
algorithms

Article

Robust Visual Tracking via Patch Descriptor and
Structural Local Sparse Representation

Zhiguo Song * ID , Jifeng Sun, Jialin Yu and Shengqing Liu

School of Electronic and Information Engineering, South China University of Technology, No. 381,
Wushan Road, Tianhe District, Guangzhou 510640, China; ecjfsun@scut.edu.cn (J.S.);
yu.jialin@mail.scut.edu.cn (J.Y.); 201520109390@mail.scut.edu.cn (S.L.)
* Correspondence: s.zhiguo@mail.scut.edu.cn; Tel.: +86-020-8711-2738

Received: 6 July 2018; Accepted: 11 August 2018; Published: 15 August 2018
����������
�������

Abstract: Appearance models play an important role in visual tracking. Effective modeling of the
appearance of tracked objects is still a challenging problem because of object appearance changes
caused by factors, such as partial occlusion, illumination variation and deformation, etc. In this
paper, we propose a tracking method based on the patch descriptor and the structural local sparse
representation. In our method, the object is firstly divided into multiple non-overlapped patches,
and the patch sparse coefficients are obtained by structural local sparse representation. Secondly,
each patch is further decomposed into several sub-patches. The patch descriptors are defined as the
proportion of sub-patches, of which the reconstruction error is less than the given threshold. Finally,
the appearance of an object is modeled by the patch descriptors and the patch sparse coefficients.
Furthermore, in order to adapt to appearance changes of an object and alleviate the model drift, an
outlier-aware template update scheme is introduced. Experimental results on a large benchmark
dataset demonstrate the effectiveness of the proposed method.

Keywords: visual tracking; patch descriptor; structural local sparse representation; outlier-aware
template update scheme

1. Introduction

Visual tracking is a hot topic in the field of computer vision and has a wide range of applications,
such as vision-based control [1], unmanned aerial vehicles [2], intelligent transportation [3], etc.
Although some significant progress has been made in recent years, it still remains a challenging
problem due to numerous appearance changes caused by factors, such as illumination changes,
occlusion, scale variations, shape deformation, etc. Therefore, developing an effective appearance
model is the key factor for robust tracking. Specifically, according to the used appearance model,
current visual tracking methods can be roughly categorized into two classes: discriminative tracking
and generative tracking.

In the generative tracking methods, the tracking problem is formulated as a search for regions
most similar to the target model, and the information of the target is only used. Ross et al. [4]
developed an online subspace learning model to account for appearance variation. In [5], a tracking
algorithm based on a visual tracking decomposition scheme was proposed, and the observational
model is decomposed into multiple basic observational models to cover a wide range of pose and
illumination variation. Motivated by sparse representation in face recognition [6], Mei and Ling [7,8]
formulated tracking as a sparse approximation problem. This method employs holistic representation
schemes and hence does not perform well when target objects are heavily occluded. In [9], a tracking
method based on the structural local sparse appearance model was proposed. This model exploits
both partial information and spatial information, and handles occlusion by pooling across the local

Algorithms 2018, 11, 126; doi:10.3390/a11080126 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-8333-5778
http://dx.doi.org/10.3390/a11080126
http://www.mdpi.com/journal/algorithms
http://www.mdpi.com/1999-4893/11/8/126?type=check_update&version=2

Algorithms 2018, 11, 126 2 of 18

patches. In contrast to just use the target templates and the trivial templates to sparsely represent the
target in [7,8], Guo et al. [10] proposed to represent the target object by a sparse set of target templates
together with a sparse set of target weight maps. These weight maps contain the reliable structures
of the target object. Lan et al. [11] proposed a multiple-sparse-representation-based tracker which
learns the common and feature-specific patterns among multiple sparse representations for appearance
modeling. In [12], Zhang et al. proposed a unified multi-feature tracking framework based on joint
compressive sensing. Their framework can accept features extracted from identical spectral or different
spectral images, and provide the flexibility to arbitrarily add or remove features.

On the contrary, the discriminative methods treat tracking as a binary classification problem,
aiming to find a decision boundary that can best separate the target from the background. Unlike
generative methods, the information of both the target and its background is used simultaneously.
Avidan [13] used Adaboost to combine an ensemble of weak classifiers to form a strong classifier
to do tracking. In [14], Grabner et al. proposed a semi-supervised online boosting algorithm to
handle the drifting problem. Babenko et al. [15] proposed an online multiple instance learning (MIL)
tracker, where samples are considered within positive and negative bags. Hare et al. [16] introduced
a kernelized structured output support vector machine (Struck) for object tracking, which avoids
the intermediate step to convert the estimated object position into a set of labeled training examples.
Recently, the correlation filter (CF) based discriminative tracking methods have attracted a great deal of
attention in tracking community. MOSSE [17] first introduced the CF to visual tracking. Subsequently,
Heriques et al. exploited the circulant property of the kernel matrix [18], which was further improved
using multi-channel HOG features [19]. Danelljan et al. [20] integrated adaptive scale estimations with
the CF learning. The work of [21] performed complementary tracking that is robust to deformation
and illumination variation. Inspired by the success of deep convolutional neural networks (CNNs)
in object recognition and detection, several CF based trackers have been proposed to exploit CNN
features [22–24].

In this paper, we pay attention to devising an effective appearance model and alleviating the
model drift. Based on structural local sparse representation in [9], we design the patch descriptor to
reflect the degree, to which each patch is contaminated with noise caused by appearance changes.
Then, we model the appearance of an object by the combination of the patch descriptor and the patch
sparse coefficients. Finally, we carry out tracking within the particle filter framework. Furthermore,
we design an outlier ratio to describe the outlier degree of a target object. When the outlier ratio is
larger than the threshold, we stop updating the template to alleviate the model drift.

The rest of this paper is organized as follows. Section 2 reviews the related work. In Section 3, we
first describe target region division, then introduce structural local sparse representation, and finally
detail the design of patch descriptor. In Section 4, we present our tracking method within the particle
filter framework. Section 5 gives the template update scheme. Experimental results and comparisons
are shown in Section 6. This paper concludes with Section 7.

2. Related Work

Visual tracking is one of the most challenging problems in computer vision. In order to give the
context of our work, we briefly review the works most related to ours: patch-based tracking methods
and strategies for alleviating model drift. For more detailed information on visual tracking, readers
may refer to [25,26] and the references therein.

2.1. Patch-Based Tracking Methods

Instead of learning a holistic appearance model, many patch-based tracking methods have been
developed, in which the target is modeled as a small number of rectangular blocks. If the target
is partially occluded and deformed, its remaining visible patches can still represent the target and
provide reliable cues for tracking. In [27], Adam et al. divided the target into multiple image patches
to handle partial occlusion, and the integral image is used for feature extraction. Kwon and Lee [28]

Algorithms 2018, 11, 126 3 of 18

presented a local patch-based appearance model to address tracking of a target whose geometric
appearance is drastically changing over time. An adaptive structural local sparse appearance model
was proposed in [9], which handles occlusion by pooling across the local patches. Zhang et al. [29]
matched local patches from multiple frames jointly by considering their low-rank and sparse structure
information, which can effectively handle patch appearance variations due to occlusion or noise.
In order to effectively handle deformation and occlusion, Cai et al. [30] designed a dynamic graph
based tracker. They oversegment the target into several parts and then model the interactions between
neighboring parts. Both the appearances of local parts and their relations are incorporated into a
dynamic undirected graph. In [31], a patch-based tracking method with cascaded regression was
proposed, which exploits the spatial constraints between patches by implicitly learning the shape and
deformation parameters of the object in an online fashion. Sun et al. [32] proposed a fragment-based
tracking method with consideration of both temporal continuity and discontinuity information, which
exploits both foreground and background information to detect the possible occlusion. With the
kernelized CFs, Li et al. [33] proposed a patch-based tracking method to handle challenging situations,
where they employ the reliable patch particles to represent the visual target. A similar method can be
found in [34].

Motivated by the aforementioned patch-based tracking methods, our approach also adopts a
patch-based strategy to deal with challenging situations. However, different from existing methods,
we design the patch descriptor to reflect the degree, to which each patch is contaminated with noise
caused by appearance changes. The final tracked result is jointly determined by the patch descriptor
and patch sparse coefficients.

