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Abstract: This paper analyses algorithms currently found in the literature for the approximation of
fractional order models and based on recursive pole and zero distributions. The analysis focuses
on the sub-optimality of the approximations obtained and stability issues that may appear after
approximation depending on the pole location of the initial fractional order model. Solutions are
proposed to reduce this sub-optimality and to avoid stability issues.

Keywords: fractional order system; fractional differentiation; pole and zero recursive distribution
approximation

1. Introduction

Fractional order models are generalizations of models described by differential equations or
state space descriptions in which classical derivatives are replaced by fractional derivatives [1–3].
These models are now widely used to characterize the behavior of many systems in diverse areas.
For example:

- electrochemistry in which charge diffusion in batteries can be described by Randles’ models [4,5],
or other kinds of fractional models [6];

- thermal conduction where the exact solution of the heat equation in a semi-infinite medium links
the heat rate to the surface temperature by a fractional differentiation of order 0.5 and applied to
the thermal modeling of buildings [7,8];

- biology for modelling complex dynamics in biological tissues [9];
- mechanics with the dynamical property of viscoelastic materials and for wave propagation

problems in these materials [10];
- acoustics where fractional differentiation is used to model visco-thermal losses in wind

instruments [11];
- robotics through environmental modeling [12];
- electrical distribution networks [13];
- modelling of explosive materials [14].

The main reason for the use of fractional order models is their ability to generate long memory
behaviors (time power law relaxations) in the same way as the systems previously mentioned.
However, this interesting property comes at the price of several defects that have important
consequences in the field of dynamical system analysis:
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- the physical consistency of the state concept is questionable, making it necessary to introduce the
notion of a pseudo-state [15,16];

- they are defined on an infinite time interval or on an infinite space domain (depending on the
representation used) [15,16];

- as a result, they are adapted to studying the input-output behavior of a system, but not its internal
properties [17] (initialization [18], internal stability, exact controllability [19], exact observability,
exact flatness);

- the implementation of these models requires an approximation step [8,20].

This work looks at this approximation step. There are several methods in the literature that allow
such an approximation. Among all these methods, a very well-known one because of its efficiency
and the simple algorithm that it implements is based on the approximation of the fractional order
differentiation or integration operator using a recursive (geometric) pole and zero distribution [21,22].
In this paper, this method is analyzed in terms of sub-optimality and a simple solution is proposed
to improve the approximation accuracy. Some stability issues resulting from the approximation of a
fractional model are also discussed. The results presented in this paper will contribute to obtaining
more accurate and stable approximations of a fractional model, and above all will help the reader to
understand that the geometric distribution of poles and zeros (also called “recursivity” in the literature)
for the approximation of a fractional order integrator and differentiator is one among an infinity of
other permitted distributions and cannot be interpreted as the physical reason for the observed long
memory behaviors.

2. The Existing Algorithms Based on Pole and Zero Recursive (Geometric) Distribution

This section reviews the algorithms based on the recursive (geometric) pole and zero distribution
found in the literature for the synthesis of a fractional order integrator or differentiator respectively
described by the transfer functions:

Iν(s) =
1
sν

and Dν(s) = sν with 0 < ν < 1. (1)

2.1. Approximation of a Fractional Integrator and Differentiator by a Recursive (Geometric) Distribution of Pole
and Zeros: A Graphical Approach

The demonstration of the approximation of a fractional order integrator operator frequency
response is here done graphically. This method appeared for the very first time in the literature in the
1960s in two studies, apparently carried out independently by the respective authors [23,24]. Some years
later, this demonstration was used for the analog implementation of fractional integrators [25].
Subsequent work by other authors also contributed to this synthesis method [26–28].

For real orders, to obtain an approximation of a fractional integration operator, a solution consists
in limiting the frequency band on which the fractional behavior is required. This first leads to the
approximation:

Iν(s) ≈ Iν
a (s) = C0

(
1 + s

ωh

1 + s
ωb

)ν

with C0 =

(
ωh
ωb

)ν(ωb
2 + 1

ωh
2 + 1

) ν
2

. (2)

As shown by Figure 1, the Bode plots of relation (2) exhibit:

- a gain whose slope is a fractional multiple of −20 dB/decade,
- a constant phase whose value is a fractional multiple of −90◦.

