
algorithms

Article

Long Length Document Classification by Local
Convolutional Feature Aggregation

Liu Liu 1, Kaile Liu 2, Zhenghai Cong 3, Jiali Zhao 2, Yefei Ji 3 and Jun He 1,*
1 School of Electronic and Information Engineering, Nanjing University of Information Science and

Technology, Nanjing 210044, China; 20162281574@nuist.edu.cn
2 State Grid Corporation of China, Beijing 100031, China; kaile-liu@sgcc.com.cn (K.L.);

jiali-zhao@sgcc.com.cn (J.Z.)
3 NARI Group Corporation of China/State Grid Electric Power Research Institute, Nanjing 211106, China;

congzhenghai@sgepri.sgcc.com.cn (Z.C.); jiyefei@sgepri.sgcc.com.cn (Y.J.)
* Correspondence: jhe@nuist.edu.cn; Tel.: +86-025-58731196

Received: 7 June 2018; Accepted: 20 July 2018; Published: 24 July 2018
����������
�������

Abstract: The exponential increase in online reviews and recommendations makes document
classification and sentiment analysis a hot topic in academic and industrial research. Traditional
deep learning based document classification methods require the use of full textual information to
extract features. In this paper, in order to tackle long document, we proposed three methods that use
local convolutional feature aggregation to implement document classification. The first proposed
method randomly draws blocks of continuous words in the full document. Each block is then fed
into the convolution neural network to extract features and then are concatenated together to output
the classification probability through a classifier. The second model improves the first by capturing
the contextual order information of the sampled blocks with a recurrent neural network. The third
model is inspired by the recurrent attention model (RAM), in which a reinforcement learning module
is introduced to act as a controller for selecting the next block position based on the recurrent state.
Experiments on our collected four-class arXiv paper dataset show that the three proposed models all
perform well, and the RAM model achieves the best test accuracy with the least information.

Keywords: document classification; deep learning; convolutional feature aggregation; recurrent
neural network; recurrent attention model

1. Introduction

Document classification is a classic problem in the field of natural language processing (NLP).
Its purpose is to mark the category to which the document belongs. Document classification has a
wide range of applications, such as topic tags [1], sentiment classification [2], and so on. With the
fast development of deep learning, several deep learning based document classification approaches
have been proposed, such as the popular convolutional neural networks (CNN) based method for
sentence classification [3]; the recurrent neural network (RNN) based method [4], which can capture
the context information beyond the classical CNN model; and the recent proposed attention based
method [5]. Those approaches have shown excellent results in the tasks of short document classification.
For example, the hierarchical attention method [5] achieved 75.8% accuracy on Yahoo’s Answer [6]
dataset and 71% accuracy on the Yelp’15 [7] dataset. Further, the experimental results of the CNN
model [3] reached 81.5% accuracy on the MR (movie reviews with one sentence per review) dataset [2]
and 85% accuracy on the CR (customer reviews of various products) dataset [8]. Note that those
benchmark datasets mainly consist of short texts according to the statistic in the literature [5] that the
average number of words for those four datasets is less than 160.

Algorithms 2018, 11, 109; doi:10.3390/a11080109 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/11/8/109?type=check_update&version=1
http://dx.doi.org/10.3390/a11080109
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 109 2 of 12

Despite the success of deep learning based methods for short document classification, for long
documents, such as long articles, academic papers, and novels, among others, directly employing CNN
or RNN to capture the sentence-level or higher-level features is prohibitive and not effective. Firstly,
only loading a mini-batch of 128 long documents, say more than 10,000 words, with 300-dimension
word vector representation would cost several gigabytes GPU (Graphic Processing Unit) memory.
Secondly, for CNN model, full document would induce a deeper network to capture the hierarchic
features, which, in turn, burdened the GPU memory pressure. Thirdly, for the RNN model, unlike
sentence classification, it is impossible to feed the full long length document to a single RNN network
because even for long–short term memory (LSTM), it cannot memorize such huge context.

In view of the above problems, we propose three document representation and classification
network models for long documents. In these models, we did not exploit all information of each
document, but instead we extracted some of the content. This prevents the model from being too
large. In the first model, we first randomly sub-sample the full document, then use the word vectors
of the extracted words as input, use the convolution neural network to extract the features of the
documents, and finally feed the features to the classifier. The second model improves the first one.
After random sub-sampling full-text, by sorting the sampled blocks according to the order of context,
a recurrent neural network layer is used to not only concatenate the local convolutional features,
but also capture the contextual order information of the sampled blocks. Our third model is inspired
by the recurrent attention model (RAM) [9], in which a reinforcement learning module is introduced
to act as a controller for selecting the next block position smartly based on the recurrent state.

The paper is organized as follows: in Section 2, we review the relevant knowledge of convolutional
neural network and recurrent neural network, and the significant effects that have been made using
these networks. Section 3 proposes our three approaches for long document classification. One is the
basic random sampling method, another is the ordered local feature aggregation by RNN, and the
third model added a reinforcement learning module as a controller for selecting words. In Section 4,
the three approaches are evaluated on our collected four-class arXiv paper dataset for long document.

