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Abstract: Adaptive and non-adaptive minimal realization (MR) fractional order observers (FOO) for
linear time-invariant systems (LTIS) of a possibly different derivation order (mixed order observers,
MOO) are studied in this paper. Conditions on the convergence and robustness are provided using
a general framework which allows observing systems defined with any type of fractional order
derivative (FOD). A qualitative discussion is presented to show that the derivation orders of the
observer structure and for the parameter adjustment are relevant degrees of freedom for performance
optimization. A control problem is developed to illustrate the application of the proposed observers.

Keywords: fractional order systems; fractional order observers; fractional order adaptive observers;
robust fractional order observers

1. Introduction

We consider the observer design problem for a dynamic linear time-invariant system (LTIS) of
a given differentiation order (DO). Assuming the knowledge at each instant of time of the pair of
functions u, y : R≥0 → R, corresponding to the system input and output, respectively, the problem
consists on finding an estimation of its internal variables (state or pseudo state) and of its parameters.
To solve this problem, we propose a mixed order approach using minimal realizations, meaning that
the observer and the system are defined in terms of the minimum number of parameters while the
derivation orders used in the observer are arbitrarily chosen and possibly different from those of
the system.

Non-mixed order observers (NMOO) have been proposed using Luenberger observers for integer
order systems (IOS) and fractional order systems (FOS) [1–6]. Our contributions are summarized
and commented in what follows.

• In Section 2 we provide a mathematical framework for designing observer for LTIS, which includes
systems defined by any generic fractional order derivative (GFOD) e.g., Caputo, Riemann–Liouville,
etc. This is a subtle issue given the variety of fractional order derivatives (FOD) existent [7] and the
fact that NMOO have been designed for specific type of derivatives [6,8–12]. In this framework,
the concept of initial conditions (IC) is unambiguously defined and linear properties (superposition
and separation) are easily obtained. Moreover, a minimal realization (MR) structure is chosen in the
sense that the dimension of the internal variables is minimal and it is used the minimum number of
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parameters to describe the system, chosen to simplify the design. It yields a different structure from
Luenberger observer.

• In Sections 3 and 4 convergence and robustness conditions are provided for non-adaptive
and adaptive minimal realization observers (MRO) for commensurate systems. The conditions
obtained meet those of the integer order observers (IOO) [4] when particularized to them,
and constitutes a contribution in the non-mixed fractional order observers (FOO) literature
for the adaptive case (cf. [8,9,13,14]), the latter being especially challenging, since currently there is
not a fractional Lasalle theorem [15] available. The importance of this contribution is supported
by the capability of fractional order systems (FOS) to model complex phenomena [10,16,17],
whereby observers are needed since the internal variables are usually not accessible.

• In Sections 3 and 4 robust convergence conditions for adaptive and non-adaptive mixed-order
observers (MOO) are stated, allowing in particular to design FOO for integer order systems
(IOS) under the same assumptions than those of IOO. The difficulty is now to prove convergence
and robustness for a system which is composed of subsystems with different DO. This novel
idea makes possible (a) to dispose fractional calculus and their capabilities to model long
memory effects [18] to observe real processes approximated by integer order (IO) linear systems,
and (b) to have extra degrees of freedom (the derivation orders) to optimize criteria such as
transient behavior, robustness, disturbance rejection, etc., which are relevant in current observer
designs [19,20]. These advantages and some generalizations are qualitatively discussed in
Sections 3–5 and a control application is developed in Section 6.

An alternative approach to robust non-mixed order observer (NMOO) is found in [21], where prior
information on the uncertainty is required. In contrast, here only upper bounds are needed.
Our observers are asymptotic; a nonasymptotic NMOO has been proposed in [12] for linear
Riemann–Liouville systems and a specific class of uncertainties.

2. Linear Systems Preliminaries

Along this paper we consider a generic fractional order differential operator (GFODO) denoted as
t=0Dα or 0Dα, which satisfies the property that for any continuous function f , its Laplace transform
holds that

L [t=0Dα f ] (s) = sαF (s) + FIC (t = 0, s, α) , ∀α > 0, (1)

where F(s) denotes the Laplace transform (with lower limit t = 0) of the time function f (t).
FIC (t = 0, s, α) is the Laplace transform of function f IC (t = 0, t, α) and depends on the function
f , the order α, (t = 0 is the lower limit of the Laplace Transform) and the type of fractional
derivative. Examples are Caputo (e.g., FIC (t = 0, s, α) = f (0) sα−1 for α < 1), Riemann–Liouville
(FIC (t = 0, s, α) = {Dα−1 f } (0) for α < 1), Grunwald-Letnikov (FIC (t = 0, s, α) = 0 for α < 1)
and Miller-Ross fractional derivative ([16], Section 2.8) among others. For the fractional integral,
there is a commonly chosen definition, which in Laplace domain takes the form,

