
algorithms

Article

Evolving the Controller of Automated Steering of a
Car in Slippery Road Conditions

Natalia Alekseeva *, Ivan Tanev and Katsunori Shimohara

Department of Information Systems Design, Faculty of Engineering, Doshisha University 1-3,
Tatara Miyakodani, Kyotanabe City, Kyoto 610-0394, Japan; itanev@sil.doshisha.ac.jp (I.T.);
kshimoha@sil.doshisha.ac.jp (K.S.)
* Correspondence: alekseeva2017@sil.doshisha.ac.jp

Received: 8 June 2018; Accepted: 19 July 2018; Published: 21 July 2018
����������
�������

Abstract: The most important characteristics of autonomous vehicles are their safety and their
ability to adapt to various traffic situations and road conditions. In our research, we focused
on the development of controllers for automated steering of a realistically simulated car in
slippery road conditions. We comparatively investigated three implementations of such controllers:
a proportional-derivative (PD) controller built in accordance with the canonical servo-control
model of steering, a PID controller as an extension of the servo-control, and a controller designed
heuristically via the most versatile evolutionary computing paradigm: genetic programming (GP).
The experimental results suggest that the controller evolved via GP offers the best quality of control
of the car in all of the tested slippery (rainy, snowy, and icy) road conditions.

Keywords: autonomous vehicles; automated steering; slippery road conditions; PID controllers;
genetic programming

1. Introduction

Since the 1930s, the authors of science fiction books have envisioned the advent of self-driving cars,
and constructing such cars has been a challenge for the Artificial Intelligence (AI) community since the
1960s [1]. Nowadays, the advances of sensing (e.g., computer vision, laser and microwave ranging,
etc.), mapping, networking, and machine learning have facilitated the rapid growth of research and
prototyping of semi-autonomous and autonomous vehicles [2]. However, most of the implemented
solutions so far seldom assume an unconditional and complete autonomy of the vehicle. Moreover,
the currently available—up to level 3 (of the six levels, 0–5) of autonomous driving, as defined in
2014 by the Society of Automotive Engineers—industrial applications of semi-autonomous vehicles
require that the drivers keep their hands on the steering wheel all the time during the operation of
the “auto-pilot” [3]. Indeed, in a case of an unforeseen traffic situation or road condition, the control
might have to be transferred to the presumably more dependable human driver [4]. We believe
that the automation should abstain from unconditionally ceding the control of the car to the human
driver, especially in heavy traffic situations or in challenging (such as, for example, slippery) road
conditions due to the major drawback of this transfer: the reduced cognitive load of the (passive)
human driver might result in a rough transition of control between the automation and the human [5].
In such situations, the behavior of the human might be either inadequate or too slow as they might
be subjected to a sharp increase of their cognitive load and the psychological stress of dealing with
the suddenly arising, challenging traffic situation (e.g., a suddenly appearing obstacle in front of the
car in dense multi-lane traffic). In addition, the human driver might be underqualified to control
the car in challenging road conditions (e.g., retaining control of an oversteering car on a slippery
road). The recent traffic accidents—some of them fatal—involving autonomous cars drew attention

Algorithms 2018, 11, 108; doi:10.3390/a11070108 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a11070108
http://www.mdpi.com/journal/algorithms
http://www.mdpi.com/1999-4893/11/7/108?type=check_update&version=2

Algorithms 2018, 11, 108 2 of 18

to the problem of the cognitive conditions required of human drivers to allow them to serve as a
dependable backup for the potentially imperfect automation [6–8]. Nevertheless, autonomous vehicles
are expected to outperform human drivers in terms of improved overall safety of road traffic, and
to result in a decrease of the total number of accidents caused by a slow or inadequate response of
a human driver due to fatigue, inattention, and a lack of experience or qualification in dealing with
extreme traffic situations and road conditions [3].

The task of automated driving can be decomposed into the following subtasks: (i) defining the
desired trajectory (driving line) and the desired pattern of speed along this trajectory, (ii) keeping the
actual trajectory of the car as close as possible to the desired one, and (iii) maintaining the actual speed
of the car along this trajectory as close as possible to the desired one [9,10]. We considered the first and
third subtasks to be beyond the scope of our current work; instead, we focused on the second one—in
challenging, slippery road conditions—which could be solved by an appropriate steering of the car.

Currently, the canonical servo-control of steering [11]—which, as we will elaborate later, could
be seen as an example of a proportional-derivative (PD) controller—is adopted as a formal model of
the steering angle function (SAF): the function that continuously decides the current steering angle
of the front (steering) wheels depending on both the lateral and angular deviation of the car from its
intended trajectory. The model continuously attempts to minimize the values of these two deviations
(i.e., the errors) by setting the steering angle to such a value that would result in both a prompt and
stable (non-oscillatory) return of the car to its desired trajectory. This model mimics well the steering
behavior of a human driver and, similarly to such a driver, provides a good quality of steering on
dry, non-slippery roads. With an appropriate tuning of the relevant gain coefficients (depending
on the specific features of the physical model of the particular car), on dry roads the servo-control
could achieve a steering behavior that is very similar to that of a human driver in adequate cognitive
condition [12].

However, to the best of our knowledge, there is no documented research on the applicability of
the PD servo-control model for automated control of the car under more challenging—slippery (e.g.,
wet, snowy, or icy)—road conditions. We speculate that PD servo-control might not be adequate in
such conditions because the vehicle dynamics model of a directionally unstable (e.g., understeering or
oversteering) car on slippery roads is more complex and involves additional variables (beyond the
lateral and angular deviations from the desired trajectory) pertinent to the state of the car than are
involved in a car driven on normal, non-slippery roads [13]. Such complexity might not be expressed
adequately by the relatively simple PD servo-control.

Moreover, in an eventual case of unacceptability of the PD servo-control as a steering model in
such slippery conditions, which alternative model would be more appropriate, and how to develop it,
would be open questions too.

These two concerns—the eventual inapplicability of the PD servo-control model and the lack of
understanding of its alternative(s) for the steering of a car on slippery roads—motivated our research.
Our objectives were (i) to examine the applicability of PD servo-control as an auto-steering model
of a car on slippery roads, and (ii) to investigate the feasibility to develop heuristically the optimal
(possibly nonlinear) steering model in such road conditions by means of simulated evolution via
genetic programming (GP).

Our work is additionally motivated by the fact that despite the significant body of research on
computational intelligence in The Open Racing Car Simulator (TORCS) [14,15], we are not aware of any
implementation of SAF of the car on slippery roads in this simulation environment. Rather, the focus of
such research is on the automated development (via either a simulated evolution or machine learning)
of racing agents aimed at attending (and, ultimately, winning) simulated car races. The eventual
incorporation of SAF on slippery roads would be seen as unneeded as the races are usually held on
dry, grippy tracks where the cars seldom experience any significant directional instability.

Algorithms 2018, 11, 108 3 of 18

On the other hand, the inspiration for the proposed heuristic development of SAF via GP is that,
to the best of our knowledge, there are no documented attempts to automatically develop the SAF on
slippery roads via evolutionary computing and GP in particular.

The related work includes the seminal work of Huang et al. [11], who have demonstrated that
GP—as an unsupervised machine learning approach—could be successfully applied to heuristically
develop from scratch a PD controller that stabilizes a car on slippery roads by eliciting precisely
quantified asymmetric brake forces on its wheels. The control of the steering, however, has not been
subjected to any optimization for the given slippery road conditions, but rather implemented as a
generic, handcrafted PD servo-control that has performed well on dry, grippy roads. Similarily to
GP, end-to-end reinforcement learning (e.g., of deep neural networks) does not require an explicit
modularization of the controller [16,17]. Instead, the internal structure of the controller is automatically
developed by the learning framework. The advantage of his approach is that it could discover and
utilize the unusual features of the environment and develop sophisticated controllers that could solve
the tasks for given (generic) environmental conditions. The drawbacks include the huge search space,
a lack of understanding of how (and why) exactly the developed controllers work, and consequently a
lack of confidence in their robustness and generality. Moreover, conversely to the proposed approach
of employing GP, end-to-end reinforcement learning requires a human-annotated training set of data,
i.e., the mapping of the states of the car and the environment (e.g., consecutive frames of a video
feed) into appropriate steering commands obtained from a human (expert) driver. However, in our
work we assume that such perception information is not always fully accessible (or, even if accessible,
not necessarily with the same quality as the information used for training), for example, when driving
in heavy-traffic, poor-visibility conditions (fog, snow, rain, night, etc.) or immediately behind a
heavy vehicle (bus, truck, etc.). Therefore, in our work we propose the use of very simple perception
information: only the current lateral and angular deviation of the car from the intended trajectory
(i.e., the center of the lane). With such simple perceptions, for a human driver it would have been
virtually impossible to achieve driving (let alone on slippery roads) that is good enough to serve as a
representative trainer for the learner.

Rather than automatically (via GP), the steering controller of the car on slippery roads could
be handcrafted by the developers applying various top-down approaches. Usually, handcrafted
solutions are based on certain assumptions intended to simplify the complex dynamics of a skidding
car. The challenge of these approaches is in deciding the adequate assumptions and abstractions for
the domain-specific knowledge. In predictive control [18–20], for example, the controller decides
the value of the control signal based on the predicted, rather than the current, values of parameters
pertinent to the state of the car and its environment. The prediction could be seen as approximating
the values of these parameters from their current values, their rate of change, and the prediction time
that corresponds to the latencies in the control loop. Such prediction would be very accurate if the
latencies are well-known, the laws that govern the changes of these latencies are also well-known,
and the rate of change is (nearly) constant during the duration of the latency. In contrast to these
approaches, the proposed method of automated, heuristic development of SAF via GP—as elaborated
in detail in Section 2.5—assumes very little of such knowledge.