2. Related Works

2.1. Convolution Neural Network in NLP

The application of convolution neural networks in the field of computer vision has achieved great
success. Several well-known CNN models have been proposed, such as VGGNet [10], Google Net [11],
and ResNet [12], among others. Besides these successes in computer vision field, CNN has also been
applied to the field of NLP. One popular model for sentence classification is based on a simple CNN
model [3]. It uses different sizes of convolution kernels to convolute the text word vector matrix,
and thus different degrees of the relevance between words can be obtained. This model serves as a
classic model and is an experimental baseline in many other papers. Besides document classification,
CNN is also widely used in sentiment analysis [13], relationship classification tasks [14], and topic
classification [3].

2.2. Recurrent Neural Network in NLP

Recurrent neural networks have shown great success for sequential data. In particular, LSTM
(long–short term memory) [15] tackles the notorious problems of “gradient vanishing” and “gradient
exploding” by its carefully designed gates. In the fields of NLP, the popular Seq2Seq [16] model
is based on RNN/LSTM, in which a multi-layer of an LSTM network is used as an encoder and
another multi-layer of the LSTM network is used as a decoder. This kind of Seq2Seq model has many
variants and has been applied in many applications, such as machine translation [17], text summary
generation [18], and Chinese poetry generation [19], among others.

Regarding document classification, as RNN/LSTM could help to encode the sequential nature
of sentence or even document, the extracted feature could then be augmented to improve the basic

Algorithms 2018, 11, 109 3 of 12

model. In the literature [4], the authors introduced a recurrent convolutional neural network for
text classification to capture contextual information. In the literature [20], the authors improved the
basic RNN/LSTM based text classification model using a multi-task learning framework. Recently,
a hierarchical attention method was proposed in the literature [5], in which the word-sentence structure
of the document is explicitly modeled by this hierarchical attention model.

These methods have achieved very good performance in document classification tasks, but they
are designed to access all text information, which limits those approaches applicability to relatively
short documents.

3. Model

3.1. Model_1: Random Sampling and CNN Feature Aggregation

A naïve solution of handling long length document is to reduce the length of a document by
randomly sub-sampling and then employ classic approaches of document classification. However,
naïve randomly sub-sampling the document would lose the sentence structure. Here, we propose
to randomly sample several blocks or sentences of the document that can at least maintain the local
correlation of words in these blocks or sentences.

Our first model, CNN_Random_Agg, in short, is based on this kind of random block/sentence
sub-sampling, and then aggregates the extracted local CNN features for classification. This model is
shown in Figure 1. Input X is a word vector matrix of n × d, where n is the word number of the full
document and d is the dimension of the word vector. We first randomly sample a few groups of words
in the full document range as

{
Xi}K

i=1 with w words in each group, where Xi is the ith sampled block of
words with the size of w× d, and K is the number of sampled groups. In our experiments, just 6–10%
of the full document words could obtain good performance. Then, we use 1d-CNN, Relu (Rectified
Linear Unit) activation function, and max-pooling operation to extract the features of each group
as follows:

yi = Relu[Conv1D(Xi, W)] (1)

yi = max_pooling[yi] (2)

Algorithms 2018, 11, x FOR PEER REVIEW 3 of 12

classification to capture contextual information. In the literature [20], the authors improved the basic
RNN/LSTM based text classification model using a multi-task learning framework. Recently, a
hierarchical attention method was proposed in the literature [5], in which the word-sentence
structure of the document is explicitly modeled by this hierarchical attention model.

These methods have achieved very good performance in document classification tasks, but they
are designed to access all text information, which limits those approaches applicability to relatively
short documents.

3. Model

3.1. Model_1: Random Sampling and CNN Feature Aggregation

A naïve solution of handling long length document is to reduce the length of a document by
randomly sub-sampling and then employ classic approaches of document classification. However,
naïve randomly sub-sampling the document would lose the sentence structure. Here, we propose to
randomly sample several blocks or sentences of the document that can at least maintain the local
correlation of words in these blocks or sentences.

Our first model, CNN_Random_Agg, in short, is based on this kind of random block/sentence
sub-sampling, and then aggregates the extracted local CNN features for classification. This model is
shown in Figure 1. Input X is a word vector matrix of n × d, where n is the word number of the full
document and d is the dimension of the word vector. We first randomly sample a few groups of
words in the full document range as 1{ }i K

iX with w words in each group, where iX is the thi

sampled block of words with the size of w d , and K is the number of sampled groups. In our
experiments, just 6–10% of the full document words could obtain good performance. Then, we use
1d-CNN, Relu (Rectified Linear Unit) activation function, and max-pooling operation to extract the
features of each group as follows:

Relu[Conv1D(,)] i
iy X W (1)

_ []i iy max pooling y (2)

t
. . .