L [t=0 Iα f ] (s) = s−αF (s) ∀α > 0, (2)

and in time domain, it is given by

0 Iα f (t) :=
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ. (3)

where Γ(·) is the Gamma function [16].
Fractional order linear systems (FOLS) can be represented in Laplace domain by taking Laplace

transform to the input/output pair (u(t), y(t)) to obtain (U (s) , Y (s)) := L{(u, y)} (s). Assuming null
IC conditions, a linear relationship is obtained expressed in terms of the complex variable s of the form
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Y(s) = H(s, U(s)) = H(s)U(s), where H is called the Transfer Function (TF) (Transfer Matrix in the
vector case). In particular, we are interested in TF of the type

H (s) =
∑m

i=0 bisβi

∑n
i=0 aisαi

, (4)

where α0 < . . . < αn; β0 < . . . < βm; a0 . . . , an and b0, . . . , bn are numbers in R. It follows that

Y(s) =
bnsβn + · · ·+ b0

ansαn + · · ·+ a0
U(s) + ∑m

i=1 biUICi (0, s, βi)−∑n
i=1 aiYICi (0, s, αi)

ansαn + · · ·+ a0
, (5)

where L[aiDαi y] = aisαi Y(s) + aiYICi (0, s, αi) and L[biDβi u] = bisβi U(s) + biUICi(0, s, βi). In view
of (5), the terms Y, U in time domain can be called initial conditions (IC), since they uniquely define
the output y for each input u (see discussion in Section 5.4). More precisely, the IC must be all what
is undetermined in U, Y. For instance, if Y = sα−1{y (0)}, the IC must be y(0).This procedure can be
easily generalized for the vector case. From this, we obtain some elementary properties for generic
fractional order linear systems (GFOLS):

• P1: The superposition of responses to a linear combination of inputs holds when the IC are null.
• P2: The solution to (5) is the sum of a zero state solution (first term of (5)) plus a zero input

solution (second term of (5)).

Since we are interested in observing internal variables (state or pseudo state variables), we look
for a suited mathematical model of internal variables for (4). In the commensurate case αi = liα
and βi = miβ for some integers numbers li, mi and making the identification sα = s, some standard
results for IOLS also hold for FOLS.

In particular, we can consider a completely controllable and observable system (i.e., (4) cannot be
further simplified), for which we choose, without loss of generality (since, by applying Laplace
transform, the resulting system will be input-output equivalent to (4)), the following canonical
representation for x ∈ Rn and y, u ∈ R and the matrices A, b, c having suited dimensions:

0Dαx = Ax + bu
y = cTx
xIC (t = 0, t, α) = ψ0, (IC)

(6)

where α > 0, xIC (t = 0, t, α) is the IC (a generalized time function or the Laplace transform inverse of
XIC (t = 0, s, α) obtained according to (1)) and

A =



−a1 1 0 . . . 0
... 0

. . .
...

...
...

. . .
...

−an−1 0 . . . 0 1
−an 0 . . . . . . 0


, b =



b1
...
...
...

bn


, c =



1
0
...
...
0


.

Note that we use the minimal number of parameters necessary to describe the system and, since
the system is completely controllable and observable, the minimal dimension for the internal variables
corresponding to the number of components of x. Any other minimal representation x′ of the system
is related to (6) through a linear transformation x′ = Tx with T nonsingular.
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Consider the following matrices

F =



− f1 1 0 . . . 0
... 0

. . .
...

...
...

. . .
...

− fn−1 0 . . . 0 1
− fn 0 . . . . . . 0


, g =



g1
...
...
...

gn


,

where the elements of F are chosen such that x = 0 is globally attractive for the system
Dαx = Fx, i.e., any of its solutions converges to zero as time goes to infinity. We can
write Ax = (F + A− F)x =Fx + (A − F)x and, choosing gi = ai − fi together with the structures
of A and F, it follows that (A− F)x = gcTx = gy. Thus, we can write Ax = Fx + gy and therefore
system (6) can be re-expressed as 

0Dαx = Fx + gy + bu
y = cTx
xIC (t = 0, t, α) = ψ0

(7)

By linearity, the solution to (7) can be expressed as the sum of the response to a null input with
nonzero IC (zero input response) plus the response when ψ0 ≡ 0 (null IC) to a nonzero input (zero state
response). The former is just the solution to Dαx = Fx when X (t = 0, t, α) = ψ0; we denote it by
ξ (t; x0, α). For the latter, we observe that superposition can be used since the IC are null. To this aim,
we define for i = 1, . . . , n the following system

0Dαηi = Fηi + eiy
0Dαηi+n = Fηi+n + eiu
ηICi(t = 0, t, α) ≡ ηICi+n(t = 0, t, α) ≡ 0,

(8)

where ei is the i−element of the canonical base of Rn. Hence, the response to gy + bu = ∑n
i=1 gieiy +

hieiu is ∑n
i=1 giηi + hiηi+1. Therefore, for t > 0

x(t) = ξ(t; ψ0, F, α) + [η1 . . . η2n](t)p, (9)

where p = (g1, . . . , gn, b1, . . . , bn)T is a vector of parameters.
To end this section, we recall that for Caputo or Riemann–Liouville FOS, if |arg (spec (F)) | > απ

2 ,
then x = 0 is globally attractive for the system 0Dαx = Fx, where spec (F) is the set of eigenvalues
of F [11]. It follows that if F is such that x = 0 is globally attractive for 0Dαx = Fx, then x = 0 it is
globally attractive for 0Dβx = Fx, where 0 < β < α.