2.2. Strategies for Alleviating Model Drift

The problem of corrupted or ambiguous samples is usually encountered in visual tracking,
which deteriorates the representation power of tracking model, resulting in model drift. In order to
handle this problem, various methods have been proposed. The work of [7,8] explicitly models
the outliers in the corrupted target’s samples using trivial templates. In [15], online multiple
instance learning was exploited to handle the label ambiguities caused by misaligned samples.
Kalal et al. [35] developed a P-N learning method to estimate the tracker’s errors and correct them
within a Tracking-Learning-Detection (TLD) framework. In [9], an update scheme based on the
combination of sparse representation and incremental subspace learning was adopted to prevent
model degradation. Zhang et al. [36] adopted multiple experts to address the model drift problem,
which correct the past mistakes of online learning by allowing the tracker to evolve backward. The
long-term correlation tracker (LCT) [37] alleviates model drift by modeling the temporal context
correlation and the target appearance, using two regression models based on CFs. The tracking
method in [38] adaptively learns the reliability of each training sample and downweighs the impact of
corrupted ones. In [39], Shi et al. proposed a tracking algorithm based on Complementary Learner [21].
In order to reduce the risk of model drift, they construct a refiner model based on an online support
vector machine (SVM) detector to update an incorrect prediction to a reliable position in case of low
reliability of the current tracking result.

In this paper, in order to effectively reduce model drift caused by noisy updates, we design an
outlier ratio to describe the outlier degree of a target object. When the outlier ratio is larger than the
threshold, we stop updating the template.

3. Patch Descriptor and Structural Local Sparse Representation

3.1. Target Region Division

In this work, we normalized the target region into 36× 36 pixels by applying affine transformation
and extracting non-overlapped 12 × 12 local patches within the target region with 12 pixels as a step

Algorithms 2018, 11, 126 4 of 18

length, as shown in Figure 1a. Then, each local patch was further decomposed into several sub-patches
again. The sub-patch size was 4 × 4 pixels, and the step length was 4 pixels, as shown in Figure 1b,c.
Algorithms 2018, 11, x FOR PEER REVIEW 4 of 17

(a) (b) (c)

Figure 1. Target region division. (a) Sampling patches; (b) sampling sub-patches; (c) a patch
distribution map.

3.2. Structural Local Sparse Representation

Given a set of target templates = { , , … , }, we divided each template in T into N
non-overlapped local patches with a spatial layout (Figure 1a), and used these local patches as the
dictionary to encode the local patches inside the candidate regions, i.e., = { , , … , (×)} ∈ℝ ×(×), where n is the number of target templates, d is the dimension of each patch vector, and N is
the number of local patches sampled within one target region. Each column in D is obtained by ℓ
normalization on the vectorized local image patches. For a target candidate, we divided it into N
patches and turned them into vectors in the same way, which is denoted by = { , , … , } ∈ℝ × . With the sparsity assumption, the local patches within the target candidate region can be
sparsely represented as a linear combination of the dictionary D by solving the following ℓ -regularized least squares problem: min‖ − ‖ + ‖ ‖ , s. t. ≥ 0, (1)

where	 	is	the regularized parameter, ∈ ℝ(×)× 	is the sparse coefficients of the ith local image
patch, and ≥ 0	means all the elements of 	are nonnegative. To represent local patch i at a certain
position of the candidate, the sparse coefficients of the ith patch are divided into n segments,
i.e., = [() 	, () , … , ()] , according to the target templates, where () =()× , ()× , … , ()× 	denotes the kth segment of the coefficient . Then, we weighed
these coefficients to obtain for the ith patch:

= 1 () , = 1,2, … , (2)

where is the sparse coefficient of the ith local patch and C is a normalization term. Since one
candidate target contains N local patches, all the vectors can form a square matrix V, =[, , … ,]. The local appearance variation of a patch can be best described by the blocks at the
same positions of the template. Therefore, we used the alignment-pooling method [9] and took the
diagonal elements of the square matrix V as the final sparse coefficients of the local patches, i.e.,	 =diag(), where = { , , … , }	is the sparse coefficient vector of all the local patches, i.e.,	 means
the sparse coefficient of the jth local patch.

3.3. Patch Descriptor

Although the patch-based local sparse representation with the alignment-pooling process in [9]
can capture both partial information and spatial information, it does not consider the different status
among these patches, and this may influence the tracking performance when the appearance of
patches of the target varies inconsistently. To address this issue, we assigned patch descriptors for
different patches according to reconstruction errors of sub-patches using sparse representation.

The detailed analysis of target region division was given in Section 3.1. The dictionary base of
each patch, obtained by clustering all the sub-patches in the patch at the same positions of the
template, is = [, , … . ,] ∈ ℝ × , where z is the feature dimension of each dictionary, and K is
the number of dictionaries. Let = [, , … ,] denote the vectorized sub-patches of each patch of

Figure 1. Target region division. (a) Sampling patches; (b) sampling sub-patches; (c) a patch
distribution map.

3.2. Structural Local Sparse Representation

Given a set of target templates T = {T1, T2, . . . , Tn}, we divided each template in T into N
non-overlapped local patches with a spatial layout (Figure 1a), and used these local patches as the
dictionary to encode the local patches inside the candidate regions, i.e., D =

{
d1, d2, . . . , d(n×N)

}
∈

Rd×(n×N), where n is the number of target templates, d is the dimension of each patch vector, and N
is the number of local patches sampled within one target region. Each column in D is obtained by
`2 normalization on the vectorized local image patches. For a target candidate, we divided it into N
patches and turned them into vectors in the same way, which is denoted by Y = {y1, y2, . . . , yN} ∈
Rd×N . With the sparsity assumption, the local patches within the target candidate region can be
sparsely represented as a linear combination of the dictionary D by solving the following `1-regularized
least squares problem:

min
bi
‖yi −Dbi‖2

2 + λ‖bi‖1, s.t. bi ≥ 0, (1)

where λ is the regularized parameter, bi ∈ R(n×N)×1 is the sparse coefficients of the ith local
image patch, and bi ≥ 0 means all the elements of bi are nonnegative. To represent local patch
i at a certain position of the candidate, the sparse coefficients of the ith patch are divided into
n segments, i.e., bT

i = [b(1)Ti , b(2)Ti , . . . , b(n)Ti], according to the target templates, where b(k)Ti =[
b(k−1)×N+1, b(k−1)×N+2, . . . , b(k−1)×N+N

]
denotes the kth segment of the coefficient bi. Then, we

weighed these coefficients to obtain νi for the ith patch:

υi =
1
C

n

∑
k=1

b(k)i , i = 1, 2, . . . , N (2)

where νi is the sparse coefficient of the ith local patch and C is a normalization term. Since one candidate
target contains N local patches, all the vectors can form a square matrix V , V = [v1, v2, . . . , vN]. The local
appearance variation of a patch can be best described by the blocks at the same positions of the template.
Therefore, we used the alignment-pooling method [9] and took the diagonal elements of the square
matrix V as the final sparse coefficients of the local patches, i.e., f = diag(V), where f = { f1, f2, . . . , fN}
is the sparse coefficient vector of all the local patches, i.e., f j means the sparse coefficient of the jth

local patch.

3.3. Patch Descriptor

Although the patch-based local sparse representation with the alignment-pooling process in [9]
can capture both partial information and spatial information, it does not consider the different status
among these patches, and this may influence the tracking performance when the appearance of patches

Algorithms 2018, 11, 126 5 of 18

of the target varies inconsistently. To address this issue, we assigned patch descriptors for different
patches according to reconstruction errors of sub-patches using sparse representation.

The detailed analysis of target region division was given in Section 3.1. The dictionary base
of each patch, obtained by clustering all the sub-patches in the patch at the same positions of the
template, is P = [p1, p2,, pK] ∈ Rz×K, where z is the feature dimension of each dictionary, and K is
the number of dictionaries. Let S = [s1, s2, . . . , sL] denote the vectorized sub-patches of each patch of
a target candidate, where si ∈ Rz×1 is the ith sub-patch, and L is the number of sub-patch. For each
patch, when sparse coefficients of sub-patches in different patch were calculated, we used different
dictionary base respectively, and its calculation formula was written as following:

min
xi
‖si − Pxi‖2

2 + γ‖xi‖1, s.t.xi>0 (3)

where xi ∈ RK×1 is the sparse coefficient of ith sub-patch in each patch, and γ is the regularized
parameter. The reconstruction error of all the sub-patches in each patch can be calculated by
the formula, εi = ‖si − Pxi‖2

2, where εi is the reconstruction error of the ith sub-patch in each
patch. Let δi denote a factor of noise of the corresponding ith sub-patch. It is defined by δi ={

0, εi < ε0

1, otherwise
, where ε0 is a threshold (ε0 = 0.04 in our work). Each element of the patch descriptor

ρ = [ρ1, ρ2, . . . , ρN] ∈ RN×1 was defined as follows:

ρj = 1−
L

∑
i=1

δi/L, j = 1, 2, . . . , N (4)

where ρj is the jth patch descriptor representing the degree of noise pollution of the patch, and L is the
number of sub-patch. The smaller the value of ρj is, the more serious the patch will be corrupted.

