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Abstract: This paper aims to improve the source tracking efficiency of distributed vibration signals
generated by phase-sensitive optical time-domain reflectometry (Φ-OTDR). Considering the two
dimensions (time and length) of Φ-OTDR signals, the authors saved and processed these signals
as images after particle filtering. The filtering method could save 0.1% of hard drive space without
sacrificing the original features of the signals. Then, an integrated feature extraction method was
proposed to further process the generated image. The method combines three individual extraction
methods, namely, texture feature extraction, shape feature extraction and intrinsic feature extraction.
Subsequently, the signal of each frame image was recognized to track the vibration source. To verify
the effect of the proposed method, several experiments were carried out to compare it with popular
and traditional approaches. The results show that: Hard drive space is greatly conserved by saving
the distributed vibration signals as images; the proposed particle filter is a desirable way to screen
the vibration signals for monitoring; the integrated feature extraction outperforms the individual
extraction methods for texture features, shape features and intrinsic features; the proposed method
has a better effect than other popular integrated feature extraction methods; and, the signal source
tracking method has little impact on the positioning accuracy of the vibration source. The research
findings provide important insights into the source tracking of Φ-OTDR signals.

Keywords: phase-sensitive optical time-domain reflectometry (Φ-OTDR); image-based signal storage;
integrated feature extraction; vibration source tracking

1. Introduction

Proposed by Taylor and Lee in 1993, phase-sensitive optical time-domain reflectometry (Φ-OTDR)
is a typical monitoring technique for distributed vibrations [1]. Capable of positioning distributed
signals, this technique has been widely applied to health monitoring of large buildings [2], perimeter
security of important places [3], etc. Compared to traditional 1D monitoring of vibration signals [4–8],
Φ-OTDR can realize long-term and high-accuracy monitoring. However, these advantages are achieved
at the cost of a huge amount of distributed vibration data, which may lead to insufficient storage and
inefficient data processing.

To solve this defect, this paper attempts to store and process the vibration signals as images
according to existing image-based approaches for vibration signal processing [9–14]. Specifically,
the vibration signals were converted into storable images, and then an integrated strategy was proposed
to extract features of these images. Next, the proposed strategy was applied to analyze Φ-OTDR signals
and track the vibration source. Overall, our research mainly tackles two issues, namely, signal storage
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(i.e., the conversion of signals into images for storage) and signal analysis (i.e., the processing of the
stored images by the proposed method).

Concerning signal storage, Han et al. [15] combined autoregressive-moving-average (ARMA)
with swing door trending (SDT) to compress the vibration signals without sacrificing the key features.
Malovic et al. [16] applied time delay estimation (TDE) in conjunction with differential pulse code
modulation (DPCM) as the entropy coding of preprocessor, revealing that the integrated method
can encode different types of aperiodic signals and compress vibration signals. Inspired by block
compression, Huang et al. [17] put forward a lossless compression plan that draws on the merits
of both lossy and lossless compressions. Guo et al. [18] developed a vibration signal compression
technique called intrinsic mode function (IMF) based on ensemble empirical mode decomposition
(EEMD), aiming to decompose the components of vibration signals in different frequency bands.
To sum up, the above signal storage methods can be easily derived through analyzing and calculating
the vibration signals. However, most of these methods require complex computation and do not apply
to exceptional cases. By contrast, the Φ-OTDR technique can overcome these problems by collecting
distributed vibrations signals with two dimensions: Time and length. Therefore, this paper aims to
convert vibration signals directly into storable images after a few simple steps of preprocessing.