For other FOS, the condition |arg (spec (F)) | > απ
2 assures BIBO stability, that is that the

transfer function of 0Dαx = Fx, Hα (s) = (sα I − F)−1 is Lebesgue measurable in time domain,
i.e.,

∫ ∞
0 ||Hα (t) ||dt < ∞ [22]. To assure the attractiveness of x = 0, the following condition on the

chosen derivative (specifically, on the IC term XIC (t = 0, s, α)), must hold in addition

lim
s→0

s (sα I − F)−1 XIC (t = 0, s, α) = 0. (10)

3. Non-Adaptive Mixed Order Observer (NAMOO)

Based on minimal representations, Luenberger observers [1] can be generalized for fractional
order systems following the results in [3]. Consider system (6) with (A, b, c) known and not necessarily
in any canonical form. Define the estimate x̂ of the internal variable x by
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
0Dα x̂ = Ax̂ + bu + F (y− ŷ)
ŷ = cT x̂
x̂ (t = 0, t, α) = ψ̂0

(11)

Note the FO is the same for the system (6) and the observer (11). It follows that e := x− x̂ satisfies
Dαe =

(
A− FcT) e. Since it is a minimal representation, matrix F can be chosen such that the matrix

(A− FcT) has arbitrary eigenvalues. Therefore, we get asymptotically e→ 0 as t→ ∞.
We will build an alternative observer whose FO is not equal to the order of the original system.

Moreover, it is minimal not only in the internal variable dimension but also in the use of the minimal
numbers of parameters to describe the system, all the rest being freely chosen to simplify the design.

Consider the state observer for system (6) given by
0Dβ x̂ = Fx̂ + ỹ + ũ
ŷ = cT x̂
x̂ (t = 0, t, β) = ψ̂0

(12)

where ũ, ỹ are filtered versions of u, y given, in Laplace domain, by{
Ỹ =

(
sβ I − F

)
(sα I − F)−1 gY

Ũ =
(
sβ I − F

)
(sα I − F)−1 bU

(13)

with null IC for ũ, ỹ. Consider system Dβx = Fx with F chosen such that x = 0 is asymptotically stable
or more generally, globally attractive, then we have the following result stated in the next Theorem.

Theorem 1. Let us consider system defined in (6). Then we can state that system (12) is an asymptotic observer
with speed of convergence regulated by the eigenvalues of F. Besides, the observer is robust with respect to
external perturbations, meaning that:

(a) If u, y have additive bounded uncertainties, i.e., u (t) +∆u (t) and y (t) +∆y (t), the estimates of internal
variables and the output error remain bounded, having also high frequency rejection.

(b) If parameter vector p (i.e., the elements of A and b) is in fact p + ∆p, where parameter disturbances
n∆p, u and y are bounded functions, then x− x̂ and y− ŷ remain bounded.

Proof. The solution of (12) is given by

x̂ = ξ
(
t; ψ̂0, F, β

)
+ [η1 . . . η2n] p (14)

where we have used that the solution when ψ̂0 ≡ 0 is given, in Laplace domain,
by
(
sβ I − F

)−1 (sβ I − F
)
(sα I − F)−1 [gy + bu] = (sα I − F)−1 [gy + bu], the same solution for (7) when

ψ0 ≡ 0.
From (9) to (14), we obtain that, x̂ (t)− x (t) = ξ

(
t; ψ̂0, F, β

)
− ξ (t; ψ0, F, α). Hence, limt→∞ x̂ (t)−

x (t) = 0 and limt→∞ ŷ (t)− y (t) = limt→∞ cT x̂ (t)− cTx (t) = 0 accordingly to the choice of F.
If the input is now u (t) + ∆u (t) and the output is y (t) + ∆y (t), then (14) is modified to

x̂ (t) = ξ
(
t; ψ̂0, F, β

)
+ [η1 . . . η2n] (t) p + ∆ (t) (15)

where ∆(t) is the time domain expression of (sα I − F)−1 [g∆y + b∆u
]
. Since (sα I − F)−1 is a BIBO

stable filter according to the choice of F and ∆u,y are bounded, we conclude that ∆ is a bounded function.
It follows that x̂ (t)− x (t) = ξ (t; x0, F, β)− ξ (t; x0, F, β) + ∆ (t), and therefore ŷ− y, are bounded.

If the parameters are changed to p + ∆p, then x̂ (t) − x (t) = ξ
(
t; ψ̂0, F, β

)
− ξ (t; ψ0, F, β) +

[η1 . . . ηn]∆p. Since u, y were assumed bounded, and since F was chosen such that system (8) is
BIBO stable, we conclude that x̂ (t)− x (t) and therefore ŷ− y, are bounded.
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Remark 1.

(i) A benefit of the MO approach to design observers is that the transient behavior of the estimate x̂ can be
regulated by the choice of the FO β. A NMFOO where β = α—like the Luenberger observer (11)—can
only regulate the speed of convergence through the choice of F.

