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Abstract: Since ancient times, maritime transportation has played a very important role for the 

global trade and economy of many countries. The volumes of all major types of cargo, which are 

transported by vessels, has substantially increased in recent years. Considering a rapid growth of 

waterborne trade, marine container terminal operators should focus on upgrading the existing 

terminal infrastructure and improving operations planning. This study aims to assist marine 

container terminal operators with improving the seaside operations and primarily focuses on the 

berth scheduling problem. The problem is formulated as a mixed integer linear programming 

model, minimizing the total weighted vessel turnaround time and the total weighted vessel late 

departures. A self-adaptive Evolutionary Algorithm is proposed to solve the problem, where the 

crossover and mutation probabilities are encoded in the chromosomes. Numerical experiments are 

conducted to evaluate performance of the developed solution algorithm against the alternative 

Evolutionary Algorithms, which rely on the deterministic parameter control, adaptive parameter 

control, and parameter tuning strategies, respectively. Results indicate that all the considered 

solution algorithms demonstrate a relatively low variability in terms of the objective function values 

at termination from one replication to another and can maintain the adequate population diversity. 

However, application of the self-adaptive parameter control strategy substantially improves the 

objective function values at termination without a significant impact on the computational time. 

Keywords: marine transportation; container terminals; optimization; evolutionary computation; 

parameter tuning; parameter control; solution quality; computational time 

 

1. Introduction 

Marine transportation has been playing a critical role for the global trade since ancient times [1]. 

By 1200 BCE, Egyptian vessels were able to support trade on the maritime routes that were leading 

to Sumatra (an island, located near Indonesia), which were considered to be the longest trade routes 

of that time [1]. Chinese merchants initiated the regional maritime trade networks in the South China 

Sea and the Indian Ocean towards the 10th century. European countries (including Spain, England, 

Portugal, the Netherlands, and France) established the global maritime trade network in 16th century [1]. 

Supported by new technologies [2–4], maritime trade networks rapidly expanded all over the globe. 

By 2006, waterborne trade accounted for ≈90% of global international trade by volume and ≈70% by 

value. 

Increasing waterborne trade tendencies have been observed after 2006. Based on a recent report, 

released by the United Nations Conference on Trade and Development in 2017, the total volumes of 

waterborne trade increased by 33.6% from 7.7 billion tons in 2006 to 10.3 billion tons in 2016 [5]. 
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Moreover, the volumes of all major types of cargo, transported by vessels, have significantly 

increased over the last ten years. Specifically, containerized trade increased by 59.9%, while major 

bulk cargo, dry bulk cargo, and oil/gas increased by 74.9%, 10.8%, and 13.2%, respectively, from 2006 

to 2016. The general consumption goods and high-value cargo are typically transported in 

containerized form. Containers are transferred among different continents by vessels, which are 

served at marine container terminals (MCTs). Rapid growth of waterborne trade requires MCT 

operators upgrading the existing terminal infrastructure and improving operations planning. 

MCT operations can be categorized in the following three types [1,6]: (1) seaside operations, 

which focus on service of arriving vessels (i.e., loading containers on vessels and unloading 

containers from vessels); (2) marshaling yard operations, which focus on temporary storage of 

containers in yard blocks of the MCT marshaling yard; and (3) landside operations, which focus on 

pick-up and delivery of containers by the inland transportation modes (generally, on-dock rail and/or 

drayage trucks). Efficient seaside operations are critical for MCT performance, as disruptions in the 

seaside operations may significantly delay service of the arriving vessels. A significant amount of 

previously conducted studies primarily focused on the berth scheduling problem (BSP), aiming to 

improve the seaside operations at MCTs [6]. In BSP, the MCT operator aims to assign arriving vessels 

for service at available MCT berthing positions and determine the service order of vessels at each 

berthing position. 

The BSP is a challenging decision problem, which can be reduced to the unrelated machine 

scheduling problem [6–12]. As underlined by Pinedo [13], the unrelated machine scheduling problem 

(therefore, the BSP as well) has NP-hard complexity. Hence, the realistic size problem instances of 

BSPs typically cannot be solved using the exact optimization algorithms to the global optimality 

within an acceptable computational time. To obtain good-quality berth schedules within a reasonable 

computational time, many different heuristic and metaheuristic algorithms have been presented in 

the BSP literature. For a detailed review of the BSP mathematical models and solution algorithms this 

study refers to the literature survey, conducted by Bierwirth and Meisel [6]. Many BSP studies 

applied Evolutionary Algorithms (EAs) and demonstrated their efficiency based on the numerical 

experiments [6–12,14–19]. EAs are biologically inspired metaheuristics, where the candidate 

solutions to the problem of interest are encoded in the chromosomes [20,21]. At the beginning, a 

typical EA initializes the population, represented by a group of chromosomes, and evaluates fitness 

(i.e., quality of the solutions) of the initial population chromosomes. After that, the EA starts an 

iterative procedure, where the chromosomes are continuously changed by applying specific EA 

operators (i.e., parent selection, crossover, mutation, offspring selection) with the main objective to 

discover superior solutions. The iterative procedure is terminated once the EA satisfies a specific 

convergence criterion. 

Each EA has several parameters, including population size (i.e., the number of chromosomes in 

the population), crossover probability, mutation probability, selection operator parameters, and 

others. There are two approaches for selection of the EA parameters [20–22], including the following 

(see Figure 1): (1) parameter tuning; and (2) parameter control. Note that the aforementioned 

approaches can be used to set parameters not only for EAs, but also for the other heuristic and 

metaheuristic algorithms. As for the parameter tuning approach, different values of each parameter 

are evaluated for a given EA, and the best parameter values are selected based on the analysis of a 

tradeoff between the objective function and computational time values (the latter analysis is referred 

to as the “parameter tuning” analysis). The parameter tuning approach assumes that the selected 

parameter values remain unchanged throughout the algorithmic run. 
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Figure 1. EA parameter selection approaches. 

On the other hand, the parameter control approach adjusts the values of EA parameters 

throughout the algorithmic run based on certain strategies. There are three common types of the 

parameter control strategies [20–22], including the following (see Figure 1): (1) deterministic—the 

algorithmic parameters are altered based on a certain counter (e.g., computational time, number of 

generations) without any feedback from the search; (2) adaptive—the algorithmic parameters are 

altered based on feedback from the search (e.g., behavior of the objective/fitness function); and (3) 

self-adaptive—the algorithmic parameters are encoded in the chromosomes and evolve throughout 

the algorithmic run. 

The EAs, presented in the BSP literature, primarily rely on the parameter tuning strategy. In 

some of the recent BSP studies, the deterministic and adaptive parameter control strategies were 

implemented within the proposed EAs [10,12]. Both deterministic and adaptive parameter control 

strategies were found to be promising and outperformed the parameter tuning strategy. Specifically, 

the EAs with parameter control can more efficiently move along the search space, identify promising 

domains of the search space, and exploit the identified domains for superior solutions [10,12]. On the 

other hand, setting constant parameter values, which do not change throughout the algorithmic run 

(i.e., the parameter tuning strategy), typically limits the explorative and exploitative EA capabilities. 

Although the self-adaptive parameter control strategy has been used in the EA literature [20–22], 

none of the published to date studies applied such parameter control strategy for the BSP. The 

contributions of this study to the state-of-the-art can be summarized as follows:  

(1) A novel self-adaptive EA is proposed for the BSP, where the crossover and mutation 

probabilities are encoded in the chromosomes and evolve throughout the algorithmic run;  

(2) A novel heuristic is presented for the population initialization, which accounts for the spatial 

requirements in berth scheduling;  

(3) A comprehensive comparative analysis is conducted to evaluate the EA with self-adaptive 

parameter control strategy against the alternative EAs, which rely on the deterministic parameter 

control, adaptive parameter control, and parameter tuning strategies, respectively; and  

(4) The major algorithmic performance indicators are considered, including objective function and 

computational time values, convergence patterns, evolution of the self-adaptive algorithmic 

parameter values, algorithmic stability, and changes in the population diversity.  

The remaining sections of this manuscript are structured in the following manner. Section 2 

provides a detailed description of the BSP studied herein, while Section 3 presents a mixed integer 

linear mathematical model for the problem. Section 4 outlines the main steps of the developed self-

adaptive EA and provides a detailed description of each step. Section 5 focuses on a detailed 

complexity analysis of the developed self-adaptive EA. Section 6 describes the numerical experiments, 

which were conducted throughout this study to evaluate performance of the proposed solution 

algorithm. The last section summarizes findings of this study and discusses potential extensions, 

which can be explored as a part of the future research.  
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2. MCT Operations Description 

This study focuses on modeling the seaside operations at a multi-user MCT, where vessels from 

different liner shipping companies deliver and pick up containers. Various MCT berthing layouts 

have been reported in the BSP literature (including discrete, continuous, hybrid, indented, and 

channel) [6,17], and the commonly used discrete berthing layout will be adopted in this study for the 

considered MCT. Based on the discrete berthing layout, the MCT wharf is partitioned in a set of 

berthing positions, which will be referred to as 𝐽 = {1, … , 𝑛}, and one vessel can be moored at a given 

berthing position at the time. The MCT layout, which will be modeled in this study, is presented in 

Figure 2. Let 𝐼 = {1, … , 𝑚} be a set of arriving vessels, which must be served at the MCT.  

There are two common types of vessel arrivals, which have been modeled in the BSP literature, 

including the following [6]: (a) static vessel arrivals—all vessels have already arrived at the MCT, and 

the berth schedule should be designed based on the specific objectives; and (b) dynamic vessel 

arrivals—vessels have not arrived at the MCT yet, but the MCT operator has the information 

regarding the expected vessel arrival time (which is negotiated with the corresponding liner shipping 

company). The dynamic vessel arrivals will be considered in this study. The vessels are assumed to 

arrive at the MCT at the scheduled time (𝑇𝑖
𝐴, 𝑖 ∈ 𝐼—measured in h). The scope of this study does not 

include modeling uncertainty in vessel arrivals due to different factors, including adverse weather, 

reduction in the vessel sailing speed as a result of the main engine malfunctioning, potential delays 

in vessel service at preceding ports, human errors, and others. 

 

Figure 2. Layout of the considered MCT. 

Upon arrival at the MCT, each vessel will be towed by tug boats to the assigned MCT berthing 

position. In some cases, the assigned berthing position may not be available at the moment (as the 

other vessel is being served), and the vessel will be towed to the dedicated waiting area, which is 

located near the MCT. Note that increasing waiting time (𝑻𝑖
𝑊𝑇 , 𝑖 ∈ 𝐼—measured in h) of vessels may 

negatively affect the MCT operations, as increasing number of waiting vessels may cause congestion 

in the access channel and result in navigational difficulties for the vessels, entering and leaving the 

MCT. The MCT operator should consider the length (𝐿𝑖
𝑉 , 𝑖 ∈ 𝐼—measured in ft.) and draft (𝐻𝑖

𝑉 , 𝑖 ∈

𝐼—measured in ft.) of the arriving vessels in the design of berth schedules. Each berthing position 
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has two spatial attributes, including length ( 𝐿𝑗
𝐵 , 𝑗 ∈ 𝐽 —measured in ft.) and depth ( 𝐻𝑗

𝐵 , 𝑗 ∈ 𝐽—

measured in ft.). If vessel 𝑖 does not satisfy certain horizontal and vertical clearance requirements 

(which will be denoted as 𝐷𝑖
𝐻 , 𝑖 ∈ 𝐼 and 𝐷𝑖

𝑉 , 𝑖 ∈ 𝐼, respectively, and are both measured in ft.), it 

cannot be assigned for service at berthing position 𝑗. Moreover, service of a given vessel cannot start 

before the time, when the assigned berthing position becomes available in the planning horizon at 

the first time (𝑇𝑗
𝐵 , 𝑗 ∈ 𝐽—measured in h). Once the assigned berthing position becomes available, the 

vessel is moored, and the on-shore quay cranes start loading and unloading containers (see Figure 2). 

There are several other important factors, which should be considered by the MCT operator in 

the design of berth schedules, including the following: (1) vessel handling rates; (2) allocation of the 

available handling equipment; and (3) allocation of the available storage space. Vessel handling rates, 

measured in the number of twenty-foot equivalent units (TEUs) handled per hour, are negotiated 

between the MCT operator and liner shipping companies. To provide the negotiated vessel handling 

rates, the MCT operator has to allocate the required amount of handling equipment for each vessel, 

including quay cranes for loading containers on the vessel and unloading containers from the vessel, 

internal transport vehicles (e.g., yard trucks, automated guided vehicles, straddle carriers, automated 

lifting vehicles) for transfer of containers from the seaside to the marshaling yard, gantry cranes for 

handling containers in the marshaling yard, and other miscellaneous equipment. The handling time 

of vessel 𝑖  at berthing position 𝑗  (𝑇𝑖𝑗
𝐻𝑇 , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽—measured in h) is determined based on the 

number of containers to be handled for vessel 𝑖 and the handling productivity, negotiated with the 

liner shipping company.  

Furthermore, the MCT operator must allocate the storage space in the marshaling yard for 

containers, delivered by each vessel. Generally, the storage space is allocated as close as possible to 

the berthing position, where a given vessel is originally planned to be assigned for service (the latter 

term is also known as “preferred berthing position” in the BSP literature [6,11]). Because of changes 

in the original berth schedule, a given vessel may be assigned for service at an alternative berthing 

position (e.g., to reduce the waiting time of that vessel in case if its “preferred berthing position” is 

occupied by another vessel at the moment). Due to changes in the original berth assignment, the 

vessel handling time will increase since the internal transport vehicles will be required to travel 

longer distances between the alternative berthing position and the assigned storage space in the 

marshaling yard (as compared to the travel distance between the “preferred berthing position” and 

the assigned storage space). 

Based on the contractual agreement with the MCT operator, the liner shipping company requests 

a specific departure time (𝑇𝑖
𝐷 , 𝑖 ∈ 𝐼—measured in h). It is critical for the liner shipping company to 

ensure that each vessel will leave the MCT at the scheduled time to avoid potential delays at the 

consecutive ports, which must be visited by that vessel. The MCT operator may be even expected to 

pay penalties to the liner shipping company in case of late vessel departures [6]. To design an efficient 

berth schedule, the MCT operator must account for priority of the arriving vessels. The priority of 

vessels will be assigned using weights (𝑊𝑖 , 𝑖 ∈ 𝐼—a real-valued number, varying from 0.10 to 1.00). 

The latter methodology has been widely used in the BSP literature [6]. The overall objective of the 

MCT operator is to develop the optimal berth schedule, which will allow minimizing the total 

weighted vessel waiting time, the total weighted vessel handling time, and the total weighted vessel 

late departures. 

3. Model Formulation 

This section of the manuscript focuses on description of the nomenclature that will be used 

throughout this study and presents a mixed integer linear mathematical model for the discrete 

dynamic berth scheduling problem with spatial requirements (BSPSR). A detailed description of the 

BSPSR mathematical model components is presented in Table 1. 
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Table 1. Description of the mathematical model components. 