The remainder of the article is organized as follows. Section 2 elaborates on the adopted model
of the car and its environment. It also explains the basics of the PD and PID servo-control models
and the proposed approach of employing GP for evolution of the optimal SAF. Section 3 presents our
experimental results, and Section 4 discusses the some of the limitations of the results obtained by GP.
Finally, Section 5 draws a conclusion.

2. Materials and Methods

2.1. The Car in the Open Racing Car Simulator

We adopted The Open Racing Car Simulator (TORCS) [14,15] for simulation of both the car and
its environment. The main parameters of the simulated car adopted in our research are shown in

Algorithms 2018, 11, 108 4 of 18

Table 1, and its snapshot is depicted in Figure 1. The rationale of employing TORCS to model the
car is motivated by the severity of the drawbacks of the existing alternative approaches. Indeed,
evaluating the quality of the evolving SAF on a real car would be too unsafe, expensive, and slow.
The hardware-in-the-loop (HIL) modeling [21] of the embedded electronic systems offers a possible
solution to the former two issues. Indeed, in HIL, the real, hardware implementation of the driving aid
(e.g., traction control, anti-locking brake system, electronic stability program, SAF, etc.) is connected to
a computer that runs the driver-, vehicle-, and environment-modeling software. Such an approach,
however, would be unable to solve completely the problems of (i) the cost (because of the need to build
the real hardware and its computer interface) and (ii) significant runtime overhead (as the evaluation
of the real hardware occurs in a real time). In our research, the proposed use of a car modeled in
TORCS is intended to address all of the above-mentioned drawbacks of the alternative approaches of
evaluating the developed SAF: TORCS is both free of charge and computationally efficient: one minute
of simulated real time usually requires less than one second of runtime. Additional advantages of
employing TORCS include (i) the realism of the simulation (by accounting faithfully for all the relevant
forces that act upon a moving car) and (ii) the openness of its source code to the eventual modifications
that would be needed for the intended implementation of SAF.

Table 1. Main Parameters of the Simulated Car.

Feature Value

Model Coupé Leicht Kompakt Deutsche Tourenwagen Meisterschaft (CLK DTM)
Length, m 4.76
Width, m 1.96
Height, m 1.17
Mass, kg 1050

Front/rear weight repartition 0.5/0.5
Height of center of gravity, m 0.25
Coefficient of friction of tires 1.0

Drivetrain Front engine, rear wheel drive
Steering delay, s 0.1

Steering rate limit, ◦/s 30

Algorithms 2018, 11, x FOR PEER REVIEW 4 of 17

solution to the former two issues. Indeed, in HIL, the real, hardware implementation of the driving

aid (e.g., traction control, anti-locking brake system, electronic stability program, SAF, etc.) is

connected to a computer that runs the driver-, vehicle-, and environment-modeling software. Such

an approach, however, would be unable to solve completely the problems of (i) the cost (because of

the need to build the real hardware and its computer interface) and (ii) significant runtime overhead

(as the evaluation of the real hardware occurs in a real time). In our research, the proposed use of a

car modeled in TORCS is intended to address all of the above-mentioned drawbacks of the alternative

approaches of evaluating the developed SAF: TORCS is both free of charge and computationally

efficient: one minute of simulated real time usually requires less than one second of runtime.

Additional advantages of employing TORCS include (i) the realism of the simulation (by accounting

faithfully for all the relevant forces that act upon a moving car) and (ii) the openness of its source

code to the eventual modifications that would be needed for the intended implementation of SAF.

Table 1. Main Parameters of the Simulated Car.

Feature Value

Model
Coupé Leicht Kompakt Deutsche Tourenwagen Meisterschaft

(CLK DTM)

Length, m 4.76

Width, m 1.96

Height, m 1.17

Mass, kg 1050

Front/rear weight repartition 0.5/0.5

Height of center of gravity, m 0.25

Coefficient of friction of tires 1.0

Drivetrain Front engine, rear wheel drive

Steering delay, s 0.1

Steering rate limit, °/s 30

Figure 1. A snapshot of the simulated car.

The computational efficiency of TORCS implies that a trial run of the car on a given track could

be simulated in about one second of a computational runtime. This feature is very important for the

computational efficiency of the evolutionary paradigm, GP, proposed to develop the optimal SAF.

As a heuristic, trial-and-error approach, GP usually requires thousands of trials (fitness evaluations)

before obtaining a feasible solution.

2.2. The Track

The flexibility and openness of TORCS allowed us to develop a dedicated track for testing the

discussed steering approaches of the car. The layout of the track is a variant of the so-called “fish

hook” requiring a “road edge recovery maneuver” [22]. It is often used for testing the dynamics

(especially the tendency for a rollover) of real-world vehicles. It consists of two sectors: Sector 1,

including a short straight followed by a left turn, and Sector 2, including a single, long 180° right turn.

Figure 1. A snapshot of the simulated car.

The computational efficiency of TORCS implies that a trial run of the car on a given track could
be simulated in about one second of a computational runtime. This feature is very important for the
computational efficiency of the evolutionary paradigm, GP, proposed to develop the optimal SAF. As a
heuristic, trial-and-error approach, GP usually requires thousands of trials (fitness evaluations) before
obtaining a feasible solution.

Algorithms 2018, 11, 108 5 of 18

2.2. The Track

The flexibility and openness of TORCS allowed us to develop a dedicated track for testing
the discussed steering approaches of the car. The layout of the track is a variant of the so-called
“fish hook” requiring a “road edge recovery maneuver” [22]. It is often used for testing the dynamics
(especially the tendency for a rollover) of real-world vehicles. It consists of two sectors: Sector 1,
including a short straight followed by a left turn, and Sector 2, including a single, long 180◦ right turn.
The track is illustrated in Figure 2, and its main characteristics are given in Table 2. The coefficient
of friction µ between the tires of the car and the surface of the track could be set in TORCS to the
values corresponding to dry (µ = 0.8, 1.0), rainy (µ = 0.5, 0.6), snowy (µ = 0.4), and icy (µ = 0.3)
conditions, respectively.

Algorithms 2018, 11, x FOR PEER REVIEW 5 of 17

The track is illustrated in Figure 2, and its main characteristics are given in Table 2. The coefficient of

friction µ between the tires of the car and the surface of the track could be set in TORCS to the values

corresponding to dry (µ = 0.8, 1.0), rainy (µ = 0.5, 0.6), snowy (µ = 0.4), and icy (µ = 0.3) conditions,

respectively.

Figure 2. Hook-type test track.

Table 2. Main Features of the Test Track.

Feature Value

Total length, m 300

Lane width, m 20

Length of sector 1, m 90

Radius of turn 1, R1 m 50

Length of sector 2, m 210

Radius of turn 2, R2, m 50

2.3. Servo Control as a PD Controller

The first of the three steering controllers that we investigated is based on the servo-control model

of steering. It represents the canonical approach of defining the instant value of the steering angle in

autonomous cars [23,24]. According to this model, the SAF that defines the steering angle δ is

assumed to be the sum of the following two scaled parameters: the linear e and angular θ deviations

of the car from its desired trajectory (e.g., the center of the lane) as illustrated in Figure 3. The SAF of

the servo control model could be expressed as the following Equation (1):

δ = k1 e + k2 θ (1)

where the scaling coefficients (gains) k1 and k2 are calculated as follows:

k1 = Steering_Factor⁄Steering lock angle (2)

k2 = 1⁄Steering lock angle. (3)

The steering lock angle is the maximum angle of turning of the front wheels of the car, and its

value, for the car used in our experiments, is 0.62 rad (35°). Alternation of the coefficients k1 and k2

affects the tradeoff between the main requirements of steering [25]: smoothness, fast response, and

stability in the way the car returns to the center of the lane if it occasionally deviates from it. The

servo control model is intended to steer the car in such a way that results in minimization of the mean

value of the absolute deviation (the error) e of the geometrical center of the car from the center of the

lane during a given trial.

Sector 1 R1

R2

Sector 2

Start line

Finish line

Turn 1

Turn 2

Center of

the lane

Starting

position

Figure 2. Hook-type test track.

Table 2. Main Features of the Test Track.

Feature Value

Total length, m 300
Lane width, m 20

Length of sector 1, m 90
Radius of turn 1, R1 m 50
Length of sector 2, m 210

Radius of turn 2, R2, m 50

2.3. Servo Control as a PD Controller

The first of the three steering controllers that we investigated is based on the servo-control model
of steering. It represents the canonical approach of defining the instant value of the steering angle in
autonomous cars [23,24]. According to this model, the SAF that defines the steering angle δ is assumed
to be the sum of the following two scaled parameters: the linear e and angular θ deviations of the car
from its desired trajectory (e.g., the center of the lane) as illustrated in Figure 3. The SAF of the servo
control model could be expressed as the following Equation (1):

δ = k1 e + k2 θ (1)

where the scaling coefficients (gains) k1 and k2 are calculated as follows:

k1 = Steering_Factor⁄Steering lock angle (2)

Algorithms 2018, 11, 108 6 of 18

k2 = 1⁄Steering lock angle. (3)

The steering lock angle is the maximum angle of turning of the front wheels of the car, and its
value, for the car used in our experiments, is 0.62 rad (35◦). Alternation of the coefficients k1 and
k2 affects the tradeoff between the main requirements of steering [25]: smoothness, fast response,
and stability in the way the car returns to the center of the lane if it occasionally deviates from it. The
servo control model is intended to steer the car in such a way that results in minimization of the mean
value of the absolute deviation (the error) e of the geometrical center of the car from the center of the
lane during a given trial.Algorithms 2018, 11, x FOR PEER REVIEW 6 of 17

Figure 3. Most relevant variables pertinent to the state of the car.