CNN CNN CNN CNN

MAX-POOLING MAX-POOLING MAX-POOLING MAX-POOLING

Random subsampling

concatenation Classifier P

Figure 1. Model convolutional neural networks (CNN)_Random_Agg architecture.

Here, Conv1D is the 1d CNN operator and W is the tensor of the convolutional filters with the
shape of h d f , where h is convolutional kernel size, d is the dimension of the word vector same

Figure 1. Model convolutional neural networks (CNN)_Random_Agg architecture.

Here, Conv1D is the 1d CNN operator and W is the tensor of the convolutional filters with the
shape of h× d× f , where h is convolutional kernel size, d is the dimension of the word vector same

Algorithms 2018, 11, 109 4 of 12

as above, and f is the number of convolutional filters. Thus, after the operation of Equation (1), yi,
the convoluted feature for each group, is further pooled to yi by the max over time pooling operation
as Equation (2). Then, for the K sampled groups of words, the extracted local CNN features {yi}

K
i=1

are concatenated as follows:
y = [y1, y2, . . . , yK] (3)

This aggregated CNN feature y is then input to the last full-connected layer for classification.
Finally, we perform the Softmax operation and output the probability p.

3.2. Model_2: CNN Feature with LSTM Aggregation

In the first model, we extracted and aggregated local CNN features from the randomly sampled
blocks or sentences of the document for classification. This kind of feature aggregation is simple and
effective, though the correlation among those sampled blocks is lost. This is because there is no order
information between the randomly sub-sampled blocks, which results in less semantic association
between the feature vectors of these blocks. Therefore, we consider using a recurrent neural network
(RNN) to explicitly model the semantic order of the sampled blocks. RNNs have shown great success
in many NLP tasks, such as non-segmented continuous handwriting recognition [21] and autonomous
speech recognition [22]. Specifically, in this model we use LSTM [15] nodes as RNN computational
nodes, shown in Figure 2. The advantage of the LSTM node is that it well tackles the difficulty of
“gradient vanishing” and “gradient exploding” by its carefully designed gates. Therefore, it is possible
to design a deeper LSTM network and unfold this network into many steps, which is suitable for
practical sequential data modeling.

Algorithms 2018, 11, x FOR PEER REVIEW 4 of 12

as above, and f is the number of convolutional filters. Thus, after the operation of Equation (1), iy ,

the convoluted feature for each group, is further pooled to iy by the max over time pooling
operation as Equation (2). Then, for the K sampled groups of words, the extracted local CNN features

1{ }K
i iy are concatenated as follows:

1 2[, , ,]Ky y y y (3)

This aggregated CNN feature y is then input to the last full-connected layer for classification.
Finally, we perform the Softmax operation and output the probability p.

3.2. Model_2: CNN Feature with LSTM Aggregation

In the first model, we extracted and aggregated local CNN features from the randomly sampled
blocks or sentences of the document for classification. This kind of feature aggregation is simple and
effective, though the correlation among those sampled blocks is lost. This is because there is no order
information between the randomly sub-sampled blocks, which results in less semantic association
between the feature vectors of these blocks. Therefore, we consider using a recurrent neural network
(RNN) to explicitly model the semantic order of the sampled blocks. RNNs have shown great success
in many NLP tasks, such as non-segmented continuous handwriting recognition [21] and
autonomous speech recognition [22]. Specifically, in this model we use LSTM [15] nodes as RNN
computational nodes, shown in Figure 2. The advantage of the LSTM node is that it well tackles the
difficulty of “gradient vanishing” and “gradient exploding” by its carefully designed gates.
Therefore, it is possible to design a deeper LSTM network and unfold this network into many steps,
which is suitable for practical sequential data modeling.

~
C

C

Figure 2. Long–short term memory (LSTM) node.

The LSTM node is calculated as follows [15]:

och

igfcc

hWxUg

hWxUo

hWxUf

hWxUi

tt

tt

t
g

t
g

t
o

t
o

t
f

t
f

t
i

t
i

tanh

)tanh(

)(

)(

)(

1

1

1

1

1

 (4)

In our second model, CNN_LSTM_Agg, in short, we sorted each group of words in the order of
text to obtain the semantic order, so as to form a set of ordered document data. The first steps are the
same as the model of CNN_Random_Agg, but the key difference to the model of CNN_LSTM_Agg

Figure 2. Long–short term memory (LSTM) node.

The LSTM node is calculated as follows [15]:

i = σ(Uixt + Wiht−1)

f = σ(U f xt + W f ht−1)

o = σ(Uoxt + Woht−1)

g = tanh(Ugxt + Wght−1)

ct = ct−1 ⊗ f + g⊗ i

ht = tanhct ⊗ o

(4)

In our second model, CNN_LSTM_Agg, in short, we sorted each group of words in the order of
text to obtain the semantic order, so as to form a set of ordered document data. The first steps are the
same as the model of CNN_Random_Agg, but the key difference to the model of CNN_LSTM_Agg is

Algorithms 2018, 11, 109 5 of 12

that we use an LSTM layer to aggregate the extracted local CNN features for classification. The specific
model structure is shown in Figure 3.