Model Component 
Description 

Type Nomenclature 

Sets 

𝐼 = {1, … , 𝑚} set of arriving vessels (vessels) 

𝐽 = {1, … , 𝑛} set of available berthing positions (berthing positions) 

𝐾 = {1, … , 𝑠} set of vessel service orders (service orders) 

Decision 

Variables 

𝒙𝑖𝑗𝑘 , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 

𝑘 ∈ 𝐾 

=1 if vessel 𝑖 is assigned to berthing position 𝑗 in service 

order 𝑘 (=0 otherwise) 

Auxiliary 

Variables 

𝑻𝑖𝑗𝑘
𝐼𝐷 , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽,  

𝑘 ∈ 𝐾 

idle time of berthing position 𝑗 between the start service time 

of vessel 𝑖 and a preceding vessel served as 𝑘 − 1 vessel (h) 

𝑻𝑖
𝑆𝑇 , 𝑖 ∈ 𝐼 start service time of vessel 𝑖 (h) 

𝑻𝑖
𝐹𝑇 , 𝑖 ∈ 𝐼 finish service time of vessel 𝑖 (h) 

𝑻𝑖
𝑊𝑇 , 𝑖 ∈ 𝐼 waiting time of vessel 𝑖 (h) 

𝑻𝑖
𝐿𝐷 , 𝑖 ∈ 𝐼 late departure time of vessel 𝑖 (h) 

Parameters 

𝑚 number of arriving vessels (vessels) 

𝑛 number of available berthing positions (berthing positions) 

𝑠 number of vessel service orders (service orders) 

𝑇𝑗
𝐵 , 𝑗 ∈ 𝐽 

time when berthing position 𝑗 becomes available in the 

planning horizon for the first time (h) 

𝑇𝑖
𝐴, 𝑖 ∈ 𝐼 arrival time of vessel 𝑖 at the MCT (h) 

𝑇𝑖𝑗
𝐻𝑇 , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 handling time of vessel 𝑖 at berthing position 𝑗 (h) 

𝑇𝑖
𝐷 , 𝑖 ∈ 𝐼 negotiated departure time of vessel 𝑖 (h) 

𝐿𝑖
𝑉 , 𝑖 ∈ 𝐼 length of vessel 𝑖 (ft.) 

𝐿𝑗
𝐵 , 𝑗 ∈ 𝐽 length of berthing position 𝑗 (ft.) 

𝐷𝑖
𝐻 , 𝑖 ∈ 𝐼 horizontal clearance requirement for vessel 𝑖 (ft.) 

𝐻𝑖
𝑉 , 𝑖 ∈ 𝐼 draft of vessel 𝑖 (ft.) 

𝐻𝑗
𝐵 , 𝑗 ∈ 𝐽 depth of berthing position 𝑗 (ft.) 

𝐷𝑖
𝑉 , 𝑖 ∈ 𝐼 vertical clearance requirement for vessel 𝑖 (ft.) 

𝑊𝑖 , 𝑖 ∈ 𝐼 weight of vessel 𝑖 (value ranging from 0.10 to 1.00) 

𝛤 large positive number 

The objective function (1) of the BSPSR mathematical model, denoted as 𝒁, aims to minimize 

the total weighted turnaround time of vessels (which is composed of the total weighted vessel waiting 

and handling times) and the total weighted vessel late departures. 

𝑚𝑖𝑛 𝒁 = [∑(𝑊𝑖𝑻𝑖
𝑊𝑇)

𝑖∈𝐼

+ ∑ ∑ ∑(𝑊𝑖𝑇𝑖𝑗
𝐻𝑇𝒙𝑖𝑗𝑘)

𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

+ ∑(𝑊𝑖𝑻𝑖
𝐿𝐷)

𝑖∈𝐼

] (1) 

Constraint set (2) indicates that no more than one vessel can be served at each berthing position 

at the time. 

∑ 𝒙𝑖𝑗𝑘

𝑖∈𝐼

≤ 1 ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (2) 

Constraint set (3) guarantees that each vessel will be assigned to one of the available berthing 

positions in any service order. 

∑ ∑ 𝒙𝑖𝑗𝑘

𝑘∈𝐾𝑗∈𝐽

= 1 ∀𝑖 ∈ 𝐼 (3) 

Constraint sets (4) and (5) ensure that the horizontal and vertical clearance requirements will not 

be violated for each vessel moored at one of the MCT berthing positions. 

(𝐿𝑖
𝑉 + 𝐷𝑖

𝐻)𝒙𝑖𝑗𝑘 ≤ 𝐿𝑗
𝐵 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (4) 

(𝐻𝑖
𝑉 + 𝐷𝑖

𝑉)𝒙𝑖𝑗𝑘 ≤ 𝐻𝑗
𝐵 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (5) 
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Constraint set (6) guarantees that service of each vessel will start after its arrival at the MCT. 

∑ ∑ (𝑇𝑖′𝑗
𝐻𝑇𝒙𝑖′𝑗𝑘′ + 𝑻𝑖′𝑗𝑘′

𝐼𝐷 )

𝑘′∈𝐾:𝑘′<𝑘𝑖′∈𝐼:𝑖′≠𝑖

+ 𝑻𝑖𝑗𝑘
𝐼𝐷 − (𝑇𝑖

𝐴 − 𝑇𝑗
𝐵)𝒙𝑖𝑗𝑘 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (6) 

Constraint set (7) calculates the start service time for each vessel calling the MCT. 

𝑻𝑖
𝑆𝑇 ≥ ∑ ∑ (𝑇𝑖′𝑗

𝐻𝑇𝒙𝑖′𝑗𝑘′ + 𝑻𝑖′𝑗𝑘′
𝐼𝐷 )

𝑘′∈𝐾:𝑘′<𝑘𝑖′∈𝐼:𝑖′≠𝑖

+ 𝑻𝑖𝑗𝑘
𝐼𝐷 + 𝑇𝑗

𝐵 − 𝛤(1 − 𝒙𝑖𝑗𝑘) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (7) 

Constraint set (8) computes the waiting time of each vessel before its service start at the MCT. 

𝑻𝑖
𝑊𝑇 ≥ 𝑻𝑖

𝑆𝑇 − 𝑇𝑖
𝐴 ∀𝑖 ∈ 𝐼 (8) 

Constraint set (9) computes the finish service time for each vessel calling the MCT. 

𝑻𝑖
𝐹𝑇 = 𝑻𝑖

𝑆𝑇 + ∑ ∑(𝑇𝑖𝑗
𝐻𝑇𝒙𝑖𝑗𝑘)

𝑘∈𝐾𝑗∈𝐽

 ∀𝑖 ∈ 𝐼 (9) 

Constraint set (10) estimates the late departure hours for each vessel calling the MCT. 

𝑻𝑖
𝐿𝐷 ≥ 𝑻𝑖

𝐹𝑇 − 𝑇𝑖
𝐷 ∀𝑖 ∈ 𝐼 (10) 

Constraint sets (11)–(13) define the nature of decision variables, auxiliary variables, and 

parameters of the BSPSR mathematical model. 

𝒙𝑖𝑗𝑘 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (11) 

𝑚, 𝑛, 𝑠 ∈ 𝑁 (12) 

𝑻𝑖𝑗𝑘
𝐼𝐷 , 𝑻𝑖

𝑆𝑇 , 𝑻𝑖
𝐹𝑇 , 𝑻𝑖

𝑊𝑇 , 𝑻𝑖
𝐿𝐷, 𝑇𝑗

𝐵, 𝑇𝑖
𝐴, 𝑇𝑖𝑗

𝐻𝑇 , 𝑇𝑖
𝐷, 𝐿𝑖

𝑉 , 𝐿𝑗
𝐵, 𝐷𝑖

𝐻, 𝐻𝑖
𝑉 , 𝐻𝑗

𝐵, 𝐷𝑖
𝑉 , 𝑊𝑖 , 𝛤 ∈ 𝑅+ ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (13) 

4. Design of a Self-Adaptive Evolutionary Algorithm 

This section of the manuscript focuses on a detailed description of the self-adaptive EA (SAEA), 

which was developed to solve the realistic size problem instances of the BSPSR mathematical model 

within an acceptable computational time. Unlike typical EAs, the proposed SAEA algorithm deploys 

a self-adaptive parameter control strategy, where the crossover and mutation probabilities (which 

are considered to be the major EA parameters [20,21]) are encoded in the chromosomes and change 

throughout evolution of the algorithm from one generation to another. The main SAEA steps are 

presented in Section 4.1 of the manuscript, while a detailed description of each SAEA step is 

presented in Sections 4.2–4.9 of the manuscript. 

4.1. The Main SAEA Steps 

Figure 3 presents the main SAEA steps. At the beginning, the data structures are initialized for 

the required BSPSR and SAEA parameters (step 0). Also, in step 0, the SAEA algorithm starts the 

generation count (𝑔 = 1). In the next steps, the initial population is created (step 1), and fitness of the 

initial population is evaluated (step 2). After that, the algorithm enters the main loop and updates the 

generation count (step 3). Next, the parent selection is executed to identify the population 

chromosomes that will participate in the SAEA operations (step 4). Then, the offspring chromosomes 

are produced as a result of applying the SAEA algorithmic operators to the parent chromosomes 

(step 5). Also, in step 5, the repairing operator is executed to repair the infeasible offspring, which 

were produced as a result of the SAEA operations (if any). Fitness of the repaired offspring 

chromosomes is evaluated in step 6. Then, the offspring chromosomes for the next generation are 

determined (step 7). The SAEA algorithm is terminated once the maximum allowable number of 

generations (𝑔𝑙𝑖𝑚) has been reached (which will be set as a termination criterion). When the algorithm 

is terminated, it will return the best solution, which corresponds to the berth schedule with the least 

possible sum of the total weighted vessel turnaround time and the total weighted vessel late departures. 
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Figure 3. The main SAEA steps. 

4.2. Representation of Solutions 

Chromosomes (or individuals) are used in EAs to represent a solution to a given problem [20,21]. 

A hybrid chromosome representation will be adopted in this study, where one part of the 

chromosome will be represented using integers, while the other part will be represented using real-

valued numbers. The first part of each chromosome, which contains integer numbers, will be used to 

denote the vessel to berthing position to service order assignment (i.e., the BSPSR solution). The 

second part of each chromosome, which contains real-valued numbers, will be used to denote the 

crossover and mutation probabilities (that will be referred to as 𝑝𝑐  and 𝑝𝑚 , respectively). The 

chromosome components (e.g., berthing position identifiers, vessel identifiers, crossover and 

mutation probabilities) will be referred to as “genes” [20]. Location of a gene along the chromosome 

will be referred to as “locus” [20]. Value of a gene will be referred to as “allele” [20]. The adopted 

chromosome representation is not common among canonical EAs, which have been used in the BSP 

literature, as the proposed SAEA applies the self-adaptive parameter control strategy. An example of 

the SAEA chromosome representation is illustrated in Figure 4. 
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Figure 4. An example of the SAEA chromosome representation. 

In the considered example, 8 vessels are scheduled for service at the MCT. Berth “1” is assigned 

to serve vessels “3”, “2”, and “7” (in that specific service order); on the other hand, berth “2” is 

assigned to serve vessels “5”, “8”, “1”, “6”, and “4” (in that specific service order). Moreover, the 

probability of the presented chromosome to undergo a crossover operation (if selected as a parent) is 

𝑝𝑐 = 0.50, while the probability of each gene of the presented chromosome to undergo a mutation 

operation is 𝑝𝑚 = 0.05. The length of each chromosome in the population can be determined as |𝐼| +

2, i.e., summation of the number of vessels, calling for service at the MCT, and “2”, where additional 

2 genes are required to store the information regarding the crossover and mutation probabilities. 

4.3. Generation of the Initial Chromosomes and Population 

The first half of the SAEA population will be initialized randomly (i.e., vessels will be assigned 

randomly to the MCT berthing positions, while the crossover and mutation probabilities will be 

generated as random values, ranging between 0.01 and 1.00). The second half of the SAEA population 

will be initialized using a local search heuristic for the vessel to berthing position to service order 

assignment, while the crossover and mutation probabilities will be still generated randomly. The 

local search heuristic is based on the First Come First Served (FCFS) policy. Note that a typical FCFS 

policy, which has been widely used in the BSP literature, will not be applicable for the BSPSR 

mathematical model, as it may cause violation of the spatial requirements (i.e., a vessel can be 

assigned to the berthing position, which does not have sufficient length and/or depth).  

This study proposes the FCFS with spatial requirements (FCFS-SR) heuristic, which ensures that 

the spatial requirements are not violated for the generated berth schedules. The main steps of the 

FCFS-SR heuristic are outlined in Algorithm 1. Notation 𝑻�̃� is used in Algorithm 1 to represent the 

updated availability of berthing positions (measured in h), while the rest of notations are adopted 

from Section 3 of the manuscript. The data structures, required by the FCFS-SR heuristic, are 

initialized in step 0. Then, the vessels to be served at the MCT are sorted based on their arrival times 

in step 1. The availability of berthing positions is set equal to the initial availability in step 2. After 

that, the FCFS-SR heuristic starts an iterative procedure (steps 4–13), where the first available berthing 

position, which can accommodate the next arriving vessel (and satisfy both horizontal and vertical 

clearance requirements), is determined in steps 5 and 6. The earliest service order for the first 

available berthing position is identified in step 7. Then, the vessel is assigned to the first available 

berthing position, which satisfies both horizontal and vertical clearance requirements, in the earliest 

service order (step 8). The start and finish vessel service times are estimated in steps 9 and 10. The 

availability of a berthing position is updated based on the vessel finish service time in step 11. The 

FCFS-SR heuristic terminates an iterative procedure, once the initial vessel to berthing position to 

service order assignment is generated for all vessels, calling for service at the MCT. 