(ii) Unlike Luenberger observer (11), there is no need of an output error feedback term F (ŷ− y). Since this
term is essential in the stability proof of the Luenberger observer, the introduction of this term in our
designs can give some freedom to further improvements.

4. Adaptive Mixed Order Observer (AMOO)

In this section we consider that vector p (i.e., the elements of A and b) in system (7) is unknown.
Thus, instead of p we will use an estimation of it, p̂ = p̂ (t), for the proposed observer scheme in
Section 3. Using expression (14), we write

x̂ (t) = ξ
(
t; ψ̂0, F, β

)
+ [η1 . . . η2n] (t) p̂ (t) , (16)

where ηi are calculated using only the input and output information as in (7) or (8), and c is known
from the canonical representation chosen for the system (6). We will use the information vector defined
by W := [η1 . . . η2n] c and it will be assumed the Caputo derivative along this section.

We will state a previous result to assure the stability of the AMOO, given in the following Lemma.

Lemma 1. The solutions to the Caputo system 0Dαx = Ax, with x (0) ∈ Rn, have bounded quadratic
γ−fractional integral, if 0 < γ ≤ 2α and |arg (spec (A)) | > απ

2 .

Proof. Let ξ be a solution for x (0) = x0. Since the solution is continuous at [0, T] for every T > 0 [16],
provided that u is continuous, only the behavior of ξ2 as t→ ∞ is decisive to determine if its fractional
integral is bounded.

In Laplace domain, we can write ξ̂ (s) = sα−1(sα − A)−1x0 =: sα−1Hα (s). We have that Hα in
time domain is an L1 function in each component (see e.g., [23], or [24]). Therefore, as t→ ∞, ξ has a
behavior in Laplace domain given by lims→0 sα−1Hα (s). Since the relative degree of each component
of Hα is non-negative, this limit is sα−1x0 which in time domain is proportional to t−αx0. Therefore,
the condition γ ≤ 2α to have bounded fractional integral of ξ2 is thus easily obtained.

Theorem 2. Consider the observer (16) for a stable system (6) such that the parameter estimation is performed as

t0 Dγ p̂ = −κ (ŷ− y)W, (17)

where t0 ≥ 0, κ > 0, γ ≤ 2 min{α, β} or γ ≤ 2α and x̂0 = 0. Then,

(i) All the variables of the system remain bounded, (ŷ− y) has bounded γ-integral and its RMS value
converges to zero. These claims remain true if a bounded additive perturbation of quadratic bounded
γ−integral is added on the input and/or output of the system (6).

(ii) If the spectral measure of u is not concentrated on k < 2n points, then p̂ converges to the true parameters
of the plant p and x̂ converges to x as t→ ∞.

Proof.

(i) From (9) to (16), it follows that

x̂ (t)− x (t) = ξ
(
t; ψ̂0, F, β

)
− ξ (t; ψ0, F, α)− [η1 . . . η2n] (t) ( p̂ (t)− p) . (18)
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Hence,

cT (x̂ (t)− x (t)) = cT (ξ (t; ψ̂0, F, β
)
− ξ (t; ψ0, F, α)

)
+ cT [η1 . . . η2n] (t) ( p̂ (t)− p)

e (t) := ŷ (t)− y (t) = ν (t) + WT (t) p̃ (t) (19)

where e is the output error and p̃ = p̂ (t) − p is the parameter error. It follows that
ν2 :=

[
cT (ξ (t; ψ̂0, F, β

)
− ξ (t; ψ0, F, α)

)]2 has bounded γ−integral. Indeed, from the hypothesis
on γ, the choice of F and Lemma 1, cTξ (t; x̂0, F, β) and cTξ (t; x0, F, α) have bounded quadratic
γ−integral. By recalling that ||x+ y||2 ≤ 2||x||2 + 2||y||2, we obtain that ν has bounded quadratic
γ−integral by (say) a constant number C.
Without loss of generality, we assume κ = 1 (otherwise, we always can redefine W as
κW). Let V := p̃T p̃ + C − 1/2Iγν2. Note that V is non-negative, since ν has bounded
quadratic γ−integral. By ([25], Theorem 3) and continuity of the solutions,

[
t0 Dγ p̃T p̃

]
(t) ≤

2p̃T (t) t0 Dγ p̃ (t) [26,27]. Using that t0 Dγ p̃ = t0 Dγ p̂, since p is constant, together with (17)
and (19), we obtain

DγV ≤ −2
(

p̃TW
)2
− 2p̃TWν− 1/2ν2

= −2
(

p̃TW + 1/2ν
)2
≤ 0. (20)

By γ−integration of (20), we obtain V (t) ≤ V (0). That is, p̃T p̃ + C − 1/2Iγν2 is bounded.
Since C > 1/2Iγ, it follows that p̂ is bounded. Using the BIBO stability property of system (8)
due to the choice of F, it follows that W is bounded whenever y, u are bounded. Then, e is
bounded. By γ−integration of (20), we also conclude that e2 =

(
p̃TW + 1/2ν

)2 has bounded
γ-integral. Thus, eRMS converges to zero ([28], Proposition 1).
Using expression (15) and redefining ν, we have also proved that if a bounded perturbation
∆ with bounded quadratic γ−fractional integral, is added to the model input and/or output,
all the above claims remain true.