Assuming that, for small angles θ and very short periods of time dt,

θ ≈ de⁄dx = de⁄(V dt) (4)

where V is the speed of the car. For a constant speed V, Equation (4) could be rewritten as

θ ≈ kv de⁄dt = kv e’ (5)

where e’ is the first derivative of the lateral deviation of the car from the center of the lane.

Substituting the value of θ from Equation (5) in Equation (1), we obtain a different form of the servo-

control model:

δ = k1 e + k2 (kv e’) = k1 e + k*2 e’. (6)

Equation (6) expresses the servo-control model of steering as a PD controller. Its output—the

control variable—the steering angle δ, is a sum of the proportional (P) and derivative (D) terms of the

error: the deviation of the car from the center of the lane e. Because the desired process value (i.e., the

desired deviation from the center of the lane) is 0, the absolute value of the error e is equal to the

measured process value. The controller attempts to minimize the value of the error by constantly

adjusting the steering angle δ, which, presumably, would yield a trajectory as close as possible to the

center of the lane (Figure 4). We will explain the mechanism of tuning the parameters k1 and k*2 in

Section 3.

Figure 4. Servo-control model of steering as a proportional-derivative (PD) steering controller. The

steering angle function (SAF), defining the steering angle δ, is implemented as the sum of the

proportional (P) and derivative (D) terms of the error: the deviation e from the center of the lane.

2.4. Extending the Servo-Control Model: A PID Steering Controller

The second controller that we investigated is based on the above-discussed PD servo-control

model, extended with an additional integral term. The rationale for incorporating the integral term

is that it could provide an additional adjustment to the steering of the car if the car does not return to

the center of the lane (e.g., due to skidding on cornering in slippery road conditions) for a certain

period of time (in our experiments, 2 s):

Simulated Car

Center of the Lane

e
θ

δ

a

V

Simulated Car

Center of
 the Lane

e(t)
δ(t)

∑

P k1 e

D k*2 e’

∑

Measured
process

value e(t)

Error
-e(t)

Desired
process
value: 0

Control
variable

δ(t)

PD Steering Controller

+

+ –

+

Figure 3. Most relevant variables pertinent to the state of the car.

Assuming that, for small angles θ and very short periods of time dt,

θ ≈ de⁄dx = de⁄(V dt) (4)

where V is the speed of the car. For a constant speed V, Equation (4) could be rewritten as

θ ≈ kv de⁄dt = kv e’ (5)

where e’ is the first derivative of the lateral deviation of the car from the center of the lane. Substituting
the value of θ from Equation (5) in Equation (1), we obtain a different form of the servo-control model:

δ = k1 e + k2 (kv e’) = k1 e + k*
2 e’. (6)

Equation (6) expresses the servo-control model of steering as a PD controller. Its output—the
control variable—the steering angle δ, is a sum of the proportional (P) and derivative (D) terms of
the error: the deviation of the car from the center of the lane e. Because the desired process value (i.e.,
the desired deviation from the center of the lane) is 0, the absolute value of the error e is equal to
the measured process value. The controller attempts to minimize the value of the error by constantly
adjusting the steering angle δ, which, presumably, would yield a trajectory as close as possible to the
center of the lane (Figure 4). We will explain the mechanism of tuning the parameters k1 and k*

2 in
Section 3.

Algorithms 2018, 11, 108 7 of 18

Algorithms 2018, 11, x FOR PEER REVIEW 6 of 17

Figure 3. Most relevant variables pertinent to the state of the car.

Assuming that, for small angles θ and very short periods of time dt,

θ ≈ de⁄dx = de⁄(V dt) (4)

where V is the speed of the car. For a constant speed V, Equation (4) could be rewritten as

θ ≈ kv de⁄dt = kv e’ (5)

where e’ is the first derivative of the lateral deviation of the car from the center of the lane.

Substituting the value of θ from Equation (5) in Equation (1), we obtain a different form of the servo-

control model:

δ = k1 e + k2 (kv e’) = k1 e + k*2 e’. (6)

Equation (6) expresses the servo-control model of steering as a PD controller. Its output—the

control variable—the steering angle δ, is a sum of the proportional (P) and derivative (D) terms of the

error: the deviation of the car from the center of the lane e. Because the desired process value (i.e., the

desired deviation from the center of the lane) is 0, the absolute value of the error e is equal to the

measured process value. The controller attempts to minimize the value of the error by constantly

adjusting the steering angle δ, which, presumably, would yield a trajectory as close as possible to the

center of the lane (Figure 4). We will explain the mechanism of tuning the parameters k1 and k*2 in

Section 3.

Figure 4. Servo-control model of steering as a proportional-derivative (PD) steering controller. The

steering angle function (SAF), defining the steering angle δ, is implemented as the sum of the

proportional (P) and derivative (D) terms of the error: the deviation e from the center of the lane.

2.4. Extending the Servo-Control Model: A PID Steering Controller

The second controller that we investigated is based on the above-discussed PD servo-control

model, extended with an additional integral term. The rationale for incorporating the integral term

is that it could provide an additional adjustment to the steering of the car if the car does not return to

the center of the lane (e.g., due to skidding on cornering in slippery road conditions) for a certain

period of time (in our experiments, 2 s):

Simulated Car

Center of the Lane

e
θ

δ

a

V

Simulated Car

Center of
 the Lane

e(t)
δ(t)

∑

P k1 e

D k*2 e’

∑

Measured
process

value e(t)

Error
-e(t)

Desired
process
value: 0

Control
variable

δ(t)

PD Steering Controller

+

+ –

+

Figure 4. Servo-control model of steering as a proportional-derivative (PD) steering controller. The
steering angle function (SAF), defining the steering angle δ, is implemented as the sum of the
proportional (P) and derivative (D) terms of the error: the deviation e from the center of the lane.

2.4. Extending the Servo-Control Model: A PID Steering Controller

The second controller that we investigated is based on the above-discussed PD servo-control
model, extended with an additional integral term. The rationale for incorporating the integral term is
that it could provide an additional adjustment to the steering of the car if the car does not return to the
center of the lane (e.g., due to skidding on cornering in slippery road conditions) for a certain period
of time (in our experiments, 2 s):

δ = k1 e + k*
2 e’ + k3

∫
e dt. (6)

In Section 3, we will explain the mechanism of tuning the parameters k1, k*
2, and k3.

2.5. Evolving the Steering Controller via GP

The third controller we comparatively investigated was a controller utilizing (i) an extended set of
parameters (EP) pertinent to the state of the car, and (ii) a relaxed—an arbitrary (rather than additive,
as in the PD and PID controllers)—structure of its analytical model (RM) developed heuristically via
GP. We denote it the GP-RMEP controller.

The rationale of adopting GP is based on our concerns that the above-mentioned PD and PID
servo-controllers might not be adequate, because, compared to a car driven on normal, non-slippery
roads, the vehicle dynamics model of the skidding, directionally unstable car on a slippery road is
rather complex and might involve of additional parameters (beyond the lateral deviations from the
desired trajectory) pertinent to the state of the car [13,26]. Such complexity might not be expressed
adequately by the relatively simple, additive PD and PID servo-control models. In addition, due to
this complexity, we could not devise an eventual analytical approach to the steering of the car that
would effectively counter its directional instability. Moreover, the only parameter pertinent to the state
of the car—the lateral deviation e—used in the SAF, based on the PD and PID servo-control models,
might not represent adequately the state of the unstable car on slippery roads. Indeed, even featuring
the same lateral deviation, the car may experience different yaw rates and different accelerations of
these rates. Depending on how the actual yaw rate differs from the desired one (estimated from the
steering angle and the wheelbase of the car according to the bicycle model of a car [3]), the directionally
unstable car might suffer either from understeer or oversteer, requiring a different steering input from
the controller. On the other hand, increasing the number of state parameters would further complicate
the model of the steering controller, which could render the formal, analytical approaches to devise
such a controller practically unfeasible.

Moreover, even if we assume that it is possible to handcraft the code (applying various top-down,
theoretical approaches based on vehicle dynamics [25,27,28]) of a more complex, nonlinear PID SAF
that controls the steering of an unstable, skidding car in such a way so it regains its stability in a more
effective way than the simple PD and PID controllers based on the servo-control model, neither the

Algorithms 2018, 11, 108 8 of 18

degree of the optimality of such a code, nor the way to further improve it, would be apparent to the
human developer. Therefore, an automated mechanism (i) to evaluate the quality of the coded SAF
and (ii) to incrementally improve its intermediate version(s)—e.g., based on models of the natural
evolution of species—might be needed.

The proposed approach of employing GP implies that the SAF is automatically designed—without
an a priori defined structure nor complexity—by a computer system via simulated evolution through
selection and survival of the fittest in a way similar to the evolution of species in nature [4,5,29].
Adopting GP offers the following advantages:

• Creative design: GP could evolve the controller’s SAF of an arbitrary structure and complexity.
Moreover, GP does not require an incorporation of any a priori, domain-specific expert knowledge.
This is especially important when such knowledge is mostly empirical, rather than analytical.