Note that the FCFS-SR heuristic is deterministic in its nature; therefore, the chromosome 

portions, which represent vessel to berthing position to service order assignments and are created 

using FCFS-SR, will be identical. The latter will substantially limit the explorative capabilities at early 

stages of the SAEA run. To maintain the population diversity and improve the SAEA explorative 

capabilities, only half of the initial SAEA population will be generated using the FCFS-SR heuristic, while 

another half will be created randomly (as discussed at the beginning of Section 4.3 of the manuscript). The 

number of chromosomes in the population (i.e., population size: 𝛩) will be established based on the 

parameter tuning analysis, which is described in Section 6.2 of the manuscript. 
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Algorithm 1: First Come First Served with Spatial Requirements (FCFS-SR) Heuristic 

𝑭𝑪𝑭𝑺-𝑺𝑹 (𝐼, 𝐽, 𝐾, 𝑇𝐵, 𝑇𝐴, 𝑇𝐻𝑇 , 𝐿𝑉 , 𝐿𝐵, 𝐷𝐻, 𝐻𝑉 , 𝐻𝐵, 𝐷𝑉) 

in: 𝐼 = {1, … , 𝑚}—set of vessels; 𝐽 = {1, … , 𝑛}—set of berths; 𝐾 = {1, … , 𝑠}—set of service orders; 𝑇𝐵—berth 

availability; 𝑇𝐴 —vessel arrival times; 𝑇𝐻𝑇 —vessel handling times; 𝐿𝑉 —length of vessels; 𝐿𝐵 —length of 

berths; 𝐷𝐻 —horizontal clearance requirements; 𝐻𝑉 —draft of vessels; 𝐻𝐵 —depth of berths; 𝐷𝑉 —vertical 

clearance requirements 

out: 𝒙—initial vessel to berth to service order assignment 

0: |𝐼| ← 𝑚; |𝒙| ← 𝑚 ∙ 𝑛 ∙ 𝑠; |𝑻�̃�| ← 𝑛; |𝑻𝑆𝑇| ← 𝑚; |𝑻𝐹𝑇| ← 𝑚            ⊲ Initialization 

1: 𝐼 ← 𝑺𝒐𝒓𝒕(𝐼, 𝑇𝐴)               ⊲ Sort the vessels based on their arrival times at the MCT 

2: 𝑻�̃� ← 𝑇𝐵             ⊲ Set the initial availability of berthing positions 

3: 𝑖 ← 1 

4: for all 𝑖 ∈ 𝐼 do 

5:  𝑏 ← 𝒇𝒊𝒏𝒅(𝐿𝐵 ≥ 𝐿𝑖
𝑉 + 𝐷𝑖

𝐻  𝒂𝒏𝒅 𝐻𝐵 ≥ 𝐻𝑖
𝑉 + 𝐷𝑖

𝑉)    ⊲ Identify potential berthing positions for a vessel 

6:  𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑏(𝑻𝑏
�̃�)               ⊲ Select the first available berthing position 

7:  𝑘 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘(𝒙𝑖𝑗𝑘)             ⊲ Determine the earliest service order 

8:  𝒙𝑖𝑗𝑘 ← 1        ⊲ Assign a vessel to the first available berthing position in the earliest service order 

9:  𝑻𝑖
𝑆𝑇 ← 𝑚𝑎𝑥(𝑇𝑖

𝐴; 𝑻𝑗
�̃�)            ⊲ Calculate the start vessel service time 

10:  𝑻𝑖
𝐹𝑇 ← 𝑻𝑖

𝑆𝑇 + 𝑇𝑖𝑗
𝐻𝑇               ⊲ Calculate the finish vessel service time 

11:  𝑻𝑗
�̃� ← 𝑻𝑖

𝐹𝑇                       ⊲ Update the availability of a berthing position 

12:  𝑖 ← 𝑖 + 1 

13: end for 

14: return 𝒙 
 

4.4. Fitness Function 

Let 𝑄 = {1, … , 𝑎} be a set of individuals in the SAEA population and 𝐺 = {1, … , 𝑏} be a set of 

generations. The fitness value of individual 𝑞 in generation 𝑔 (𝐹𝑖𝑡𝑞𝑔) is calculated in the developed 

SAEA algorithm based on the following relationship: 

𝐹𝑖𝑡𝑞𝑔 = 𝒁𝑞𝑔 + 𝛼𝛹𝑞𝑔
𝐻 + 𝛽𝛹𝑞𝑔

𝑉  ∀𝑞 ∈ 𝑄, 𝑔 ∈ 𝐺 (14) 

Along with the objective function value of the BSPSR mathematical model (𝒁𝑞𝑔), the fitness 

function includes the penalty term for violation of the horizontal clearance requirements (𝛼𝛹𝑞𝑔
𝐻 , 

where 𝛼 —horizontal clearance violation penalty, measured in h/ft.; 𝛹𝑞𝑔
𝐻 —horizontal clearance 

violation for individual 𝑞 in generation 𝑔, measured in ft.) and the penalty term for violation of the 

vertical clearance requirements (𝛽𝛹𝑞𝑔
𝑉 , where 𝛽—vertical clearance violation penalty, measured in 

h/ft.; 𝛹𝑞𝑔
𝑉 —vertical clearance violation for individual 𝑞  in generation 𝑔 , measured in ft.). The 

penalty terms are introduced to adjust the fitness function values for infeasible individuals (that 

violate the horizontal and/or vertical clearance requirements for vessels), which could be generated 

as a result of the SAEA operations. The horizontal clearance violation for individual 𝑞 in generation 

𝑔 can be estimated as a sum of horizontal clearance violations of all vessels that are served at the 

MCT berthing positions as follows:  

𝛹𝑞𝑔
𝐻 = ∑ ∑ ∑ 𝑚𝑎𝑥

𝑘∈𝐾

{0; [(𝐿𝑖
𝑉 + 𝐷𝑖

𝐻) − 𝐿𝑗
𝐵]𝒙𝑖𝑗𝑘}

𝑗∈𝐽𝑖∈𝐼

 ∀𝑞 ∈ 𝑄, 𝑔 ∈ 𝐺 (15) 

The vertical clearance violation for individual 𝑞 in generation 𝑔 can be estimated as a sum of 

vertical clearance violations of all vessels that are served at the MCT berthing positions as follows:  

𝛹𝑞𝑔
𝑉 = ∑ ∑ ∑ 𝑚𝑎𝑥

𝑘∈𝐾

{0; [(𝐻𝑖
𝑉 + 𝐷𝑖

𝑉) − 𝐻𝑗
𝐵]𝒙𝑖𝑗𝑘}

𝑗∈𝐽𝑖∈𝐼

 ∀𝑞 ∈ 𝑄, 𝑔 ∈ 𝐺 (16) 

Based on Equations (15) and (16), chances of the individuals to survive will increase with 

decreasing degree of violation of horizontal and/or vertical clearance requirements. It is important to 

set the appropriate values of 𝛼 and 𝛽 penalty terms to ensure that infeasible individuals will have 

much lower chances to survive as compared to feasible individuals. The appropriate values of 

penalty terms 𝛼  and 𝛽  will be established based on the parameter tuning analysis, which is 

described in Section 6.2 of the manuscript. 
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4.5. Parent Selection Procedure 

Once SAEA enters the main loop, it deploys the parent selection procedure to determine the 

chromosomes that will participate in the SAEA operations and produce the offspring in a given 

generation. A Roulette Wheel Selection, which has been widely used in canonical Genetic Algorithms 

and Genetic Programming [20], will be adopted in this study at the parent selection stage. Based on 

the Roulette Wheel Selection (RWS) mechanism, each individual in the population is assigned a 

portion of a roulette wheel. A larger portion of the roulette wheel will be assigned to the fittest 

individual (i.e., the individual with lower objective function value, since the proposed BSPSR 

mathematical model aims to minimize the total weighted vessel turnaround time and the total 

weighted vessel late departures). The roulette wheel is continuously rotated, and one individual is 

selected at each rotation. The chance of a given individual to be selected is proportional to its fitness. 

The main steps of the RWS mechanism are outlined in Algorithm 2. 

The data structures, required by the RWS mechanism, are initialized in step 0. Then, the fitness 

values of the population chromosomes are adjusted (i.e., 𝐹𝑖𝑡𝑔
𝑎𝑢𝑥 values are estimated) in steps 2–5, 

as the BSPSR mathematical model has a minimization objective function. The adjusted fitness values 

of the population chromosomes are normalized in step 6 (so, the cumulative population fitness after 

normalization will be equal to 1.00). After that, RWS starts an iterative procedure (steps 7–11), where 

a random value between 0.00 and 1.00 is generated in step 8 (i.e., the roulette wheel is rotated). Then, 

the individual with a normalized fitness value, which is close to the randomly generated value, is 

selected to become a parent (steps 9 and 10). An iterative procedure is terminated by RWS once the 

required amount of parent chromosomes has been selected. 

Algorithm 2: Roulette Wheel Selection (RWS) 

𝑹𝑾𝑺(𝑃𝑜𝑝𝑔, 𝐹𝑖𝑡𝑔) 

in: 𝑃𝑜𝑝𝑔—population in generation 𝑔; 𝐹𝑖𝑡𝑔—fitness of chromosomes in generation 𝑔 

out: 𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑔—parent chromosomes in generation 𝑔 

0: |𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑔| ←⊘; |𝐹𝑖𝑡𝑔
𝑎𝑢𝑥| ← |𝑃𝑜𝑝𝑔|; |𝐹𝑖𝑡𝑔

𝑎𝑢𝑥
| ← |𝑃𝑜𝑝𝑔|         ⊲ Initialization 

1: 𝑞 ← 1 

2: while 𝑞 ≤ |𝑃𝑜𝑝𝑔| do 

3:  𝐹𝑖𝑡𝑞𝑔
𝑎𝑢𝑥 ← 1/𝐹𝑖𝑡𝑞𝑔          ⊲ Adjust the fitness value of a given chromosome 

4:  𝑞 ← 𝑞 + 1  

5: end while 

6: 𝐹𝑖𝑡𝑔

𝑎𝑢𝑥
← 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆(𝐹𝑖𝑡𝑔

𝑎𝑢𝑥)    ⊲ Normalize the adjusted fitness values of the population chromosomes 

7: while |𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑔| < |𝑃𝑜𝑝𝑔| do 

8:  𝑉𝑎𝑙 ← 𝑹𝒂𝒏𝒅(0.00; 1.00)        ⊲ Generate a random value between 0.00 and 1.00 

9:  𝑖 ← 𝒇𝒊𝒏𝒅(𝐹𝑖𝑡𝑔

𝑎𝑢𝑥
− 𝑉𝑎𝑙 > 0)     ⊲ Select the individual based on a randomly generated value 

10:  𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑔 ← 𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑔 ∪ {𝑃𝑜𝑝𝑖𝑔}  ⊲ The selected individual is added to the set of parent chromosomes 

11: end while 

12: return 𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑔 
 

4.6. SAEA Operations 

Once the parent chromosomes are selected by the SAEA algorithm, the crossover and mutation 

operators will be executed to produce and mutate the offspring chromosomes. Two custom operators 

were designed in this study to perform the crossover and mutation operations for the adopted hybrid 

chromosome representation, which contains both integer and real-valued genes. A detailed 

description of the crossover and mutation operations is presented in Sections 4.6.1 and 4.6.2 of the 

manuscript, respectively. 
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4.6.1. Crossover Operation 

The crossover operation plays an important role in the design of EAs, as it allows exploration of 

various domains of the search space [20,21]. Typical crossover operators, which have been widely 

used in the BSP literature (e.g., one-point crossover, two-point crossover, partially mapped 

crossover), will not be applicable for the adopted hybrid chromosome representation (where the 

vessel to berthing position to service order assignment is defined using integer numbers, while the 

crossover and mutation probabilities are defined using real-valued numbers), as they may generate 

infeasible offspring chromosomes. A custom crossover operator was developed in this study, which 

combines features of the order crossover and the whole arithmetic crossover. An example of the 

SAEA crossover operation is presented in Figure 5, where two parent chromosomes are selected at 

random from the available parent chromosomes. Note that the probability of a given parent 

chromosome to undergo a crossover operation is determined by parameter 𝑝𝑐, which is encoded in 

each chromosome of the population (since the proposed SAEA algorithm is self-adaptive). 

 

Figure 5. An example of the SAEA crossover operation. 

Once the parent chromosomes are selected, the SAEA algorithm applies the order crossover for 

the integer portion of the parent chromosomes. In the considered example, a segment of the integer 

chromosome portion with vessels “7”, “5”, “8”, and “1” is copied from parent “1” to offspring “1”. 

The segment length is set randomly by SAEA and, hence, may vary from one crossover operation to 

another. After that, the genes with missing vessels are copied from parent “2”. Specifically, the genes 

with vessels “4”, “3”, “2” and “6” are copied from parent “2” to offspring “1” for the considered 

example (see Figure 5). A similar procedure is used to generate the integer portion for offspring “2”. 

Once the order crossover has been applied for the integer portion of the parent chromosomes, the 

SAEA algorithm deploys the whole arithmetic crossover for the real-valued portion of the parent 

chromosomes. Let 𝑋1  and 𝑋2  be the alleles of the parent chromosomes, and 𝑌1  and 𝑌2  be the 

alleles of the offspring chromosomes. Note that 𝑋1, 𝑋2, 𝑌1, and 𝑌2  correspond to the real-valued 

portions of the parent and offspring chromosomes, representing the crossover and mutation 

probabilities. As a result of the whole arithmetic crossover operation, the offspring gene values 𝑌1 

and 𝑌2 will be set based on the parent gene values 𝑋1 and 𝑋2, and randomly generated value 𝑎 

(𝑎 ∈ [0.00; 1.00]) as follows: 

𝑌1 = 𝑎𝑋1 + (1 − 𝑎)𝑋2 (17) 

𝑌2 = (1 − 𝑎)𝑋1 + 𝑎𝑋2 (18) 

In the example, illustrated in Figure 5, the value of parameter 𝑎 was assumed to be 𝑎 = 0.30. 

The crossover probability for offspring “1” was estimated based on the parent crossover probabilities 
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as follows: 𝑝1
𝑐 = 0.30 ∙ 0.50 + (1 − 0.30) ∙ 0.60 = 0.57. The crossover probability for offspring “2” was 

computed as follows:  𝑝2
𝑐 = (1 − 0.30) ∙ 0.50 + 0.30 ∙ 0.60 = 0.53 . On the other hand, the mutation 

probability for offspring “1” in the considered example was calculated based on the parent mutation 

probabilities as follows: 𝑝1
𝑚 = 0.30 ∙ 0.050 + (1 − 0.30) ∙ 0.040 = 0.043. The mutation probability for 

offspring “2” was estimated as follows: 𝑝2
𝑚 = (1 − 0.30) ∙ 0.050 + 0.30 ∙ 0.040 = 0.047. The value of 

parameter 𝑎  for the whole arithmetic crossover will vary within SAEA from one operation to 

another and will be set based on the following equation: 𝑎 = 𝑈[0.00; 1.00] , where notation 

𝑈[𝑉𝑎𝑙1; 𝑉𝑎𝑙2] is used for the uniformly distributed pseudorandom numbers that vary between 𝑉𝑎𝑙1 

and 𝑉𝑎𝑙2. 

4.6.2. Mutation Operation 

Once the offspring chromosomes have been produced via the crossover operation, the SAEA 

algorithm applies a custom mutation operator to each offspring chromosome. Unlike crossover, 

mutation allows exploitation of the identified promising domains of the search space to discover the 

solutions with higher fitness [20,21]. Typical mutation operators, which have been widely used in the 

BSP literature (e.g., swap, insert, scramble, invert), will not be applicable for the adopted hybrid 

chromosome, as they may generate infeasible offspring chromosomes. A custom mutation operator 

was developed in this study. The main steps of the proposed custom mutation operator are outlined 

in Algorithm 3. 