(ii) If the spectral measure of u is not concentrated on k < 2n points, W = η1 is a persistently exciting
(PE) function ([28], Property 11). Using this and the fact that ν converges to zero, it follows that p̃
converges to zero ([24], Section 3) i.e., p̂ converges to p. Since u, y are bounded, ηi is bounded for
i = 1, . . . , 2n. Therefore, using (18), x− x̂ converges to zero.

For additive bounded perturbations on the parameters, we can redefine ν which is now just a
bounded function. According to ([24], Section 3), ( p̂, e) remains bounded, when W is a PE function.
Moreover, if the perturbation vanishes as t goes to ∞, then ( p̃, e) converges to zero.

Remark 2. A benefit of the adaptive scheme (17) when γ < 1 is shown by the following reasoning. From the
facts that (a) if ν2 has bounded γ1−integral, then it has bounded γ2−integral for any 0 < γ2 ≤ γ1 (the proof is
by contradiction and using Iγ1 ν2 = Iγ1−γ2 Iγ2 ν2) and that (b) t−γ has bounded γ−integral but unbounded
integer integral when γ < 1, it follows that the set of non-destabilizing perturbations for the adaptive scheme is
strictly enlarged for γ < 1. The following heuristic rule can be stated as the lesser the value of γ the more robust
is the response.

5. Discussion

In this section we examine some assumptions made for the proposed observers and discuss some
ways to generalize it.
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5.1. Non-Conmensurate Systems

We have assumed that both observer and system were commensurate. Although non-commensurate
rational orders systems can be turned into a commensurate system in a common order, if this mechanism
is used the precedent results yield a non-minimal observer . A Luenberger-like observer can be used but
only for the NMOFO case. A particular case can be analyzed for MOFO as shown below.

Suppose that the non-commensurate system can be expressed by (6) where α is to be seen as a
vector, so that Dαx ≡ (Dα1 x1, . . . , Dαn xn)

T . Let Hα = Hα (s) be the transfer matrix from X(s) to the
input gY(s) + bU(s). Then, this system can be observed with a commensurate observer (12) with (13)
redefined as {

Ỹ =
(
sβ I − F

)
HαgY

Ũ =
(
sβ I − F

)
HαbU

(21)

provided that F is such that the origin x = 0 of both, 0Dαx = Fx and 0Dβx = Fx, are globally attractive.

5.2. Adaptive Observer for Unstable Plants or Non-Caputo Systems

If the information vector W is not assumed to be bounded, the adaptive law can be modified
including a normalizing factor defined as

t0 Dγ p̂ = −κ (ŷ− y)
W

1 + WTW
.

Along the same lines of the proof of Theorem 2, it can be shown that the properties of the error
in Theorem 2(i) hold for e

1+WTW instead of e and the convergence properties in Theorem 2(ii) hold if
W

1+WTW is of PE type.
When α 6= 1, a MO adaptive adjustment with γ = 1, is obtained using

Dp̂ = −ΓW (ŷ− y)
DΓ = −ΓWWTΓ
Γ (ti) = I

where ti+1 := ti + δi and δi := argmin∆
∫ ti+∆

ti
ŵŵT ≥ εI. By assumptions and arguments in the proof

of Theorem 2(ii), W is a PE function. By applying ([29], Lemma A3), it follows that p̂ exponentially
converges to p. Since ηi can diverge in order tα, it follows that x̂ converges x.

The use of Caputo derivative along Section 4 has two main reasons. The first is that in the proof
of Theorem 2, it is needed that the derivative of a constant number must be zero. Any other derivative
with this property can be used. The second is also related to the proof of Theorem 2 and the choice
of Caputo derivative, since an additive term associated with the IC, must be controlled. Any system
satisfying a similar statement of Lemma 1 can be used.

5.3. A Non-Local Observer for a Local System?

When α = 1 and β 6= 1, we are observing a local system with a non-local observer. Apparently this
looks like an unnecessary waste of computational resources. However, and besides Remarks 1 and 2,
there is a practical consideration that can be argued in favor of a MO strategy.

Linear models are at best good approximations of real processes, which are generally infinite
dimensional and nonlinear with long or short memory properties. Moreover, noisy measurements are
also present in real processes. These aspects are commonly represented by an additive term ν = ν (t)
representing unmodeled dynamics. Thus, the system (6) (or (7)) is rather{

0Dαx = Fx + gy + bu + ν

y = cTx.
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Seeing ν as an stochastic process, the locality of the system is assured only if ν is a Markov process.
For a non-Markov process, the observed system is non-local and it can be expected that a local observer
yields poorer results than using a nonlocal observer.