• Emergent intelligence: Rather than being introduced by the human expert, the task-specific
knowledge of how to steer the car on slippery roads might emerge solely from the interaction of
the problem solver (the GP) and the steering evaluation (trial) runs of the car [30].

• Human competiveness: GP, as an automated process that does not follow the human top-down
problem-solving logic, opens the possibility of creating a solution that would be better than one
(i.e., based on the PD and PID servo control models) designed by a human [26].

The main features of the adopted GP, namely genetic representation, function set, terminal set,
fitness evaluation, and genetic operations, are elaborated below.

2.5.1. Genetic Representation, Function Set, and Terminal Set of the GP

The SAFs, evolved in GP, are represented genetically as parse trees. Because the SAF is an
algebraic function of the parameters pertinent to the state of the car, we included the basic algebraic
operations in the function set of the GP:

Function Set = {addition, subtraction, multiplication, (protected) division}

The division operation is protected in that an eventual division to zero does not result in an
arithmetic exception, but rather in a constant value of 1. The terminal set consists of the arguments of
the evolved SAF; i.e., the parameters pertinent to the state of the car. We extended this set from the
three parameters e, e’, and

∫
e that we used in the PID controller based on the extended servo-control

model by adding the speed of the car V, the steering angle δ, the lateral acceleration a, the lateral jerk a’,
the lateral angular deviation θ, and the yaw rate θ’. Also, the terminal set includes a random constant
C within the range [0, 10]:

Terminal Set = {e, e’,
∫

e, V, δ, a, a’, θ, θ’, C}

The constant C allows the GP to evolve appropriate scaling when used as a multiplicative term
and biasing (as an additive term) coefficients in the SAF. A sample parse tree is shown in Figure 5. The
value of the SAF is evaluated from the parse tree by a canonical depth-first tree traversal algorithm.

Algorithms 2018, 11, 108 9 of 18

Algorithms 2018, 11, x FOR PEER REVIEW 8 of 17

2.5.1. Genetic Representation, Function Set, and Terminal Set of the GP

The SAFs, evolved in GP, are represented genetically as parse trees. Because the SAF is an

algebraic function of the parameters pertinent to the state of the car, we included the basic algebraic

operations in the function set of the GP:

Function Set = {addition, subtraction, multiplication, (protected) division}

The division operation is protected in that an eventual division to zero does not result in an

arithmetic exception, but rather in a constant value of 1. The terminal set consists of the arguments

of the evolved SAF; i.e., the parameters pertinent to the state of the car. We extended this set from the

three parameters e, e’, and ∫e that we used in the PID controller based on the extended servo-control

model by adding the speed of the car V, the steering angle δ, the lateral acceleration a, the lateral jerk

a’, the lateral angular deviation θ, and the yaw rate θ’. Also, the terminal set includes a random

constant C within the range [0, 10]:

Terminal Set = {e, e’, ∫e, V, δ, a, a’, θ, θ’, C}

The constant C allows the GP to evolve appropriate scaling when used as a multiplicative term

and biasing (as an additive term) coefficients in the SAF. A sample parse tree is shown in Figure 5.

The value of the SAF is evaluated from the parse tree by a canonical depth-first tree traversal

algorithm.

Figure 5. A parse tree, representing the sample SAF δ = e’ e + e/2.

2.5.2. Fitness Evaluation

The fitness value is intended to estimate the quality of the steering produced by the evolved SAF.

We defined the criteria of such a quality from the desired characteristics of the trajectory of the car

during the trial. It is implemented on a given test track (as shown in Figure 2) featuring a given

friction coefficient, µ, as follows: first, the simulated car is initially positioned at the starting position

of the track. Similarly to [3], in order to include in the evaluation of the evolved SAF its response to a

step disturbance, the starting position is set to be parallel, 5 m off the center of the lane. Then, the car

accelerates slowly to a given constant target speed. Then, in order to abstract the dynamics of the car

from the effect of eventual excessive traction or braking forces, the car is maintained at a constant

speed by simulated cruise control. To render the task of controlling the car challenging, but solvable,

the target speed is set to 0.85 of the critical speed VCR. The critical speed is the speed at which the car

theoretically could not negotiate the corners of the test track with the given coefficient of friction

without losing control, running off the track, and eventually crashing. This speed is approximated as

the speed at which the centrifugal forces during steady-state cornering FC = mVCR2/R (where m is the

mass of the car, and R is the radius of the turn) become theoretically equal to the friction force FF = μ

m g (where μ is the overall coefficient of friction and g is the gravitational acceleration). At the

traveling speed of 0.85 of VCR, the car inherently suffers from intermittent instability due to the yaw

inertia both in the entry and exit of corners and due to the dynamics of lateral weight transfer in

corners [3,14] that we intend to counter by the evolved SAF. The car, traveling at VCR (and above), is

theoretically uncontrollable. Consequently, there would be no existing SAF that results in a steerable

car. Similarly, a car traveling considerably slower than VCR does not suffer from any instability and

e'

⁄

e e

+

2

×

Figure 5. A parse tree, representing the sample SAF δ = e’ e + e/2.

2.5.2. Fitness Evaluation

The fitness value is intended to estimate the quality of the steering produced by the evolved
SAF. We defined the criteria of such a quality from the desired characteristics of the trajectory of the
car during the trial. It is implemented on a given test track (as shown in Figure 2) featuring a given
friction coefficient, µ, as follows: first, the simulated car is initially positioned at the starting position
of the track. Similarly to [3], in order to include in the evaluation of the evolved SAF its response to a
step disturbance, the starting position is set to be parallel, 5 m off the center of the lane. Then, the car
accelerates slowly to a given constant target speed. Then, in order to abstract the dynamics of the
car from the effect of eventual excessive traction or braking forces, the car is maintained at a constant
speed by simulated cruise control. To render the task of controlling the car challenging, but solvable,
the target speed is set to 0.85 of the critical speed VCR. The critical speed is the speed at which the
car theoretically could not negotiate the corners of the test track with the given coefficient of friction
without losing control, running off the track, and eventually crashing. This speed is approximated
as the speed at which the centrifugal forces during steady-state cornering FC = mVCR

2/R (where m
is the mass of the car, and R is the radius of the turn) become theoretically equal to the friction force
FF = µ m g (where µ is the overall coefficient of friction and g is the gravitational acceleration). At the
traveling speed of 0.85 of VCR, the car inherently suffers from intermittent instability due to the yaw
inertia both in the entry and exit of corners and due to the dynamics of lateral weight transfer in
corners [3,14] that we intend to counter by the evolved SAF. The car, traveling at VCR (and above),
is theoretically uncontrollable. Consequently, there would be no existing SAF that results in a steerable
car. Similarly, a car traveling considerably slower than VCR does not suffer from any instability and its
steering could be accomplished adequately by the canonical servo-control models. The speeds of the
car during the trials on the track featuring different friction coefficients are shown in Table 3.

Table 3. Speed of the car during the fitness trial on the test track with different friction coefficients.

#Road
Condition

Friction of
Tires, µt

Friction of Road
Surface, µs

Overall Friction,
µ = µt × µs

Critical Speed,
VCR, m/s

Speed of the Car
(0.85 VCR), m/s

1 1.0 1 (dry) 1 22.13 18.82
2 1.0 0.8 (dry) 0.8 19.79 16.8
3 1.0 0.6 (rainy) 0.6 17.15 14.5
4 1.0 0.5 (rainy) 0.5 15.65 13.3
5 1.0 0.4 (snowy) 0.4 14 11.9
6 1.0 0.3 (icy) 0.3 12.12 10.3

The speed of the car is kept constant during the trial by a simple, handcrafted cruise control
mechanism that maps the difference between the desired speed (e.g., as shown in Table 3, 13.3 m/s for
the trial on a track with friction coefficient µ = 0.5) and the actual one into an increment (or decrement)
of the position of the accelerator pedal. As the car reaches the desired speed, the steering of the car
is assumed by the evolved SAF. Then, the SAF starts to continuously (with a sampling frequency

Algorithms 2018, 11, 108 10 of 18

of 40 Hz) produce the desired steering angle δ calculated for the currently perceived values of the
parameters pertinent to the state of the car. The intended, optimal, trajectory of the car steered by the
evolved SAF should feature both a quick and smooth return to the center of the lane followed by a
precise drive along it (Figure 6, Case 3). We view the trajectories shown in Figure 6 as Case 1 and Case
2 as suboptimal, as they represent either a too-slow (Case 1), or a too-quick, oscillating return (Case 3),
respectively. Indeed, a too-slow return would be unable to either follow adequately the center of the
lane on cornering or to return to it in a case of deviating from it due to skidding on slippery roads.
On the other hand, a too-quick return would imply an inherently oscillating trajectory of the recovery.