Algorithm 3: Custom Mutation Operator 

𝑴𝒖𝒕𝒂𝒕𝒊𝒐𝒏(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔, 𝑝𝑚) 

in: 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔—offspring chromosomes in generation 𝑔; 𝑝𝑚—mutation probability 

out: 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃ —mutated offspring chromosomes in generation 𝑔 

0: |𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃ | ← |𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔|                 ⊲ Initialization 

1: 𝑞 ← 1 

2: while 𝑞 ≤ |𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔| do 

3: 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔
𝑝𝑐̃

← 𝑭𝒍𝒐𝒂𝒕(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔
𝑝𝑐

, 𝑝𝑚)        ⊲ Mutate the crossover probability 

4: 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔
𝑝𝑚̃

← 𝑭𝒍𝒐𝒂𝒕(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔
𝑝𝑚

, 𝑝𝑚)        ⊲ Mutate the mutation probability 

5: 𝑉𝑎𝑙1 ← 𝑹𝒂𝒏𝒅(0.00; 1.00)         ⊲ Generate a random value between 0.00 and 1.00 

6: 𝑉𝑎𝑙2 ← 𝑹𝒂𝒏𝒅(0.00; 1.00)         ⊲ Generate a random value between 0.00 and 1.00 

7: if 𝑉𝑎𝑙1 ≤ 0.50 then 

8: if 𝑉𝑎𝑙2 ≤ 0.50 then 

9: 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔
𝑏𝑒𝑟𝑡ℎ̃ ← 𝑰𝒏𝒔𝒆𝒓𝒕(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔

𝑏𝑒𝑟𝑡ℎ, 𝑝𝑚)     ⊲ Mutate the genes with berthing positions 

10: else 

11: 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔
𝑣𝑒𝑠𝑠𝑒𝑙̃ ← 𝑺𝒘𝒂𝒑(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔

𝑣𝑒𝑠𝑠𝑒𝑙 , 𝑝𝑚)  ⊲ Mutate the genes with vessel identifiers 

12: end if 

13: else 

14: if 𝑉𝑎𝑙2 ≤ 0.50 then 

15: 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔
𝑏𝑒𝑟𝑡ℎ̃ ← 𝑺𝒘𝒂𝒑(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔

𝑏𝑒𝑟𝑡ℎ, 𝑝𝑚)      ⊲ Mutate the genes with berthing positions 

16: else 

17: 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔
𝑣𝑒𝑠𝑠𝑒𝑙̃ ← 𝑰𝒏𝒔𝒆𝒓𝒕(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑞𝑔

𝑣𝑒𝑠𝑠𝑒𝑙 , 𝑝𝑚)     ⊲ Mutate the genes with vessel identifiers 

18: end if 

19: end if 

20:  𝑞 ← 𝑞 + 1  

21: end while 

22: return 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃  

 

The data structure for the mutated offspring chromosomes, required by the custom mutation 

operator, is initialized in step 0. Then, the custom mutation operator starts an iterative procedure 

(steps 2–21), where the real-valued portion of a given offspring chromosome (i.e., the crossover and 

mutation probabilities) is mutated using the floating-point mutation (steps 3 and 4). Two random 
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values (𝑉𝑎𝑙1 and 𝑉𝑎𝑙2), ranging between 0.00 and 1.00, are generated in steps 5 and 6. After that, if 

the generated value 𝑉𝑎𝑙1 is less than or equal to 0.50, either the insert mutation operation is applied 

to the integer portion of the chromosome, representing the berthing positions, or the swap mutation 

operation is deployed for the integer portion of the chromosome, representing the vessel identifiers 

(steps 8–12). The latter decision (i.e., alter either berthing positions or vessel identifiers) is made 

depending on the generated value 𝑉𝑎𝑙2. If the generated value 𝑉𝑎𝑙1 is greater than 0.50, either the 

swap mutation operation is applied to the integer portion of the chromosome, representing the 

berthing positions, or the insert mutation operation is deployed for the integer portion of the 

chromosome, representing the vessel identifiers (steps 14–18). The latter decision (i.e., alter either 

berthing positions or vessel identifiers) is also made depending on the generated value 𝑉𝑎𝑙2. An 

iterative procedure is terminated by the custom mutation operator once each offspring individual in 

the population has been mutated. Note that both insert and swap mutation operators are not applied 

within the developed custom mutation operator to the berthing positions and vessel identifiers at the 

same time to avoid significant genetic changes in the chromosomes as a result of mutation (which 

may further cause disruption of “building blocks” [20,21] and lead to worsening fitness values for 

the offspring chromosomes).  

Examples of the SAEA mutation operations are presented in Figures 6 and 7. In the first example, 

illustrated in Figure 6, the crossover and mutation probabilities are altered using the floating-point 

mutation from 0.50 and 0.04 to 0.40 and 0.05, respectively. In the meantime, the gene with berthing 

position “2” is shifted from locus “6” to locus “3” using the insert mutation (see the integer portion 

of the offspring, representing the berthing positions). In the second example, illustrated in Figure 7, 

the crossover and mutation probabilities are altered using the floating-point mutation from 0.45 and 

0.01 to 0.30 and 0.03, respectively. In the meantime, the genes with vessels “6” and “5” are swapped 

using the swap mutation (see the integer portion of the offspring, representing the vessel identifiers). 

The number of genes to be altered as a result of the insert and swap mutation operations is defined 

by mutation probability parameter 𝑝𝑚 , which is encoded in each offspring chromosome of the 

population (since the proposed SAEA algorithm is self-adaptive). 

 

Figure 6. An example of the SAEA mutation operation: insert + floating point. 
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Figure 7. An example of the SAEA mutation operation: swap + floating point. 

Note that application of the SAEA crossover and mutation operators may produce the infeasible 

offspring. In the first example (see Figure 6), the gene with vessel “7”, which is assigned for service 

at berthing position “2”, is inserted between the genes with vessels “2” and “5”, which are both 

assigned for service at berthing position “1”. The latter assignment causes a disruption in the service 

order of vessels, which are assigned to berthing position “1”, and makes the offspring chromosome 

infeasible. To prevent infeasibility of the offspring chromosomes, the genes with vessel identifiers 

will be sorted by berthing positions after application of the custom mutation operator (see Figure 6). 

Such sorting procedure will allow repairing the generated infeasible individuals. In the considered 

example, the gene with vessel “7” is shifted to the other vessels that are assigned for service at 

berthing position “2”, which allows avoiding disruption of the vessel service order at berthing 

position “1”. 

4.7. Offspring Selection Procedure 

Upon completion of the SAEA operations, fitness of the produced offspring chromosomes is 

estimated. After that, the SAEA algorithm deploys the offspring selection procedure to determine the 

chromosomes that will survive in the given generation and will be moved to the next generation. A 

Tournament Selection will be adopted in this study at the offspring selection stage. The main steps 

of the Tournament Selection mechanism are outlined in Algorithm 4. 

Algorithm 4: Tournament Selection 

𝑻𝒐𝒖𝒓𝑺𝒆𝒍(𝑂𝑓𝑓𝑝𝑟𝑖𝑛𝑔𝑔, 𝐹𝑖𝑡𝑔, 𝛺, 𝛷) 

in: 𝑂𝑓𝑓𝑝𝑟𝑖𝑛𝑔𝑔—offspring chromosomes in generation 𝑔; 𝐹𝑖𝑡𝑔—fitness of individuals in generation 𝑔; 𝛺—

tournament size; 𝛷—number of individuals selected at each tournament 

out: 𝑃𝑜𝑝𝑔+1—population chromosomes in generation 𝑔 + 1 

0: |𝑃𝑜𝑝𝑔+1| ←⊘                    ⊲ Initialization 

1: while |𝑃𝑜𝑝𝑔+1| ≠ |𝑂𝑓𝑓𝑝𝑟𝑖𝑛𝑔𝑔| do 

2:  [𝑇𝑜𝑢𝑟, 𝐹𝑖𝑡𝑔
𝑇𝑜𝑢𝑟] ← 𝑹𝒂𝒏𝒅𝑺𝒆𝒍(𝑂𝑓𝑓𝑝𝑟𝑖𝑛𝑔𝑔, 𝐹𝑖𝑡𝑔, 𝛺)          ⊲ Select the individuals for the tournament 

3:  𝑞 ← 1  

4:  while 𝑞 ≤ 𝛷 do 

5:      𝑖 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝐹𝑖𝑡𝑔
𝑇𝑜𝑢𝑟)        ⊲ Select the fittest individual from the tournament 

6:      𝑃𝑜𝑝𝑔+1 ← 𝑃𝑜𝑝𝑔+1 ∪ {𝑇𝑜𝑢𝑟𝑖}   ⊲ Add the selected individual to the next generation chromosomes 

7:      𝑇𝑜𝑢𝑟 ← 𝑇𝑜𝑢𝑟 − {𝑇𝑜𝑢𝑟𝑖}                 ⊲ Remove the selected individual from the tournament 

8:      𝑞 ← 𝑞 + 1  

9:  end while  

10: end while 

11: return 𝑃𝑜𝑝𝑔+1 

 

The data structure for the next generation chromosomes, required by the Tournament Selection 

mechanism, is initialized in step 0. Then, the Tournament Selection mechanism randomly selects 𝛺 

individuals (where 𝛺—tournament size), which are referred to as 𝑇𝑜𝑢𝑟, from the population and 

keeps the record of fitness for the selected individuals (𝐹𝑖𝑡𝑔
𝑇𝑜𝑢𝑟) in step 2. After that, 𝛷 individuals 

with the highest fitness values (where 𝛷—number of individuals selected at each tournament) are 
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selected from the tournament to become the next generation chromosomes (steps 4–9). The 

tournaments are continuously executed (steps 1–10) until the required amount of the next generation 

chromosomes has been selected. This study will use the Binary Tournament Selection, where two 

individuals are sampled from the population at each tournament (i.e., 𝛺 = 2 ), and only one 

individual that has higher fitness value will be moved to the next generation (𝛷 = 1). 

4.8. Elitism 

The proposed SAEA deploys the “elitism” strategy, based on which the fittest individual is 

stored before application of the parent selection and SAEA operators. The fittest individual will be 

transferred to the next generation along with the survived offspring chromosomes. Elitism plays a 

very important role in the design of EAs, as application of the selection, crossover, and mutation 

operators does not guarantee that the fitness of the produced offspring chromosomes will be higher 

as compared to the fitness of the parent chromosomes (e.g., crossover and mutation operators may 

disrupt “building blocks” of the parent chromosomes, which may further worsen fitness of the 

offspring chromosomes [20,21]).  

4.9. Termination Criterion 

The developed SAEA algorithm will be terminated once the maximum allowable number of 

generations (𝑔𝑙𝑖𝑚) has been reached. The latter termination criterion has been widely used in the EAs, 

proposed in the BSP literature [7,8,10–12]. 

5. Complexity Analysis 

This section of the manuscript focuses on the computational complexity analysis of the 

developed SAEA algorithm. To determine the computational complexity of the SAEA algorithm, the 

major algorithmic steps must be analyzed, which are presented in Algorithm 5. 

Algorithm 5: Self-Adaptive Evolutionary Algorithm (SAEA) 

𝑺𝑨𝑬𝑨(𝛩, 𝑝𝑐 , 𝑝𝑚, 𝛺, 𝛷, 𝑔𝑙𝑖𝑚, 𝐷𝑎𝑡𝑎, 𝐼, 𝐽, 𝐾, 𝑇𝐵, 𝑇𝐴, 𝑇𝐻𝑇 , 𝐿𝑉 , 𝐿𝐵, 𝐷𝐻, 𝐻𝑉 , 𝐻𝐵, 𝐷𝑉) 

in: 𝛩—population size; 𝑝𝑐 —crossover probability; 𝑝𝑚 —mutation probability; 𝛺—tournament size, 𝛷—

number of individuals selected at each tournament; 𝑔𝑙𝑖𝑚 —maximum allowable number of generations; 

𝐷𝑎𝑡𝑎—input data for the BSPSR mathematical model; 𝐼 = {1, … , 𝑚}—set of vessels; 𝐽 = {1, … , 𝑛}—set of 

berths; 𝐾 = {1, … , 𝑠}—set of service orders; 𝑇𝐵 —berth availability; 𝑇𝐴—vessel arrival times; 𝑇𝐻𝑇 —vessel 

handling times; 𝐿𝑉—length of vessels; 𝐿𝐵—length of berths; 𝐷𝐻—horizontal clearance requirements; 𝐻𝑉—

draft of vessels; 𝐻𝐵—depth of berths; 𝐷𝑉—vertical clearance requirements 

out: 𝐵𝑒𝑠𝑡𝑆𝑜𝑙—the best berth schedule 

0: |𝑃𝑜𝑝| ← 𝛩; |𝐹𝑖𝑡| ← 𝛩; |𝑃𝑎𝑟𝑒𝑛𝑡𝑠| ← 𝛩; |𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔| ← 𝛩; |𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃ | ← 𝛩; |𝐵𝑒𝑠𝑡| ←⊘    

1: 𝑔 ← 1; 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 1             

2: while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≤ 𝛩 do 

3:     𝒙 ← 𝑷𝒐𝒑𝑰𝒏𝒊𝒕(𝐼, 𝐽, 𝐾, 𝑇𝐵, 𝑇𝐴, 𝑇𝐻𝑇 , 𝐿𝑉 , 𝐿𝐵, 𝐷𝐻, 𝐻𝑉 , 𝐻𝐵, 𝐷𝑉)      ⊲ Generate a chromosome 

4:     𝑃𝑜𝑝𝑔 ← 𝑃𝑜𝑝𝑔 ∪ {𝒙}                           ⊲ Append the generated chromosome 

5:  𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1  

6: end while 

7: 𝐹𝑖𝑡𝑔 ← 𝑭𝒊𝒕𝒏𝒆𝒔𝒔𝑬𝒗𝒂𝒍(𝐷𝑎𝑡𝑎, 𝑃𝑜𝑝𝑔)                 ⊲ Evaluate fitness of the initial population 

8: while 𝑔 ≤ 𝑔𝑙𝑖𝑚 do 

9:     𝑔 ← 𝑔 + 1                  ⊲ Update the generation count 

10:    𝐵𝑒𝑠𝑡 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝐹𝑖𝑡𝑔)                                      ⊲ Store a copy of the fittest individual 

11:    𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑔 ← 𝑹𝑾𝑺(𝑃𝑜𝑝𝑔, 𝐹𝑖𝑡𝑔)          ⊲ Identify the parent chromosomes 

12:  𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 ← 𝑪𝒓𝒐𝒔𝒔𝒐𝒗𝒆𝒓(𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑔, 𝑝𝑐)            ⊲ Produce the offspring chromosomes 

13:  𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃ ← 𝑴𝒖𝒕𝒂𝒕𝒊𝒐𝒏(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔, 𝑝𝑚)        ⊲ Mutate the offspring chromosomes 

14:  𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃ ← 𝑹𝒆𝒑𝒂𝒊𝒓(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔

̃ )             ⊲ Repair the mutated offspring 

15:  𝐹𝑖𝑡𝑔 ← 𝑭𝒊𝒕𝒏𝒆𝒔𝒔𝑬𝒗𝒂𝒍(𝐷𝑎𝑡𝑎, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃ )                ⊲ Evaluate fitness of the mutated offspring 

16:    𝑃𝑜𝑝𝑔+1 ← 𝑃𝑜𝑝𝑔+1 ∪ {𝐵𝑒𝑠𝑡}                     ⊲ Transfer the fittest individual to generation 𝑔 + 1 

17:    𝑃𝑜𝑝𝑔+1 ← 𝑻𝒐𝒖𝒓𝑺𝒆𝒍(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃ , 𝐹𝑖𝑡𝑔, 𝛺, 𝛷)        ⊲ Identify the chromosomes for generation 𝑔 + 1 

18: end while 
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19: 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝐹𝑖𝑡𝐵𝑒𝑠𝑡 ∪ 𝐹𝑖𝑡𝑔)           ⊲ Identify the best berth schedule 

20: return 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 

 

The data structures, required by the SAEA algorithm, are initialized in step 0. The generation 

and counter values are set to “1” in step 1. The initial population chromosomes are generated in steps 

2–6 (where half of the population is created using the FCFS-SR heuristic, while another half is created 

randomly—see Section 4.3 of the manuscript for more details). The fitness of the initial population 

chromosomes is assessed in step 7. After that, SAEA starts an iterative procedure (steps 8–18), where 

the generation count is updated in step 9. A copy of the fittest individual is stored in step 10 before 

applying any algorithmic operators (i.e., the “elitism” strategy). The parent chromosomes are 

identified using the RWS mechanism is step 11. The crossover operation is conducted in step 12 to 

produce the offspring chromosomes. The generated offspring chromosomes are mutated in step 13. 