5.4. Unknown Initial Time

When α 6= 1, the schemes proposed in Sections 3 and 4, implicitly assumes that the initial time of
the observed system is known and the same for the observer system. This is an unrealistic assumption
which is found in all the revised papers (see e.g., [3]), with the exception of those that use diffusive
fractional systems. This consideration does not apply to the adaptive law (17) which can be applied at
any instant without changing Theorem 2.

We show that the framework of Section 2 allows to deal with this case in a consistent way.
Let t0 < 0 the unknown initial time of the observed system and t = 0 the initial time of the observing
process. Consider the system given by

t0 Dαx = Ax + Bu =: Ā(x, u), (22)

where the derivative is generic in the sense of (1). In particular, by applying Laplace transform for the
time variable t′ := t− t0, it holds that [ t0 Dαx](s′) = X̂(t0, s′, α) + s′α x̂. Applying α−fractional integral
from t′ = 0, we obtain

s′−α[ t0 Dαx](s′) = s′−αX̂(t0, s′, α) + x̂(s′)

=: ψ̂0(t0, s′, α) + x̂.

Hence, the α−fractional integral of (22) yields in the time variable t

x(t) = ψ0(t0, t, α) +
1

Γ(α)

∫ 0

t0

(t− τ)α−1 Ādτ +
1

Γ(α)

∫ t

0
(t− τ)α−1 Ādτ

=: ψ1(0, t, α) +
1

Γ(α)

∫ t

0
(t− τ)α−1 Ādτ

Applying Laplace Transform for the time variable t, we obtain

x(s) = ψ̂1(0, s, α) + s−α[Ax̂ + Bû]

sαx = sαψ̂1(0, s, α) + Ax̂ + Bû

=: ψ̂(0, s, α) + Ax̂ + Bû.

Therefore, by defining [D̄αx](s) := sαx− ψ̂(0, s, α), we have that the system D̄αx = Ax + Bu is
equivalent to (22) for t ≥ 0, in the sense that both have the same solution for t ≥ 0. In particular,
the term ψ(0, t, α) can be identified as the IC term. Note that, in general 0D̄α 6= 0Dα, since both
have different IC terms. Theorems 1 and 2 still hold, but the care must be put in finding F verifying
Equation (10) of Section 2.

Another important fact is that if the observed system started at t = t0 from rest, meaning that
any kind of IC becomes identically zero, i.e., ψ0 ≡ 0 for any chosen derivative, then the FOS is
unequivocally defined, meaning that there is not ambiguity in the choice of the derivative, since any of
them yields the same IC term (ψ) for any t ≥ t0. Only in this way, we can talk of a FOS, in the sense
of [30]. On the other hand, if the system started at non-null IC, it has sense talk of a Caputo or RL or
any other generic FOS.
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We have the following specifications to the above procedure, for a Caputo FOS.

ψ0(t0, s′, α) = s′−αs′α−1x(t0) = s′−1x(t0)

ψ0(t0, t, α) = x(t0), ∀t > t0,

ψ1(0, t, α) = x(t0) +
1

Γ(α)

∫ 0

t0

(t− τ)α−1[Ax + Bu]dτ

ψ(0, s, α) = sα−1x(t0) + sαL{ 1
Γ(α)

∫ 0

t0

(t− τ)α−1[Ax + Bu]dτ}(s).

In particular, the resulting D̄α is not a Caputo one. This is what some authors refer as that Caputo
derivative does not take account of the past [31]. To the best of our knowledge, it seems there is no
a fractional derivative operator yielding D̄α = Dα (the diffusive approach is not realizing a known
fractional derivative operator).

Finally, when taking the same F as the last paragraph of Section 2, and using expression (10),
we obtain for any t0

lim
s→0

s (sα I − F)−1 {sα−1e(t0) + sαL{ 1
Γ(α)

∫ 0

t0

(t− τ)α−1[Ax + Bu]dτ}(s)}

= lim
s→0

sα+1 (sα I − F)−1 { 1
Γ(α)

∫ 0

t0

(t− τ)α−1[Ax + Bu]dτ}(s)} = 0,

the last equality is obtained since
∫ 0

t0
(t− τ)α−1[Ax + Bu] decays as tα−1 [32].

5.5. Non-Linear Systems

The observers proposed in Sections 3 and 4 can be generalized for a class of nonlinear systems
described by {

0Dαx = Fx + gy + bu + d f (u, y)
y = cTx

where f is a scalar and known nonlinear function, and d is a vector. If d is a known vector, it can be
easily canceled using for instance ỹ =

(
sβ I − F

)
(sα I − F)−1 (gy + d f (u, y)). If it is unknown, it can

be concatenated to the parameter vector p and the equations for ηi are enlarged accordingly, i.e., now
i = 1, . . . , 3n. The rest is similar to the proof of Theorem 2.