In order to formally express the defined criteria of optimality of the SAF-induced steering, we
defined the fitness function F as a weighed sum of the following two components: (i) the area AT
under the trajectory of the car around the center of the lane (as an integral of the absolute value of
the lateral deviation e) and (ii) the average of the lateral velocity VL_AVR (as an integral of the lateral
acceleration a) of the car:

F = AT + CV VL_AVR. (7)

The lower fitness values correspond to a better quality of steering, and, ultimately, the desired
trajectory (Figure 6, Case 3) would feature an optimal trade-off between the values of the two
components that result in a minimal fitness value. Indeed, the suboptimal trajectories would be
subjected to a detrimental selection pressure by the GP either due to the too-wide area AT under
the trajectory (Figure 2, Case 1) or a too-high lateral velocity VL_AVR (Figure 2, Case 2). We verified
experimentally that the value 0.5 of the weight coefficient CV in Equation (7) results in an optimal
tradeoff between the values of the two additive components of the fitness function.Algorithms 2018, 11, x FOR PEER REVIEW 10 of 17

Figure 6. The three main cases of the trajectory of the car during the fitness trial: the preferred

trajectory (Case 3) of the car would feature both a quick (i.e., with a narrow area under the trajectory)

and oscillation-free (with a low average lateral velocity) return to the center of the lane. Case 1 and

Case 2 illustrate a too-slow and a too-quick (oscillating) return to the center of the line, respectively.

We would like to note that, for different steering tasks, we might need to keep the values of both

components of the fitness of the evolved SAF separately (and to implement a two-objective

optimization [31]) instead of fusing both these components into a single scalar value. This would

allow us to obtain a set of Pareto-optimal SAFs that feature different combinations of the values of (i)

the area under the trajectory of the car and (ii) the average of its lateral velocity. An SAF featuring a

wide area under the trajectory might be needed in a slow and comfortable lane change on a low-

traffic highway. On the other hand, an SAF that results in somehow oscillating trajectories with

higher lateral accelerations might be needed to safely circumnavigate suddenly appearing obstacles.

One of the major drawbacks of such a multi-objective approach is that the real-time selection of the

appropriate SAF from the set of a priori obtained (valid) SAFs could be rather challenging. For the

given task, however, we assumed that the proposed single-valued evaluation of the fitness of the

evolved SAF is sufficient.

2.5.3. Genetic Operations

Algorithmically, we implemented the main genetic operations—selection, mutation, and

crossover—as follows. We adopted a binary tournament selection—a robust, commonly used

selection mechanism, which has proved to be efficient and simple to code—to create the mating pool

of the SAF of the next generation. The single-point crossover operation swaps random nodes (and

the corresponding subtrees) of the parse trees of two parents (randomly selected from the mating

pool). The single point mutation replaces a random node of some of the newly created offspring with

a randomly created subtree [29].

The main parameters of the adopted GP [8,32] are elaborated in Table 4, and its seven

algorithmic steps are shown in Algorithm 1.

Table 4. Parameters of genetic programming (GP).

Parameter Value

Evolved individuals SAF δ

Genetic representation Parse tree

Set of non-terminals

(functions)
{+, -, *, /}

Set of terminals

Variables pertinent to the state of the car, and their derivatives:

lateral deviation (e, e’, ∫e), speed (V), steering angle (δ), lateral acceleration (a, a’) angular

deviation (θ, θ’), and a random constant (C)

Population size 200 individuals

Selection Binary tournament, ratio 0.1

Elitism Best 4 individuals

Crossover Single point, random, ratio 0.9

Direction of traveling

Center of the Lane Driving

 lane

Case 2

Case 3

Case 1

Figure 6. The three main cases of the trajectory of the car during the fitness trial: the preferred trajectory
(Case 3) of the car would feature both a quick (i.e., with a narrow area under the trajectory) and
oscillation-free (with a low average lateral velocity) return to the center of the lane. Case 1 and Case 2
illustrate a too-slow and a too-quick (oscillating) return to the center of the line, respectively.

We would like to note that, for different steering tasks, we might need to keep the values of
both components of the fitness of the evolved SAF separately (and to implement a two-objective
optimization [31]) instead of fusing both these components into a single scalar value. This would
allow us to obtain a set of Pareto-optimal SAFs that feature different combinations of the values of (i)
the area under the trajectory of the car and (ii) the average of its lateral velocity. An SAF featuring a
wide area under the trajectory might be needed in a slow and comfortable lane change on a low-traffic
highway. On the other hand, an SAF that results in somehow oscillating trajectories with higher lateral
accelerations might be needed to safely circumnavigate suddenly appearing obstacles. One of the
major drawbacks of such a multi-objective approach is that the real-time selection of the appropriate
SAF from the set of a priori obtained (valid) SAFs could be rather challenging. For the given task,

Algorithms 2018, 11, 108 11 of 18

however, we assumed that the proposed single-valued evaluation of the fitness of the evolved SAF
is sufficient.

2.5.3. Genetic Operations

Algorithmically, we implemented the main genetic operations—selection, mutation, and
crossover— as follows. We adopted a binary tournament selection—a robust, commonly used selection
mechanism, which has proved to be efficient and simple to code—to create the mating pool of the
SAF of the next generation. The single-point crossover operation swaps random nodes (and the
corresponding subtrees) of the parse trees of two parents (randomly selected from the mating pool).
The single point mutation replaces a random node of some of the newly created offspring with a
randomly created subtree [29].

The main parameters of the adopted GP [8,32] are elaborated in Table 4, and its seven algorithmic
steps are shown in Algorithm 1.

Algorithm 1. The main algorithmic steps of the GP algorithm.

Step 1: Creating the initial population of random SAFs;
Step 2: Evaluating the population;
Step 3: While Not (Termination criteria) Do Steps 4, 5, 6, and 7;
Step 4: Selecting the mating pool of SAFs of the next generation;
Step 5: Crossing over random pairs of SAFs of the mating pool;
Step 6: Mutating randomly the newly created offspring SAFs;
Step 7: Evaluating the population;

Table 4. Parameters of genetic programming (GP).

Parameter Value

Evolved individuals SAF δ

Genetic representation Parse tree

Set of non-terminals (functions) {+, -, *, /}

Set of terminals
Variables pertinent to the state of the car, and their derivatives: lateral deviation (e, e’,∫

e), speed (V), steering angle (δ), lateral acceleration (a, a’) angular deviation (θ, θ’),
and a random constant (C)

Population size 200 individuals

Selection Binary tournament, ratio 0.1

Elitism Best 4 individuals

Crossover Single point, random, ratio 0.9

Mutation Single point, random, ratio 0.05

Fitness value Sum of (i) the area under the trajectory of the car around the center of the lane and (ii)
the average of its lateral velocity.

Termination criteria (#Generations >200) or (no improvement of fitness during 16 consecutive generations)

3. Experimental Results

For each of the six road conditions (as described in Table 3) we employed GP and performed 20
independent evolutionary runs to obtain the best SAF. The fitness convergence characteristics of these
independent runs are shown in Figure 7.

As Figure 7 illustrates, in all road conditions the fitness of the best-evolved SAF converges to
values that are better (i.e., lower) than those of the best PD and PID controllers. We obtained the
optimal values of parameters of the best PD and PID controllers by their complete enumeration
(i.e., a “brute-force” search). For the PD controller, we evaluated 25 discrete values of each of the
two parameters k1 and k*

2 (resulting in a size of the search space equal to 252 = 625). For the PID,

Algorithms 2018, 11, 108 12 of 18

we borrowed the optimal values of the two parameters of the PD controller, and used only 10 discrete
values in the vicinity of these values and 25 values for the third parameter k3 (i.e., the size of the search
space is 2500). The best fitness of the three proposed controllers—PD, PID, and GP-RMEP—and the
optimal values of the coefficients of the PD and PID controllers are shown in Table 5.

Table 5. Best performing steering controllers.

#Road
Condition

Overall
Friction µ

Controller

PD, δ = k1 e + k*
2 e’ PID, δ = k1 e + k*

2 e’ + k3
∫∫∫

e dt
GP-RMEP, an

Arbitrary SAF δ (e, e’,∫∫∫
e, V, δ, a, a’, θ, θ’, C)

Values of k1
and k*

2

Fitness
Value

Values of k1, k*
2

and k3

Fitness
Value Fitness Value

1 1 0.1145, 3.378 622 0.3079, 1.677, 0.067 511 498
2 0.8 0.271, 1.677 636 0.2472, 2.244, 0.012 526 545
3 0.6 0.2472, 1.866 661 0.229, 2.055, 0.0321 546 430
4 0.5 0.1864, 2.244 687 0.113, 2.433, 0.048 584 373
5 0.4 0.1135, 3.378 765 0.150, 3.189, 0.0013 702 314
6 0.3 0.3322, 2.055 1693 0.1257, 4.512, 0.0415 1212 374

As the results shown in Table 5 demonstrate, the PID controller outperforms the PD controller
in that its fitness is lower in all road conditions. However, the quality of steering of the best-evolved
GP-RMEP controller is even better than that of PID, and the difference between them widens with the
decrease of the friction coefficient, reaching a maximum of about 4 times (1532 versus 374) on icy roads
(µ = 0.3). Conversely, on grippy, dry roads (µ = 0.8 and µ = 1.0), this difference is not very significant
(587 versus 545 and 613 versus 498, respectively), implying that the PID model provides good enough
steering of the car in these road conditions.

Algorithms 2018, 11, 108 13 of 18
Algorithms 2018, 11, x FOR PEER REVIEW 12 of 17

Figure 7. Fitness convergence characteristics for 20 independent runs of GP evolving the SAF of the

GP-RMEP controller for friction coefficients µ = 0.3 (a), µ = 0.4 (b), µ = 0.5 (c), µ = 0.6 (d), µ = 0.8 (e),

and µ = 1.0 (f), respectively. The bold curves correspond to the mean, while the envelope shows the

minimum and maximum values in each generation. The best fitness of the PD and PID controllers

(obtained via a complete enumeration of the values of their parameters) are shown as horizontal lines.