These Bode plots can be approximated using a distribution of poles and zeros. This leads to the
following algorithm (Algorithm 1).
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Algorithm 1. Fractional integrator approximation—first method

1. Initialize

r = αη =

(
ωh
ωb

) 1
N

α = rν η = r1−ν ω1 = η1/2ωb ω′1 = αω1 (3)

2. For i ∈ [1 . . . N] do
ω′ i+1 = rω′ i ωi+1 = rωi (4)

End for
3. Compute

C′0 =

N
∏

k=1

(
1 +

(
1

ωk

)2
) 1

2

N
∏

k=1

(
1 +

(
1

ω′k

)2
) 1

2

(5)

4. Define the fractional integrator (1) approximation in the frequency band [ωb, ωh], by the transfer function

Iν
a (s) = C0

(
1 + s

ωh

1 + s
ωb

)ν

≈ Iν
N(s) = C′0

N
∏

k=1

(
1 + s

ω′k

)
N
∏

k=1

(
1 + s

ωk

) . (6)

As shown in [26], with this algorithm, the corner frequencies ωk and ω′k (respectively the
poles and zeros of the transfer function Iν

N(s)) are geometrically distributed to obtain the required
frequency behavior.

Figure 1 highlights this distribution and also compares the asymptotic Bode plots of Iν(s), Iν
a (s)

and Iν
N(s). It also shows that the high and low asymptotic frequency behaviors are constant. In [22],

to obtain an integer integral like asymptotic behavior at low and high frequency, relation (2) is
replaced by:

Iν(s) ≈ Iν
a (s) = C0

1
s

(
1 + s

ωh

1 + s
ωb

)ν−1

with C0 =

(
ωh
ωb

)ν−1(ωb
2 + 1

ωh
2 + 1

) ν−1
2

. (7)

This leads to the following algorithm (Algorithm 2).

Algorithm 2. Fractional integrator approximation—second method

1. Initialize

r = αη =

(
ωh
ωb

) 1
N

α = r1−ν η = rν ω′1 = η1/2ωb ω1 = αω′1 (8)

2. For i ∈ [1 . . . N] do
ω′ i+1 = rω′ i ωi+1 = rωi (9)

End for
3. Compute C′0 with relation (5)
4. Define the fractional integrator (1) approximation in the frequency band [ωb, ωh], by the transfer function

Iν
a (s) = C0

1
s

(
1 + s

ωh

1 + s
ωb

)ν−1

≈ Iν
N(s) = C′0

1
s

N
∏

k=1

(
1 + s

ω′k

)
N
∏

k=1

(
1 + s

ωk

) . (10)
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Algorithm 2. Fractional integrator approximation—second method 
1. Initialize  

1

1 1/2
1 1 1= ' = = '

N
h

b
b

r r r 
       


 

   
 

 (8) 

2. For  Ni ..1  do  

1 1' = ' =i i i ir r      (9) 

End for 
3. Compute 0'C  with relation (5) 
4. Define the fractional integrator (1) approximation in the frequency band [ωb, ωh], by the 
transfer function 

   






















































 N

k k

N

k k
N

b

h
a s

s

s
CsIs

s

s
CsI

1

1
0

1

0
1

'
1

1'
1

1
1







 



 . (10) 
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For a fractional differentiation operator defined in the Laplace domain by

Dν(s) = sν with 0 < ν < 1 (11)

the frequency truncation leads to

Dν(s) ≈ Dν
a (s) = C0

(
1 + s

ωb

1 + s
ωh

)
with C0 =

(
ωb
ωh

)ν(ωh
2 + 1

ωb
2 + 1

) ν
2

(12)

and permits the following algorithm (Algorithm 3).