Algorithms 2018, 11, x FOR PEER REVIEW 5 of 12

is that we use an LSTM layer to aggregate the extracted local CNN features for classification. The
specific model structure is shown in Figure 3.

1nh
 h hf h hf

+1nh

 h hf

+2nhnh + 3nh

 h hf

Figure 3. Model CNN_LSTM_AGG architecture.

3.3. Model_3: CNN Feature with Recurrent Attention Model

In the previous two models, we use the random sub-sampling technique to extract parts of the
text. As a result, the blocks of words that the two models selected are purely random, which do not
represent the most salient parts of the document. In view of this, we consider introducing a smart
sampling agent that can quickly find the best positions for those blocks. Inspired by the seminal
recurrent attention model (RAM) [9], we expect to employ reinforcement learning to control the
locations of sampled blocks, so that we could select more suitable blocks of words that better
represent the characteristics of the document.

The diagram of the model CNN_RAM_Agg is shown in Figure 4. This document classification
framework incorporates the recurrent attention mechanism, which includes a glimpse network
module (|)g gf for local CNN feature extraction, a recurrent neural network module (|)h hf

for CNN feature aggregation, and an attention network (|)a af for sampling location predication.
The algorithm of this model is shown in Algorithm 1.

Algorithm 1: CNN_RAM_Agg

1: Input: Document D, GloVe dictionary, initial network parameter , , a h g (a for

attention network, h for recurrent network, g for glimpse network), number of glimpse T,

maximum iteration maxIter.
2: for i = 0, 1, 2, …, maxIter do
3: for t = 0, 1, 2, … T do (0l is initialized by a random location)

Extract words near the position tl and use GloVe to obtain the word vectors

Use the glimpse network (|)g gf to extract feature vectors
t
o

Input
t
o to the LSTM network (|)h hf to obtain a new hidden state

t
h

Predict the next location 1tl by the attention network (|)a af with th
4: end for

Figure 3. Model CNN_LSTM_AGG architecture.

3.3. Model_3: CNN Feature with Recurrent Attention Model

In the previous two models, we use the random sub-sampling technique to extract parts of the text.
As a result, the blocks of words that the two models selected are purely random, which do not represent
the most salient parts of the document. In view of this, we consider introducing a smart sampling agent
that can quickly find the best positions for those blocks. Inspired by the seminal recurrent attention
model (RAM) [9], we expect to employ reinforcement learning to control the locations of sampled
blocks, so that we could select more suitable blocks of words that better represent the characteristics of
the document.

The diagram of the model CNN_RAM_Agg is shown in Figure 4. This document classification
framework incorporates the recurrent attention mechanism, which includes a glimpse network module
fg(·
∣∣θg) for local CNN feature extraction, a recurrent neural network module fh(·|θh) for CNN feature

aggregation, and an attention network fa(·|θa) for sampling location predication. The algorithm of
this model is shown in Algorithm 1.

Algorithm 1: CNN_RAM_Agg

1: Input: Document D, GloVe dictionary, initial network parameter
[
θa, θh, θg

]
(θa for attention network, θh for

recurrent network, θg for glimpse network), number of glimpse T, maximum iteration maxIter.
2: for i = 0, 1, 2, . . . , maxIter do
3: for t = 0, 1, 2, . . . T do (l0 is initialized by a random location)

Extract words near the position lt and use GloVe to obtain the word vectors
Use the glimpse network fg(·

∣∣θg) to extract feature vectors ot

Input ot to the LSTM network fh(·|θh) to obtain a new hidden state ht

Predict the next location lt+1 by the attention network fa(·|θa) with ht

4: end for
5: Using the aggregated feature hT+1 emitted from the last step of LSTM to obtain the predicted label.
6: If predicted label is correct then get reward 1 otherwise get none reward.
7: Update fa(·|θa) parameters θa with reinforcement learning; update fh(·|θh) parameters θh and

fg(·
∣∣θg) parameter θg with back propagation

8: end for

Algorithms 2018, 11, 109 6 of 12

Algorithms 2018, 11, x FOR PEER REVIEW 6 of 12

5: Using the aggregated feature
1T

h emitted from the last step of LSTM to obtain the
predicted label.

6: If predicted label is correct then get reward 1 otherwise get none reward.
7: Update (|)a af parameters a with reinforcement learning; update (|)h hf

parameters h and (|)g gf parameter g with back propagation

8: end for

(|)g gf

1th
(|)h hf

(|)a af

1tl

(|)g gf

to

t+1o

(|)h hf

th
+1th

(|)a af

2tl

(|)g gf

(|)h hf

(|)a af

3tl

+2th

2to

1tl 2tl

Figure 4. Model CNN_RAM_Agg architecture. RAM—recurrent attention model.