Any infeasible offspring chromosomes are repaired in step 14. The fitness of the offspring 

chromosomes is assessed in step 15. The fittest individual is transferred to the next generation in step 

16. The remaining offspring chromosomes to be present in the next generation are identified using 

the Tournament Selection mechanism in step 17. The SAEA algorithm terminates an iterative 

procedure, once the maximum allowable number of generations has been reached. The best solution, 

representing the berth schedule with the least possible sum of the total weighted vessel turnaround 

time and the total weighted vessel late departures, is determined in step 19.  

Based on the SAEA pseudocode, it can be observed that within the main loop (steps 8–18), there 

are a total of 6 major functions, including the following: 

(1) 𝑹𝑾𝑺 (𝑃𝑜𝑝𝑔 , 𝐹𝑖𝑡𝑔) with the computational complexity 𝑂(𝛩)—see Algorithm 2 (which does not 

include any sorting procedures); 

(2) 𝑪𝒓𝒐𝒔𝒔𝒐𝒗𝒆𝒓 (𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑔, 𝑝𝑐)  with the computational complexity 𝑂(𝛩 ∙ [|𝐼| + 2]) , i.e., the 

computational complexity of the developed crossover operator is proportional not only to the 

population size (𝛩 ), since the probability of a given parent to participate in the crossover 

operation is checked for each parent chromosome in the SAEA population, but also to the 

chromosome length (defined as [|𝐼| + 2]—see Section 4.2 of the manuscript for more details); 

(3) 𝑴𝒖𝒕𝒂𝒕𝒊𝒐𝒏 (𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 , 𝑝𝑚)  with the computational complexity 𝑂(𝛩 ∙ [|𝐼| + 2])  i.e., the 

computational complexity of the developed mutation operator (see Algorithm 3) is proportional 

not only to the population size (𝛩), since the mutation operation is performed for each offspring 

chromosome in the SAEA population, but also to the chromosome length; 

(4) 𝑹𝒆𝒑𝒂𝒊𝒓 (𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃ )  with the computational complexity 𝑂(𝛩 ∙ 𝑙𝑜𝑔 𝛩)  [23], as it requires 

sorting (see Section 4.6.2 of the manuscript); 

(5) 𝑭𝒊𝒕𝒏𝒆𝒔𝒔𝑬𝒗𝒂𝒍 (𝐷𝑎𝑡𝑎, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃ ) with the computational complexity 𝑂(𝛩 ∙ [|𝐼| + 2]); 

(6) 𝑻𝒐𝒖𝒓𝑺𝒆𝒍 (𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔
̃ , 𝐹𝑖𝑡𝑔, 𝛺, 𝛷) with the computational complexity 𝑂(𝛩2)—see Algorithm 4. 

This study will focus on the analysis of the large size problem instances with up to 100 vessels 

calling for service at the MCT (see Section 6.1 of the manuscript for more details regarding the 

considered problem instances), while the candidate population size values will vary from 40 to 60 

individuals throughout the parameter tuning analysis (see Section 6.2 of the manuscript for more 

details regarding the parameter tuning analysis). Therefore, 𝛩 ∙ [|𝐼| + 2] ≫ 𝛩2 , and the 

computational complexity of the SAEA algorithm will be 𝑂(𝑔𝑙𝑖𝑚 ∙ 𝛩 ∙ [|𝐼| + 2]). Note that along with 

the computational complexity, there are some other factors, which may affect the computational time 

of the SAEA algorithm, including the computer hardware performance, operating system, 

programming language adopted, programming skills of the developer, etc., [24]. 

6. Numerical Experiments 

This section of the manuscript presents the numerical experiments, which were undertaken to 

compare the proposed SAEA algorithm against the alternative EA algorithms. Specifically, 

performance of the developed SAEA algorithm, which relies on the self-adaptive parameter control 

strategy, was evaluated based on a comparative analysis against the following EA algorithms: (1) 



Algorithms 2018, 11, 100 18 of 35 

Adaptive EA (AEA)—an EA that relies on the adaptive parameter control strategy (i.e., the crossover 

and mutation probabilities are not encoded in the chromosomes, but are altered based on feedback 

from the search); (2) Deterministic Parameter Control EA (DPCEA)—an EA that relies on the 

deterministic parameter control strategy (i.e., the crossover and mutation probabilities are not 

encoded in the chromosomes, but are altered based on a certain counter without any feedback from 

the search); and (3) typical EA algorithm that does not use any parameter control strategies and solely 

relies on the parameter tuning (i.e., the crossover and mutation probabilities are set based on the 

parameter tuning and do not alter throughout evolution of the EA algorithm). For a detailed 

description of the AEA algorithm this study refers to Dulebenets [10], where the algorithmic 

parameters were altered if no changes in the objective function occurred after a pre-determined 

number of generations (𝑔𝑚𝑎𝑥). For a detailed description of the DPCEA algorithm this study refers to 

Dulebenets [12], where the algorithmic parameters were altered based on a pre-determined piecewise 

function (i.e., the number of generations was used as a counter for changing the algorithmic parameters).  

Furthermore, the optimality gap analysis was conducted for all the considered solution 

algorithms to assess quality of the obtained solutions for the small size problem instances. The SAEA, 

AEA, DPCEA, and EA algorithms were designed in the MATLAB 2016a environment [25] on a CPU 

with Dell Intel(R) Core™ i7 Processor, 32 GB of RAM, and Windows 10 Operating System. The 

optimality gap analysis was conducted within the General Algebraic Modeling System (GAMS) 

environment [26], and CPLEX was used to solve the BSPSR mathematical model to the global 

optimality. The following sections of the manuscript elaborate on the input data generation for the 

BSPSR mathematical model, parameter tuning analysis for the developed solution algorithms, 

comparative analysis against the exact optimization algorithm, and comprehensive evaluation of the 

algorithms in terms of various performance indicators (including objective function and 

computational time values, convergence patterns, evolution of the self-adaptive algorithmic 

parameter values, algorithmic stability, and changes in the population diversity). 

6.1. Input Data Generation 

The parameter values for the BSPSR mathematical model were selected based on the available 

BSP literature and relevant online sources [7–12,14–19,27–36]. The adopted parameter values are 

presented in Table 2. It was assumed that each berthing position was available at the beginning of 

the planning horizon (i.e., time “0”): 𝑇𝑗
𝐵 = 0 ∀𝑗 ∈ 𝐽 (h). The arrival pattern of vessels at the MCT was 

assumed to follow an exponential distribution with the average inter-arrival time (𝑑𝑇) of 2 h, i.e., 

𝑑𝑇 = 𝑒𝑥𝑝 [2] (h). The latter statistical distribution has been frequently used in the BSP literature for 

modeling vessel arrivals [8,11,17]. The handling time of vessels at their “preferred berthing positions” 

was generated using the following relationship: 𝑇𝑖
𝐻𝑇∗

= 𝑈[8; 20] ∀𝑖 ∈ 𝐼 (h), where 𝑈[𝑉𝑎𝑙1; 𝑉𝑎𝑙2] is a 

notation used for uniformly distributed pseudorandom numbers that vary between 𝑉𝑎𝑙1 and 𝑉𝑎𝑙2. 

The “preferred berthing position” for each vessel was assigned randomly from the available berthing 

positions as follows: 𝑗𝑖
∗ = 𝑈[1; 𝑛] ∀𝑖 ∈ 𝐼  (berthing position), where 𝑗𝑖

∗  is a notation used for 

“preferred berthing position” of vessel 𝑖 . The handling time of a given vessel was assumed to 

increase, if it was not assigned for service at its “preferred berthing position” based on the following 

relationship: 𝑇𝑖𝑗
𝐻𝑇 = 𝑇𝑖

𝐻𝑇∗
∙ (1 + 0.03 ∙ |𝑗 − 𝑗𝑖

∗|) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (h). The negotiated vessel departure times 

were generated based on their arrival times and handling times at “preferred berthing positions” as 

follows: 𝑇𝑖
𝐷 = 𝑇𝑖

𝐴 + 𝑇𝑖
𝐻𝑇∗

∙ 𝑈[1.20; 1.50] ∀𝑖 ∈ 𝐼 (h). 

It was assumed that the MCT operator was expected to provide service for the following types 

of vessels: (1) Panamax (length: 820.2 ft., draft: 41.0 ft.); (2) Panamax Max (length: 951.4 ft., draft: 41.0 

ft.); (3) Post Panamax (length: 935.0 ft., draft: 42.7 ft.); (4) Post Panamax Plus (length: 984.3 ft., draft: 

47.6 ft.); (5) New Panamax (length: 1200.8 ft., draft: 49.9 ft.); and (6) Triple E (length: 1312.3 ft., draft: 

50.9 ft.). The vessel dimensions were adopted based on the available literature [36]. The length of 

berthing positions was set based on the minimum and maximum length values of the aforementioned 

vessel types as follows: 𝐿𝑗
𝐵 = 1.20 ∙ 𝑚𝑖𝑛𝑖(𝐿𝑖

𝑉) + 𝑈[0; 1.20 ∙ 𝑚𝑎𝑥𝑖(𝐿𝑖
𝑉) − 𝑚𝑖𝑛𝑖(𝐿𝑖

𝑉)] ∀𝑗 ∈ 𝐽 (ft.). Similarly, 

depth of berthing positions was set based on the minimum and maximum draft values of the 

aforementioned vessel types as follows: 𝐻𝑗
𝐵 = 1.20 ∙ 𝑚𝑖𝑛𝑖(𝐻𝑖

𝑉) + 𝑈[0; 1.20 ∙ 𝑚𝑎𝑥𝑖(𝐻𝑖
𝑉) −
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𝑚𝑖𝑛𝑖(𝐻𝑖
𝑉)] ∀𝑗 ∈ 𝐽  (ft.). The horizontal clearance requirement for vessels was assigned using the 

following relationship: 𝐷𝑖
𝐻 = 𝑈[50; 100] ∀𝑖 ∈ 𝐼 (ft.). The vertical clearance requirement for vessels 

was set as follows: 𝐷𝑖
𝑉 = 𝑈[4; 8] ∀𝑖 ∈ 𝐼 (ft.). 

The vessel weights were generated using the following relationship: 𝑊𝑖 = 𝑈[0.10; 1.00] ∀𝑖 ∈ 𝐼. 

The large positive number was set to 𝛤 = 10000. Using the generated data, a total of 60 problem 

instances were developed by changing the number of arriving vessels and the number of available 

berthing positions. The generated problem instances can be classified in the following two groups: 

(1) small size problem instances (1–30), where the number of arriving vessels was altered from 5 to 

14 with an increment of one vessel, while the number of available berthing positions was altered from 

2 to 4 with an increment of one berthing position; and (2) large size problem instances (31–60), where 

the number of arriving vessels was altered from 55 to 100 with an increment of five vessels, while the 

number of available berthing positions was altered from 4 to 8 with an increment of two berthing 

positions. The small size problem instances will be used to compare the SAEA, AEA, DPCEA, and 

EA algorithms against the exact optimization algorithm (due to inability of the exact optimization 

algorithm to solve the BSPSR mathematical model within a reasonable computational time for the 

large size problem instances). The large size problem instances will be used for a comprehensive 

evaluation of the developed solution algorithms in terms of various performance indicators. Both 

analyses are presented in Sections 6.3 and 6.4 of the manuscript. 

Table 2. Adopted parameter values. 

Parameter Selected Value 

Number of arriving vessels: 𝑚 (vessels) Varies depending on the problem instance 

Number of available berthing positions: 𝑛 (berthing positions) Varies depending on the problem instance 

Number of vessel service orders: 𝑠 (service orders) 
𝑠 = 𝑚 (assuming that all vessels can be 

assigned to a berth) 

Time when berthing position 𝑗 becomes available in the planning 

horizon at the first time: 𝑇𝑗
𝐵, 𝑗 ∈ 𝐽 (h) 

𝑇𝑗
𝐵 = 0 ∀𝑗 ∈ 𝐽 

Arrival time of vessel 𝑖 at the MCT: 𝑇𝑖
𝐴, 𝑖 ∈ 𝐼 (h) 𝑇𝑖+1

𝐴 = 𝑇𝑖
𝐴 + 𝑑𝑇 ∀𝑖 ∈ 𝐼  

Average vessel inter-arrival time: 𝑑𝑇 (h) 𝑑𝑇 = 𝑒𝑥𝑝 [2] 

Handling time of vessel 𝑖 at “preferred berthing position”: 𝑇𝑖
𝐻𝑇∗

, 𝑖 ∈ 𝐼 (h) 𝑇𝑖
𝐻𝑇∗

= 𝑈[8; 20] ∀𝑖 ∈ 𝐼  

“Preferred berthing position” for vessel 𝑖: 𝑗𝑖
∗, 𝑖 ∈ 𝐼 (berthing position) 𝑗𝑖

∗ = 𝑈[1; 𝑛] ∀𝑖 ∈ 𝐼 

Handling time of vessel 𝑖 at berthing position 𝑗: 𝑇𝑖𝑗
𝐻𝑇, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (h) 𝑇𝑖𝑗

𝐻𝑇 = 𝑇𝑖
𝐻𝑇∗

∙ (1 + 0.03 ∙ |𝑗 − 𝑗𝑖
∗|) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 

Negotiated departure time of vessel 𝑖: 𝑇𝑖
𝐷, 𝑖 ∈ 𝐼 (h) 𝑇𝑖

𝐷 = 𝑇𝑖
𝐴 + 𝑇𝑖

𝐻𝑇∗
∙ 𝑈[1.20; 1.50] ∀𝑖 ∈ 𝐼  

Length of vessel 𝑖: 𝐿𝑖
𝑉, 𝑖 ∈ 𝐼 (ft.) [820.2; 951.4; 935.0; 984.3; 1200.8; 1312.3] 

Length of berthing position 𝑗: 𝐿𝑗
𝐵, 𝑗 ∈ 𝐽 (ft.) 

𝐿𝑗
𝐵 = 1.20 ∙ 𝑚𝑖𝑛𝑖(𝐿𝑖

𝑉) + 𝑈[0; 1.20 ∙ 𝑚𝑎𝑥𝑖(𝐿𝑖
𝑉) −

𝑚𝑖𝑛𝑖(𝐿𝑖
𝑉)] ∀𝑗 ∈ 𝐽  

Horizontal clearance requirement for vessel 𝑖: 𝐷𝑖
𝐻 , 𝑖 ∈ 𝐼 (ft.) 𝐷𝑖

𝐻 = 𝑈[50; 100] ∀𝑖 ∈ 𝐼 

Draft of vessel 𝑖: 𝐻𝑖
𝑉, 𝑖 ∈ 𝐼 (ft.) [41.0; 41.0; 42.7; 47.6; 49.9; 50.9] 

Depth of berthing position 𝑗: 𝐻𝑗
𝐵, 𝑗 ∈ 𝐽 (ft.) 