4. Object Tracking

The basic flow of the proposed tracking algorithm is illustrated in Figure 2.

Algorithms 2018, 11, x FOR PEER REVIEW 5 of 17

a target candidate, where ∈ ℝ × is the ith sub-patch, and L is the number of sub-patch. For each
patch, when sparse coefficients of sub-patches in different patch were calculated, we used different
dictionary base respectively, and its calculation formula was written as following: min‖ − ‖ + ‖ ‖ , s. t.		 (3)

where ∈ ℝ × 	is the sparse coefficient of ith sub-patch in each patch, and	γ is the regularized
parameter. The reconstruction error of all the sub-patches in each patch can be calculated by the
formula, ε = ‖ − ‖ , where ε is the reconstruction error of the ith sub-patch in each patch.

Let	δ 	denote a factor of noise of the corresponding ith sub-patch. It is defined by = 0,			 <1,			 ℎ ,

where ε is a threshold (= 0.04 in our work). Each element of the patch descriptor 	 =[, , … ,] ∈ ℝ × was defined as follows: = 1 − ∑ ⁄ , = 1,2, … , (4)

where is the jth patch descriptor representing the degree of noise pollution of the patch, and L is
the number of sub-patch. The smaller the value of	 is, the more serious the patch will be corrupted.

4. Object Tracking

The basic flow of the proposed tracking algorithm is illustrated in Figure 2.

Frame t

Particle sampling

Sampling patches

Patches

Sub-patches

...

Dictionary D

Dictionary P of each patch

Sparse
coding

Sparse reconstruction error map

...

Patch descriptor ρ

Sparse
coding

 N

t t j j
j 1

()p r z fρ
=

∝

Final tracking result

Updating
dictionary D

and dictionary P
Observation model

Figure 2. Schematic diagram of the proposed tracking method.

Our tracking method was carried out within the filter framework. At any time t, all target
observations up to time t can be denoted by	 = { , , … , }, and the state of a tracked object can be
represented by 	. The optimal state of the tracked object can be computed by the maximum a
posteriori estimation, ̂ = argmax (|), where is the ith sample of the state z . The posterior

probability was computed by the Bayesian theorem recursively:

Figure 2. Schematic diagram of the proposed tracking method.

Algorithms 2018, 11, 126 6 of 18

Our tracking method was carried out within the filter framework. At any time t, all target
observations up to time t can be denoted by Rt = {r1, r2, . . . , rt}, and the state of a tracked object can
be represented by zt. The optimal state of the tracked object can be computed by the maximum a

posteriori estimation, ẑt = argmax
zi

t

p(zi
t

∣∣∣∣∣Rt) , where zi
t is the ith sample of the state zt. The posterior

probability was computed by the Bayesian theorem recursively:

p(zt|Rt) ∝ p(rt|zt)
∫

p(zt|zt−1)p(zt−1|Rt−1)dzt−1 (5)

where p(zt|zt−1) is the motion model between two consecutive states and p(rt|zt) is the observation
model. We modeled the motion of the object between two consecutive frames by affine transform.
The state transition was formulated by random walk, i.e., p(zt|zt−1) = N (zt : zt−1, Σ), where
zt = {αt,βt,µt, υt} denotes the x, y translations, scale and aspect ratio at time t, respectively.
Σ = diag

(
σ2
α,σ2

β,σ2
µ, σ2

υ

)
is a diagonal covariance matrix, of which elements are the variances of

the affine parameters.
The observation model p(rt|zt) estimates the likelihood of observing rt at a state zt. It plays an

important role in object tracking, because it can reflect the variations of target appearance. In our
algorithm, the observation model was defined by:

p(rt|zt) ∝
N

∑
j=1

ρj f j, (6)

where the right side of the equation denotes the similarity between the candidate and the target based
on the pooled feature f and patch descriptor æ. The candidate with the highest likelihood value is
regarded as the tracking result.

5. Update Scheme

Object appearance often changes during tracking. We updated the target templates and
dictionaries to adapt to the appearance changes every five frames. In [9], the sparse representation and
subspace learning are used to update template:

r = Uq + e = [U I]

[
q
e

]
(7)

where r denotes the observation vector, U is the matrix composed of eigenvectors, q is the coefficient of
eigenvectors, and e indicates the pixels in r that are corrupted or occluded. Assuming the error caused
by occlusion and noise is arbitrary and sparse, Equation (7) can be solved by:

min
c
‖r−Hc‖2

2 + λ‖c‖1 (8)

where H = [U I], c = [q e]T and λ is the regularization parameter. The reconstructed image Uq is then
used for updating the template to be replaced.

In many tracking methods, the earlier tracking results are more accurate and should be
stored longer than the newly tracking results in the template stack. In order to balance
between the old and new templates, we introduced a cumulative probability sequence{

0, 1/
(
2n−1 − 1

)
, 3/
(
2n−1 − 1

)
, . . . , 1

}
and its each element means the update probability from the first

template to the nth template. We generated a random number according to the uniform distribution on
the unit interval [0, 1] to choose a section in the sequence that the random number lies in and then
determined which template should be replaced.

Algorithms 2018, 11, 126 7 of 18

To further alleviate the problem of noise to be updated into the target templates, we introduced
the outlier ratio η to describe the outlier degree of a target object, which is denoted as:

η = 1−
N

∑
j=1

ρj/N. (9)

We set two thresholds tr1 and tr2 to control the update of the template. If η < tr1, we updated
the templates with this sample. If η > tr2, it meant that a significant part of the target object was
corrupted, and we discarded this sample without update. If tr1 ≤ η ≤ tr2, it indicated that the target
was partially corrupted. We then replaced the corrupted patches by its corresponding parts of the
average observation µ, and used this recovered sample for update. In order to recover the sample from
corruptions, we constructed the sparse reconstruction error map of sub-patches and obtained the patch
descriptor ρ. Then, the mask map M =

[
MT

1 , MT
2 , . . . , MT

N
]T ∈ R(d×N)×1 can be obtained according

to the patch descriptor ρ. If ρi > 0.7, Mi = 1, otherwise Mi = 0. Hence, the recovered sample was
modeled as:

rnew = M� r + (1−M)� µ (10)

where � denotes elementwise multiplication, r is the partially corruption sample, and rnew represents
the recovered sample.

The template update method is summarized in Algorithm 1. After the target templates update,
we updated the dictionary D and the dictionary base P of each patch accordingly.

Algorithm 1. Method for template update.

Input: Observation vector r, eigenvectors U, average observation µ, outlier ratio η, thresholds tr1 and tr2,
template set T, the current frame f (f > n)
1: if mod(f,5) = 0 and η ≤ tr2 then
2: Generate a sequence of number in ascending order and normalize them into [0, 1] as the probability for
template update;
3: Generate a random number between 0 and 1 which is for the selection of which template to be discarded;
4: if η < tr1
5: Solve Equation (8) and obtain q and e;
6: Add r̂ = Uq to the end of the template set T;
7: else if tr1 ≤ η ≤ tr2
8: Solve Equation (10) and obtain the recovered sample rnew;
9: Solve Equation (8) and obtain q and e;
10: Add r̂new = Uq to the end of the template set T;
11: end if
12: end if
Output: New template set T

The values of two thresholds tr1 and tr2 were determined experimentally. An illustration of the
variation of the outlier ratio η is shown in Figure 3. We could see that the values of η were smaller
than 0.1 in the absence of occlusion (e.g., #15, #166, #265, #422, #600), which meant that the object was
normal. When the object was heavily occluded, the values of η were larger than 0.35 (e.g., #189, #554,
651, #833), which indicated serious outlier. Therefore, we set the threshold tr1 = 0.1, and tr2 = 0.35.

Algorithms 2018, 11, 126 8 of 18

Algorithms 2018, 11, x FOR PEER REVIEW 7 of 17

	 = ⊙ + (−)⊙ (10)

where ⊙	denotes elementwise multiplication, r is the partially corruption sample, and
represents the recovered sample.