Following the mechanism of RAM [9], at the tht glimpse step, the location tl is predicted by

the attention network (|)a af of previous step. Then, a block of words is extracted near this

location and the local CNN features to are extracted by the glimpse network (|)g gf . Next, to

is aggregated with the previous hidden state 1th to obtain a new hidden state th by the LSTM

network (|)h hf . Then, the attention network (|)a af predicts the next location 1tl for the

next glimpse step. After the model glimpses T locations, the last state of LSTM 1Th is used for
document classification. Note that we use a reinforcement learning technique to train the attention
network (|)a af because the predicted location tl is not differentiable with respect to a . Thus,

if the predicted label is correct, our model receives reward 1r , otherwise 0r . Then, the
attention network (|)a af is optimized by maximizing the expected cumulative return, as
Equation (5):

1: 1:| |1

=

T T

T

tp s p st
J r R (5)

where 1: |Tp s is the optimized policy, which predicts the next position according to its glimpse at

each step; tr is the reward for each step; and R is the cumulative return, which is defined as follows:

1
1

T t
tt

R r

 (6)

where is the decaying coefficient.

Figure 4. Model CNN_RAM_Agg architecture. RAM—recurrent attention model.

Following the mechanism of RAM [9], at the tth glimpse step, the location lt is predicted by the
attention network fa(·|θa) of previous step. Then, a block of words is extracted near this location and
the local CNN features ot are extracted by the glimpse network fg(·

∣∣θg) . Next, ot is aggregated with
the previous hidden state ht−1 to obtain a new hidden state ht by the LSTM network fh(·|θh) . Then,
the attention network fa(·|θa) predicts the next location lt+1 for the next glimpse step. After the model
glimpses T locations, the last state of LSTM hT+1 is used for document classification. Note that we use a
reinforcement learning technique to train the attention network fa(·|θa) because the predicted location
lt is not differentiable with respect to θa. Thus, if the predicted label is correct, our model receives
reward r = 1, otherwise r = 0. Then, the attention network fa(·|θa) is optimized by maximizing the
expected cumulative return, as Equation (5):

J(θ) = Ep(s1:T |θ)

[
∑T

t=1rt

]
= Ep(s1:T |θ)[R] (5)

where p(s1:T |θ) is the optimized policy, which predicts the next position according to its glimpse at
each step; rt is the reward for each step; and R is the cumulative return, which is defined as follows:

R = ∑T
t=1γt−1rt (6)

where γ is the decaying coefficient.

4. Experiment Analysis

This section mainly introduces the data set used for the experiment, the experimental setup,
and the comparative analysis of the experimental results.

4.1. Data Set

We collected four classes of papers from arXiv as the benchmark dataset for long document
classification. They are cs.IT, cs.NE, math.AC, and math.GR, and the number of papers in each class is
3233, 3012, 2885, and 3065, respectively. Among them, each class in our dataset has an average of more

Algorithms 2018, 11, 109 7 of 12

than 6000 words, which is much longer than other short document datasets, such as IMDb (Internet
Movie Database) reviews, Amazon reviews, and so on.

Because the format of these papers is very special, we take the following preprocessing steps.
First of all, as the texts of each paper are converted from PDF format, in order to remedy the side effect
to classification, we have to remove the garbled characters, punctuation, and numbers in the paper
because they are missing in GloVe [23]. Next, we convert the document into a long string and a typical
word segmentation operation is performed on the string to get a long list of words. Finally, the list of
words ar1 converted into word vectors through the GloVe dictionary. For those words that are not
in GloVe, we use random word vectors as a supplement, which can be further trained by our model.
The details of the data are shown in Table 1.

Table 1. Data statistics: #w denotes the number of words (maximum, minimum, and average
per document).

Class Name Number of Documents Average Words

cs.IT 3233 5938
cs.NE 3012 5856

math.AC 2885 5984
math.GR 3065 6642

4.2. Experiment Setup

1. Experiment platform: The experimental platform is a deep learning workstation with 32 Gb RAM
and NVIDIA Titan X GPU with 12 Gb memory. The computer is installed with Ubuntu16.04
system and the program mentioned in the experiment is implemented with TensorFlow 1.8 [24].

2. Word vector: The word vector used in this article is GloVe. GloVe originally stored 400,000 word
vectors, but there are around 730,000 missing words in our arXiv dataset. Then, the number
of the final embedding lookup word vector table is around 1.13 million. Therefore, if we use a
300-dimension word vector, we cannot store the lookup table in GPU memory. For this reason,
we chose to use a 100-dimension word vector.

3. Training parameters: In the experiment, we set 5000 steps, and we used Adam’s optimization
method to train our model. The learning rate was set to 0.001, and it gradually became 0.0001.
Dropout’s coefficient is set to 0.5. The input batch size is 64. For the convolution layer, convolution
kernels with convolution kernel sizes 3, 4, and 5 are used, with 128 convolution kernels of
each size.