Algorithm 3. Fractional differentiator approximation—first method

1. Initialize

r = αη =

(
ωh
ωb

) 1
N

α = rν η = r1−ν ω′1 = η1/2ωb ω1 = αω′1 (13)

2. For i ∈ [1 . . . N] do
ω′ i+1 = rω′ i ωi+1 = rωi (14)

End for
3. Compute C′0 with relation (5)
4. Define the fractional differentiator (12) approximation in the frequency band [ωb, ωh], by the
transfer function

Dν
a (s) = C0

(
1 + s

ωb

1 + s
ωh

)ν

≈ Dν
N(s) = C′0

N
∏

k=1

(
1 + s

ω′k

)
N
∏

k=1

(
1 + s

ωk

) . (15)

By analogy with Algorithm 2, the following algorithm (Algorithm 4) permits to get an integer
differentiation like asymptotic behavior in low and high frequency.
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Algorithm 4. Fractional differentiator approximation—second method

1. Initialize

r = αη =

(
ωh
ωb

) 1
N

α = r1−ν η = rν ω1 = η1/2ωb ω′1 = αω1 (16)

2. For i ∈ [1 . . . N] do
ω′ i+1 = rω′ i ωi+1 = rωi (17)

End for
3. Compute C′0 with relation (5)
4. Define the fractional differentiator (12) approximation in the frequency band [ωb, ωh], by the
transfer function

Dν
a (s) = C0s

(
1 + s

ωb

1 + s
ωh

)ν−1

≈ Dν
N(s) = C′0s

N
∏

k=1

(
1 + s

ω′k

)
N
∏

k=1

(
1 + s

ωk

) . (18)

The set of algorithms previously established for a real fractional differentiation order can be
extended to a complex fractional differentiation order ν = a + ib [21].

2.2. Approximation of a Fractional Integrator by a Recursive Distribution of Poles and Zeros:
An Analytical Approach

For the approximation given in relation (1) using Algorithm 1, the analytical demonstration of the
graphical approach presented in the previous section was done in [21] by considering the limit case
where ωb tends towards 0 and ωh tends towards infinity. However, a simpler demonstration based on
the impulse response of a fractional operator is now used. This impulse response is defined by:

Iν(t) =
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   
0

sin
0 1

txeI t dx
x









 

   . (20) 

The Laplace–Transform of (19) is thus given by: 

   
 

dx
xsx

sI 





0

1sin







. (21) 

Using the change of variable zex   and thus dzedx z , then: 

   
 

  dz

e
s
edz

ese
esI

z

z

zz

z
























1

sinsin 








 . 

(22) 

Discretization of integral (22) leads to: 

       
z

es
ez

e
s

esI
k

zk

zk

k
zk

zk






 











 






 1sin

1

sin , 
(23) 

in which z  denotes the sampling interval. Relation (22) also highlights the link between a 
fractional integrator impulse response and the Prony series as the inverse Laplace transform of (23) 
leads to: 

       




 
k

t
k keAtIsI 


sin1L  (24) 

with 
zk

k e   and 
  zeA zk

k  1
. 

Relation (24) also highlights that the poles αk (always greater than 0) are linked by the ratio 
αk+1/αk =e−Δz. Regarding the zeros, to the best of the author’s knowledge there is no demonstration of a 
link with the same ratio as that imposed by Algorithm 1. However, by applying a partial fraction 
decomposition to relation (3) it can be written as: 

−1
{

1
sν

}
(19)

where

Algorithms 2018, 11, x FOR PEER REVIEW  6 of 17 

The set of algorithms previously established for a real fractional differentiation order can be 
extended to a complex fractional differentiation order ν = a + ib [21]. 