The template update method is summarized in Algorithm 1. After the target templates update,
we updated the dictionary D and the dictionary base P of each patch accordingly.

Algorithm 1. Method for template update.

Input: Observation vector r, eigenvectors U, average observation , outlier ratio , thresholds tr1
and tr2, template set T, the current frame f (f >n)
1: if mod(f,5) = 0 and η ≤ tr2 then
2: Generate a sequence of number in ascending order and normalize them into [0, 1] as the
probability for template update;
3: Generate a random number between 0 and 1 which is for the selection of which template to be
discarded;
4: if < tr1
5: Solve Equation (8) and obtain q and e;
6: Add 	= Uq to the end of the template set T;
7: else if tr1 ≤ ≤ tr2
8: Solve Equation (10) and obtain the recovered sample ;
9: Solve Equation (8) and obtain q and e;
10: Add =Uq to the end of the template set T;
11: end if
12: end if
Output: New template set T

The values of two thresholds tr1 and tr2 were determined experimentally. An illustration of
the variation of the outlier ratio η is shown in Figure 3. We could see that the values of were
smaller than 0.1 in the absence of occlusion (e.g., #15, #166, #265, #422, #600), which meant that the
object was normal. When the object was heavily occluded, the values of were larger than 0.35
(e.g., #189, #554, # 651, #833), which indicated serious outlier. Therefore, we set the threshold tr1 =
0.1, and tr2 = 0.35.

#80 #108 #166 #189 #265

#297 #378 #422 #554 #600 #651 #750 #833

#15 #50#23

Algorithms 2018, 11, x FOR PEER REVIEW 8 of 17

Figure 3. An illustration of the variation of the outlier ratio on the FaceOcc1 sequence. In the
bottom plot, the blue curve reflects the variation of the outlier ratio on each frame, and the two
horizontal red dashed lines are the predefined thresholds (set to 0.1 and 0.35 in our approach). We
also mark the key frames and their indices with red points in the plot, which are correspondingly
shown at the top of the plot.

6. Experiments

6.1. Experiment Settings

The proposed tracker was implemented in MATLAB R2017a on a PC with Intel i5-7400 CPU
(3.0 GHz) and 16 GB memory. We evaluated the tracking performance on the OTB-2013 benchmark
dataset [26] that contains 51 challenging sequences.

The parameters of our tracker for all test sequences were fixed to demonstrate its robustness
and stability. The target region division was shown in Section 3.1. The number of target templates n
was set to 10. We manually labeled the location of the target in the first frame for each sequence and
set K = 40, λ = 0.01 and γ = 0.01. The number of particles was 600 and the variance matrix of affine
parameters was set as Σ = diag (4, 4, 0.01, 0.005). For the template update, ten eigenvectors were used
to carry out the incremental subspace learning method every five frames.

To evaluate the performance of the trackers, we adopted three widely used metrics [26]: (i) the
center location error (CLE), which computes the average Euclidean distance between the center
locations of the tracked targets and the ground truth positions of all the frames; (ii) distance
precision, which is calculated as the percentage of tracking frames, where the estimated locations are
within a given threshold distance; (iii) the success rate, which is calculated as the percentage of
tracking frames where the bounding box overlap rate surpasses a given threshold. The overlap rate
is defined by PASCAL VOC criteria [40], score = (∩)(∪) , where ROI is the tracking

bounding box and ROI is the ground truth bounding box. ∩ and ∪ stand for the intersection and
union of two regions in pixels, respectively.

6.2. Overall Performance

We compared the proposed tracker with nine other trackers, including VTD [5], L1APG [7],
ASLA [9], CSK [18], Frag [27], TLD [35], STC [41], DLT [42], CT [43]. Among them, the ASLA, VTD
and Frag are patch-based tracking methods. The CSK and STC are based on CFs. The DLT is based
on deep neural networks. The CT is based on the compressive sensing theory. We used the results
proposed by the OTB-2013 benchmark or available source codes to reproduce the results. The
precision and success plots in terms of one-pass evaluation (OPE) [26] are provided in Figure 4. In
the precision plots, we used the distance precision at a threshold of 20 pixels for ranking, while in the
success plots, we used the area under curve (AUC) for ranking.

Figure 3. An illustration of the variation of the outlier ratio η on the FaceOcc1 sequence. In the bottom
plot, the blue curve reflects the variation of the outlier ratio on each frame, and the two horizontal red
dashed lines are the predefined thresholds (set to 0.1 and 0.35 in our approach). We also mark the key
frames and their indices with red points in the plot, which are correspondingly shown at the top of
the plot.

6. Experiments

6.1. Experiment Settings

The proposed tracker was implemented in MATLAB R2017a on a PC with Intel i5-7400 CPU
(3.0 GHz) and 16 GB memory. We evaluated the tracking performance on the OTB-2013 benchmark
dataset [26] that contains 51 challenging sequences.

The parameters of our tracker for all test sequences were fixed to demonstrate its robustness and
stability. The target region division was shown in Section 3.1. The number of target templates n was set
to 10. We manually labeled the location of the target in the first frame for each sequence and set K = 40,
λ = 0.01 and γ = 0.01. The number of particles was 600 and the variance matrix of affine parameters
was set as Σ = diag (4, 4, 0.01, 0.005). For the template update, ten eigenvectors were used to carry out
the incremental subspace learning method every five frames.

To evaluate the performance of the trackers, we adopted three widely used metrics [26]: (i)
the center location error (CLE), which computes the average Euclidean distance between the center
locations of the tracked targets and the ground truth positions of all the frames; (ii) distance precision,
which is calculated as the percentage of tracking frames, where the estimated locations are within
a given threshold distance; (iii) the success rate, which is calculated as the percentage of tracking
frames where the bounding box overlap rate surpasses a given threshold. The overlap rate is defined
by PASCAL VOC criteria [40], score = area(ROIT∩ROIG)

area(ROIT∪ROIG)
, where ROIT is the tracking bounding box and

ROIG is the ground truth bounding box. ∩ and ∪ stand for the intersection and union of two regions
in pixels, respectively.

Algorithms 2018, 11, 126 9 of 18

6.2. Overall Performance

We compared the proposed tracker with nine other trackers, including VTD [5], L1APG [7],
ASLA [9], CSK [18], Frag [27], TLD [35], STC [41], DLT [42], CT [43]. Among them, the ASLA, VTD
and Frag are patch-based tracking methods. The CSK and STC are based on CFs. The DLT is based
on deep neural networks. The CT is based on the compressive sensing theory. We used the results
proposed by the OTB-2013 benchmark or available source codes to reproduce the results. The precision
and success plots in terms of one-pass evaluation (OPE) [26] are provided in Figure 4. In the precision
plots, we used the distance precision at a threshold of 20 pixels for ranking, while in the success plots,
we used the area under curve (AUC) for ranking.Algorithms 2018, 11, x FOR PEER REVIEW 9 of 17

Figure 4. The precision and success plots of the tracking results on the OTB-2013 benchmark dataset.
The legends contain the scores of the center location error with the threshold of 20 pixels and values
of the area under curve for all trackers in the precision and success plots, respectively. Note that the
color of one curve is determined by the rank of the corresponding trackers, not their names.

As shown in Figure 4, the precision and success scores of our tracker were 0.580 and 0.463,
which were ranked the second and first places, respectively. Compared with the baseline ASLA, our
tracker achieved an improvement (4.8% in the precision rate and 2.9% in the success rate). The
improvement in performance as compared to the ASLA can be attributed to two aspects: (i) we
modeled the appearance of the object by the combination of the patch descriptor and the patch
sparse coefficients, which made the tracker more robust to changes of target appearance, because the
uses of patch descriptors allowed us to adjust the contribution of each patch in the observation
model according to appearance changes; (ii) we designed an outlier-aware template update scheme
to alleviate the model drift caused by outlier samples. The VTD and Frag are also the patch-based
trackers. Our tracker outperformed the VTD by 4.7% and the Frag by 11.3% in the success plot,
respectively. Compared to the CSK and STC, the proposed tracker showed higher precision and
success scores. For the deep learning-based tracker, our tracker outperformed the DLT by 4.8% on
the success score.