Concerning signal analysis, image target recognition has long been regarded as the key problem.
The existing methods of image target recognition fall into five categories: Color feature extraction,
texture feature extraction, shape feature extraction, intrinsic feature extraction, and spatial feature
extraction. The color and spatial features are neglected here due to the lack of color and spatial
information in the grayscale images generated from vibration signals. Because signal types of features
cannot meet engineering requirements, many scholars have explored integrated feature extraction for
image processing. For instance, Yang et al. [19] achieved high-speed tracking of image targets via hybrid
rotation invariant description and skip search. Xia et al. [20] use color and edge feature distribution to
build a mixture model to search for matching targets in the next frame image. Xiao et al. [21] combined
the effective region index and multi-scale edge index for image processing. Considering the shape
feature and other details of moving objects, Ren et al. [22] presented a robust visual tracking method
called the SURF Mean Shift Deep Learning Tracker (SMS-DLT). Nevertheless, the above integrated
methods are not comprehensive enough to process the images generated from distributed vibration
signals. In these images, there is no complex background, light conversion or other factors common
in traditional image processing. Hence, the texture, shape and intrinsic features should be taken
into account.

In light of all three types of features, this paper adjusts the weight of each pixel in the original
image by the speeded-up robust features (SURF) method and embeds the extraction methods of
the three features in the particle filter. Based on the extraction of hybrid image features, a method
was proposed to track the vibration source of Φ-OTDR signals. The steps of the proposed method
are presented in Figure 1 below. First, the vibration signals of optical fiber in different sources were
acquired by the Φ-OTDR technique, subjected to pre-processing, and stored as images to reduce storage
space; then, three types of features (i.e., texture features, shape features and intrinsic features) were
extracted from the images; finally, the effect of the proposed method was verified through experiments.
The research findings shed new light on the tracking of vibration sources.
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2. Φ-OTDR Signal Storage Model

2.1. Φ-OTDR

Unlike traditional monitoring, the Φ-OTDR technique regards the optical fiber as an organic whole
in the monitoring process. In other words, the optical fiber is considered as a single vibration signal
appearing at multiple points on the same line [23–25]. Owing to the distributed feature, the vibration
signal of the Φ-OTDR contains three kinds of information—amplitude, time and length—in which the
amplitude varies with time and length.

The optical fiber takes the shape of a long line. The signal at each point on the length axis must
be observable from the time axis, and the inverse is also true. The signal is the strongest at the point
where the vibration source is vertical to the fiber. From this point, the signal strength gradually decays
until reaching the two ends of the fiber. If the length axis is between 4.5 m and 5.9 m, then the strongest
signal will appear at 5.2 m. Then, the signal amplitude between 4.4 m and 6.1 m can be measured by
time and length (Figure 2).
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Figure 2. 2D diagram of distributed vibration signals.

Table 1 below provides a detailed explanation of Figure 2.

Table 1. Signal-to-noise ratio (SNR) at each point of the length axis.

No. Length (m) SNR (dB) No. Length (m) SNR (dB)

1 4.4 0.5061 10 5.3 6.7691
2 4.5 1.7981 11 5.4 6.3194
3 4.6 3.5218 12 5.5 5.9771
4 4.7 5.0084 13 5.6 5.4368
5 4.8 5.2964 14 5.7 4.8608
6 4.9 6.0163 15 5.8 3.8066
7 5.0 6.4029 16 5.9 1.5836
8 5.1 6.8485 17 6.0 0.4238
9 5.2 7.9589 18 6.1 0

2.2. Signal Storage

In practice, the Φ-OTDR technique often results in a huge amount of vibration signals. Taking the
NBX-S3000 distributed vibration monitoring device (Nebreux, Kobe, Japan; sampling rate, 4000 Hz;
spatial resolution, 0.1 m; monitoring range, 10 m; format, double-precision floating-point) for example,
the monitoring process generates 3.2 MB of data per second and 270 GB of data each day. The massive
amount of data adds to the difficulty in data operations, such as storage and analysis. Similar to those
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shown in Figure 2, Φ-OTDR signals are displayed regularly. This naturally associates the image-based
approach with the data reduction of the Φ-OTDR technique. Clearly, the image-based approach only
works if the hard drive space can be released substantially without losing a significant quantity of
signal features.

Before generating images from Φ-OTDR signals, it is necessary to pre-process the original signals
through the following steps:

• Step 1: During the acquisition process, the Φ-OTDR signals appear as a slow and low-amplitude
sine wave due to the features of the acquisition card. Therefore, a high pass filter (threshold: 1 Hz)
was added to filter the signals.

• Step 2: The signals were further screened by a sliding window filter (window: 10 Hz) to eliminate
noises and possible error points.