The lack of generality is one of the well-documented drawbacks of solutions obtained via GP

[4,5,26] that hinders the applicability of this algorithm to real-world problems. Indeed, we could not

be sure about how well the SAF that was evolved in a single car driven at a fixed speed on a fixed

track featuring a fixed coefficient of friction would perform in different situation(s). Ultimately, we

should have considered an evolving SAF that performs (nearly) equally well on several fitness cases

that correspond to these different conditions. Moreover, in order to bridge the inevitable reality gap,

we should have implemented an evolutionary adaptation of a set of the best SAFs, evolved on the

Figure 7. Fitness convergence characteristics for 20 independent runs of GP evolving the SAF of the
GP-RMEP controller for friction coefficients µ = 0.3 (a), µ = 0.4 (b), µ = 0.5 (c), µ = 0.6 (d), µ = 0.8 (e),
and µ = 1.0 (f), respectively. The bold curves correspond to the mean, while the envelope shows the
minimum and maximum values in each generation. The best fitness of the PD and PID controllers
(obtained via a complete enumeration of the values of their parameters) are shown as horizontal lines.

The lack of generality is one of the well-documented drawbacks of solutions obtained via
GP [4,5,26] that hinders the applicability of this algorithm to real-world problems. Indeed, we could
not be sure about how well the SAF that was evolved in a single car driven at a fixed speed on a
fixed track featuring a fixed coefficient of friction would perform in different situation(s). Ultimately,
we should have considered an evolving SAF that performs (nearly) equally well on several fitness

Algorithms 2018, 11, 108 14 of 18

cases that correspond to these different conditions. Moreover, in order to bridge the inevitable reality
gap, we should have implemented an evolutionary adaptation of a set of the best SAFs, evolved on
the simulated car, to a real one driven on a real track. However, in our current, seminal work, we will
report the results of testing the best SAF evolved via GP with a single fitness case (fixed track, fixed
coefficient of friction, and driven at fixed speed V = 0.85 VCR) in different road conditions. As shown
in Figure 8, all GP-RMEP controllers, evolved for a particular slippery condition (e.g., for µ equal to 0.3,
0.4, 0.5, or 0.6, respectively) feature a reasonably small degradation (if any) when tested in different
(unforeseen during the evolution) road conditions.

Algorithms 2018, 11, x FOR PEER REVIEW 13 of 17

simulated car, to a real one driven on a real track. However, in our current, seminal work, we will

report the results of testing the best SAF evolved via GP with a single fitness case (fixed track, fixed

coefficient of friction, and driven at fixed speed V = 0.85 VCR) in different road conditions. As shown

in Figure 8, all GP-RMEP controllers, evolved for a particular slippery condition (e.g., for µ equal to

0.3, 0.4, 0.5, or 0.6, respectively) feature a reasonably small degradation (if any) when tested in

different (unforeseen during the evolution) road conditions.

Figure 8. Generality of the best-evolved steering functions manifested by a reasonable change in their

respective fitness value when tested on different (unforeseen during the evolution) friction

coefficients. The fitness of the steering functions evolved for a particular friction coefficient is

indicated by larger circular markers.

For example, the GP-RMEP controller, evolved on snowy roads with µ = 0.5, offers a

comparatively good quality of steering (i.e., lower fitness values) compared to the alternative PD and

PID controllers when tested on roads with friction µ equal to 0.3 (icy), 0.4 (snowy), and 0.6 (rainy).

The analytical expression of the SAF of this GP-RMEP controller is shown in Equation (8).

(8)

It is not uncommon that the solutions obtained via GP are way too complex to be easily

comprehended by a human [5]. The presented best-evolved SAF is not an exception to this trend, and

we cannot explain precisely either why or how the SAF, shown in Equation (8), works. We could only

confirm that the SAF implements a proportional-derivative (PD) control of the steering in that both

(i) the direct values of parameters and (ii) their derivatives are incorporated in its code. The only

integral term included in the terminal set of the GP—the integral of the lateral deviation—is not

incorporated by the GP in the best-evolved SAF, which is consonant with the findings that the integral

term could be obsolete in some nonlinear PID controllers [27].

The dynamics of the steering angle and the deviation from the center of the lane of the car steered

by the sample best-evolved SAF shown in Equation (8) in snowy (µ = 0.5) road conditions are

illustrated in Figures 9 and 10, respectively. The same figures also show the behavior of the car steered

by the best PD and PID controllers with values of parameters optimized for this particular road

condition (as shown in Table 5). As these two figures illustrate, the lateral deviation of the car steered

by the sample best-evolved steering function is significantly lower than that of the best solution of

the servo-control model, especially during steady-state cornering in the left Turn 1 and right Turn 2.

Also, during the transition between these two turns the steering is smoother and more stable (non-

oscillatory).

0

200

400

600

800

1000

1200

1400

1600

1800

1 0.8 0.6 0.5 0.4 0.3

F
it

n
es

s

Friction coefficient µ

PD controller

PID controller

GP-RMEP evolved for µ = 0.3

GP-RMEP evolved for µ = 0.4

GP-RMEP evolved for µ = 0.5

GP-RMEP evolved for µ = 0.6

GP-RMEP evolved for µ = 0.8

()
()

30
 ') 3 1 0.20.571 7) 30' ' 8 14 ' 8 ' 5)]

42 7108 7 '
' 7 3 1.125

' 8

(
(

[(

e a eV e aV e a e e
V a

e eV a
a V

− −−
= − + + + + − + + + − − +

−
− +

+ +

Figure 8. Generality of the best-evolved steering functions manifested by a reasonable change in their
respective fitness value when tested on different (unforeseen during the evolution) friction coefficients.
The fitness of the steering functions evolved for a particular friction coefficient is indicated by larger
circular markers.

For example, the GP-RMEP controller, evolved on snowy roads with µ = 0.5, offers a comparatively
good quality of steering (i.e., lower fitness values) compared to the alternative PD and PID controllers
when tested on roads with friction µ equal to 0.3 (icy), 0.4 (snowy), and 0.6 (rainy). The analytical
expression of the SAF of this GP-RMEP controller is shown in Equation (8).

δ = (V − e′ + a + 8e + 14) +
0.571(7−V)

δ

(
−e′ +

42
a′

) [θ′
(
− e

108
+ 8
)
(e′ +

θ(30
a′ − e)

7−V
+ 5− θ − 30

θa′
) +

3a(1− 0.2e)
7eV

(
3a + 1.125 + 7

8V
)] (8)

It is not uncommon that the solutions obtained via GP are way too complex to be easily
comprehended by a human [5]. The presented best-evolved SAF is not an exception to this trend,
and we cannot explain precisely either why or how the SAF, shown in Equation (8), works. We could
only confirm that the SAF implements a proportional-derivative (PD) control of the steering in that
both (i) the direct values of parameters and (ii) their derivatives are incorporated in its code. The only
integral term included in the terminal set of the GP—the integral of the lateral deviation—is not
incorporated by the GP in the best-evolved SAF, which is consonant with the findings that the integral
term could be obsolete in some nonlinear PID controllers [27].

The dynamics of the steering angle and the deviation from the center of the lane of the car
steered by the sample best-evolved SAF shown in Equation (8) in snowy (µ = 0.5) road conditions
are illustrated in Figures 9 and 10, respectively. The same figures also show the behavior of the car
steered by the best PD and PID controllers with values of parameters optimized for this particular
road condition (as shown in Table 5). As these two figures illustrate, the lateral deviation of the

Algorithms 2018, 11, 108 15 of 18

car steered by the sample best-evolved steering function is significantly lower than that of the best
solution of the servo-control model, especially during steady-state cornering in the left Turn 1 and
right Turn 2. Also, during the transition between these two turns the steering is smoother and more
stable (non-oscillatory).Algorithms 2018, 11, x FOR PEER REVIEW 14 of 17

Figure 9. The dynamics of the steering angle of the car steered by the sample best-evolved SAF shown

in Equation (8) in snowy (µ = 0.5) road conditions.

Figure 10. The dynamics of the deviation from the center of the lane of the car steered by the sample

best-evolved SAF shown in Equation (8) in snowy (µ = 0.5) road conditions.

As Figure 9 illustrates, the maximum value of the steering angle of the car steered by GP-RMEP

during the reaction to the initial step disturbance is about 2 times lower (0.3 rad versus 0.62 rad) than

that of the PD and PID controllers. This in turn results in a smoother return of the car to the center of

the lane. Moreover, the steering angle produced by GP-RMEP appears to be limited to a particular

maximum value of 0.3 rad. A similar phenomenon could be observed during the transitions between

Turn 1 and Turn 2, with the only difference that the limit is much lower (−0.06 rad), which facilitates

the smooth, non-oscillatory transitions between the turns. We think that the PD and PID controllers

could not yield limited values of the steering angle in these two situations because the linearity of

these controllers implies that such a limitation would compromise their ability to satisfy the other

(somehow contradicting) requirements of the steering controller; namely, to follow the center of the

lane closely and to return to the lane swiftly when having deviated from it. We assume that we could

borrow this know-how, discovered by GP, to design a PID steering controller with coefficients that

adaptively (possibly nonlinearly) vary the gain of the three terms P, I, and D depending on the current

driving situation. Moreover, these coefficients, rather than being constants, could be evolved (e.g.,

via GP) as functions of some parameters pertinent to the state of the car.