6.3. Attribute-Based Analysis

In this subsection, to further evaluate the performance of our tracker under different challenges,
we conducted an attribute-based evaluation on the OTB-2013 benchmark dataset. The dataset video
sequences were annotated with 11 attributes including occlusion, illumination variation, scale
variation, fast motion, motion blur, deformation, background clutters, out-of-view, out-of-plane
rotation, in-plane rotation and low resolution. We reported the precision plots and success plots of
different trackers on these 11 attributes in Figures 5 and 6, respectively.

In the precision plots, as shown in Figure 5, our tracker outperformed the baseline ASLA on 9 of
11 attributes. Specially, in the “occlusion”, “motion blur” and “scale variation” attributes, our
tracker achieved 9.6%, 8.2% and 7.5% better performance than the ASLA, respectively. Moreover, in
terms of success plots, as shown in Figure 6, our tracker also improved the baseline ASLA on 8
attributes. In addition, in the attributes of “deformation”, ”occlusion”, “out-of-plane rotation”,
“scale variation” and “low resolution” attributes, our tracker had the best performance among all
the evaluation trackers in terms of the success score.

Figure 4. The precision and success plots of the tracking results on the OTB-2013 benchmark dataset.
The legends contain the scores of the center location error with the threshold of 20 pixels and values of
the area under curve for all trackers in the precision and success plots, respectively. Note that the color
of one curve is determined by the rank of the corresponding trackers, not their names.

As shown in Figure 4, the precision and success scores of our tracker were 0.580 and 0.463, which
were ranked the second and first places, respectively. Compared with the baseline ASLA, our tracker
achieved an improvement (4.8% in the precision rate and 2.9% in the success rate). The improvement in
performance as compared to the ASLA can be attributed to two aspects: (i) we modeled the appearance
of the object by the combination of the patch descriptor and the patch sparse coefficients, which made
the tracker more robust to changes of target appearance, because the uses of patch descriptors allowed
us to adjust the contribution of each patch in the observation model according to appearance changes;
(ii) we designed an outlier-aware template update scheme to alleviate the model drift caused by outlier
samples. The VTD and Frag are also the patch-based trackers. Our tracker outperformed the VTD
by 4.7% and the Frag by 11.3% in the success plot, respectively. Compared to the CSK and STC, the
proposed tracker showed higher precision and success scores. For the deep learning-based tracker, our
tracker outperformed the DLT by 4.8% on the success score.

6.3. Attribute-Based Analysis

In this subsection, to further evaluate the performance of our tracker under different challenges,
we conducted an attribute-based evaluation on the OTB-2013 benchmark dataset. The dataset video
sequences were annotated with 11 attributes including occlusion, illumination variation, scale variation,
fast motion, motion blur, deformation, background clutters, out-of-view, out-of-plane rotation, in-plane
rotation and low resolution. We reported the precision plots and success plots of different trackers on
these 11 attributes in Figure 5, respectively.

Algorithms 2018, 11, 126 10 of 18
Algorithms 2018, 11, x FOR PEER REVIEW 10 of 17

Figure 5. Precision plots for different attributes. The legend contains the precision score of each
tracker at 20 pixels.

Figure 5. Precision plots for different attributes. The legend contains the precision score of each tracker
at 20 pixels.

In the precision plots, as shown in Figure 5, our tracker outperformed the baseline ASLA on 9 of
11 attributes. Specially, in the “occlusion”, “motion blur” and “scale variation” attributes, our tracker
achieved 9.6%, 8.2% and 7.5% better performance than the ASLA, respectively. Moreover, in terms
of success plots, as shown in Figure 6, our tracker also improved the baseline ASLA on 8 attributes.
In addition, in the attributes of “deformation”, ”occlusion”, “out-of-plane rotation”, “scale variation”
and “low resolution” attributes, our tracker had the best performance among all the evaluation trackers
in terms of the success score.

Algorithms 2018, 11, 126 11 of 18

Algorithms 2018, 11, x FOR PEER REVIEW 10 of 17

Figure 5. Precision plots for different attributes. The legend contains the precision score of each
tracker at 20 pixels.

Algorithms 2018, 11, x FOR PEER REVIEW 11 of 17

Figure 6. Success plots for different attributes. The legend contains the AUC score of each tracker.

6.4. Evaluation of Template Update Strategy

We further evaluated the proposed outlier-aware template update strategy with comparison to
the original template update strategy used in the ASLA [9]. Experimental results on the OTB-2013
benchmark dataset are presented in Figure 7. The “Ours_Outlier-aware_Update_Strategy” denotes
our tracker using the proposed outlier-aware template update strategy, and the
“Our_ASLA_Update_Strategy” denotes our tracker using the template update strategy proposed in
ASLA. Our baseline tracker was the ASLA.

Figure 7. Evaluation of template update strategy on the OTB-2013 benchmark dataset.

Figure 6. Success plots for different attributes. The legend contains the AUC score of each tracker.

6.4. Evaluation of Template Update Strategy

We further evaluated the proposed outlier-aware template update strategy with comparison
to the original template update strategy used in the ASLA [9]. Experimental results on the
OTB-2013 benchmark dataset are presented in Figure 7. The “Ours_Outlier-aware_Update_Strategy”
denotes our tracker using the proposed outlier-aware template update strategy, and the
“Our_ASLA_Update_Strategy” denotes our tracker using the template update strategy proposed
in ASLA. Our baseline tracker was the ASLA.

Algorithms 2018, 11, 126 12 of 18

Algorithms 2018, 11, x FOR PEER REVIEW 11 of 17

Figure 6. Success plots for different attributes. The legend contains the AUC score of each tracker.

6.4. Evaluation of Template Update Strategy

We further evaluated the proposed outlier-aware template update strategy with comparison to
the original template update strategy used in the ASLA [9]. Experimental results on the OTB-2013
benchmark dataset are presented in Figure 7. The “Ours_Outlier-aware_Update_Strategy” denotes
our tracker using the proposed outlier-aware template update strategy, and the
“Our_ASLA_Update_Strategy” denotes our tracker using the template update strategy proposed in
ASLA. Our baseline tracker was the ASLA.

Figure 7. Evaluation of template update strategy on the OTB-2013 benchmark dataset. Figure 7. Evaluation of template update strategy on the OTB-2013 benchmark dataset.

As shown in Figure 7, the proposed outlier-aware template update strategy improved the tracking
performance compared to the template update strategy proposed in the ASLA. That was attributed to
the added outlier detect module, which alleviated the problem where outlier samples are inadvertently
included by the straightforward template update method in the ASLA.

6.5. Typical Results Analysis

We provided more detailed analysis on 12 representative sequences selected from the OTB-2013
benchmark dataset. Tables 1 and 2 report the comparison results of our tracker and 9 other trackers
in terms of the average center location error and average overlap rate. More accurate trackers had
lower center location errors and higher overlap rates. Through the results of the tables, we can see
that our tracking method obtained smaller center location errors and higher overlap rates on these
challenging sequences.

Table 1. Average center error (in pixels). The best two results are shown in bold red and blue fonts.

VTD Frag TLD L1APG STC CSK DLT CT ASLA Ours

Singer1 4.19 88.87 8.00 53.35 5.76 14.01 3.04 15.53 3.29 2.98
David 11.59 82.07 5.12 13.95 12.16 17.69 66.20 10.49 5.07 4.36
Freeman3 23.96 40.47 29.33 33.13 39.44 53.90 4.00 65.32 3.17 2.06
CarScale 38.45 19.74 22.60 79.77 89.35 83.01 22.65 25.95 24.64 14.11
Dudek 10.30 82.69 18.05 23.46 25.60 13.39 8.81 26.53 15.26 11.82
Crossing 26.13 38.59 24.34 63.43 34.07 8.95 1.65 3.56 1.85 1.54
Walking2 46.24 57.53 44.56 5.06 13.83 17.93 2.18 58.53 37.42 1.95
Freeman4 61.68 72.27 39.18 22.12 45.61 78.87 48.09 132.59 70.24 4.57
David3 66.72 13.55 208.00 90.00 6.34 56.10 55.87 88.66 87.76 6.39
FaceOcc1 20.20 10.97 27.37 17.33 250.40 11.93 22.72 25.82 78.06 13.58
Skating1 9.34 149.35 145.45 158.70 66.41 7.79 52.38 150.44 59.86 15.47
Football 13.64 5.36 14.26 15.11 16.13 16.19 191.4 11.91 15.00 4.13
Average 27.70 55.12 48.86 47.95 50.43 31.65 39.92 51.23 33.47 6.91

Algorithms 2018, 11, 126 13 of 18

Table 2. Average overlap rate. The best two results are shown in bold red and blue fonts.