𝐻𝑗
𝐵 = 1.20 ∙ 𝑚𝑖𝑛𝑖(𝐻𝑖

𝑉) + 𝑈[0; 1.20 ∙ 𝑚𝑎𝑥𝑖(𝐻𝑖
𝑉) −

𝑚𝑖𝑛𝑖(𝐻𝑖
𝑉)] ∀𝑗 ∈ 𝐽  

Vertical clearance requirement for vessel 𝑖: 𝐷𝑖
𝑉, 𝑖 ∈ 𝐼 (ft.) 𝐷𝑖

𝑉 = 𝑈[4; 8] ∀𝑖 ∈ 𝐼 

Weight of vessel 𝑖: 𝑊𝑖 , 𝑖 ∈ 𝐼 𝑊𝑖 = 𝑈[0.10; 1.00] ∀𝑖 ∈ 𝐼 

Large positive number: 𝛤 10000 

6.2. Parameter Tuning Analysis 

The developed SAEA, AEA, DPCEA, and EA algorithms have a set of parameters, and the values 

of these parameters must be determined to conduct the numerical experiments. The SAEA algorithm 

has a total of 3 parameters, including the following: (1) population size—𝛩; (2) penalty terms for 

infeasible individuals—𝛼  and 𝛽  (see Section 4.4 of the manuscript for description of the latter 

parameters); and (3) maximum allowable number of generations—𝑔𝑙𝑖𝑚. Note that in this study the 

penalty terms for violation of the horizontal and vertical clearance requirements were assumed to be 

equal (𝛼 = 𝛽). Along with the aforementioned three parameters, the AEA and DPCEA algorithms 

have additional parameters to control the crossover and mutation probabilities throughout the 

algorithmic run. Specifically, AEA has additional three parameters: (1) crossover probability values—

𝑝𝑐𝑣 ; (2) mutation probability values—𝑝𝑚𝑣 ; and (3) adaptive criterion—𝑔𝑚𝑎𝑥  (i.e., the maximum 

number of generations without changes in the objective function). The AEA will be continuously 
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altering the crossover and mutation probabilities based on the assigned crossover and mutation 

probability values (in a sequential manner) using feedback from the search (i.e., if no changes in the 

objective function occurred after a pre-determined number of generations) [10].  

Similarly, DPCEA has additional three parameters: (1) crossover probability values at the 

beginning and at the end of the piecewise function—𝑝𝑐�̃� ; (2) mutation probability values at the 

beginning and at the end of the piecewise function— 𝑝𝑚�̃� ; and (3) number of segments in the 

piecewise function—𝑛𝑠𝑒𝑔. An example of how the crossover and mutation probabilities are altered 

throughout the DPCEA run is presented in Figure 8. In the provided example, the 𝑝𝑐�̃�  and 𝑝𝑚�̃�  

values are set to 𝑝𝑐�̃� = [0.80, 0.40] and 𝑝𝑚�̃� = [0.04, 0.02], respectively, the number of segments in 

the piecewise function is set to 𝑛𝑠𝑒𝑔 = 3 , and the stopping criterion is set to 𝑔𝑙𝑖𝑚 = 3000 

generations. Therefore, for the first 1000 generations DPCEA will set 𝑝𝑐 = 0.80 and 𝑝𝑚 = 0.04; then, 

from generation 1001 to 2000 the crossover and mutation probabilities will be adjusted to 𝑝𝑐 = 0.60 

and 𝑝𝑚 = 0.03; and between generations 2001 and 3000 the crossover and mutation probabilities will 

be set to 𝑝𝑐 = 0.40 and 𝑝𝑚 = 0.02. As for the EA algorithm, along with the three SAEA parameters, 

it has additional two parameters for defining the crossover and mutation probabilities (i.e., 𝑝𝑐 and 

𝑝𝑚), which do not change throughout the algorithmic run. 

pc

generation

0.80

0.60

0.40

0.20

1000 2000 3000  

pm

generation

0.04

0.03

0.02

0.01

1000 2000 3000  

Figure 8. Examples of piecewise functions for the crossover and mutation probabilities within 

DPCEA. 

The parameter values for the SAEA, AEA, DPCEA, and EA algorithms were set based on the 

parameter tuning analysis. The “full factorial design” methodology was used to perform the 

parameter tuning, where each algorithmic parameter (or “factor”—𝑓) had a set of candidate values 

(or “levels”—𝑙). A total of three candidate values were tested for each parameter of the developed 

solution algorithms, which corresponds to 3𝑓 factorial design. A total of five problem instances were 

selected at random from the generated large size problem instances (described in Section 6.1 of the 

manuscript) to perform the parameter tuning. Since the developed solution algorithms are stochastic 

in nature, a total of ten replications were executed to estimate the average values of the objective 

function and computational time for each parameter combination and each algorithm. The parameter 

tuning analysis results are reported in Table 3, which provides the following information: (1) 

algorithm; (2) parameter description; (3) considered candidate values; and (4) the best value, which 

was identified based on a tradeoff between the computational time and objective function values. 

Note that, unlike the AEA, DPCEA, and EA algorithms, the SAEA algorithm has only three 

parameters. Therefore, application of the self-adaptive parameter control strategy reduces the 

number of algorithmic parameters and may facilitate the parameter tuning analysis. 

Table 3. The parameter tuning analysis results for the developed solution algorithms. 

Algorithm Parameter 
Candidate 

Values 

Best 

Value 
Algorithm Parameter 

Candidate 

Values 

Best 

Value 

SAEA 
Population size 

(𝛩) 
[40; 50; 60] 60 DPCEA 

Crossover 

probability 

values (𝑝𝑐�̃�) 

[0.80, 0.30; 0.90, 

0.40; 0.30, 0.80] 

[0.80, 

0.30] 

SAEA 

Penalty terms 

for infeasible 

individuals 

(𝛼, 𝛽) 

[50; 75; 

100] 
100 DPCEA 

Mutation 

probability 

values (𝑝𝑚�̃�) 

[0.06, 0.01; 0.07, 

0.02; 0.01,0.06] 

[0.06, 

0.01] 
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SAEA 

Maximum 

allowable 

number of 

generations 

(𝑔𝑙𝑖𝑚) 

[1000; 

2000; 3000] 
3000 DPCEA 

Number of 

segments in the 

piecewise 

function (𝑛𝑠𝑒𝑔) 

[10; 15; 20] 10 

AEA 
Population size 

(𝛩) 
[40; 50; 60] 60 DPCEA 

Penalty terms 

for infeasible 

individuals 

(𝛼, 𝛽) 

[50; 75; 100] 100 

AEA 

Crossover 

probability  

values (𝑝𝑐𝑣) 

[0.80 ÷ 

0.30; 0.90 ÷ 

0.40; 0.30 ÷ 

0.80]1 

[0.80 ÷ 

0.30] 
DPCEA 

Maximum 

allowable 

number of 

generations 

(𝑔𝑙𝑖𝑚) 

[1000; 2000; 3000] 3000 

AEA 

Mutation 

probability  

values (𝑝𝑚𝑣) 

[0.06 ÷ 

0.01; 0.07 ÷ 

0.02; 0.01 ÷ 

0.06]2 

[0.06 ÷ 

0.01] 
EA 

Population size 

(𝛩) 
[40; 50; 60] 60 

AEA 
Adaptive 

criterion (𝑔𝑚𝑎𝑥) 

[100; 200; 

300] 
300 EA 

Crossover 

probability (𝑝𝑐) 
[0.30; 0.50; 0.80] 0.80 

AEA 

Penalty terms 

for infeasible 

individuals 

(𝛼, 𝛽) 

[50; 75; 

100] 
100 EA 

Mutation 

probability (𝑝𝑚) 
[0.01; 0.04; 0.06] 0.06 

AEA 

Maximum 

allowable 

number of 

generations 

(𝑔𝑙𝑖𝑚) 

[1000; 

2000; 3000] 
3000 EA 

Penalty terms 

for infeasible 

individuals 

(𝛼, 𝛽) 

[50; 75; 100] 100 

DPCEA 
Population size 

(𝛩) 
[40; 50; 60] 60 EA 

Maximum 

allowable 

number of 

generations 

(𝑔𝑙𝑖𝑚) 

[1000; 2000; 3000] 3000 

Notes: 1—the crossover probability values were changed with an increment of 0.10 within the AEA 

algorithm; 2—the mutation probability values were changed with an increment of 0.01 within the 

AEA algorithm. 

6.3. Comparison against the Exact Optimization Algorithm 

The first set of numerical experiments focused on a comparative analysis of the developed 

SAEA, AEA, DPCEA, and EA algorithms against the exact optimization algorithm. The BSPSR 

mathematical model was coded in the GAMS environment and solved using CPLEX, which is widely 

used in operations research for solving large scale mixed integer linear programming models to the 

global optimality. The computational time of CPLEX was restricted to 7200 s, the relative optimality 

gap was restricted to 0.01%, while the rest of settings remained default. CPLEX was executed for all 

30 small size problem instances (i.e., instances 1–30), described in Section 6.1 of the manuscript. The 

SAEA, AEA, DPCEA, and EA algorithms were launched for all the developed small size problem 

instances as well. A total of ten replications were executed to estimate the average values of the 

objective function and computational time for each algorithm and each one of the small size problem 

instances. The comparative analysis results are reported in Table 4, which provides the following 

information for each small size problem instance: (1) instance number; (2) number of vessels; (3) 

number of berths; (4) average objective function value for each solution algorithm; and (5) average 

computational time (denoted as CPU) for each solution algorithm. 
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Table 4. Comparison of the developed solution algorithms against CPLEX. 

Instance Number of Vessels Number of Berths 
CPLEX EA DPCEA AEA SAEA 

Objective, h CPU, s Objective, h CPU, s Objective, h CPU, s Objective, h CPU, s Objective, h CPU, s 

1 5 2 57.381 1.70 57.381 6.63 57.381 9.38 57.381 10.85 57.381 11.42 

2 5 3 42.203 4.52 42.203 6.63 42.203 9.14 42.203 10.76 42.203 11.46 

3 5 4 35.923 5.92 35.923 6.62 35.923 9.17 35.923 10.62 35.923 11.08 

4 6 2 102.008 13.82 102.008 6.91 102.008 9.59 102.008 11.34 102.008 11.77 

5 6 3 72.644 153.00 72.644 6.88 72.644 9.61 72.644 11.32 72.644 11.96 

6 6 4 58.514 421.02 58.514 6.88 58.514 9.59 58.514 11.21 58.514 11.67 

7 7 2 120.643 187.49 120.643 7.15 120.643 10.00 120.643 11.87 120.643 12.53 

8 7 3 86.639 3344.27 86.639 7.13 86.639 10.01 86.639 11.64 86.639 12.03 

9 7 4 67.686 7203.40 67.261 7.08 67.261 10.06 67.261 11.43 67.261 12.18 

10 8 2 173.560 3878.79 173.560 7.48 173.560 10.40 173.560 12.32 173.560 13.07 

11 8 3 116.613 7207.12 115.379 7.39 115.379 10.41 115.379 12.09 115.379 12.83 

12 8 4 87.940 7206.69 86.402 7.36 86.402 10.40 86.402 11.97 86.402 12.69 

13 9 2 207.567 7207.17 203.697 7.68 203.697 10.83 203.697 12.79 203.697 13.41 

14 9 3 138.080 7205.43 133.192 7.68 133.192 10.84 133.192 12.40 133.192 13.17 

15 9 4 100.693 7205.23 96.255 7.68 96.255 10.82 96.255 12.41 96.255 12.94 

16 10 2 260.008 7206.87 247.721 8.01 247.721 11.22 247.721 13.28 247.721 13.77 

17 10 3 168.606 7204.10 160.394 7.97 160.394 11.23 160.394 12.96 160.394 13.62 

18 10 4 121.324 7204.73 115.294 8.01 115.294 11.20 115.294 12.89 115.294 13.60 

19 11 2 351.252 7204.96 332.783 8.30 332.783 11.63 332.783 14.03 332.783 14.64 

20 11 3 234.583 7203.95 218.844 8.25 218.644 11.64 218.644 13.43 218.644 14.49 

21 11 4 161.140 7203.51 149.983 8.27 149.703 11.77 149.703 13.25 149.703 13.92 

22 12 2 458.371 7202.79 426.017 8.54 425.270 12.06 425.126 13.76 425.126 14.68 

23 12 3 290.278 7205.62 267.282 8.56 266.475 12.13 266.188 13.24 266.188 14.41 

24 12 4 204.840 7202.84 188.303 8.60 187.840 12.14 187.188 13.20 187.188 14.45 

25 13 2 559.488 7202.04 514.104 8.90 513.240 12.49 512.251 14.07 511.228 15.86 

26 13 3 336.885 7202.05 310.100 8.84 309.459 12.48 308.718 13.71 307.714 15.13 

27 13 4 235.101 7202.10 213.489 8.86 212.951 12.54 212.496 13.75 211.555 14.93 

28 14 2 669.643 7201.96 607.726 9.21 606.304 12.94 604.744 14.63 602.522 16.06 

29 14 3 431.216 7201.61 391.360 9.11 390.528 12.93 389.541 14.13 387.749 15.57 

30 14 4 294.092 7201.42 264.557 9.20 263.990 12.95 262.488 14.19 261.114 15.48 

Average: 208.164 5309.87 195.322 7.86 195.077 11.05 194.833 12.65 194.554 13.49 
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The optimality gap for algorithm 𝑎 (∆𝑎) was calculated based on the following relationship: 

∆𝑎=
𝑓𝑎−𝑓𝐶𝑃𝐿𝐸𝑋

𝑓𝐶𝑃𝐿𝐸𝑋
, where 𝑓𝑎—average objective function value, provided by algorithm 𝑎; 𝑓𝐶𝑃𝐿𝐸𝑋—the 

optimal objective function value, provided by CPLEX. The estimated optimality gap values are 

presented in Figure 9 for each algorithm and each one of the small size problem instances. The 

optimality gap analysis results highlight that CPLEX was able to provide the global optimal solution 

only for 9 small size problem instances (1–8 and 10) with up to 8 vessels calling for service at the 

MCT. The latter can be explained by the fact that consideration of the additional spatial requirements 

in berth scheduling significantly increased complexity of the mathematical model. For example, in 

the study by Dulebenets [10], the mathematical model, which did not consider the additional spatial 

requirements, was solved using CPLEX for the problem instances with up to 12 vessels within 7200 

s. Based on the optimality gap analysis results, the SAEA, AEA, DPCEA, and EA algorithms obtained 

the global optimal solution for the problem instances that were solved by CPLEX within the time 

limit imposed (i.e., the optimality gaps of the developed solution algorithms are equal to “0” for 

problem instances 1–8 and 10). 