5.6. Other Assumptions

The proposed observers for system (7) can be generalized for multi-input multi-output (MIMO)
systems. Consider the completely controllable and observable MIMO system{

0Dαx = Ax + Bu
y = Cx + Du

(23)

where x : [0, ∞) → Rn, u : [0, ∞) → Rm, y : [0, ∞) → Rp and the matrices A, B, C, D having suited
dimensions. Since the system is observable, for any arbitrarily chosen matrix F, there exists G such
that F = A− GC. Hence, defining B′ = B− GD the state equation can be rewritten as

0Dαx = Fx + Gy + (B− GD) u = Fx + Gy + B′u

= Fx +
p

∑
i=1

Giyi +
m

∑
i=1

B′iui
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where Gi, B′i are the columns of G, B′, respectively. Equations (8) and subsequent are accordingly
modified by changing gy + bu to ∑m

i=1 Giyi + ∑
p
i=1 B′iui. When α = β = 1, this generalizes the

procedure in [33].
Note that we have assumed known the DO of the plant (23). An independent estimation procedure

of it, that can be coupled to the proposed observers, is presented in [14].

6. Application

In this section we examine an application of the results previously presented to a control problem.
In this application, we build a FOC for an IOS based on the design of an FOO (MO approach).
This way of using FOO in classic IO problems have also been explored before in [28,34] for adaptive
and nonlinear systems. It has been observed that the FO of the controller/observer is a relevant
optimization parameter for standard performance criteria. Besides, fault detection applications using
our results can also be done based on the ideas contained in [35].

Let us consider the IO LTIS defined as
ẋ = Ax + bu
y = cTx
x(0) = x0

(24)

where x : [0, ∞) → Rn, u : [0, ∞) → R, y : [0, ∞) → R and matrices A, b, c of suited dimensions.
The problem is, assuming that only y, u can be measured from the system, to find a control law u
depending on y and some other known signals and parameters, such that x goes to zero asymptotically.

It is well known that if the pair (A, b) is completely controllable, there exists a vector k such that
arbitrary eigenvalues can be assigned to the matrix H := A− bkT . In particular, if x is available the
controller u = −kTx applied to system (24) drives x to zero aymtoticall with speed determined by the
eigenvalues of matrix H. Since we are assuming that x is unknown, we will use an estimation x̂ for (24)
obtained from the following FOO of order β whose design is based on (12) and (13) with α = 1

0Dβ x̂ = Fx̂ + ỹ + ũ
ŷ = cT x̂
x̂(t = 0, t, β) = ψ̂0

(25)

where ũ, ỹ are filtered versions of u, y given, in Laplace domain, by{
Ỹ =

(
sβ I − F

)
(sI − F)−1 gY

Ũ =
(
sβ I − F

)
(sI − F)−1 bU

(26)

with null IC for ũ, ỹ.
Theorem 1 guarantees that e(t) := x(t)− x̂(t) converges to zero asymptotically, for any pair of

continuous functions u, y, if the pair (A, c) is observable. Then, using u = −kTe(t), we have

ẋ = Hx + bkTe(t)

Choosing H such that |arg (spec (H)) | > π
2 , the transfer matrix is L1 (i.e., Lebesgue integrable).

Since the convolution of an L1 function with a function that converges to zero, converges to zero,
it follows that x → 0 as t → ∞, with a speed regulated trough matrices H, F. Thus, the resulting
controller u = u (k, F, β, y) has an additional degree of freedom corresponding to the observer FO β.

Moreover, the control is robust meaning that if there exists an additive bounded measurement
noise on the output, y + ∆y, x remains bounded. Indeed, from the proof of Theorem 1, it follows that
‖x̂‖ < C|∆y| with C a constant number. Hence, ‖x‖ ≤ C|∆y| ‖

∫ t
0 exp (−Ft) dt‖ as t → ∞. Therefore,

the choice of F also regulates the robustness of this control scheme with respect to bounded external
perturbations on the system output.
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The adaptive observer (Theorem 2) can be applied in indirect adaptive control as was done in [28].

Simulation Example

In what follows, a simulation example is presented, corresponding to the application presented
above. The plant to be observed and controlled has the form indicates in (24) with

A =

[
4 1
−3 0

]
b =

[
3
−6

]
c =

[
1 0

]T
x0 =

[
5 3

]T
(27)

The plant is unstable, controllable, observable and in observable canonical form. Thus, an observer
with structure given by (13) and (25) is implemented, using

F =

[
−25 1
−150 0

]
, (28)

which makes the observer asymptotically stable with poles in −10 and −15.
The observed state x̂ given by (25) and (26) with parameters given by (28) is used to construct a

control signal given by
u = −kT x̂ + Nr (29)

where the parameter k is chosen as k =
[

17 7
]T

, N is the correction factor given by

N =
(

c
(

A− bkT)−1
)−1

and r is the reference signal. The choice of k makes that the closed-loop

roots of A− bkT are located at −2 and −3.
Using the control law (29) and the observer (25) and (26), the system was simulated using a step

of magnitude 5 as reference signal. Different values of the FO β were explored for the observer (25)
and (26) in order to check its influence in the control scheme.