4.3. Experiment Results

4.3.1. Baseline Model

We used the popular CNN model proposed in the literature [3] as the baseline method for our
experiments. As the document in the arXiv dataset is too long to be directly used by the CNN baseline
model, each document is trimmed to its first 1000 words. Based on the same hyper-parameter setting
in the literature [3], the classification result on the arXiv dataset is 91.94%. This result is plotted in
Figure 5a,b as the baseline for comparison.

Algorithms 2018, 11, 109 8 of 12

Algorithms 2018, 11, x FOR PEER REVIEW 8 of 12

(a) (b)

Figure 5 Experimental results of these models (ACC is the accuracy of classification): (a) Fixing the
number of extracted words to 1000, vary the window size; (b) Fixing the window size to 40 words,
vary the total number of extracted words.

4.3.2. Model 1: CNN_Random_Agg

For model CNN_Random_Agg, we performed the following experiments by changing two
parameters: window size and total number of words. The experimental results are shown in Table 2.

Table 2. Model CNN_Random_Agg experimental results.

 Window Size

Total Words
10 20 50 100 200 400 500

200 86.37% 86.53% 86.98% 87.03% 87.21%

400 87.48% 90.11% 90.33% 90.60% 92.08% 92.12%

600 88.36% 91.21% 91.88% 92.16% 93.35%

800 89.14% 92.13% 92.32% 92.63% 93.38% 93.41%

1000 90.26% 92.21% 92.59% 93.78% 93.89% 94.02%

From the above table, we can see that when the window size is fixed, total number of words
extracted is higher; that is, the more blocks that are sub-sampled, the better the experimental results.
Because the total number of words extracted determines the ratio of the full-text content that the
model can see, the more it sees, the more useful information it contains, resulting in better
classification results. On the other hand, when the extracted total number of words is fixed, the larger
the window size, the better the experimental results. Because the words in a window have closer local
correlation, their relevance is large.

Figure 5. Experimental results of these models (ACC is the accuracy of classification): (a) Fixing the
number of extracted words to 1000, vary the window size; (b) Fixing the window size to 40 words,
vary the total number of extracted words.

4.3.2. Model 1: CNN_Random_Agg

For model CNN_Random_Agg, we performed the following experiments by changing two
parameters: window size and total number of words. The experimental results are shown in Table 2.

Table 2. Model CNN_Random_Agg experimental results.

Total Words
Window Size

10 20 50 100 200 400 500

200 86.37% 86.53% 86.98% 87.03% 87.21%

400 87.48% 90.11% 90.33% 90.60% 92.08% 92.12%

600 88.36% 91.21% 91.88% 92.16% 93.35%

800 89.14% 92.13% 92.32% 92.63% 93.38% 93.41%

1000 90.26% 92.21% 92.59% 93.78% 93.89% 94.02%

From the above table, we can see that when the window size is fixed, total number of words
extracted is higher; that is, the more blocks that are sub-sampled, the better the experimental results.
Because the total number of words extracted determines the ratio of the full-text content that the model
can see, the more it sees, the more useful information it contains, resulting in better classification
results. On the other hand, when the extracted total number of words is fixed, the larger the window
size, the better the experimental results. Because the words in a window have closer local correlation,
their relevance is large.

4.3.3. Model 2: CNN_LSTM_Agg

For model CNN_ LSTM _Agg, we performed the following experiments by changing the three
parameters: window size, total number of words, and number of hidden unit. For each fixed window
size and total number of words, the result for the 256 hidden unit is at the top and 512 is at the bottom.
The experimental results are shown in Table 3.

Algorithms 2018, 11, 109 9 of 12

Table 3. Model CNN_LSTM_Agg experimental results.

Total Words
Window Size

10 20 50 100 200 400 500

200
88.16% 88.21%% 90.67% 90.96% 91.32%

83.42% 86.05% 86.71% 87.23% 88.06%

400
89.05% 91.03% 91.35% 91.62% 92.21% 92.33%

86.28% 88.41% 89.08% 89.27% 90.08% 90.12%

600
89.52% 91.96% 92.03% 92.85% 93.87%

86.66% 89.59% 89.92% 90.23% 90.51%

800
90.28% 92.41% 93.12% 93.32% 94.01% 94.35%

89.44% 90.28% 90.37% 90.56% 90.82% 90.94%

1000
92.36% 92.85% 93.23% 93.86% 94.12% 94.25%

89.48% 90.36% 90.61% 91.77% 91.96% 92.34%

From Table 3, we can see that the accuracy increases gradually with the increase of the window
size and the total number of words. When the window size is 10 and the total number of words is 200,
that is, the number of blocks extracted is 20, the accuracy is only about 88%; and when the total number
of words increases to 1000 and the window size increases to as large as 200, that is, the number of
blocks is 5, the accuracy of the model reached more than 94%. In addition, we also investigate the effect
of the number of hidden units by setting the number to 256 and 512, respectively. Experiments show
that setting hidden units to 256 is better than the case of 512. This may because the current collected
arXiv dataset is still too small relative to a larger RNN network, which could be easily overfit. We hope
to enlarge our dataset in future work.