 

Figure 9. The optimality gaps of the developed solution algorithms. 

For the rest of small size problem instances (i.e., problem instances 9 and 11–30), CPLEX was not 

able to solve the BSPSR mathematical model to the global optimality within the time limit imposed 

(see Table 4). Furthermore, the developed solution algorithms returned superior objective function 

values as compared to the objective function values, obtained by CPLEX after 7200 s. Therefore, the 

optimality gaps for problem instances 9 and 11–30 appear to be negative (see Figure 9). The SAEA, 

AEA, DPCEA, and EA algorithms outperformed CPLEX on average by 4.33%, 4.26%, 4.19%, and 

4.12% over the generated small size problem instances, respectively. The averaged computational 

time comprised 13.49 s, 12.65 s, 11.05 s, and 7.86 s for the SAEA, AEA, DPCEA, and EA algorithms, 

respectively. Based on the conducted optimality gap analysis, it can be concluded that performance 

of the exact optimization algorithms (e.g., CPLEX, GUROBI, MOSEK) can be significantly affected 

from introducing the additional operational constraints in the mathematical model, which highlights 

necessity of developing efficient heuristic and metaheuristic algorithms.  

6.4. Comprehensive Evaluation of the Algorithms 

The second set of numerical experiments focused on a comprehensive evaluation of the SAEA, 

AEA, DPCEA, and EA algorithms in terms of various performance indicators, including objective 

function and computational time values, convergence patterns, evolution of the self-adaptive 

algorithmic parameter values, algorithmic stability, and changes in the population diversity. The 

developed solution algorithms were launched for all the generated large size problem instances, 

described in Section 6.1 of the manuscript. A total of ten replications were executed to estimate the 

average values of the performance indicators for each algorithm and each one of the large size 

problem instances. Results are reported in Sections 6.4.1–6.4.5 of the manuscript. 
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6.4.1. Objective Function and Computational Time Values 

Both objective function and computational time values are important indicators, which must be 

considered in evaluation of the algorithmic performance. The objective function values define the 

quality of solutions, which is a primary interest of the decision makers (in this study, the primary 

decision maker is the MCT operator). However, the algorithms, which require a prohibitively large 

amount of computational time to obtain good-quality solutions, are not favorable from the practical 

standpoint (e.g., the exact optimization algorithms generally require a prohibitively large amount of 

computational time to solve the problems of a high complexity). The objective function and 

computational time values were retrieved for all the developed solution algorithms and large size 

problem instances, and results are reported in Table 5. Specifically, Table 5 provides the following 

information for each large size problem instance: (1) instance number; (2) number of vessels; (3) 

number of berths; (4) average objective function value for each solution algorithm; and (5) average 

computational time (denoted as CPU) for each solution algorithm. 

It was found that the SAEA algorithm outperformed the AEA, DPCEA, and EA algorithms in 

terms of the objective function value at termination on average by 4.01%, 6.83%, and 11.84%, 

respectively, over the generated large size problem instances. Superiority of the SAEA algorithm over 

the other algorithms can be explained by the fact that the crossover and mutation probabilities are 

encoded in the SAEA chromosomes and evolve throughout the algorithmic run, which further allows 

more efficient exploration and exploitation of the search space. The adaptive parameter control 

strategy, deployed within the AEA algorithm, was found to be more efficient as compared to the 

deterministic parameter control strategy, deployed within the DPCEA algorithm. The latter finding 

can be justified by the fact that AEA had been adjusting the crossover and mutation probabilities 

based on feedback from the search, while DPCEA had been altering the crossover and mutation 

probabilities based on the piecewise function without considering any feedback from the search. The 

worst performance was demonstrated by the EA algorithm, which relied on the parameter tuning 

and did not change the crossover and mutation probabilities throughout the algorithmic run. 

Therefore, constant crossover and mutation probability values significantly limit explorative and 

exploitative capabilities of the EA algorithm. 

The computational time comprised on average 51.26 s, 45.26 s, 41.36 s, and 27.79 s over the 

generated large size problem instances for the SAEA, AEA, DPCEA, and EA algorithms, respectively. 

An increasing time complexity of the SAEA algorithm can be explained by the fact that SAEA has 

longer chromosomes, i.e., additional genes are encoded to represent crossover and mutation 

probabilities for each chromosome in the population. Furthermore, those additional genes also 

undergo the SAEA operations (see Section 4.6 of the manuscript for more details), which incurs an 

increasing computational time. However, the maximum SAEA computational time did not exceed 

64.96 s, which can be considered to be acceptable from the practical standpoint. Specifically, the MCT 

operator will be able to develop berth schedules using the SAEA algorithm within a relatively short 

span of time. 

Along with the analysis of the average objective function and computational time values, the 

scope of this study includes a detailed statistical analysis of the objective function values, obtained 

over ten replications, for each solution algorithm and each large size problem instance. More 

specifically, the one-way analysis of variance (ANOVA) was conducted, assuming the null 

hypothesis stating that the objective function values, obtained over ten replications by the SAEA 

algorithm, were equal to the objective function values, obtained over ten replications by an alternative 

algorithm (i.e., EA, DPCEA, and AEA), for a given problem instance. A total of three tests were 

performed throughout the one-way ANOVA analysis for each large size problem instance, including 

the following: (i) SAEA vs. EA; (ii) SAEA vs. DPCEA; and (iii) SAEA vs. AEA. The one-way ANOVA 

analysis results are reported in Table 6, which provides the following information for each large size 

problem instance: (1) instance number; (2) number of vessels; (3) number of berths; (4) F-statistic for 

each test; and (5) p-value for each test. 
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Table 5. The objective function and computational time values for the developed solution algorithms 

and large size problem instances. 

Instance 
Number 

of Vessels 

Number 

of Berths 

EA DPCEA AEA SAEA 

Objective, 

h 

CPU, 

s 

Objective, 

h 

CPU, 

s 

Objective, 

h 

CPU, 

s 

Objective, 

h 

CPU, 

s 

31 55 4 2377.761 22.21 2258.330 31.40 2211.918 33.54 2164.059 39.32 

32 55 6 899.983 21.67 854.218 31.37 825.216 33.72 788.960 39.02 

33 55 8 455.552 21.72 447.148 31.50 442.022 34.46 437.173 39.17 

34 60 4 2800.193 23.16 2631.300 33.63 2591.382 35.80 2525.668 40.99 

35 60 6 1011.343 22.40 975.456 33.83 924.069 35.91 886.146 41.64 

36 60 8 496.764 22.38 491.083 34.21 484.617 37.24 479.352 42.03 

37 65 4 3205.971 24.41 3019.285 36.10 2988.301 38.02 2896.303 44.05 

38 65 6 1119.997 24.43 1065.933 35.95 1030.017 39.85 985.366 43.56 

39 65 8 545.141 24.46 538.879 35.90 532.089 41.19 525.534 43.78 

40 70 4 3544.719 25.36 3357.861 37.94 3253.702 42.02 3168.028 47.18 

41 70 6 1213.662 25.45 1148.926 38.04 1092.158 42.38 1045.119 46.54 

42 70 8 572.387 25.60 568.528 38.21 560.240 43.33 556.178 47.27 

43 75 4 4034.567 27.17 3740.517 40.11 3681.803 43.28 3544.645 49.66 

44 75 6 1324.011 27.01 1248.610 40.16 1197.125 43.64 1113.764 49.39 

45 75 8 617.365 26.94 611.086 40.63 602.913 45.16 597.957 49.78 

46 80 4 4472.340 28.16 4153.364 42.18 4088.902 45.33 3902.842 51.80 

47 80 6 1420.608 28.10 1343.371 42.21 1271.579 45.98 1193.858 52.39 

48 80 8 654.161 28.19 646.792 42.37 638.393 47.51 630.520 52.22 

49 85 4 5071.830 29.82 4695.141 44.42 4591.242 47.78 4396.188 54.48 

50 85 6 1544.441 29.88 1469.839 44.64 1399.679 47.67 1310.340 56.30 

51 85 8 717.262 30.00 706.896 44.89 695.856 48.94 687.353 55.98 

52 90 4 5566.083 31.30 5197.091 46.69 5052.644 50.32 4791.672 57.59 

53 90 6 1718.440 31.41 1616.241 46.72 1557.377 50.94 1443.065 58.82 

54 90 8 777.947 31.48 767.060 46.99 751.242 53.37 738.916 59.11 

55 95 4 6260.245 32.81 5745.434 48.82 5625.241 52.88 5252.036 61.11 

56 95 6 1921.365 32.82 1815.067 48.84 1747.256 53.96 1618.356 60.67 

57 95 8 851.889 32.84 840.441 49.14 821.427 56.16 803.427 61.73 

58 100 4 7028.538 34.00 6519.833 51.18 6361.047 55.59 5959.020 64.96 

59 100 6 2144.635 34.16 2024.188 51.24 1952.334 55.57 1805.210 63.55 

60 100 8 939.400 34.30 917.367 51.39 901.137 56.36 874.526 63.67 

Average: 2176.953 27.79 2047.176 41.36 1995.764 45.26 1904.053 51.26 

In the conducted one-way ANOVA analysis, F-statistic represents the ratio of the mean squared 

errors (errors quantify the differences between the objective function values, which were obtained by 

the algorithms), while p-value represents the probability that the test statistic may take a value greater 

than the value of the computed test statistic. It can be observed that small p-values were obtained for 

all ANOVA tests and all the generated large size problem instances (i.e., the maximum p-value did 

not exceed 9.08 × 10−3). The latter finding highlights that the objective function values, obtained over 

ten replications by the SAEA algorithm, were statistically lower than the objective function values, 

obtained over ten replications by the alternative algorithms (i.e., EA, DPCEA, and AEA), for each 

large size problem instance (i.e., the null hypothesis of the ANOVA test was rejected). 

Table 6. The one-way ANOVA analysis results. 

Instance 
Number of 

Vessels 

Number of 

Berths 

SAEA vs. EA SAEA vs. DPCEA SAEA vs. AEA 

F-

Statistic 
p-Value 

F-

Statistic 
P-Value 

F-

Statistic 
p-Value 

31 55 4 87.333 2.51 × 10−8 15.560 9.50 × 10−4 8.707 8.55 × 10−3 

32 55 6 185.969 6.28 × 10−11 127.441 1.34 × 10−9 59.595 4.06 × 10−7 

33 55 8 200.004 3.44 × 10−11 45.171 2.66 × 10−6 11.298 3.48 × 10−3 

34 60 4 111.444 3.86 × 10−9 32.717 2.01 × 10−5 19.747 3.14 × 10−4 

35 60 6 88.500 2.27 × 10−8 168.485 1.41 × 10−10 47.567 1.89 × 10−6 

36 60 8 117.671 2.52 × 10−9 61.920 3.10 × 10−7 19.533 3.31 × 10−4 

37 65 4 72.669 9.80 × 10−8 45.253 2.63 × 10−6 16.209 7.93 × 10−4 

38 65 6 128.470 1.26 × 10−9 186.894 6.02 × 10−11 36.215 1.09 × 10−5 

39 65 8 273.436 2.50 × 10−12 142.323 5.55 × 10−10 39.893 5.94 × 10−6 

40 70 4 199.458 3.52 × 10−11 102.829 7.20 × 10−9 27.968 4.99 × 10−5 

41 70 6 196.358 4.00 × 10−11 122.740 1.81 × 10−9 17.452 5.66 × 10−4 

42 70 8 162.601 1.89 × 10−10 54.086 7.95 × 10−7 8.545 9.08 × 10−3 
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43 75 4 178.851 8.65 × 10−11 58.665 4.53 × 10−7 48.762 1.60 × 10−6 

44 75 6 532.901 7.99 × 10−15 162.142 1.93 × 10−10 38.115 7.91 × 10−6 

45 75 8 149.522 3.73 × 10−10 78.246 5.69 × 10−8 10.726 4.21 × 10−3 

46 80 4 250.318 5.27 × 10−12 41.776 4.42 × 10−6 26.552 6.68 × 10−5 

47 80 6 126.959 1.38 × 10−9 160.559 2.09 × 10−10 40.397 5.48 × 10−6 

48 80 8 291.768 1.44 × 10−12 155.394 2.73 × 10−10 24.430 1.05 × 10−4 

49 85 4 113.627 3.31 × 10−9 56.399 5.96 × 10−7 23.833 1.20 × 10−4 

50 85 6 208.291 2.45 × 10−11 158.601 2.31 × 10−10 63.882 2.48 × 10−7 

51 85 8 333.197 4.63 × 10−13 160.421 2.11 × 10−10 45.943 2.38 × 10−6 

52 90 4 149.621 3.71 × 10−10 141.627 5.77 × 10−10 39.692 6.13 × 10−6 

53 90 6 279.916 2.05 × 10−12 193.527 4.52 × 10−11 45.672 2.48 × 10−6 

54 90 8 116.989 2.64 × 10−9 75.017 7.77 × 10−8 21.291 2.15 × 10−4 

55 95 4 245.548 6.19 × 10−12 130.574 1.10 × 10−9 62.830 2.79 × 10−7 

56 95 6 593.439 3.12 × 10−15 78.704 5.45 × 10−8 53.649 8.41 × 10−7 

57 95 8 294.788 1.32 × 10−12 145.754 4.58 × 10−10 47.897 1.81 × 10−6 

58 100 4 185.464 6.42 × 10−11 174.531 1.06 × 10−10 30.213 3.21 × 10−5 

59 100 6 293.450 1.37 × 10−12 148.309 3.98 × 10−10 74.222 8.40 × 10−8 

60 100 8 136.192 7.89 × 10−10 123.778 1.69 × 10−9 32.833 1.97 × 10−5 

Average: 210.158 5.43 × 10−9 111.648 3.27 × 10−5 34.789 9.33 × 10−4 

6.4.2. Convergence Patterns 

The analysis of algorithmic convergence patterns plays an important role in evaluation of the 

algorithmic performance, as it allows monitoring changes in the objective function values from the 

population initialization step until termination of the algorithm. The convergence patterns were 

retrieved for all the developed solution algorithms and large size problem instances. Figure 10 

illustrates convergence patterns of the SAEA, AEA, DPCEA, and EA algorithms for the first 

replication of problem instances 49–60 (12 large size problem instances with the largest number of 

vessels, calling for service at the MCT). Note that similar tendencies in the algorithmic convergence 

patterns were observed for the rest of replications and problem instances. 
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Figure 10. The algorithmic convergence patterns for problem instances 49–60. 

Based on the convergence patterns, it can be noticed that all the developed solution algorithms 

started the search process with the same solution. The latter can be explained by the fact that the 

SAEA, AEA, DPCEA, and EA algorithms deploy the same population initialization mechanism 

(described in Section 4.3 of the manuscript). Application of the self-adaptive parameter control for 

the crossover and mutation probabilities allowed the SAEA algorithm discovering the promising 

domains of the search space much faster as compared to the AEA, DPCEA, and EA algorithms. The 

AEA algorithm was able to move along the search space more efficiently as compared to the DPCEA 

algorithm, as it was adjusting the crossover and mutation probabilities based on feedback from the 

search. Furthermore, the analysis of algorithmic convergence patterns indicates that setting the 

constant values for the crossover and mutation probabilities (i.e., the parameter tuning strategy, 

adopted within the EA algorithm) significantly slows down the search process and generally worsens 

the objective function value at termination. 