4. Discussion

Some of the best SAFs evolved on icy and snowy roads featured slight steering oscillations with

frequencies of about 1~5 Hz. We cannot conclude whether these oscillations have a beneficial effect

on the controllability of the car. Most likely, they appear as a result of a neutral genetic code in the

evolved SAF: a code that has no (neither a beneficial nor a detrimental) effect on the behavior of the

car. Indeed, these steering oscillations do not manifest themselves in an oscillating trajectory of the

car, because, due to the slippery conditions, the front tires slip excessively and could not provide

sharp directional control of the car. Consequently, the oscillations do not result in any measurable

oscillations of the lateral acceleration of the car, which was a metric that we used in the calculation of

the fitness of the evolved SAF. Therefore, the GP could not impose any selection pressure against the

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20

S
te

er
in

g
 A

n
g

le
, r

ad

Time, sec

GP-RMEP PD controller PID controller

-6

-5

-4

-3

-2

-1

0

1

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20

D
ev

ia
ti

o
n

, m

Time, sec

GP-RMEP PID controller PD controller

Turn 1 Turn 2

Turn 1 Turn 2

Figure 9. The dynamics of the steering angle of the car steered by the sample best-evolved SAF shown
in Equation (8) in snowy (µ = 0.5) road conditions.

Algorithms 2018, 11, x FOR PEER REVIEW 14 of 17

Figure 9. The dynamics of the steering angle of the car steered by the sample best-evolved SAF shown

in Equation (8) in snowy (µ = 0.5) road conditions.

Figure 10. The dynamics of the deviation from the center of the lane of the car steered by the sample

best-evolved SAF shown in Equation (8) in snowy (µ = 0.5) road conditions.

As Figure 9 illustrates, the maximum value of the steering angle of the car steered by GP-RMEP

during the reaction to the initial step disturbance is about 2 times lower (0.3 rad versus 0.62 rad) than

that of the PD and PID controllers. This in turn results in a smoother return of the car to the center of

the lane. Moreover, the steering angle produced by GP-RMEP appears to be limited to a particular

maximum value of 0.3 rad. A similar phenomenon could be observed during the transitions between

Turn 1 and Turn 2, with the only difference that the limit is much lower (−0.06 rad), which facilitates

the smooth, non-oscillatory transitions between the turns. We think that the PD and PID controllers

could not yield limited values of the steering angle in these two situations because the linearity of

these controllers implies that such a limitation would compromise their ability to satisfy the other

(somehow contradicting) requirements of the steering controller; namely, to follow the center of the

lane closely and to return to the lane swiftly when having deviated from it. We assume that we could

borrow this know-how, discovered by GP, to design a PID steering controller with coefficients that

adaptively (possibly nonlinearly) vary the gain of the three terms P, I, and D depending on the current

driving situation. Moreover, these coefficients, rather than being constants, could be evolved (e.g.,

via GP) as functions of some parameters pertinent to the state of the car.

4. Discussion

Some of the best SAFs evolved on icy and snowy roads featured slight steering oscillations with

frequencies of about 1~5 Hz. We cannot conclude whether these oscillations have a beneficial effect

on the controllability of the car. Most likely, they appear as a result of a neutral genetic code in the

evolved SAF: a code that has no (neither a beneficial nor a detrimental) effect on the behavior of the

car. Indeed, these steering oscillations do not manifest themselves in an oscillating trajectory of the

car, because, due to the slippery conditions, the front tires slip excessively and could not provide

sharp directional control of the car. Consequently, the oscillations do not result in any measurable

oscillations of the lateral acceleration of the car, which was a metric that we used in the calculation of

the fitness of the evolved SAF. Therefore, the GP could not impose any selection pressure against the

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20

S
te

er
in

g
 A

n
g

le
, r

ad

Time, sec

GP-RMEP PD controller PID controller

-6

-5

-4

-3

-2

-1

0

1

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20

D
ev

ia
ti

o
n

, m

Time, sec

GP-RMEP PID controller PD controller

Turn 1 Turn 2

Turn 1 Turn 2

Figure 10. The dynamics of the deviation from the center of the lane of the car steered by the sample
best-evolved SAF shown in Equation (8) in snowy (µ = 0.5) road conditions.

As Figure 9 illustrates, the maximum value of the steering angle of the car steered by GP-RMEP
during the reaction to the initial step disturbance is about 2 times lower (0.3 rad versus 0.62 rad) than
that of the PD and PID controllers. This in turn results in a smoother return of the car to the center of
the lane. Moreover, the steering angle produced by GP-RMEP appears to be limited to a particular
maximum value of 0.3 rad. A similar phenomenon could be observed during the transitions between
Turn 1 and Turn 2, with the only difference that the limit is much lower (−0.06 rad), which facilitates
the smooth, non-oscillatory transitions between the turns. We think that the PD and PID controllers
could not yield limited values of the steering angle in these two situations because the linearity of these
controllers implies that such a limitation would compromise their ability to satisfy the other (somehow
contradicting) requirements of the steering controller; namely, to follow the center of the lane closely
and to return to the lane swiftly when having deviated from it. We assume that we could borrow
this know-how, discovered by GP, to design a PID steering controller with coefficients that adaptively
(possibly nonlinearly) vary the gain of the three terms P, I, and D depending on the current driving
situation. Moreover, these coefficients, rather than being constants, could be evolved (e.g., via GP) as
functions of some parameters pertinent to the state of the car.

4. Discussion

Some of the best SAFs evolved on icy and snowy roads featured slight steering oscillations with
frequencies of about 1~5 Hz. We cannot conclude whether these oscillations have a beneficial effect on

Algorithms 2018, 11, 108 16 of 18

the controllability of the car. Most likely, they appear as a result of a neutral genetic code in the evolved
SAF: a code that has no (neither a beneficial nor a detrimental) effect on the behavior of the car. Indeed,
these steering oscillations do not manifest themselves in an oscillating trajectory of the car, because,
due to the slippery conditions, the front tires slip excessively and could not provide sharp directional
control of the car. Consequently, the oscillations do not result in any measurable oscillations of the
lateral acceleration of the car, which was a metric that we used in the calculation of the fitness of the
evolved SAF. Therefore, the GP could not impose any selection pressure against the evolved SAF that
results in these oscillations. Despite that, the oscillations apparently do not affect detrimentally the
steering of the car. From the standpoint of the feasibility of the practical implementation of the evolved
SAF on real cars, such oscillations might be highly undesirable due to the uncomfortable vibrations
and accelerated wear of the tires and the components of the steering system of the car. We speculate
that by modifying the fitness function—e.g., by introducing a third additive component (in addition
to the area under the trajectory of the car around the center of the lane and the average of its lateral
velocity) that explicitly reflects the severity of steering oscillations—we could discourage the GP from
evolving oscillating steering functions.

The realization of steering controllers in the real world could be done in two steps in accordance
with the concept of evolutionary robotics [33]. The first step, as discussed in our work, involves the
evolution of a generic steering solution on the software model of the car in TORCS. The second stage,
intended to bridge the inevitable reality gap, could be implemented as an evolutionary adaptation of
the evolved generic solutions to real cars in real-world environments.

Also, in our discussion about the generality of the evolved SAF, we assumed the possibility
to deploy a single, general SAF that could be good enough in any (slippery) road condition.
The disadvantage of such an approach would be that such a general SAF might be somehow inferior
to a dedicated SAF evolved for a particular road condition (as illustrated in Figure 8). On the other
hand, the advantage is that the system is not required to determine (in a real time) the current
(instant) road conditions, i.e., the current (instant) coefficient of friction between the tires and the
road. Our assumption—supported by the fact that most of the existing driving aids activated in
slippery road conditions, such as anti-locking brake systems, traction control, and electronic stability
programs, rely on the detection of the slippage of the tires rather than on the actual coefficient of
friction (one of the underlying reasons for such a slippage)—was that such a determination is rather
challenging: it requires a significant computational (signal-processing) power; the obtained result is
approximate, and it might be obtained in a limited number of driving situations. However, the recent
advances in automotive control suggest that in the near future these challenges might be successfully
addressed [34].

5. Conclusions

We investigated the development of controllers for automated steering of a realistically simulated
car on slippery roads. We comparatively investigated three models of such a controller—a PD controller
built in accordance with the servo-control model of steering, a PID controller as an extension of the
servo-control, and a controller based on a relaxed model and an extended set of parameters and
designed heuristically via genetic programming. The experimental results verified that the controller
developed via GP offers the best quality of control of the car in all of the tested slippery—rainy,
snowy, and icy—road conditions. In our future work, we are planning to coevolve—via genetic
programming—(i) the automated steering of the car and (ii) the dynamics of the asymmetric brake
forces on its wheels (i.e., its electronic stability program) in order to achieve an even better controllability
of the car on slippery roads.

Author Contributions: Conceptualization, N.A. and I.T.; Methodology, N.A., I.T.; Software, N.A., I.T.;
Validation, I.T. and K.S.; Formal Analysis, N.A., I.T.; Investigation, N.A.; Resources, N.A.; Data Curation,
N.A.; Writing-Original Draft Preparation, N.A.; Writing-Review & Editing, N.A., I.T., K.S.; Visualization, N.A.;
Supervision, I.T.; Project Administration, I.T.; Funding Acquisition, I.T.

