.44 5.35 4.66 5.13 78.16 82.87 72.03 72.62 23.05 26.47 22.99 20.89 45.56 49.82 36.96 28.46

Table 3. Performance of our model on top-10 recommendation when incorporating Purchase with other types of relation separately. And the bolded numbers indicate
the best performance of each column. All the values in the table are percentage numbers with ‘%’ omitted, and all differences are significant at p < 0.05.

Relations CDs and Vinyl Clothing Cell Phones Beauty

Measures(%) NDCG Recall HT Prec NDCG Recall HT Prec NDCG Recall HT Prec NDCG Recall HT Prec

Purchase only 1.725 2.319 7.052 0.818 0.974 1.665 2.651 0.254 2.581 4.526 6.611 0.649 2.482 3.834 7.432 0.948
+Also_view 1.722 2.356 6.967 0.817 1.800 3.130 4.672 0.448 2.555 4.367 6.417 0.630 4.592 7.505 12.901 1.511
+Also_bought 3.641 5.285 12.332 1.458 1.352 2.419 3.580 0.343 4.095 7.129 10.051 0.986 4.301 6.994 11.908 1.408
+Bought_together 1.962 2.712 7.473 0.861 0.694 1.284 2.026 0.189 3.173 5.572 7.952 0.784 3.341 5.337 9.556 1.181
+Produced_by 1.719 2.318 6.842 0.792 0.579 1.044 1.630 0.155 2.852 4.982 7.274 0.719 3.707 5.939 10.660 1.287
+Belongs_to 2.799 4.028 10.297 1.200 1.453 2.570 3.961 0.376 2.807 4.892 7.242 0.717 3.347 5.382 9.994 1.193
+Mention 3.822 5.185 12.828 1.628 1.019 1.754 2.780 0.265 3.387 5.806 8.548 0.848 3.658 5.727 10.549 1.305
+all (our model) 5.563 7.949 17.556 2.192 3.091 5.466 7.972 0.763 5.370 9.498 13.455 1.325 6.370 10.341 17.131 1.959
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Overall, it is difficult to find a product knowledge that is universally useful for recommending
products from all categories. However, we see that by modeling all of the heterogenous relation types,
our final model outperforms all the baselines and outperforms all the simplified versions of our model
with one or two types of relation, which implies that our KBE approach to recommendation is scalable
to new relation types, and it has the ability to leverage very heterogeneous information sources in
a unified manner.

To answer RQ3, we compare the training efficiency of different methods in our experiments on
the same Nvidia Titan X GPU platform. The testing procedures for all methods are quite efficient,
and generating the recommendation list for a particular user on the largest CDs & Vinyl dataset
requires less than 20 milliseconds. This is because after the model has learned the embeddings of
the users and items, generating the recommendation list does not require re-computation of the
embeddings and only needs to calculate their similarity. In terms of training efficiency, shallow models
can be much more efficient than deep neural models, which is not surprising. For example, BPR or
BPR-HFT can be trained within 30 minutes on the largest CDs & Vinyl dataset, while deep models
such as DeepCoNN, CKE, and JRL takes about 10 hours on the same dataset, but they also bring
much better recommendation performance. Our Explainable CF over Knowledge Graph (ECFKG)
approach takes comparable training time on the largest dataset (about 10 hours), while achieving better
recommendation performance than other deep neural baselines, which is a good balance between
efficiency and effectiveness.

7.2. Case Study for Explanation Generation

To show the ability of our model to generate knowledge-enhanced explanations, we conduct
case study for a test user (i.e., A1P27BGF8NAI29) from Cell Phones, for whom we have examined
that the first recommendation (i.e., B009RXU59C) provided by the system is correct. We plot the
translation process of this user to other entity subspaces with Purchase, Mention, Bought_together, and
Belongs_to relations, as shown in Figure 4. We also show the translation of the first recommended
item B009RXU59C (B9C) using the same relations. The top 5 entities retrieved by our system for each
translation are listed along with their probabilities computed based on Equation (10).

WordsUsers

Items

Category

Travel	Chargers 48.58%
Chargers 30.90%
Respiratory	Aids	&	Accessories 0.33%
Power	Tool	Accessories 0.19%

Lawn	Mowers	&	Outdoor	Power	Tools 0.18%

B009RXU59C 4.54%
B00GN6M85K 3.71%
B00DFN03KQ 2.95%
B00G5K3B46 2.62%
B00G5VQIMM 2.57%

highre <0.05%

zik <0.05%
gimbal <0.05%
inifiapp <0.05%
bodybugg <0.05%

B008RDI0TU 27.80%
B00ET9YYS2 7.20%
B00HNGB1YS 5.48%
B00H3OYSHW 4.86%
B00ICZL3KG 3.24%

B008RDI0TU 26.57%
B00KFVM6K6 4.90%
B00ET9YYS2 4.44%
B00HNGB1YS 3.41%
B00H86YO6U 2.84%

B009RXU59C

A1P27BGF8NAI29 Purchase

Bought_together

Belongs_to

Mention

Bluetooth	Headsets 3.67%
Headsets 3.28%
Chargers 2.53%
Material	Handling	Products 1.22%
Watches 1.13%

wall 0.65%

fold 0.29%
ac 0.26%
charger 0.22%
travel 0.18%

B009RXU59C	(B9C):
			High-speed	Wall	Charger	by	
New	Trent

B008RDI0TU	(BTU):
			iPad	mini	Keyboard	Case	by	
New	Trent

B00HNGB1YS	(BYS):
			iPad	mini	Case	by	New	Trent

Figure 4. Example explanation paths between the user A1P27BGF8NAI29 and the item B009RXU59C
(B9C) in Cell Phones.