4.3.4. Model 3: CNN_RAM_Agg

For model CNN_RAM_Agg, we also performed experiments based on the two parameters of
window size and total number of words, the experimental results are shown in Table 4.

Table 4. Model CNN_RAM_Agg experimental results.

Total Words
Window Size

10 20 50 100 200 400 500

200 89.84% 90.15% 91.67% 91.89% 92.23%

400 90.05% 92.22% 93.08% 93.56% 93.67% 93.53%

600 90.11% 92.38% 93.68% 94.24% 94.11%

800 92.36% 92.53% 93.86% 94.36% 94.41% 93.87%

1000 93.17% 93.21% 94.56% 94.68% 95.48% 94.73%

From Table 4, we can see that different from CNN_Random_Agg and CNN_LSTM_Agg,
CNN_RAM_Agg achieves its best accuracy not with the largest window size, but with a suitable
window size. When we extract 1000 words and the window size is 200, that is, by taking 5 glimpses,
the accuracy reaches 95.48%. This result is higher than the first two models. This fully demonstrates
that the RAM model is very suitable for the long length document scenario.

4.3.5. Experimental Comparison

We compared the experimental results of the three proposed models and the baseline model.
The comparison is shown in Figure 5. We can clearly see that the results of our proposed models are

Algorithms 2018, 11, 109 10 of 12

superior to the baseline with proper setting. In Figure 5a, because the baseline model only exploited the
first 1000 words in a document, for fair comparison, we fixed the number of extracted words to 1000 and
varied the window size for the three proposed models. Both CNN_LSTM_Agg and CNN_RAM_Agg
outperform the baseline by a large margin for all windows size settings. CNN_Random_Agg is also
superior to the baseline except that the window size was set to 10. Moreover, in Figure 5b, we can
observe that even with much fewer extracted words, the proposed sub-sampling methods can beat
the baseline. In particular, CNN_RAM_AGG outperforms the baseline with less than 400 words. It is
not surprising that the sub-sampling methods are superior to the classic CNN baseline, because the
CNN baseline is limited to the first 1000 words because of memory constraints. On the contrary, these
sub-sampling based methods make use of the full coverage.

To investigate the performance of these sub-sampling approaches, we first varied the window
size from 10 to 500 while fixing the total number of words to 1000. The results are shown in Figure 5a.
It can be observed that the classification accuracy of the three models gradually increases as the size of
the window increases. However, for CNN_RAM_Agg, there is an interesting decrease when setting
window size from 200 to 500. This is because the total number of extracted words is only 1000, then the
window size of 500 means CNN_RAM_Agg can only glimpse two word blocks, but for the window
size of 200 CNN_RAM_Agg, can glimpse five word blocks. In some sense, more word blocks may
cover more global information, which increases the possibility of it focusing on other salient parts.

Secondly, by fixing the window size to 40, we increased the total number of extracted words
from 200 to 4000. Note that for CNN_RAM_Agg, we only extracted up to 1000 words. Figure 5b
demonstrates that CNN_RAM_Agg significantly outperforms the other two models with the
least information. Even with 200 extracted words, say only 3% of the average words are used,
CNN_RAM_Agg can achieve more than 90% classification accuracy. Moreover, by glimpsing
20 blocks, say extracting 1000 words, CNN_RAM_Agg is still superior to CNN_Random_Agg and
CNN_LSTM_Agg, which have seen 4000 words. It definitely shows that the RAM mechanism is well
trained and can smartly locate the most salient blocks of words for long length document.

Even though CNN_RAM_Agg outperforms CNN_Random_Agg and CNN_LSTM_Agg with
least extracted words, CNN_RAM_Agg requires much more training time than these two approaches.
Besides less training time, CNN_Random_Agg and CNN_LSTM_Agg are easy to implement.
Additionally, compared with the classical CNN baseline model, these two methods aggregate the local
CNN word features in the full coverage to produce superior results for long document classification.

5. Conclusions

This paper introduces three sub-sampling based models for long document classification,
using convolutional neural networks, recurrent neural networks, and a recurrent attention model.
The experimental analysis shows that our models can perform document classification tasks well even
with incomplete information. Among these models, the RAM based model can effectively and quickly
find the statement that best characterizes the text feature in the long document. We only need to use
less than 10% of the document text to achieve good results. For the classification of long documents,
we have greatly reduced the computational complexity and memory requirement, which is easy for
deployment in practice.

However, in our experiments, we just made simple parameter adjustments. In future work,
we will use more datasets to verify our methods, and we can use parameter random search [25],
or Bayesian optimization methods [26], to get better parameters to improve the performance of
our model.

Author Contributions: L.L., K.L. and Z.C. conceived and designed the experiments; J.Z. and L.L. performed
the experiments; Y.J. and J.H. analyzed the data; L.L. and J.H. wrote the paper with contributions from all
authors. All authors read and approved the submitted manuscript, agreed to be listed, and accepted this version
for publication.