• Step 3: The signals were magnified exponentially to obtain a better signal-to-noise ratio (SNR).

To save storage space, the pre-processed signals were saved in an image model through the
following steps:

• Step 1: The distributed vibration signals were split into one-second segments.
• Step 2: Taking time as the horizontal axis and length as the vertical axis, the signal amplitude was

normalized into the greyscale range between 0 and 1.
• Step 3: In the generated image, the number of pixels on the horizontal axis (Pixelx) is the number

of sampling points per second, also known as sampling rate (Fs) in Equation (1):

Pixelx = Fs (1)

Since the natural frequencies of large structures usually fall between 0 Hz and 60 Hz, the sampling
rate should reach 120 Hz according to the Nyquist-Shannon sampling theorem. As for concrete
structures, the frequency of vibrations signals varies from hundreds to thousands of hertz. Thus,
the sampling frequency for concrete structures should fall between 1 kHz and 4 kHz.

• Step 4: In the generated image, the number of pixels on the vertical axis (Pixely) is the ratio of
length (L) to the spatial sampling rate (R):

Pixely =
L
R
∗ 20 (2)

• Step 5: The image was saved in the .jpg or .bmp format.

3. Vibration Source Tracking Based on Various Types of Image Features

In this research, the tracking target is the change in the image of vibration signals. To track the
target, three types of features were extracted from the image: Texture features, intrinsic features
and shape features. The shape features were obtained by the histogram of gradient directions,
while the intrinsic features were acquired by GoogLeNet (Google, San Francisco, CA, USA). Then,
the particle filter was adopted to track the target on the image based on the shape and intrinsic
features. Subsequently, the greyscales of the original image pixels were adjusted by the SURF matching
algorithm. The salient pixels were given relatively high greyscales. The adjustment helps improve the
feature extraction results. The flow of the vibration source tracking is shown in Figure 3.
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As shown in Figure 3, the vibration sources were tracked in the following steps:

• Step 1: The first frame (f 1) of the image was sampled and the target and background
templates were obtained manually; the target template was obtained by shape feature extraction,
intrinsic feature extraction, and SURF feature extraction.

• Step 2: Let fi be the i-th frame of the image (i = 2, 3, . . . , n).

(1) The candidate sample sets were obtained through random generation of sampled particles.
(2) A set of SURF features (Si) was established to reflect the target positions from fi to fi−1.

After matching, the SURF feature point mapping matrix (Wis) was obtained. The grayscale
of the original image was multiplied by 0.7 and then increased by 0.3 at the feature point
position, forming the updated samples.

(3) The shape and intrinsic similarities (ρi) between each candidate sample and the target
template were calculated, respectively.

(4) The confidence was obtained for each particle, and the particle with the highest confidence
was determined as the target position of fi.

• Step 3: If the update condition was satisfied, the target and background templates were resampled.
If not, let i = i + 1 and return to Step 2.

3.1. Target Contour Feature Extraction

As mentioned previously, the shape features of the sample image were extracted by the histogram
of gradient directions [26,27], and the similarity between the sample and the target template was
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calculated, laying the basis for subsequent motion estimation. The first step is to determine the
gradient direction (i.e., the angle between the x- and y-axis gradients of a pixel). Let a × b be the
number of pixels of the greyscale image and

{
δij
}

i∈[1,a],j∈[1,b] be the gradient angles of these pixels.
Then, we have:

Φij = arctan
(

∂(grayij)

∂x
/

∂(grayij)

∂y

)
(3)

where grayij is gray value of the point (i, j), and ∂(grayij)/∂x and ∂(grayij)/∂y are the x-axis and y-axis
gradients of point (i, j), respectively.

Then, the histogram of gradient directions can be determined by dividing the gradient angle into
different intervals:

Hk = Φij/∆Φ (4)

where {Hk}k∈[1,n] is the interval and ∆φ is size of interval. The histogram of gradient directions is the
probability of the encoded pixels in the image in each direction (Hk).