VTD Frag TLD L1APG STC CSK DLT CT ASLA Ours

Singer1 0.49 0.21 0.73 0.29 0.53 0.36 0.85 0.35 0.79 0.86
David 0.56 0.17 0.72 0.54 0.52 0.40 0.25 0.50 0.75 0.76
Freeman3 0.30 0.32 0.45 0.35 0.25 0.30 0.70 0.002 0.75 0.75
CarScale 0.43 0.43 0.45 0.50 0.45 0.42 0.62 0.43 0.61 0.65
Dudek 0.80 0.54 0.65 0.69 0.59 0.72 0.79 0.65 0.74 0.78
Crossing 0.32 0.31 0.40 0.21 0.25 0.48 0.72 0.68 0.79 0.78
Walking2 0.33 0.27 0.31 0.76 0.52 0.46 0.82 0.27 0.37 0.81
Freeman4 0.16 0.14 0.34 0.35 0.16 0.13 0.14 0.005 0.13 0.61
David3 0.40 0.67 0.10 0.38 0.43 0.50 0.46 0.31 0.43 0.71
FaceOcc1 0.68 0.82 0.59 0.75 0.19 0.80 0.59 0.64 0.32 0.79
Skating1 0.53 0.13 0.19 0.10 0.35 0.50 0.43 0.09 0.50 0.52
Football 0.56 0.70 0.49 0.55 0.51 0.55 0.23 0.61 0.53 0.71
Average 0.46 0.39 0.45 0.46 0.40 0.47 0.55 0.38 0.56 0.73

Figures 8–11 show some screenshots of the tracking results, marked by different colorful bounding
boxes. For these sequences, several principal factors that have effects on the appearance of an object
were considered. Some other factors were also included in the discussion.

Occlusion: The sequences FaceOcc1, Football and Walking2 were chosen to demonstrate the
effect of partial occlusion. In the FaceOcc1 sequence, all trackers except the STC and ASLA could
track the object properly, and the ASLA lost the object when the face occlusion happened, as shown
in Figure 8a. The Football sequence (Figure 8b) contained occlusion and background clutters. When
the tracked object came into the dense group of players (e.g., #120 and #192), the DLT lost the object.
For the surveillance video Walking2 (Figure 8c), the walking woman was occluded by a man over a
long time. The Frag, VTD, TLD and CT lost the object when occlusion occurred (e.g., #269 and #385).
The STC and CSK did not scale well when the scale of object changed. Only the L1APG, DLT and our
method could accurately track the object till the end.

Algorithms 2018, 11, x FOR PEER REVIEW 13 of 17

long time. The Frag, VTD, TLD and CT lost the object when occlusion occurred (e.g., #269 and #385).
The STC and CSK did not scale well when the scale of object changed. Only the L1APG, DLT and our
method could accurately track the object till the end.

(a)

(b)

(c)
Ours ASLA Frag VTD L1APG TLD DLT CT STC CSK

Figure 8. Screenshots of some sampled tracking results, where objects are heavily occluded. (a)
FaceOcc1 with occlusion; (b) Football with occlusion and background clutters; (c) Walking2 with
occlusion and scale variation.

Deformation: Figure 9 presents some sampled results in three sequences where objects
underwent deformations. In the Crossing sequence (Figure 9a), the walking person moved from a
shadow area to a bright one. Nonrigid deformation and drastic illumination variation were the main
challenges. The VTD, Frag, TLD, L1APG and STC lost the object in the tracking process (e.g., #55 and
#95). For the David3 sequence (Figure 9b), occlusion was introduced by tree (e.g., #88) and object
appearance changed drastically when the man turned around (e.g., #161). Only the Frag, STC and
our tracker successfully located the correct object throughout the sequence. The object in the
Skating1 sequence (Figure 9c) suffered from frequent non-rigid appearance changes and
illumination variations. The Frag, CT and L1APG lost the object around frame 61, but the VTD and
our tracker could survive to the end.

(a)

(b)

Figure 8. Screenshots of some sampled tracking results, where objects are heavily occluded.
(a) FaceOcc1 with occlusion; (b) Football with occlusion and background clutters; (c) Walking2 with
occlusion and scale variation.

Algorithms 2018, 11, 126 14 of 18

Deformation: Figure 9 presents some sampled results in three sequences where objects underwent
deformations. In the Crossing sequence (Figure 9a), the walking person moved from a shadow area
to a bright one. Nonrigid deformation and drastic illumination variation were the main challenges.
The VTD, Frag, TLD, L1APG and STC lost the object in the tracking process (e.g., #55 and #95). For
the David3 sequence (Figure 9b), occlusion was introduced by tree (e.g., #88) and object appearance
changed drastically when the man turned around (e.g., #161). Only the Frag, STC and our tracker
successfully located the correct object throughout the sequence. The object in the Skating1 sequence
(Figure 9c) suffered from frequent non-rigid appearance changes and illumination variations. The Frag,
CT and L1APG lost the object around frame 61, but the VTD and our tracker could survive to the end.

Algorithms 2018, 11, x FOR PEER REVIEW 13 of 17

long time. The Frag, VTD, TLD and CT lost the object when occlusion occurred (e.g., #269 and #385).
The STC and CSK did not scale well when the scale of object changed. Only the L1APG, DLT and our
method could accurately track the object till the end.

(a)

(b)

(c)
Ours ASLA Frag VTD L1APG TLD DLT CT STC CSK

Figure 8. Screenshots of some sampled tracking results, where objects are heavily occluded. (a)
FaceOcc1 with occlusion; (b) Football with occlusion and background clutters; (c) Walking2 with
occlusion and scale variation.

Deformation: Figure 9 presents some sampled results in three sequences where objects
underwent deformations. In the Crossing sequence (Figure 9a), the walking person moved from a
shadow area to a bright one. Nonrigid deformation and drastic illumination variation were the main
challenges. The VTD, Frag, TLD, L1APG and STC lost the object in the tracking process (e.g., #55 and
#95). For the David3 sequence (Figure 9b), occlusion was introduced by tree (e.g., #88) and object
appearance changed drastically when the man turned around (e.g., #161). Only the Frag, STC and
our tracker successfully located the correct object throughout the sequence. The object in the
Skating1 sequence (Figure 9c) suffered from frequent non-rigid appearance changes and
illumination variations. The Frag, CT and L1APG lost the object around frame 61, but the VTD and
our tracker could survive to the end.

(a)

(b) Algorithms 2018, 11, x FOR PEER REVIEW 14 of 17

(c)
Ours ASLA Frag VTD L1APG TLD DLT CT STC CSK

Figure 9. Screenshots of some sampled tracking results, where objects undergo deformations. (a)
Crossing with deformation and illumination variation; (b) David3 with deformation and occlusion;
(c) Skating1 with deformation and illumination variation.

Scale variation: Figure 10 shows screenshots of three videos in which the objects underwent
scale variations. For the CarScale sequence (Figure 10a), we can see that the TLD, VTD, L1APG, CSK
and STC failed to locate the car when it moved closer to the camera. In the Freeman3 sequence
(Figure 10b), the scale of the man changed largely. Only the DLT, ASLA and our tracker could
reliably track the object at the most frames. Figure 10c shows the tracking results in the Singer1
sequence, where significant scale and illumination variation were noticed. The Frag and L1APG
could not adapt to the scale variation and finally failed to track the object at different time instances
(e.g., #88 and #135), and the CT and CSK obtained wrong size of the object (e.g., #236 and # 351).

(a)

(b)

(c)
Ours ASLA Frag VTD L1APG TLD DLT CT STC CSK

Figure 10. Screenshots of some sampled tracking results, where objects suffer from significant scale
variations. (a) CarScale with scale variation and occlusion; (b) Freeman3 with scale variation and
rotation; (c) Singer1 with scale variation and illumination variation.

Rotation: In the David sequence (Figure 11a), the person changed the orientation of his face
over time, and the varying illumination also made the tracking harder. The Frag and DLT failed to
locate the object (e.g., #62 and #189). For the Dudek sequence (Figure 11b), the pose of the man
varied slightly. The Frag lose the object (e.g., # 946 and #1030). The Freeman4 sequence (Figure 11c)
included rotation and occlusion. It was difficult to handle both of these two challenges. Only our
tracker could track the object well.

Figure 9. Screenshots of some sampled tracking results, where objects undergo deformations.
(a) Crossing with deformation and illumination variation; (b) David3 with deformation and occlusion;
(c) Skating1 with deformation and illumination variation.