Funding: This work is supported by STATE GRID Corporation of China Headquarters Technology Program 2017.

Algorithms 2018, 11, 109 11 of 12

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, S.; Manning, C.D. Baselines and bigrams: Simple, good sentiment and topic classification.
In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Short Papers-Volume 2, Jeju Island, Korea, 8–14 July 2012; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2012; pp. 90–94.

2. Pang, B.; Lee, L. Seeing stars: Exploiting class relationships for sentiment categorization with respect to
rating scales. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
Ann Arbor, MI, USA, 25–30 June 2005; Association for Computational Linguistics: Stroudsburg, PA, USA,
2005; pp. 115–124.

3. Kim, Y. Convolutional Neural Networks for Sentence Classification. Eprint Arxiv 2014, arXiv:1408.5882.
4. Lai, S.; Xu, L.; Liu, K.; Zhao, J. Recurrent Convolutional Neural Networks for Text Classification.

In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA,
25–30 January 2015; Volume 333, pp. 2267–2273.

5. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical attention net-works for document
classification. In Proceedings of the NAACL-HLT, San Diego, CA, USA, 12–17 June 2016; pp. 1480–1489.

6. Zhang, X.; Zhao, J.; Lecun, Y. Character-level Convolutional Networks for Text Classification. In Proceedings
of the NIPS’15 28th International Conference on Neural Information Processing Systems, Montreal, QC,
Canada, 7–12 December 2015; pp. 649–657.

7. Tang, D.; Qin, B.; Liu, T. Document Modeling with Gated Recurrent Neural Network for Sentiment
Classification. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
Lisboa, Portugal, 17 September 2015; pp. 1422–1432.

8. Hu, M.; Liu, B. Mining and summarizing customer reviews. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 22–25 August 2004;
pp. 168–177.

9. Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. In Proceedings of the Advances in
Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2204–2212.

10. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1406.6247.

11. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778.

13. Maas, A.L.; Daly, R.E.; Pham, P.T.; Huang, D.; Na, A.Y.; Potts, D. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies-Volume 1, Portland, OR, USA, 19–24 June 2011; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2011; pp. 142–150.

14. Nguyen, T.H.; Grishman, R. Relation Extraction: Perspective from Convolutional Neural Networks.
In Workshop on Vector Modeling for NLP; Blunsom, P., Cohen, S., Dhillon, P., Liang, P., Eds.; Association
for Computational Linguistics: Stroudsburg, PA, USA, 2015; pp. 39–48.

15. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

16. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings
of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
8–13 December 2014; Volume 4, pp. 3104–3112.

17. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate.
arXiv 2014, arXiv:1409.0473.

18. Nallapati, R.; Zhou, B.; dos Santos, C.; Gulcehre, C.; Xiang, B. Abstractive Text Summarization Using
Sequence-to-Sequence RNNs and Beyond. arXiv 2016, arXiv:1602.06023.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Algorithms 2018, 11, 109 12 of 12

19. Wang, Z.; He, W.; Wu, H.; Wu, H.; Li, W.; Wang, H.; Chen, E. Chinese Poetry Generation with Planning
based Neural Network. arXiv 2016, arXiv:1610.09889.

20. Liu, P.; Qiu, X.; Huang, X. Recurrent neural network for text classification with multi-task learning. arXiv
2016, arXiv:1605.05101.

21. Graves, A.; Liwicki, M.; Fernández, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A novel connectionist
system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868.
[CrossRef] [PubMed]

22. Miao, Y.; Gowayyed, M.; Metze, F. EESEN: End-to-end speech recognition using deep RNN models and
WFST-based decoding. In Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), Scottsdale, AZ, USA, 13–17 December 2015; pp. 167–174.

23. Pennington, J.; Socher, R.; Manning, C. Glove: Global Vectors for Word Representation. In Proceedings of the
27th Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014;
pp. 1532–1543.

24. Tensorflow. Available online: https://github.com/tensorflow/tensorflow (accessed on 23 July 2018).
25. Stra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
26. Snoek, J.; Larochell, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms.

In Proceedings of the Advances in neural information processing systems, Lake Tahoe, NV, USA,
3–6 December 2012; pp. 2951–2959.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2008.137
http://www.ncbi.nlm.nih.gov/pubmed/19299860
https://github.com/tensorflow/tensorflow
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Convolution Neural Network in NLP
	Recurrent Neural Network in NLP

	Model
	Model_1: Random Sampling and CNN Feature Aggregation
	Model_2: CNN Feature with LSTM Aggregation
	Model_3: CNN Feature with Recurrent Attention Model

	Experiment Analysis
	Data Set
	Experiment Setup
	Experiment Results
	Baseline Model
	Model 1: CNN_Random_Agg
	Model 2: CNN_LSTM_Agg
	Model 3: CNN_RAM_Agg
	Experimental Comparison

	Conclusions
	References