Next, the histogram of gradient directions was weighted to ensure the robustness of density
estimation. Through the weighting process, the pixels were assigned their respective weights according
to their proximity to the target center. In the weighted histogram, the probability of the k-th interval,
pk, can be expressed as:

pk(y) = Hh

nh

∑
i=1

k
(
‖y− xi

h
‖
)

δ[b(xi)− k] (5)

where y is the center of the sample; {xi}i∈[1,nh] is the position of each pixel in the sample; k(x) is the
kernel function; H is the window width of the kernel function; b(xi) is direction encoding index of
pixel xi; and, δ is the Dirichlet function. The importance of each particle in each frame image was
determined according to the particle’s confidence. To obtain the confidence, the histogram of gradient
directions was established for each candidate sample, and the similarity between each sample and
the target template was computed at the same time. The similarity, ρ(y), between the histogram of
gradient directions, p(y), of each candidate sample and p(y0) of the target template was measured by
the Bhattacharyya distance:

ρ(y) =
n

∑
k=1

√
pk(y)pk(y0) (6)

3.2. GoogLeNet-Based Feature Extraction

At the frontier of machine learning, deep learning mimics the mechanism of the human brain to
interpret such data as images, audio and text, and supports the automatic extraction of the intrinsic
features of an image. A typical example of deep learning is GoogLeNet, a deep convolutional neural
network designed by Google [28,29] for the Large Scale Visual Recognition Challenge 2014. As shown
in Figure 4, the GoogLeNet consists of 22 layers and reflects the idea of sparse learning. The size of
GoogLeNet can be expanded by adjusting the parameters of the sparse network.

The GoogLeNet adopts a modular structure that is easily addable or modifiable.
The fully-connected layer is replaced by the average pooling, which improves the accuracy by 0.6%.
Despite the removal of the fully-connected layer, the dropout concept is still used in the network.
To prevent the vanishing gradient problem, two additional modules are added for the forward
propagation of gradient. Here, the GoogLeNet is employed to extract feature samples from images,
and the confidence of the target sample is discussed according to both intrinsic and shape features.



Algorithms 2018, 11, 117 7 of 16
Algorithms 2018, 11, x FOR PEER REVIEW  7 of 16 

 
Figure 4. Structure of GoogLeNet. 

3.3. Feature Extraction Based on SURF Method 

The SURF is a simple and fast algorithm to extract interest points and describe eigenvectors 
[30,31]. The classical SURF uses the difference of Gaussians (DoG) operator, which is inspired by the 
Laplacian of Gaussian (LoG) operator in scale invariant feature transform (SIFT). In general, the 
SURF contains five steps: Constructing the Hessian matrix; calculating eigenvalue; constructing 
Gaussian pyramid; determining the principal direction of feature point and locating feature points; 
and, constructing feature descriptors. 

The box filter plays an important role in these steps: It can simplify and approximate the 
Hessian matrix, making it possible to segment the second-order Gaussian template. With three 
values (i.e., 1-white, 0-gray and −1-black), the traditional box filter approximates white and light 
white regions as white regions, and black and light black regions as black regions. In this way, the 
speed is increased but the accuracy is not preserved. This gives rise to the improved box filter that 
has five values: 1, 0.5, 0, −0.5 and −1. The improved box filter (Figure 5) ensures that the regional size 
increases consistently in the SURF. 

   
(a)                           (b)                         (c) 

Figure 5. Improved box filter. (a) Box filter of Dxy (Two order derivatives for X and Y axes) (b) Box 
filter of Dyy (Two order derivatives for Y axe) (c) Box filter of Dxx (Two order derivatives for X axe). 

In this paper, the SURF was adopted to extract the set of feature points from each frame image 
to form a new grayscale matrix of the same size as that of the original image. In the new matrix, the 
feature points were in black, and the other points were in white. Then, the original image was 
generated from the new matrix. The grayscale matrix weights of the original image and the new 

Figure 4. Structure of GoogLeNet.