As we can see in Figure 4, there are three explanation paths between the user A1P27BGF8NAI29
and the item B9C. The first and second paths are constructed by Purchase and Bought_together.
According to our model, the user is linked to B008RDI0TU (BTU) and B00HNGB1YS (BYS) through
Purchase+Bought_together with probabilities as 27.80% and 5.48%. The item B9C is linked to BTU
and BYS through Bought_together directly with probabilities as 26.57% and 3.41%. The third path is
constructed by Purchase and Belongs_to. The user is linked to the category Chargers with probability as
2.53% and B9C is linked to Chargers with probability as 30.90%. Therefore, we can create three natural
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language explanations for the recommendation of B9C by describing these explanation paths with
simple templates. Example sentences and the corresponding confidences are listed below:

• B9C is recommended because the user often purchases items that are bought with BTU together,
and B9C is also frequently bought with BTU together (27.80%× 26.57% = 7.39%).

• B9C is recommended because the user often purchases items that are bought with BYS together,
and B9C is also frequently bought with BYS together (5.48%× 3.41% = 0.19%).

• B9C is recommended because the user often purchases items related to the category Chargers, and
B9C belongs to the category Chargers (2.53%× 30.90% = 0.78%).

Among the explanation sentences, the best explanation should be the one with the highest
confidence, which is the first sentence in this case.

To better evaluate the quality of these recommendation explanations, we look at the details of
each product shown in Figure 4. On Amazom.com, B9C is a High-speed Wall Charger by New Trend
for tablets, BTU is an iPad mini Keyboard Case, and BYS is an iPad Air Keyboard Case. If the generated
explanations are reasonable, this means that the user has purchased some items that were frequently
co-purchased with iPad accessories. Also, this indicates that there is a high probability that the user
has an iPad. For validation proposes, we list the five training reviews written by the user in Table 4.

As we can see in Table 4, the user has purchased several tablet accessories such as Bluetooth
headsets and portable charger. The second review even explicitly mentions that the user has possessed
an iPad and expresses concerns about the “running-out-of-juice” problem. Therefore, it is reasonable to
believe that the user is likely to purchase stuff that are frequently co-purchased with iPad accessories
such as iPad mini Keyboard Case (BTU) or iPad Air Keyboard Case (BYS), which are recommended as top
items in our algorithm, and are also well-explained by the explanation paths in the knowledge graph.

Table 4. The reviews written by the user A1P27BGF8NAI29 in the training data of Cell Phones.

Review of Jabra VOX Corded Stereo Wired Headsets
... I like to listen to music at work, but I must wear some sort of headset so that I do not create a disturbance. So,

I have a broad experience in headsets ...

Review of OXA Juice Mini M1 2600mAh
... I recently had an experience, where I was about town and need to recharge my iPad, and so I tried this thing out.

I plugged in the iPad, and it quickly charged it up, and at my next destination it was ready to go ...

Review of OXA 8000mAh Solar External Battery Pack Portable
... This amazing gadget is a solar powered charger for your small electronic device. This charger is (according to my

ruler) 5-1/4 inches by 3 inches by about 6 inches tall. So, it is a bit big to place in the pocket ...

Review of OXA Bluetooth Wristwatch Bracelet
... I was far from thrilled with Bluetooth headset that I had, so I decided to give this device a try. Pros: The bracelet is

not bad looking, ...
Review of OXA Mini Portable Wireless Bluetooth Speaker
... This little gadget is a Bluetooth speaker. It’s fantastic! This speaker fits comfortably in the palm of your hand, ...

8. Conclusions and Outlook

In this paper, we propose to learn over heterogenous KBE for personalized explainable
recommendation. To do so, we construct the user-item knowledge graph to incorporate both user
behaviors and our knowledge about the items. We further learn the KBE with the heterogenous
relations collectively, and leverage the user and item embeddings to generate personalized
recommendations. To explain the recommendations, we devise a soft matching algorithm to find
explanation paths between a user and the recommended items in the latent KBE space. Experimental
results on real-world datasets verified the superior performance of our approach, as well as its flexibility
to incorporate multiple relation types.

After years of success at integrating machine learning into recommender systems, we believe that
equipping the systems with knowledge (again) is important to the future of recommender systems—or
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information systems in a broader sense—which can help to improve both the performance and
explainability in the future.
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