Figure 1 shows the evolution of the resulting control error ec (t) = r (t)− y (t) whereas Figure 2
shows the evolution of the norm of the estimation error e (t) = x (t)− x̂ (t), for different values of
β ∈ [0.7; 1.3].
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Figure 1. Evolution of the control error for a step reference of magnitude 5, using different values of
the FO β for the observer.
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It can be seen from Figure 1 that the control error converges asymptotically to zero for all the FOO
used in the estimation stage. The main differences are appreciated in the transient, where the largest
overshoots correspond to those cases where the FO are far from 1. Also, the convergence time is higher
for these cases.
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Figure 2. Evolution of the norm of the estimation error for a step reference of magnitude 5, using
different valued of the FO β for the observer.

Observing Figure 2 it can be seen that the five FOO work as expected, since the estimation errors
are converging to zero, which means that the observers correctly estimate the real states. Again, in this
case, the convergence time is higher as the FO β is farther from 1, which is the order of the plant to
be controlled.

To add more information on these results, the following indexes were calculated for the simulation,
corresponding to the integral of the squared control error (ISEc) and the integral of the squared norm
of the estimation error (ISEe).

ISEc =

T∫
0

e2
c (τ) dτ (30)

ISEe =

T∫
0

‖e‖2 (τ) dτ (31)

Table 1 presents the corresponding values of indexes (30) and (31) for these simulations. It can
be seen that in fact, the best estimation is achieved with the IOO (β = 1), since it has the smallest
ISEe. However, since the observer is used to implement the control signal, it can be observed that
the behavior of the control error is better for the case when β = 0.9, since it has the smallest ISEc.
However, differences are not so important as in the case of the ISEe.

Table 1. Performance indexes (30) and (31) for the ideal case, using a step reference of magnitude 5.

β = 0.7 β = 0.9 β = 1 β = 1.1 β = 1.3

ISEc 1.74× 103 1.57× 103 1.61× 103 1.73× 103 2.76× 103

ISEe 10.66 3.1693 3.36× 10−3 3.20 9.91
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So far it looks like there is no big advantages of using FOO in this case. Let us now see how the
scheme behaves when an external disturbance is added to the plant output. In this case, the disturbance
will be constant with a magnitude of 10% of the reference magnitude.

Figures 3 and 4 show the evolution of the resulting control error and the norm of the estimation
error for this new scenario, respectively.
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Figure 3. Evolution of the control error for a step reference of magnitude 5 and an external disturbance
of 10 % magnitude added to the plant output, using different values of the FO β for the observer.
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Figure 4. Evolution of the norm of the estimation error for a step reference of magnitude 5 and an
external disturbance of 10 % magnitude added to the plant output, using different values for the FO β

for the observer.

It can be seen from Figures 3 and 4 that in these cases, even for β = 1, the control error and the
estimation error remain bounded in presence of an external disturbance, as it was expected from the
analysis presented in Section 6. Nevertheless, it can be noted from Figure 3 that the magnitude of the
steady state control error is smaller for those cases using FOO with orders larger than 1. A similar
result can be observed for the norm of the estimation error in Figure 4, which represents an advantage
of using FOO for IOS. These results are in agreement with the values of the indexes (30) and (31)
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calculated for these simulations, which are presented in Table 2. It can be noted that the case β = 1.1
performs better for both, the control error and the estimation error indexes.

Table 2. Performance indexes (30) and (31) for the case when an external disturbance is added to the
plant output.

β = 0.7 β = 0.9 β = 1 β = 1.1 β = 1.3

ISEc 3.27× 103 2.58× 103 2.31× 103 2.26× 103 3.02× 103

ISEe 55.82 48.40 45.61 44.46 48.46

Finally, let us check how the proposed scheme behaves when an additive white noise is affecting
the plant output, representing measurement noise, which is a very usual situation in practical control
schemes. The white noise has a sample time of 0.1 and its power is 1% of the reference amplitude.
Figures 5 and 6 show the evolution of the resulting control error and the norm of the estimation error
for this noisy scenario, respectively.

It can be seen from Figures 5 and 6 that both, the control error and the norm of the estimation
error, remain bounded even in the presence of additive noise, although their oscillations around the
expected values are quite important. Regarding the FO of the observers, FOO with β = 1 and β = 1.1
present the best results, since their curves have the smallest oscillations. This can be corroborated from
Table 3, where the indexes (30) and (31) calculated for these simulations are presented.

Table 3. Performance indexes (30) and (31) for the case when white noise is added to the plant output.

β = 0.7 β = 0.9 β = 1 β = 1.1 β = 1.3

ISEc 3.69× 103 3.40× 103 3.38× 103 3.47× 103 4.51× 103

ISEe 64.55 62.63 61.84 61.93 67.07
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Figure 5. Evolution of the control error for a step reference of magnitude 5 and white noise present in
the plant output, using different values of the FO β for the observer.
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Figure 6. Evolution of the norm of the estimation error for a step reference of magnitude 5 and white
noise present in the plant output, using different values of the FO β for the observer.

Thus, to conclude this subsection, we could say that adding FO to the observer design can
contribute to improving the behavior of the controlled system in the presence of external disturbances
and noise. Moreover, it should be pointed out that although this is a rather simple and specific
application and the results obtained here cannot necessarily be generalized to other control strategies,
the inclusion of FO in the observer design should seriously be considered in the design stages of
control applications, since it may improve the expected results.
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