3.3. Feature Extraction Based on SURF Method

The SURF is a simple and fast algorithm to extract interest points and describe eigenvectors [30,31].
The classical SURF uses the difference of Gaussians (DoG) operator, which is inspired by the
Laplacian of Gaussian (LoG) operator in scale invariant feature transform (SIFT). In general, the SURF
contains five steps: Constructing the Hessian matrix; calculating eigenvalue; constructing Gaussian
pyramid; determining the principal direction of feature point and locating feature points; and,
constructing feature descriptors.

The box filter plays an important role in these steps: It can simplify and approximate the
Hessian matrix, making it possible to segment the second-order Gaussian template. With three
values (i.e., 1-white, 0-gray and −1-black), the traditional box filter approximates white and light white
regions as white regions, and black and light black regions as black regions. In this way, the speed
is increased but the accuracy is not preserved. This gives rise to the improved box filter that has five
values: 1, 0.5, 0,−0.5 and−1. The improved box filter (Figure 5) ensures that the regional size increases
consistently in the SURF.
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In this paper, the SURF was adopted to extract the set of feature points from each frame image
to form a new grayscale matrix of the same size as that of the original image. In the new matrix,
the feature points were in black, and the other points were in white. Then, the original image was
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generated from the new matrix. The grayscale matrix weights of the original image and the new matrix
were 0.7 and 0.3, respectively. The two values were added together to derive the grayscale matrix of
the updated image:

M̂Image = 0.7 ·MImage + 0.3 ·MSur f (7)

where M̂Image is the gray scale matrix of updated image; MImage is the gray scale matrix of the original
image; and, MSur f is the black-white matrix of SURF feature points.

3.4. Particle Filter Tracking Algorithm

In particle filtering, the particle states are described by affine transformation parameters, each of
which is a six-dimensional vector. For each particle, the variables are distributed randomly and obey a
probability distribution in the state space. The next most probable state is estimated by probability
calculation according to the previous state:

M = [ x y sc ro ra sa ] (8)

where x and y are the abscissa and ordinate of the center of the particle sample; sc is the length-width
ratio of the sample; ro is the rotation angle of the particle sample; ra is the height-width ratio of the
particle sample; and, sa is the gradient of the tracking window.

Particle filtering is an important resampling process that places a number of particles, by certain
rules, in the current frame. According to the placement rules, the particles are either placed evenly or
denser near the target. The similarity between the particles and the target template is measured by
particle weights. For simplicity, the weights should be normalized so that the sum of weights of all
particles equals 1.

In this paper, the particle filter tracking algorithm is implemented as follows. First, n particle
samples were obtained by random sampling in the initial frame. The weights of the particles were
set to 1/n. Let

{
si

t−1
}

i∈[1,n] be the state of the n particles at time t − 1 and
{

wi
t−1
}

i∈[1,n] be the weights
of these particles. Then, n particle samples were selected from the particle set based on the weights.
The normalized weight probability set

{
Ci

t−1
}

i∈[1,n] can be expressed as:

Ci
t−1 =

i

∑
k=1

wk
t−1/

n

∑
k=1

wk
t−1 (9)

The n sets of variables evenly distributed between 0 and 1 were randomly generated and denoted
as
{

ri}
i∈[1,n]. Then,

{
Ci

t−1
}

i∈[1,n], the set of n minimum indices
{

Idxi
t−1
}

i∈[1,n], was established

(
{

CIdxi
t−1

}
i∈[1,n]

≥ 1). Then, si
t−1 was instated to the sIdxi

t−1 , marking the end of the resampling process.

The updated particle set was transmitted via the system state-change equation. When a new
frame arrives, the state of the particle state can be obtained as:

st = A · st−1 + vt−1 (10)

where A is the state transition matrix and vt−1 are the multivariate Gaussian variables randomly
generated by affine transformation parameters. The confidence of each particle can be obtained as:

E(y) = ρ(y)w(y) (11)

where ρ(y) is the similarity between the histogram of gradient directions of the candidate sample and
that of the target template and w(y) is the particle weight obtained by GoogLeNet. The maximum
confidence particle was considered as the final estimation of the output frame. In this way, the texture
features were combined with the shape features, and the sample with maximum similarity was
identified to enhance the tracking accuracy.
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4. Experiments

The NBX-S3000 (Figure 6) distributed vibration monitoring device was adopted for
our experiments.
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Figure 6. Image of Φ-OTDR instrument.