2.2. Approximation of a Fractional Integrator by a Recursive Distribution of Poles and Zeros: An Analytical 
Approach 

For the approximation given in relation (1) using Algorithm 1, the analytical demonstration of 
the graphical approach presented in the previous section was done in [21] by considering the limit 
case where ωb tends towards 0 and ωh tends towards infinity. However, a simpler demonstration 
based on the impulse response of a fractional operator is now used. This impulse response is defined 
by: 

 








 




s
tI 11L  (19) 

where 1L  denotes the inverse Laplace–Transform. The residue method for the computation of the 
inverse Laplace–Transform leads to [3]: 

   
0

sin
0 1

txeI t dx
x









 

   . (20) 

The Laplace–Transform of (19) is thus given by: 

   
 

dx
xsx

sI 





0

1sin







. (21) 

Using the change of variable zex   and thus dzedx z , then: 

   
 

  dz

e
s
edz

ese
esI

z

z

zz

z
























1

sinsin 








 . 

(22) 

Discretization of integral (22) leads to: 

       
z

es
ez

e
s

esI
k

zk

zk

k
zk

zk






 











 






 1sin

1

sin , 
(23) 

in which z  denotes the sampling interval. Relation (22) also highlights the link between a 
fractional integrator impulse response and the Prony series as the inverse Laplace transform of (23) 
leads to: 

       




 
k

t
k keAtIsI 


sin1L  (24) 

with 
zk

k e   and 
  zeA zk

k  1
. 

Relation (24) also highlights that the poles αk (always greater than 0) are linked by the ratio 
αk+1/αk =e−Δz. Regarding the zeros, to the best of the author’s knowledge there is no demonstration of a 
link with the same ratio as that imposed by Algorithm 1. However, by applying a partial fraction 
decomposition to relation (3) it can be written as: 

−1 denotes the inverse Laplace–Transform. The residue method for the computation of the
inverse Laplace–Transform leads to [3]:

Iν(t) =
sin(νπ)

π

∞∫
0

e−tx

xν
dx 0 < ν < 1. (20)

The Laplace–Transform of (19) is thus given by:

Iν(s) =
sin(νπ)

π

∞∫
0

1
xν(s + x)

dx. (21)

Using the change of variable x = ez and thus dx = ezdz, then:

Iν(s) =
sin(νπ)

π

∞∫
−∞

ez

eνz(s + ez)
dz =

sin(νπ)

π

∞∫
−∞

e−νz( s
ez + 1

)dz. (22)

Discretization of integral (22) leads to:

Iν(s) =
sin(νπ)

π

∞

∑
k=−∞

e−νk∆z

s
ek∆z + 1

∆z =
sin(νπ)

π

∞

∑
k=−∞

e(1−ν)k∆z

s + ek∆z ∆z, (23)

in which ∆z denotes the sampling interval. Relation (22) also highlights the link between a fractional
integrator impulse response and the Prony series as the inverse Laplace transform of (23) leads to:
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link with the same ratio as that imposed by Algorithm 1. However, by applying a partial fraction 
decomposition to relation (3) it can be written as: 

−1{Iν(s)} = Iν(t) =
sin(νπ)

π

∞

∑
k=−∞

Ake−αkt (24)

with αk = ek∆z and Ak = e(1−ν)k∆z∆z.
Relation (24) also highlights that the poles αk (always greater than 0) are linked by the ratio

αk+1/αk = e−∆z. Regarding the zeros, to the best of the author’s knowledge there is no demonstration
of a link with the same ratio as that imposed by Algorithm 1. However, by applying a partial fraction
decomposition to relation (3) it can be written as:

Iν
N(s) = C0

N
∏

k=1

(
1 + s

ω′k

)
N
∏

k=1

(
1 + s

ωk

) =
N

∑
k=1

A′k
s + α′k

with α′k = ωk and A′k = C0

N
∏
i=1

ωk

(
1 + ωk

ω′ i

)
N
∏

i = 1
i 6= k

(
1 + ωk

ωi

) . (25)

By choosing α′k = αk, it can be shown using a graphical representation (see Figure 2) that coefficient
A′k in relation (25) tends towards coefficient Ak in (24), under the same hypothesis as the one used
in [21]:

- a number N of poles that tends towards infinity,
- a ratio r or ∆z that tends towards 1.
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3. Sub-Optimality of Algorithms 1–4 and Beyond Geometric Distribution