Algorithms 2018, 11, 108 17 of 18

Funding: This work was funded in part by the MEXT-supported Program for Strategic Research Foundation at
Private Universities in Japan (2014–2018).

Conflicts of Interest: The founding sponsors had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

1. Holland, J. Adaption in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI,
USA, 1975.

2. Stone, P.; Brooks, R.; Brynjolfsson, E.; Calo, R.; Etzioni, O.; Hager, G.; Hirschberg, J.; Kalyanakrishnan, S.;
Kamar, E.; Kraus, S.; et al. Artificial Intelligence and Life in 2030; One Hundred Year Study on Artificial
Intelligence: Report of the 2015–2016 Study Panel; Stanford University: Stanford, CA, USA, 2016; p. 52.

3. Mousel, T.; Treis, A. Hands off Detection Requirements for UN R79 Regulated Lane Keeping Assis. IEE S.A.,
Luxembourg. Available online: https://www.unece.org/fileadmin/DAM/tra (accessed on 3 April 2018).

4. Ross, P. IBM Program would Help Robocars Decide Whether to Cede Control. IEEE Spectrum. 2017.
Available online: https://spectrum.ieee.org/caronline (accessed on 25 January 2018).

5. Zeeb, K.; Buchner, A.; Schrauf, M. Is take-over Time All that Matters? The Impact of Visual-cognitive Load
on Driver Take-over Quality after Conditionally Automated Driving. Accid. Anal. Prev. 2016, 92, 230–239.
[CrossRef] [PubMed]

6. State of California. Department of Motor Vehicles. Report of Traffic Collision Involving an Autonomous
Vehicle (OL 316). 2016. Available online: https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/
autonomousveh_ol316+ (accessed on 27 January 2018).

7. Lin, P. Who’s at Fault in Uber’s Fatal Collision? IEEE Spectrum. 2018. Available online: https://spectrum.
ieee.org/car (accessed on 28 January 2018).

8. Lin, P. Tesla Autopilot Crash: Why We Should Worry about a Single Death. IEEE Spectrum. Available
online: https://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-autopilot-crash-why-
we-should-worry-about-a-single-death (accessed on 11 July 2016).

9. Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A Survey of Motion Planning and Control Techniques
for Self-driving Urban Vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]

10. Pendleton, S.D.; Andersen, H.; Du, X.; Shen, X.; Meghjani, M.; Eng, Y.H.; Rus, D.; Ang, M.H. Perception,
Planning, Control, and Coordination for Autonomous Vehicles. Machines 2017, 5, 6. [CrossRef]

11. Huang, J.; Tanev, I.; Shimohara, K. Evolving a General Electronic Stability Program for Car Simulated in
TORCS. In Proceedings of the 2015 IEEE Conference on Computational Intelligence Games (CIG 2015),
Tainan, Taiwan, 31 August–2 September 2015; pp. 446–453.

12. Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput.
1994, 4, 87–112. [CrossRef]

13. Gillespie, T.D. Fundamentals of Vehicle Dynamics; Society of Automotive Engineers: Warrendale, PA,
USA, 1992.

14. TORCS—The Open Racing Car Simulator. Available online: http://sourceforge.net/projects/torcs/
(accessed on 5 May 2018).

15. Wymann, B.; Dimitrakakis, C.; Sumner, A.; Espié, E.; Guionneau, C. TORCS, the Open Racing Car Simulator,
v1.3.5. 2013. Available online: http://www.torcs.org (accessed on 1 May 2018).

16. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. Deep Reinforcement Learning Framework for Autonomous
Driving. Electron. Imaging 2017, 2017, 70–76. [CrossRef]

17. Chi, L.; Mu, Y. Deep Steering: Learning End-to-End Driving Model from Spatial and Temporal Visual Cues.
arXiv 2017, arXiv:1708.03798

18. Falcone, P.; Borrelli, F.; Asgari, J.; Tseng, H.E.; Hrovat, D. Predictive active steering control for autonomous
vehicle systems. IEEE Trans. Control Syst. Technol. 2007, 15, 566–580. [CrossRef]

19. Carvalho, A.; Gao, Y.; Gray, A.; Tseng, H.E.; Borrelli, F. Predictive Control of an Autonomous Ground Vehicle
Using an Iterative Linearization Approach. In Proceedings of the 2013 16th International IEEE Conference on
Intelligent Transportation Systems-(ITSC), The Hague, The Netherlands, 6–9 October 2013; pp. 2335–2340.

20. Gao, Y.; Lin, T.; Borrelli, F.; Tseng, E.; Hrovat, D. Predictive Control of Autonomous Ground Vehicles with
Obstacle Avoidance on Slippery Roads. In Proceedings of the ASME 2010 Dynamic Systems and Control

https://www.unece.org/fileadmin/DAM/tra
https://spectrum.ieee.org/car online
http://dx.doi.org/10.1016/j.aap.2016.04.002
http://www.ncbi.nlm.nih.gov/pubmed/27107472
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/autonomousveh_ol316+
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/autonomousveh_ol316+
https://spectrum.ieee.org/car
https://spectrum.ieee.org/car
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-autopilot-crash-why-we-should-worry-about-a-single-death
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/tesla-autopilot-crash-why-we-should-worry-about-a-single-death
http://dx.doi.org/10.1109/TIV.2016.2578706
http://dx.doi.org/10.3390/machines5010006
http://dx.doi.org/10.1007/BF00175355
http://sourceforge.net/projects/torcs/
http://www.torcs.org
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
http://dx.doi.org/10.1109/TCST.2007.894653

Algorithms 2018, 11, 108 18 of 18

Conference, Cambridge, MA, USA, 12–15 September 2010; American Society of Mechanical Engineers:
New York, NY, USA, 2010; pp. 265–272.

21. Ledin, A. Hardware-in-the-Loop Simulation. Embed. Syst. Program. 1999, 12, 42–60.
22. Liebemann, E.K.; Meder, K.; Schuh, J.; Nenninger, G. Safety and performance enhancement: The Bosch

electronic stability control (ESP). In Proceedings of the 2004 International Congress on Transportation
Electronics, Detroit, MI, USA, 18–20 October 2004.

23. Nikulin, V.; Podusenko, A.; Tanev, I.; Shimohara, K. Regression-based Supervised Learning of Autosteering
of a Road Car Featuring a Delayed Steering Response. Int. J. Data Sci. Anal. 2018. [CrossRef]

24. Aly, M. Real Time Detection of Lane Markers in Urban Streets. IEEE Intell. Veh. Symp. 2008, 7–12. [CrossRef]
25. Melder, N.; Tomlinson, S. Racing Vehicle Control Systems using PID Controllers. In Game AI Pro;

pp. 491–500. Available online: http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter40_Racing_
Vehicle_Control_Systems_using_PID_Controllers.pdf (accessed on 21 July 2018).

26. Koza, J.R.; Keane, M.A.; Yu, J.; Bennett, F.H., III. Automatic Creation of Human-Competitive Programs and
Controllers by Means of Genetic Programming. Genet. Program. Evol. Mach. 2000, 1, 121–164. [CrossRef]

27. Wang, W. The New Design Strategy on PID Controllers. In PID Controller Design Approaches-Theory, Tuning
and Application to Frontier Areas; InTech: London, UK, 2012.

28. Marinoa, R.; Scalzia, S.; Nettob, M. Nested PID steering control for lane keeping in autonomous vehicles.
Control Eng. Pract. 2011, 19, 1459–1467. [CrossRef]

29. Koza, J.R. Genetic Programming 2: Automatic Discovery of Reusable Programs; MIT Press: Cambridge, MA,
USA, 1994.

30. Angeline, P.J.; Kinnear, K.E., Jr. Genetic Programming and Emergent Intelligence. In Advances in Genetic
Programming; MIT Press: Cambridge, MA, USA, 1994; pp. 75–98.

31. Coello, C.; Lamont, G.B.; van Veldhuizen, D. Evolutionary Algorithms for Solving Multi-Objective Problems;
Springer: New York, NY, USA, 2007.

32. Kinnear, K. Generality and Difficulty in Genetic Programming: Evolving a Sort. In Proceeding of the Fifth
International Conference on Genetic Algorithms, San Mateo, CA, USA, 17–21 July 1993; Morgan Kaufmann:
Burlington, MA, USA, 1993.

33. Nolfi, S.; Floreano, D. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines;
MIT Press: Cambridge, MA, USA, 2000.

34. Beal, C.E. Independent Wheel Effects in Real Time Estimation of Tire-Road Friction Coefficient from Steering
Torque. In Proceedings of the 8th IFAC Symposium on Advances in Automotive Control (AAC), Norrköping,
Sweden, 20–23 June 2016; pp. 319–326.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s41060-018-0140-z
http://dx.doi.org/10.1109/IVS.2008.4621152
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter40_Racing_Vehicle_Control_Systems_using_PID_Controllers.pdf
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter40_Racing_Vehicle_Control_Systems_using_PID_Controllers.pdf
http://dx.doi.org/10.1023/A:1010076532029
http://dx.doi.org/10.1016/j.conengprac.2011.08.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	The Car in the Open Racing Car Simulator
	The Track
	Servo Control as a PD Controller
	Extending the Servo-Control Model: A PID Steering Controller
	Evolving the Steering Controller via GP
	Genetic Representation, Function Set, and Terminal Set of the GP
	Fitness Evaluation
	Genetic Operations

	Experimental Results
	Discussion
	Conclusions
	References