A standard five-hammer vibration device was taken as the vibration source (Figure 7).
The experiments were carried out in an anechoic room to minimize the environmental noises and
ensure the vibration effect.
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Figure 7. Image of the standard five-hammer vibration device.

4.1. Signal Storage by Image Style

The vibration signal acquired by Φ-OTDR is stored by the image style. The specific image of each
step is shown in Figure 8.
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Figure 8. Images of the signals of each step: (a) Image of the original signals; (b) image of the filtered
signals; and, (c) image of the enhanced signals.

According to Figure 8, it is obvious that the image of the original signals was not very clear, that of
the filtered signals was clearer, with the noise becoming a white background, and that of the enhanced
signals was clear and distinguishable.

Then, the proposed filtering method was contrasted with the Kalman filter and other mainstream
methods in terms of the SNR and efficiency. The results are recorded in Table 2 below.

Table 2. Comparison of filtering effects among various methods.

No. Name Average SNR (dB) Time (s)

1 The method in the paper 5.0422 6.78
2 Wiener filter 4.6231 12.71
3 Kalman filter 4.8672 11.18
4 Adaptive filter 4.4517 14.31
5 Wavelet filter 4.9951 16.14

Table 2 shows that the proposed method outperformed the other approaches in both SNR and
efficiency. The advantage was particularly obvious in efficiency, as the proposed method consumed
45% less time than the Kalman filter. This is attributable to two main reasons: First, the vibration signals
in our research are mechanically damped and thus easy to handle; second, it is very time-consuming
to process distributed vibration signals on each length point. Meanwhile, the SNR of the proposed
method was not notably stable because the strong and weak signals had not been fitted by advanced
methods at the same time.

Next, several experiments were carried out between data files in different formats to see if the
strategy of saving as images could save disk drive space. The experimental results are shown in Table 3.

Table 3. Comparison of data file sizes in different formats.

No. Data Format Time Number of Files Size of Single File Total Compress by RAR (Roshal ARchive)

1 .mat 10 s 1 604 MB 604 MB 312 MB
2 .csv 10 s 1 451 MB 451 MB 229 MB
3 .bin 10 s 1 367 MB 367 MB 190 MB
4 .jpg 10 s 20 16.6 KB 352 KB 189 KB

The results in Table 3 reveal that saving signals as images could greatly reduce the storage space.
For instance, an image file occupied 1000 times less space than a binary file. In general, the image-based
method allows the hard disk space to be searched about 2000 times. This is because the data in images
are stored as integers while those in .csv and .mat files are saved as double-precision floating-points,
and the image files are smaller than the other files. Thus, the image-based method is a desirable way
to save the massive amount of data generated by the Φ-OTDR technique.



Algorithms 2018, 11, 117 11 of 16

4.2. Image Feature Extraction

4.2.1. Effect Analysis of Target Tracking

Taking a vibration source image as the object, the features were extracted by the SURF (Figure 9)
and expressed as center point error (vector 1) and success rate (vector 2). The center point error refers
to the Euclidean distance between the center of the target frame and the real target frame. The mean
error of the centers is the sum of center errors divided by the total number of frames. If more than 50%
of the target frame and the real target frame is overlapped, the frame is considered as being correctly
tracked. The success rate stands for the ratio of correctly tracked frames to the total number of frames.
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After SURF extraction, a total of 4096 vectors were obtained:

• Vector1(4096) = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.453, 0.0, 5.042, 0.0, 1.899, . . . . . . , 0.0, 0.0, 0.0,
0.6, 2.869, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];

• Vector2(4096) = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.485, 0.0, 0.941, 4.506, 2.171, . . . . . . , 0.0, 0.0,
0.0, 0.57, 2.997, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];

Table 4 compares the results of the proposed integrated extraction method with those of several
traditional feature extraction methods.

Table 4. Mean error of the center points (pixel) and the success rate (%).