The algorithms 1 to 4 described in Section 2 have been used in many applications, due to the
simplicity of their implementation. However, it can be demonstrated by an example that Algorithm
1, for instance, is sub-optimal (a similar demonstration can be made for Algorithms 2 to 4). Let us
assume that the aim is to compute the approximation of transfer function (1) on the frequency band
[ωb, ωh] = [1, 106], with ν = 0.3. Using Algorithm 1 with N = 10 poles and zeros, the following factors
are obtained:

r = αη = 3.9811 η = 2.6303 (26)
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which enable all the corner frequencies of relation (3) to be computed using relations (4) and (5).
The Bode plots of relations (1) to (3) are represented by Figure 3. To evaluate the efficiency of
Algorithm 1, the relative error and absolute error respectively computed by the relations

Erel(ω) =

∣∣∣∣ Iν
a (s)

Iν
N(s)

− 1
∣∣∣∣
s=jω

Eabs(ω) = |Iν
a (s)− Iν

N(s)|s=jω (27)

are represented by Figure 4. The maximum values of Erel(ω) and Eabs(ω) are respectively given by:

max
ω
|Erel(ω)| = 1.2762× 10−2 max

ω
|Eabs(ω)| = 1.1382× 10−2. (28)
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Then, an optimization program aiming at reducing the relative error Erel(s) by looking for the
best location of the N poles and zeros in the transfer function Iν

N(s) is implemented under a Matlab
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environment. The optimization program is initialized with the pole and zero values obtained with
Algorithm 1. The resulting relative error and absolute error are shown in Figure 5. The maximum
values of Erel(ω) and Eabs(ω) are now respectively given by:

max
ω
|Erel(ω) | = 2.8689× 10−3 max

ω
|Eabs(ω) | = 2.5622× 10−3 (29)

and are almost five times smaller than the ones given by Algorithm 1.
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To improve the accuracy of Algorithms 1–4, it is necessary to go beyond the geometric distribution
of poles and zeros, but without introducing great complexity. With N poles [ω0, . . . , ωN−1], to define
these generalizations, let us define the ratio r such that:

ωN−1

ω0
= rN . (30)

For a geometric distribution, the following relation holds:

log(ωk) = log(ωb) + ϕ log(r) ϕ ∈ [0 . . . N]. (31)

It can be generalized, among many others, by the following distributions:

D1 : log(ωk) = log(ωb) +
ϕ2

N
log(r) ϕ ∈ [0 . . . N], (32)

D2 : log(ωk) = log(ωb) +
√

N
√

ϕ log(r) ϕ ∈ [0 . . . N]. (33)

In Figure 6, these two distributions are compared with the geometric one. It shows that
distribution D1 makes it possible to bring the first poles closer together while distribution D2 makes
it possible to increase the distance between them. However, no additional tuning parameters are
associated to these distributions. It is thus proposed to replace the nonlinear function of N in relations
(32) and (33) by a polynomial. The following distribution is thus obtained:

D3 : log(ωk) = log(ωb) + P(ϕ) log(r) with P(ϕ) =
M

∑
m=0

am ϕm. (34)

With M = 2, to ensure that corner frequencies really belong in [ωb, . . . , ωh], the following
constraints must be imposed: P(0) = 0 and P(N) = N. This leads to imposing a0 = 0 and a1N + a2N2 = N,
thus a2 = (1 − a1)/N.
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With M = 3, to ensure that corner frequencies really belong in [ωb, . . . , ωh], the same constraints
must be imposed leading to a0 = 0 and a1 + a2N + a3N2 = 1. Moreover, if it is imposed that distribution
D3 fits the geometric distribution in the middle of the interval [ωb, . . . , ωh], the following constraint

must be added: P(N/2) = 1/2 and thus a1
2 + a2 N

4 + a3 N2

8 = 1/2. Finally, parameters a2 and a3, meet the
following system of equations: [

N N2

N
4

N2

8

][
a2

a3

]
=

[
1− a1

1−a1
2

]
. (35)

By varying parameter a1, Figure 7 shows the large number of distributions that can be obtained in
both cases.
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In the two cases, it must be pointed out that only one parameter needs to be tuned to obtain a
wide variety of distributions.