Scale variation: Figure 10 shows screenshots of three videos in which the objects underwent
scale variations. For the CarScale sequence (Figure 10a), we can see that the TLD, VTD, L1APG,
CSK and STC failed to locate the car when it moved closer to the camera. In the Freeman3 sequence
(Figure 10b), the scale of the man changed largely. Only the DLT, ASLA and our tracker could reliably
track the object at the most frames. Figure 10c shows the tracking results in the Singer1 sequence,
where significant scale and illumination variation were noticed. The Frag and L1APG could not adapt
to the scale variation and finally failed to track the object at different time instances (e.g., #88 and #135),
and the CT and CSK obtained wrong size of the object (e.g., #236 and # 351).

Algorithms 2018, 11, 126 15 of 18

Algorithms 2018, 11, x FOR PEER REVIEW 14 of 17

(c)
Ours ASLA Frag VTD L1APG TLD DLT CT STC CSK

Figure 9. Screenshots of some sampled tracking results, where objects undergo deformations. (a)
Crossing with deformation and illumination variation; (b) David3 with deformation and occlusion;
(c) Skating1 with deformation and illumination variation.

Scale variation: Figure 10 shows screenshots of three videos in which the objects underwent
scale variations. For the CarScale sequence (Figure 10a), we can see that the TLD, VTD, L1APG, CSK
and STC failed to locate the car when it moved closer to the camera. In the Freeman3 sequence
(Figure 10b), the scale of the man changed largely. Only the DLT, ASLA and our tracker could
reliably track the object at the most frames. Figure 10c shows the tracking results in the Singer1
sequence, where significant scale and illumination variation were noticed. The Frag and L1APG
could not adapt to the scale variation and finally failed to track the object at different time instances
(e.g., #88 and #135), and the CT and CSK obtained wrong size of the object (e.g., #236 and # 351).

(a)

(b)

(c)
Ours ASLA Frag VTD L1APG TLD DLT CT STC CSK

Figure 10. Screenshots of some sampled tracking results, where objects suffer from significant scale
variations. (a) CarScale with scale variation and occlusion; (b) Freeman3 with scale variation and
rotation; (c) Singer1 with scale variation and illumination variation.

Rotation: In the David sequence (Figure 11a), the person changed the orientation of his face
over time, and the varying illumination also made the tracking harder. The Frag and DLT failed to
locate the object (e.g., #62 and #189). For the Dudek sequence (Figure 11b), the pose of the man
varied slightly. The Frag lose the object (e.g., # 946 and #1030). The Freeman4 sequence (Figure 11c)
included rotation and occlusion. It was difficult to handle both of these two challenges. Only our
tracker could track the object well.

Figure 10. Screenshots of some sampled tracking results, where objects suffer from significant scale
variations. (a) CarScale with scale variation and occlusion; (b) Freeman3 with scale variation and
rotation; (c) Singer1 with scale variation and illumination variation.

Rotation: In the David sequence (Figure 11a), the person changed the orientation of his face over
time, and the varying illumination also made the tracking harder. The Frag and DLT failed to locate
the object (e.g., #62 and #189). For the Dudek sequence (Figure 11b), the pose of the man varied slightly.
The Frag lose the object (e.g., # 946 and #1030). The Freeman4 sequence (Figure 11c) included rotation
and occlusion. It was difficult to handle both of these two challenges. Only our tracker could track the
object well.

Algorithms 2018, 11, x FOR PEER REVIEW 15 of 17

(a)

(b)

(c)
Ours ASLA Frag VTD L1APG TLD DLT CT STC CSK

Figure 11. Screenshots of some sampled tracking results, where objects suffer from rotation. (a)
David with rotation and illumination variation; (b) Dudek with rotation and scale variation; (c)
Freeman4 with rotation and occlusion.

7. Conclusions

In this paper, we presented a tracking method utilizing the patch descriptor and the structural
local sparse representation. The novelty of the paper is to design the patch descriptors defined as the
proportion of sub-patches, of which the reconstruction error was less than the given threshold,
which would distinguish each patch of the target candidate and reflect the degree of corruption or
occlusion of the target. In order to effectively reduce model drift caused by noisy updates, we
designed an outlier ratio to describe the outlier degree of a target object. When the outlier ratio was
larger than the threshold, we stopped updating the template. Both the quantitative and qualitative
evaluations on the OTB-2013 benchmark dataset have been done to verify the effectiveness of the
proposed algorithm.

Author Contributions: Z.S. designed the presented tracking algorithm and wrote the paper; S.L. analyzed the
experimental data; J.Y. revised the paper; and J.S. supervised the work.

Funding: This work is supported by the key R&D project of Xiangxi Tujia&Miao Autonomous Prefecture,	
China (No. 2018GX2003).

Acknowledgments: The authors would like to thank the editors and the anonymous referees for their valuable
comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Krafka, K.; Khosla, A.; Kellnhofer, P.; Kannan, H. Eye Tracking for Everyone. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July
2016; pp. 2176–2184.

2. Bharati, S.P.; Wu, Y.; Sui, Y.; Padgett, C.; Wang, H. Real-Time Obstacle Detection and Tracking for
Sense-and-Avoid Mechanism in UAVs. IEEE Trans. Intell. Veh. 2018, 3, 185–197.

3. Zheng, F.; Shao, L.; Han, J. Robust and Long-Term Object Tracking with an Application to Vehicles. IEEE
Trans. Intell. Transp. Syst. 2018, doi:10.1109/TITS.2017.2749981.

Figure 11. Screenshots of some sampled tracking results, where objects suffer from rotation. (a) David
with rotation and illumination variation; (b) Dudek with rotation and scale variation; (c) Freeman4
with rotation and occlusion.

Algorithms 2018, 11, 126 16 of 18

7. Conclusions

In this paper, we presented a tracking method utilizing the patch descriptor and the structural
local sparse representation. The novelty of the paper is to design the patch descriptors defined as
the proportion of sub-patches, of which the reconstruction error was less than the given threshold,
which would distinguish each patch of the target candidate and reflect the degree of corruption or
occlusion of the target. In order to effectively reduce model drift caused by noisy updates, we designed
an outlier ratio to describe the outlier degree of a target object. When the outlier ratio was larger than
the threshold, we stopped updating the template. Both the quantitative and qualitative evaluations on
the OTB-2013 benchmark dataset have been done to verify the effectiveness of the proposed algorithm.

Author Contributions: Z.S. designed the presented tracking algorithm and wrote the paper; S.L. analyzed the
experimental data; J.Y. revised the paper; and J.S. supervised the work.

Funding: This work is supported by the key R&D project of Xiangxi Tujia&Miao Autonomous Prefecture, China
(No. 2018GX2003).

Acknowledgments: The authors would like to thank the editors and the anonymous referees for their valuable
comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Krafka, K.; Khosla, A.; Kellnhofer, P.; Kannan, H. Eye Tracking for Everyone. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 2176–2184.

2. Bharati, S.P.; Wu, Y.; Sui, Y.; Padgett, C.; Wang, H. Real-Time Obstacle Detection and Tracking for
Sense-and-Avoid Mechanism in UAVs. IEEE Trans. Intell. Veh. 2018, 3, 185–197. [CrossRef]

3. Zheng, F.; Shao, L.; Han, J. Robust and Long-Term Object Tracking with an Application to Vehicles. IEEE Trans.
Intell. Transp. Syst. 2018. [CrossRef]

4. Ross, D.A.; Lim, J.; Lin, R.S.; Yang, M.H. Incremental Learning for Robust Visual Tracking. Int. J. Comput. Vis.
2008, 77, 125–141. [CrossRef]

5. Kwon, J.; Lee, K.M. Visual Tracking Decomposition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 1269–1276.

6. Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust Face Recognition via Sparse Representation.
IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. [CrossRef] [PubMed]

7. Mei, X.; Ling, H.B. Robust Visual Tracking using L1 Minimization. In Proceedings of the International
Conference on Computer Vision (ICCV), Kyoto, Japan, 29 September–2 October 2009; pp. 1436–1443.

8. Mei, X.; Ling, H.B. Robust Visual Tracking and Vehicle Classification via Sparse Representation. IEEE Trans.
Pattern Anal. Mach. Intell. 2011, 33, 2259–2272. [PubMed]

9. Jia, X.; Lu, H.; Yang, M.H. Visual Tracking via Adaptive Structural Local Sparse Appearance Model.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI,
USA, 16–21 June 2012; pp. 1822–1829.