No. Name Hammer
No. 1

Hammer
No. 2

Hammer
No. 3

Hammer
No. 4

Hammer
No. 5

1 GoogLeNet 25.3 (90.1) 24.3 (90.6) 25.1 (89.9) 25.8 (91.1) 25.0 (90.4)
2 SURF 26.7 (89.7) 26.9 (89.9) 26.3 (89.1) 26.1 (90.4) 25.1 (90.8)
3 Target contour 27.4 (89.3) 27.8 (88.1) 27.2 (87.2) 28.9 (88.9) 27.9 (89.1)
4 Multiply-features 24.5 (91.1) 24.1 (92.3) 24.7 (90.7) 24.9 (93.6) 23.9 (91.5)

Note: the format in the table is: error (rate).

It can be seen that the integrated extraction method had a better effect than the traditional
extraction methods for texture, shape and intrinsic features, respectively. In terms of mean center error,
the proposed method surpassed the shape extraction method by 8%, the texture extraction method
by 7% and the intrinsic extraction method by 4%. In terms of success rate, the proposed method
outperformed the shape extraction method by 1.7%, the texture extraction method by 1.4% and the
intrinsic extraction method by 1%.

In this paper, the effect of the integrated extraction method hinges on the modification of the
original image according to the points detected by the SURF. Therefore, repeated experiments were
conducted using the modified weights, and the results were plotted as Figure 10.
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Figure 10. Comparison of two indexes under different weight.

As shown in Figure 10, with the increase of weight, the success rate remained essentially the same,
while the center error exhibited a decreasing trend. This means the best grayscale ratio between the
defect point and the original image is 3:7. Overall, the integrated extraction method did better than the
signal method, and the effect of GoogLeNet was improved by superimposing SURF feature points
onto the original image.

4.2.2. Comparison between Different Integrated Feature Extraction Methods

The proposed method was also compared against several popular integrated feature extraction
methods, including discrete Fourier transform (DFT), incremental visual tracking (IVT), compressive
tracking (CT), direct linear transform (DLT), etc. The mean center errors and success rates of these
methods are listed in Table 5.

Table 5. Mean center errors (pixel) and the success rates (%) of different methods.

No. Name Hammer No.
1

Hammer No.
2

Hammer No.
3

Hammer No.
4

Hammer No.
5

1 DFT 14.1 (88.1) 12.3 (87.6) 15.1 (89.9) 13.8 (87.1) 12.0 (89.4)
2 IVT 5.7 (89.1) 6.9 (89.5) 6.3 (89.1) 5.9 (90.4) 5.1 (89.5)
3 CT 4.9 (89.2) 4.9 (89.1) 5.1 (89.2) 5.7 (92.2) 4.9 (89.8)
4 DLT 4.7 (89.6) 4.8 (90.8) 5.2 (89.7) 5.3 (92.9) 4.4 (90.7)
5 Mixed-features 4.5 (91.1) 4.1 (92.3) 4.7 (90.7) 4.9 (93.6) 3.9 (91.5)

As can be seen from Table 5, the proposed integrated feature extraction method outshined the
other popular methods. In terms of mean center error, the proposed method achieved an accuracy
58.2% higher than the DFT, 17.3% higher than the IVT, 7.1% higher than the CT, and 3.2% than the DLT.
In terms of success rate, the proposed method surpassed the DFT, IVT, CT and DLT by 2.5%, 1.7%,
0.9% and 0.4%, respectively. The across-the-board advantages arise from the complementary effect
between shape and intrinsic features, the highlighting of target feature points by the SURF, and the
edge of GoogLeNet over the other deep convolutional neural networks (DCNNs).

Taking one vibration source as an example, each frame image was analyzed by the proposed
method, the DFT, the IVT, the CT and the DLT. According to the results in Figure 11, the proposed
method lined out the range of the target source perfectly, while the other four methods each had its
biases. Thus, the proposed method is an ideal tool to extract features from the images generated from
Φ-OTDR signals.
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Signal damage is an unavoidable phenomenon in any data compression image. The proposed
image-based approach is no exception. In light of this, several experiments were performed to measure
the success rates of the proposed method and several traditional signal processing methods, and the
results are shown in Table 6.

Table 6. The success rate (%) in different methods.