For the geometric distribution, according to Algorithm 1, the poles, and zeros in relation (3) are
defined by relation (34) with



Algorithms 2018, 11, 103 10 of 15

ϕ = k− 1 +
1− ν

2
, for pole ωk (36)

and
ϕ = k− 1 +

1 + ν

2
for zero ω′k. (37)

To define the poles and the zeros using the distribution introduced, the same values of ϕ are used,
but the values of ωk and ω′k are given by relation (34) leading to the following algorithm (Algorithm 5).

Algorithm 5. Fractional integrator approximation—improved method

1. Initialize

P(ϕ) =
M

∑
m=0

am ϕm r =
(

ωh
ωb

) 1
N

(38)

2. For i ∈ [1 . . . N] do

log(ωk) = log(ωb) + P(ϕ) log(r) with ϕ = k− 1 +
1− ν

2
(39)

log
(
ω′k
)
= log(ωb) + P(ϕ) log(r) with ϕ = k− 1 +

1 + ν

2
(40)

End for
3. Compute C′0 with relation (5)
4. Define the fractional integrator (1) approximation in the frequency band [ωb, ωh], by the transfer function

Iν
a (s) = C0

(
1 + s

ωh

1 + s
ωb

)ν

≈ Iν
N(s) = C′0

N
∏

k=1

(
1 + s

ω′k

)
N
∏

k=1

(
1 + s

ωk

) . (41)

The efficiency of this algorithm is highlighted on the example used at the beginning of Section 3,
but with a distribution D3 and M = 3. The parameter a1 is computed to reduce the relative error given
in relation (27). Given that only one parameter has to be found, it is done by a gridding of parameter
a1 on the interval [−0.1, 3]. A comparison of relative and absolute errors obtained with Algorithms 1
and 5 is given in Figure 8. The maximum values of these absolute and relative errors are given by:

max
ω
|Erel(ω)| = 1.0133× 10−2 max

ω
|Eabs(ω) | = 3.1903× 10−3. (42)Algorithms 2018, 11, x FOR PEER REVIEW  12 of 17 
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In comparison with Algorithm 1, these values are greatly reduced with Algorithm 5.

4. Fractional Model Approximation and Stability Issues

We now consider a fractional order model described by the pseudo state space description,{
dν

dtν x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
, (43)

where x(t) ∈
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n is the pseudo state vector, ν is the fractional order of the system and A ∈
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where matrix Ap is diagonal and can be written )( iP diagA  ,  ni ..1 . Using the Laplace 
transform, the characteristic equations of model (45) are thus 
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with approximation (15) or (18), these characteristic equations become: 

nxn,
B ∈
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where matrix Ap is diagonal and can be written )( iP diagA  ,  ni ..1 . Using the Laplace 
transform, the characteristic equations of model (45) are thus 

0, [1.. ]n
is i n   . (46) 

with approximation (15) or (18), these characteristic equations become: 
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where matrix Ap is diagonal and can be written )( iP diagA  ,  ni ..1 . Using the Laplace 
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where matrix Ap is diagonal and can be written )( iP diagA  ,  ni ..1 . Using the Laplace 
transform, the characteristic equations of model (45) are thus 

0, [1.. ]n
is i n   . (46) 

with approximation (15) or (18), these characteristic equations become: 

pxm are constant matrices. A solution for the implementation of such a
model consists in the approximation of the fractional order derivative by the approximation given by
Algorithm 3 or Algorithm 4. However, such an approximation has an impact on model stability. It is
well known that model (43) is stable if and only if all the eigenvalues of matrix A belong to the stability
domain Ds defined by:

Ds =
{

s = ρeiθ ∈
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where matrix Ap is diagonal and can be written )( iP diagA  ,  ni ..1 . Using the Laplace 
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To explain how the stability domain is transformed by approximation (15) in Algorithm 3 or (18)
in Algorithm 4, it is assumed that all the eigenvalues of model (43) are distinct. Thus, there exists a
change of variable z(t) = P x(t), such that model (43) can be written as:{

dν

dtν z(t) = APz(t) + BPu(t)
y(t) = CPz(t) + DPu(t)

, (45)

where matrix Ap is diagonal and can be written AP = diag(λi), i ∈ [1 . . . n]. Using the Laplace
transform, the characteristic equations of model (45) are thus

sn − λi = 0, i ∈ [1 . . . n]. (46)

with approximation (15) or (18), these characteristic equations become:

C0

N
∏

k=1

(
1 + s

ω′k

)
N
∏

k=1

(
1 + s

ωk

) − λi = 0 and C0s

N
∏

k=1

(
1 + s

ω′k

)
N
∏

k=1

(
1 + s

ωk

) − λi = 0. (47)

After approximation, model (43) is stable if characteristic Equation (47) has no root in the right
half part of the complex plane. To evaluate the location of these roots, the Cauchy argument principle
can be used. For that, the path Г in Figure 9 can be used.
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Images of path Г by approximations (15) and (18) are represented by Figure 10. They are compared
with the image of this path by sν.
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From these curves, the stability domain of model (43) can be deduced. The image of path Г by

relation (47) is the image of path Г by relations (15) and (18) translated by the vector
→
Vλi that appears

in Figure 10 and that links the point of the coordinate (Re(λi), Im(λi)) to the origin of the complex
plane. Thus, after this translation the origin of the complex plane is located at the point (Re(λi), Im(λi)).
As the denominator of relations (47) has no root inside the path Г, if the origin (after translation) of the
complex plane is inside one of the images, then according to argument principle, the corresponding
characteristic equation has one root inside the path Г and the system (43) is unstable. This permits the
following theorem.

Theorem 1. The stability domain in the complex plane, for the eigenvalues of matrix AP (or for the poles) of
model (45) or equivalently for model (43) is

- outside the domain defined by, C0

N
∏

k=1

(
1+ s

ω′k

)
N
∏

k=1

(
1+ s

ωk

) , s = jω, ω ∈ [−∞, ∞] for approximation (15)

- outside the domain on the right of the curve C0s

N
∏

k=1

(
1+ s

ω′k

)
N
∏

k=1

(
1+ s

ωk

) , s = jω, ω ∈ [−∞, ∞], for

approximation (18).

These stability domains are illustrated by Figure 11.
This analysis also highlights stability issues that can occur after approximation.

Considering Figure 12, which is an enlargement of Figure 11, it can be seen that some instability
domains for model (43) after approximation are inside the stability domains for model (43) (before
approximation). Some of these areas are marked with crosses on this figure. As a conclusion,
approximation of a stable model using approximations (15) or (18) can produce an unstable model if
some eigenvalues are located outside the intersections of the various stability domains.
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To avoid such a situation, a careful analysis of the fractional model eigenvalues is required
before approximation.

5. Conclusions

Geometric (or recursive) pole and zero distribution is a solution often found in the literature for
the approximation of fractional order models. Some writers even go so far as to say that “recursivity (in
the sense of geometric distribution) is fundamental in the non-integer differentiation synthesis” ([29],
p. 165). Such an assertion is questionable. It is indeed shown in this paper that this distribution and
the associated algorithms for its computation:

- result in the discretization of the impulse response of a fractional model,
- are sub-optimal,
- are one among an infinity of other permitted distributions.

The paper thus proposes several other distributions for the approximation of fractional operators
and fractional models. It also shows that the geometric distribution found in the literature leads to
stability issues after approximation that can be avoided by an analysis of the pole location (in the
complex plane) of the fractional model before approximation.

For all these reasons, it cannot be said that this “recursivity” is the physical reason for the observed
long memory behaviors as is sometime claimed for the modeling of capacitors [29] or other systems,
and the author is currently exploring stochastic reasons.
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