The scope of numerical experiments also includes a detailed analysis of the convergence speed 

for the developed solution algorithms. Similar to Pelusi et al. [24], the convergence speed was 

assessed based on the convergence rate value for each solution algorithm. The convergence rate of 

algorithm 𝑎 (𝐶𝑅𝑎) was estimated based on the number of fitness function evaluations until finding 

its minimum value (𝑁𝐹𝑎
∗) and the total number of fitness function evaluations (𝑁𝐹𝑎

𝑇𝑂𝑇 ) using the 

following relationship [24]: 

𝐶𝑅𝑎 =
𝑁𝐹𝑎

∗

𝑁𝐹𝑎
𝑇𝑂𝑇 (19) 

The convergence rate values were calculated for all the developed solution algorithms, 

performed replications, and large size problem instances. Results are reported in Table 7, including 

the following information for each large size problem instance: (1) instance number; (2) number of 

vessels; (3) number of berths; (4) average convergence rate value over ten replications (denoted as 

𝑎𝑣𝑔(𝐶𝑅) ) for each solution algorithm; and (5) convergence rate standard deviation over ten 

replications (denoted as 𝑠𝑡𝑑(𝐶𝑅)) for each solution algorithm.
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Table 7. The convergence rate values for the developed solution algorithms and large size problem instances. 

Instance Number of Vessels Number of Berths 
EA DPCEA AEA SAEA 

𝒂𝒗𝒈(𝑪𝑹) 𝒔𝒕𝒅(𝑪𝑹) 𝒂𝒗𝒈(𝑪𝑹) 𝒔𝒕𝒅(𝑪𝑹) 𝒂𝒗𝒈(𝑪𝑹) 𝒔𝒕𝒅(𝑪𝑹) 𝒂𝒗𝒈(𝑪𝑹) 𝒔𝒕𝒅(𝑪𝑹) 

31 55 4 0.904 0.050 0.863 0.086 0.959 0.030 0.837 0.159 

32 55 6 0.853 0.150 0.869 0.117 0.959 0.039 0.873 0.115 

33 55 8 0.941 0.043 0.838 0.130 0.943 0.032 0.897 0.119 

34 60 4 0.948 0.046 0.922 0.082 0.939 0.048 0.921 0.079 

35 60 6 0.912 0.073 0.908 0.072 0.933 0.073 0.911 0.077 

36 60 8 0.804 0.162 0.784 0.215 0.955 0.052 0.948 0.041 

37 65 4 0.923 0.076 0.841 0.180 0.952 0.065 0.822 0.149 

38 65 6 0.845 0.103 0.906 0.077 0.941 0.057 0.906 0.110 

39 65 8 0.659 0.269 0.848 0.125 0.966 0.034 0.946 0.033 

40 70 4 0.914 0.082 0.967 0.028 0.950 0.037 0.885 0.157 

41 70 6 0.867 0.113 0.922 0.051 0.944 0.019 0.922 0.068 

42 70 8 0.668 0.277 0.889 0.102 0.959 0.044 0.931 0.076 

43 75 4 0.885 0.135 0.907 0.066 0.961 0.032 0.877 0.135 

44 75 6 0.871 0.104 0.934 0.091 0.956 0.041 0.873 0.134 

45 75 8 0.828 0.172 0.897 0.075 0.955 0.019 0.915 0.085 

46 80 4 0.886 0.102 0.914 0.058 0.954 0.052 0.948 0.046 

47 80 6 0.812 0.178 0.933 0.057 0.953 0.042 0.912 0.073 

48 80 8 0.771 0.206 0.885 0.071 0.965 0.032 0.957 0.043 

49 85 4 0.969 0.037 0.921 0.072 0.953 0.036 0.898 0.103 

50 85 6 0.878 0.109 0.921 0.059 0.956 0.039 0.939 0.093 

51 85 8 0.799 0.331 0.839 0.132 0.947 0.047 0.950 0.038 

52 90 4 0.945 0.031 0.890 0.102 0.937 0.047 0.854 0.127 

53 90 6 0.912 0.042 0.852 0.095 0.956 0.044 0.916 0.059 

54 90 8 0.775 0.231 0.809 0.195 0.969 0.027 0.974 0.021 

55 95 4 0.951 0.031 0.959 0.053 0.950 0.049 0.950 0.048 

56 95 6 0.878 0.101 0.931 0.072 0.965 0.043 0.932 0.090 

57 95 8 0.824 0.167 0.803 0.140 0.969 0.023 0.949 0.074 

58 100 4 0.933 0.063 0.917 0.068 0.970 0.030 0.916 0.087 

59 100 6 0.907 0.093 0.926 0.061 0.946 0.034 0.952 0.049 

60 100 8 0.744 0.127 0.880 0.118 0.968 0.025 0.958 0.035 

Average: 0.860 0.123 0.889 0.095 0.954 0.040 0.916 0.084 
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Based on the conducted numerical experiments, the average convergence rate values comprised 

0.916, 0.954, 0.889, and 0.860 for the SAEA, AEA, DPCEA, and EA algorithms, respectively, over the 

performed replications and generated large size problem instances. Fairly large convergence rate 

values indicate that all the developed algorithms kept discovering superior solutions throughout the 

search process. However, lower convergence rate values (i.e., greater convergence speed values) were 

typically recorded for the EA algorithm. Although relatively large convergence rate values were 

observed for all the developed solution algorithms, the SAEA algorithm was able to discover more 

promising solutions for all the generated large size problem instances (as discussed in Section 6.4.1 

of the manuscript). 

6.4.3. Evolution of the Self-Adaptive Algorithmic Parameter Values 

Unlike the crossover and mutation probabilities for the AEA, DPCEA, and EA algorithms, the 

crossover and mutation probabilities for the SAEA algorithm are encoded in the chromosome (see 

Figure 4) and evolve during the search process. Throughout the numerical experiments, the crossover 

and mutation probability values were recorded after the offspring selection for the whole population 

at each generation for each one of the generated large size problem instances. Figures 11 and 12 

illustrate evolution of the average crossover and mutation probabilities (over all the chromosomes of 

the population) within the SAEA algorithm for the first replication of problem instances 49–60 (12 

large size problem instances with the largest number of vessels, calling for service at the MCT). Note 

that similar tendencies in evolution of the average crossover and mutation probabilities within the 

SAEA algorithm were observed for the rest of replications and problem instances. 

It can be observed that the pattern of changes in the crossover and mutation probability values 

within the SAEA algorithm is complex as compared to other EA-based algorithms (e.g., DPCEA, 

where changes in the crossover and mutation probability values can be described using the piecewise 

function—see Section 6.2 of the manuscript for more details). Typically, relatively high crossover and 

mutation probability values are assigned by SAEA at the beginning of the search process (i.e., the 

crossover probability is set to ≈0.60 ÷ 0.70, while the mutation probability is set to ≈0.35 ÷ 0.45). On 

the other hand, SAEA substantially reduces the crossover and mutation probability values towards 

convergence (i.e., the crossover probability is reduced to ≈0.40 ÷ 0.50, while the mutation probability 

is set to ≈0.15 ÷ 0.25). High crossover and mutation probability values at the beginning of the search 

process allow the SAEA algorithm efficiently exploring promising domains of the search space, while 

lower crossover and mutation probability values allow the SAEA algorithm focusing on exploitation 

of the identified promising domains towards convergence. 

 

Figure 11. Evolution of the average crossover probability values for problem instances 49–60. 
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Figure 12. Evolution of the average mutation probability values for problem instances 49–60. 

6.4.4. Algorithmic Stability 

As mentioned earlier, the SAEA, AEA, DPCEA, and EA algorithms are stochastic in their nature; 

and, therefore, the objective function value at termination, obtained by the algorithms may vary from 

one algorithmic replication to another for a given problem instance. A significant variation in the 

objective function values from one replication to another for a given algorithm is not desirable, as 

such algorithm cannot be considered to be a reliable decision support tool (e.g., the berth schedules 

will significantly vary in terms of the total weighted vessel turnaround time and the total weighted 

vessel late departures). The scope of numerical experiments includes evaluation of the stability for 

all the developed solution algorithms. Specifically, the algorithmic stability was assessed based on 

variability in the objective function values at termination over ten replications, which were performed 

for each large size problem instance. This study adopted coefficient of variation as an indicator of the 

objective function variability. The objective function coefficient of variation over ten replications was 

estimated for each one of the developed solution algorithms and all large size problem instances, and 

results are reported in Figure 13. 

 

Figure 13. The objective function coefficient of variation values for the developed solution algorithms 

and large size problem instances. 

It can be observed that the objective function coefficient of variation did not exceed 1.98% over 

all large size problem instances for the presented solution algorithms, which highlights stability of 

the algorithms. However, lower objective function coefficient of variation values was typically 
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recorded for the SAEA algorithm. On the other hand, higher objective function coefficient of variation 

values was generally observed for the EA algorithm. 

6.4.5. Changes in Population Diversity 

The population diversity is considered to be one of the critical factors in the design of EAs. A 

diverse population is represented not only with the individuals that have high fitness values (a.k.a., 

“super-individuals”), but also with the individuals that have medium and low fitness values. The EA 

with a diverse population can explore various domains of the search space more efficiently [20,21]. 

Lack of the population diversity, especially at the beginning of the algorithmic run, may negatively 

affect the EA performance and cause the “premature convergence”. The “premature convergence” 

generally occurs due to lack of the explorative and exploitative capabilities of the algorithm when it 

is not able to identify any other promising domains of the search space and convergences at one of 

the local optima. The scope of numerical experiments includes evaluation of the population diversity 

for all the developed solution algorithms. This study adopted the standard deviation (STD) of the 

fitness function values of the population chromosomes as an indicator of the population diversity for 

each algorithm. The population fitness STD values were recorded at each generation of the developed 

solution algorithms for each replication and large size problem instance. Figure 14 illustrates changes 

in the population fitness STD values throughout evolution of the SAEA, AEA, DPCEA, and EA 

algorithms for the first replication of problem instances 55–60 (6 large size problem instances with 

the largest number of vessels, calling for service at the MCT). Note that similar tendencies in the 

algorithmic population diversity changes were observed for the rest of replications and problem instances. 

The conducted numerical experiments indicate that all the developed solution algorithms were 

able to maintain a diverse population, especially at the beginning of the search process (i.e., within 

the first ≈ 50 generations). For certain solution algorithms, the population fitness STD values even 

exceeded 1000 h (e.g., the maximum population fitness STD values of the SAEA and EA algorithms 

comprised 1138.08 h and 1096.09 h, respectively, for problem instance 56). Such a high population 

diversity at the beginning of the search process can be justified by the adopted population 

initialization mechanism, where half of the population was initialized using the FCFS-SR heuristic, 

while the other half was generated randomly. As discussed in Section 4.3 of the manuscript, a random 

population initialization may negatively affect fitness of the generated chromosomes but allows 

maintaining a diverse population.  
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Figure 14. The population fitness STD values for the developed solution algorithms and problem 

instances 55–60. 

Moreover, it can be noticed that the population fitness STD significantly decreased after ≈50 

generations, as the developed solution algorithms identified a set of promising domains of the search 

space and primarily focused on the exploitation process. Although all the developed solution 

algorithms were able to maintain a diverse population, application of the self-adaptive parameter 

control strategy (within the SAEA algorithm) was found to be more efficient for the search process 

as compared to the other parameter control strategies and the parameter tuning strategy, as the SAEA 

algorithm outperformed the other considered solution algorithms in terms of the objective function 

values at termination (see Section 6.4.1 of the manuscript for more details).  

7. Conclusions and Future Research Extensions 

Maritime transportation has been a primary transportation mode, supporting the international 

trade between different continents since ancient times. Nowadays, maritime transportation continues 

to play a very important role for the economy of many countries. Taking into consideration a rapid 

growth of waterborne trade, marine container terminal operators must focus on upgrading the 

existing terminal infrastructure and improving operations planning. Efficient seaside operations are 

critical for marine container terminals, as disruptions in the seaside operations may result in 

substantial vessel service delays. This study focused on enhancing the seaside operations at marine 

container terminals, aiming to assist terminal operators with the design of efficient berth schedules. 

The berth scheduling problem was formulated as a mixed integer linear programming model, where 

the total weighted vessel turnaround time and the total weighted vessel late departures were 

minimized. The weight of vessels was introduced in the model to account for their service priority. 

A novel self-adaptive Evolutionary Algorithm was developed to solve the berth scheduling problem. 

The crossover and mutation probabilities were encoded in the chromosomes within the proposed 

algorithm and evolved throughout the algorithmic run. 

Extensive numerical experiments were undertaken to evaluate performance of the developed 

solution algorithm against the alternative Evolutionary Algorithms, which relied on the deterministic 

parameter control, adaptive parameter control, and parameter tuning strategies, respectively. It was 

found that all the considered solution algorithms demonstrated stability (i.e., relatively low 

variability) in terms of the objective function values at termination from one replication to another. 

Furthermore, the solution algorithms were able to maintain the adequate population diversity. Due 
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to complexity of the proposed mathematical model, the considered solution algorithms showed 

better performance as compared to the exact optimization algorithm in terms of both objective 

function and computational time values for the small size problem instances. However, the 

developed self-adaptive Evolutionary Algorithm outperformed the Evolutionary Algorithms with 

adaptive parameter control, deterministic parameter control, and parameter tuning strategies in 

terms of the objective function values at termination on average by 4.01%, 6.83%, and 11.84%, 

respectively, over the generated large size problem instances. The computational time of the self-

adaptive Evolutionary Algorithm did not exceed 64.96 s, which can be considered to be acceptable 

from the practical standpoint. 

Superiority of the self-adaptive Evolutionary Algorithm over the other algorithms can be 

explained by the fact that the crossover and mutation probabilities are encoded in the chromosomes 

and evolve throughout the algorithmic run, which further allows more efficient exploration and 

exploitation of the search space. Therefore, the proposed solution algorithm can serve as an efficient 

decision support tool for the marine container terminal operators and assist with the design of cost-

effective berth schedules. The scope of the future research for this study may focus on the following 

aspects: (1) evaluate performance of the developed solution algorithm against the alternative 

Evolutionary Algorithms using the realistic operational data, collected from the marine container 

terminals; (2) compare the developed solution algorithm against the other state-of-art solution 

algorithms; (3) develop local search heuristics to improve performance of the crossover and mutation 

operators; (4) evaluate different strategies for altering the crossover and mutation probabilities (e.g., 

use feedback from the search instead of deployment of the stochastic operators); (5) assess 

performance of the developed solution algorithm for different termination criteria; (6) apply the 

proposed self-adaptive Evolutionary Algorithm for the multi-objective berth scheduling problem, 

where the considered objectives are conflicting in their nature; (7) assess the effects of encoding 

additional parameters of the self-adaptive Evolutionary Algorithm (e.g., population size, penalty 

terms for infeasible individuals, selection operator parameters) on its performance; and (8) evaluate 

performance of the developed self-adaptive Evolutionary Algorithm for different selection 

mechanisms. 
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