No. Name Hammer
No. 1

Hammer
No. 2

Hammer
No. 3

Hammer
No. 4

Hammer
No. 5

1 FFT (Fast Fourier
Transform) 95.8 96.5 95.2 96.7 96.6

2 HHT (Hilbert-Huang
Transform) 96.3 96.7 97.0 97.1 97.0

3 WT (Wavelet Transform) 96.9 97.2 97.1 97.2 97.1
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The data in Table 6 demonstrate that some traditional methods could achieve over 95% success
rates in source tracking. However, the success rate of the proposed method was considerably lower
because our method involves not only data compression, but also feature retention. In summary,
the proposed image-based approach is improved on other image-based methods, but poorer than the
traditional signal processing methods.

4.2.3. Tracking Effect Analysis of Vibration Source

As 3D data, the Φ-OTDR signals must be expressed from the length axis and the time axis.
Figure 12 presents the effect of single point knocking on the optical fiber. It can be seen that the peak
vibration occurred at the vertical intersection point between the vibration source and the optical fiber,
and the signal gradually weakened from the intersection to each end.
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Figure 12. Perceptual model on length axis.

The five percussion hammers were equally distributed on the knocker. The distance between
two strikes was 10 cm. Therefore, the four distances between the centers of the five target signals
can be obtained by the proposed method. Our method was then compared with traditional methods,
such as the fast Fourier transform (FFT), Hilbert-Huang transform (HHT) and wavelet transform (WT).
The distances of each interval are presented in Table 7 below.

Table 7. Tracing effect of vibration sources between different methods (cm).

No. Name Interval No. 1 Interval No. 2 Interval No. 3 Interval No. 4

1 Mixed Feature 10.53 10.41 10.84 9.41
2 FFT 10.48 10.39 10.81 9.48
3 HHT 10.45 10.35 10.74 9.51
4 WT 10.46 10.37 10.78 9.52

As shown in Table 7, the proposed method had a positioning error of approximately 5.1%,
1.8% lower than the traditional methods. The accuracy is so small as to be negligible in actual practice.
Further, the peak vibration occurred at the vertical intersection point between the vibration source
and the optical fiber, and the signal gradually weakened from the intersection to each end, where it
eventually disappeared. During the signal recognition on one frame, there were a number of errors in
the recognition of the target signal, but this error could be corrected over time. To sum up, the vibration
source was effectively tracked although the signals were saved as images.

4.2.4. Performance Difference between Image Formats

The .jpg image format requires an advanced compression technique. This format could maintain
rich information at a high compression rate. To verify the feasibility of this format in our research,
the above experiments were repeated on four different image formats. The results are shown in Table 8.
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Table 8. Performance of different image formats (cm).

No. Format Interval No. 1 Interval No. 2 Interval No. 3 Interval No. 4

1 .jpg 10.53 10.41 10.84 9.41
2 .bpm 10.51 10.42 10.80 9.40
3 .png 10.53 10.52 10.85 9.43
4 .tiff 10.54 10.51 10.84 9.41

The data in Table 8 show that the four different formats had very similar performance,
indicating that the .jpg format did not dampen the effect of the proposed method.

5. Conclusions

This paper proposes an integrated image feature extraction method for vibration source tracking
of Φ-OTDR signals and compares the method with other popular approaches via experiments.
According to the experimental results, it can be concluded that: Hard drive space is greatly conserved
by saving the distributed vibration signals as images; the proposed particle filter is a desirable way to
screen the vibration signals for monitoring; the integrated feature extraction outperforms the individual
extraction methods for texture features, shape features and intrinsic features; the proposed method
has a better effect than other popular integrated feature extraction methods; and, the signal source
tracking method has little impact on the positioning accuracy of the vibration source.

Through our research, a simple, fast and lightweight source tracking method has been developed
for Φ-OTDR signals. Considering the complexity of actual conditions and the fast development of
deep learning networks and image processing methods, future research will improve the proposed
method to suit other types of Φ-OTDR signals, such as non-damped leakage signals, and to reflect the
latest techniques in image processing, such as the parallel use of multiple methods.
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