10. Guo, J.; Xu, T.; Shen, Z.; Shi, G. Visual Tracking via Sparse Representation with Reliable Structure Constraint.
IEEE Signal Process. Lett. 2017, 24, 146–150. [CrossRef]

11. Lan, X.; Zhang, S.; Yuen, P.C.; Chellappa, R. Learning Common and Feature-specific Patterns: A Novel
Multiple-sparse-representation-based Tracker. IEEE Trans. Image Process. 2018, 27, 2022–2037. [CrossRef]
[PubMed]

12. Zhang, C.; Li, Z.; Wang, Z. Joint Compressive Representation for Multi-Feature Tracking. Neurocomputing
2018, 299, 32–41. [CrossRef]

13. Avidan, S. Ensemble Tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 261–271. [CrossRef] [PubMed]
14. Grabner, H.; Leistner, C.; Bischof, H. Semi-supervised On-line Boosting for Robust Tracking. In Proceedings

of the European Conference on Computer Vision (ECCV), Marseille, France, 12–18 October 2008; pp. 234–247.

http://dx.doi.org/10.1109/TIV.2018.2804166
http://dx.doi.org/10.1109/TITS.2017.2749981
http://dx.doi.org/10.1007/s11263-007-0075-7
http://dx.doi.org/10.1109/TPAMI.2008.79
http://www.ncbi.nlm.nih.gov/pubmed/19110489
http://www.ncbi.nlm.nih.gov/pubmed/21422491
http://dx.doi.org/10.1109/LSP.2016.2645819
http://dx.doi.org/10.1109/TIP.2017.2777183
http://www.ncbi.nlm.nih.gov/pubmed/29989985
http://dx.doi.org/10.1016/j.neucom.2018.03.033
http://dx.doi.org/10.1109/TPAMI.2007.35
http://www.ncbi.nlm.nih.gov/pubmed/17170479

Algorithms 2018, 11, 126 17 of 18

15. Babenko, B.; Yang, M.H.; Belongie, S. Visual Tracking with Online Multiple Instance Learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June
2009; pp. 983–990.

16. Hare, S.; Saffari, A.; Torr, P.H.S. Struck: Structured Output Tracking with Kernels. In Proceedings of the
International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 263–270.

17. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual Object Tracking using Adaptive Correlation Filters.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco,
CA, USA, 13–18 June 2010; pp. 2544–2550.

18. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the Circulant Structure of Tracking-by-detection
with Kernels. In Proceedings of the European Conference on Computer Vision (ECCV), Florence, Italy, 7–13
October 2012; pp. 702–715.

19. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596. [CrossRef] [PubMed]

20. Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Accurate Scale Estimation for Robust Visual Tracking.
In Proceedings of the British Machine Vision Conference (BMVC), Nottingham, UK, 1–5 September 2014;
pp. 65.1–65.11.

21. Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H.S. Staple: Complementary Learners for
Real-Time Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1401–1409.

22. Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Hierarchical Convolutional Features for Visual Tracking.
In Proceedings of the International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December
2015; pp. 3074–3082.

23. Qi, Y.; Zhang, S.; Qin, L.; Yao, H.; Huang, Q.; Lim, J.; Yang, M.H. Hedged Deep Tracking. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1
July 2016; pp. 4303–4311.

24. Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ECO: Efficient Convolution Operators for Tracking.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 6638–6646.

25. Li, X.; Hu, W.; Shen, C.; Zhang, Z.; Dick, A.; Hengel, A.V.D. A Survey of Appearance Models in Visual Object
Tracking. ACM Trans. Intell. Syst. Technol. 2013, 4, 58:1–58:48. [CrossRef]

26. Wu, Y.; Lim, J.; Yang, M.H. Online Object Tracking: A Benchmark. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 2411–2418.

27. Adam, A.; Rivlin, E.; Shimshoni, I. Robust Fragments-based Tracking using the Integral Histogram.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY,
USA, 17–22 June 2006; pp. 798–805.

28. Kwon, J.; Lee, K.M. Tracking of a Non-Rigid Object via Patch-based Dynamic Appearance Modeling and
Adaptive Basin Hopping Monte Carlo Sampling. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 1208–1215.

29. Zhang, T.; Jia, K.; Xu, C.; Ma, Y.; Ahuja, N. Partial Occlusion Handling for Visual Tracking via Robust Part
Matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Columbus, OH, USA, 24–27 June 2014; pp. 1258–1265.

30. Cai, Z.; Wen, L.; Lei, Z.; Vasconcelos, N.; Li, S.Z. Robust Deformable and Occluded Object Tracking with
Dynamic Graph. IEEE Trans. Image Process. 2014, 23, 5497–5509. [CrossRef] [PubMed]

31. Wang, X.; Valstar, M.; Martinez, B.; Khan, M.H. TRIC-track: Tracking by Regression with Incrementally
Learned Cascades. In Proceedings of the International Conference on Computer Vision (ICCV), Santiago,
Chile, 13–16 December 2015; pp. 4337–4345.

32. Sun, C.; Wang, D.; Lu, H. Occlusion-Aware Fragment-Based Tracking with Spatial-Temporal Consistency.
IEEE Trans. Image Process. 2016, 8, 3814–3825. [CrossRef] [PubMed]

33. Li, Y.; Zhu, J.; Hoi, S.C.H. Reliable Patch Trackers: Robust Visual Tracking by Exploiting Reliable Patches.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 353–361.

34. Chen, W.; Zhang, K.; Liu, Q. Robust Visual Tracking via Patch Based Kernel Correlation Filters with Adaptive
Multiple Feature Ensemble. Neurocomputing 2016, 214, 607–617. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://www.ncbi.nlm.nih.gov/pubmed/26353263
http://dx.doi.org/10.1145/2508037.2508039
http://dx.doi.org/10.1109/TIP.2014.2364919
http://www.ncbi.nlm.nih.gov/pubmed/25350927
http://dx.doi.org/10.1109/TIP.2016.2580463
http://www.ncbi.nlm.nih.gov/pubmed/27323362
http://dx.doi.org/10.1016/j.neucom.2016.06.048

Algorithms 2018, 11, 126 18 of 18

35. Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-Learning-Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012,
34, 1409–1422. [CrossRef] [PubMed]

36. Zhang, J.; Ma, S.; Sclaroff, S. MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization.
In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12
September 2014; pp. 188–203.

37. Ma, C.; Yang, X.; Zhang, C.; Yang, M.H. Long-term Correlation Tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 5388–5396.

38. Danellja, M.; Häger, G.; Khan, F.S.; Felsberg, M. Adaptive Decontamination of the Training Set: A Unified
Formulation for Discriminative Visual Tracking. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NA, USA, 26 June–1 July 2016; pp. 1430–1438.

39. Shi, R.; Wu, G.; Kang, W.; Wang, Z.; Feng, D.D. Visual Tracking Utilizing Robust Complementary Learner
and Adaptive Refiner. Neurocomputing 2017, 260, 367–377. [CrossRef]

40. Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC)
challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

41. Zhang, K.; Zhang, L.; Liu, Q.; Zhang, D.; Yang, M.H. Fast Visual Tracking via Dense Spatio-Temporal Context
Learning. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland,
6–12 September 2014; pp. 127–141.

42. Wang, N.; Yeung, D.Y. Learning a Deep Compact Image Representation for Visual Tracking. In Proceedings
of the Advances in Neural Information Processing Systems, Stateline, NV, USA, 5–8 December 2013;
pp. 809–817.

43. Zhang, K.; Zhang, L.; Yang, M.H. Real-Time Compressive Tracking. In Proceedings of the European
Conference on Computer Vision (ECCV), Florence, Italy, 7–13 October 2012; pp. 864–877.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2011.239
http://www.ncbi.nlm.nih.gov/pubmed/22156098
http://dx.doi.org/10.1016/j.neucom.2017.05.001
http://dx.doi.org/10.1007/s11263-009-0275-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Patch-Based Tracking Methods
	Strategies for Alleviating Model Drift

	Patch Descriptor and Structural Local Sparse Representation
	Target Region Division
	Structural Local Sparse Representation
	Patch Descriptor

	Object Tracking
	Update Scheme
	Experiments
	Experiment Settings
	Overall Performance
	Attribute-Based Analysis
	Evaluation of Template Update Strategy
	Typical Results Analysis

	Conclusions
	References

