
 
 

Algorithms 2018, 11, 75; doi:10.3390/a11050075 www.mdpi.com/journal/algorithms 

Article 

A New Oren–Nayar Shape-from-Shading Approach 

for 3D Reconstruction Using High-Order 

Godunov-Based Scheme 

Guohui Wang 1,2,* and Yuanbo Chu 1 

1 School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China; 

chuyuanbo@xatu.edu.cn  
2 Shaanxi Province Key Laboratory of Optoelectronic Measurement and Instrument Technology, Xi’an 

Technological University, Xi’an 710021, China 

* Correspondence: wangguohui@xatu.edu.cn; Tel.: +86-29-8617-3335 

Received: 17 April 2018; Accepted: 16 May 2018; Published: 18 May 2018 

Abstract: 3D shape reconstruction from images has been an important topic in the field of robot 

vision. Shape-From-Shading (SFS) is a classical method for determining the shape of a 3D surface 

from a one intensity image. The Lambertian reflectance is a fundamental assumption in 

conventional SFS approaches. Unfortunately, when applied to characterize the reflection attribute 

of the diffuse reflection, the Lambertian model is tested to be inexact. In this paper, we present a 

new SFS approach for 3D reconstruction of diffuse surfaces whose reflection attribute is 

approximated by the Oren–Nayar reflection model. The partial differential Image Irradiance 

Equation (IIR) is set up with this model under a single distant point light source and an 

orthographic camera projection whose direction coincides with the light source. Then, the IIR is 

converted into an eikonal equation by solving a quadratic equation that includes the 3D surface 

shape. The viscosity solution of the resulting eikonal equation is approximated by using the 

high-order Godunov-based scheme that is accelerated by means of an alternating sweeping 

strategy. We conduct the experiments on synthetic and real-world images, and the experimental 

results illustrate the effectiveness of the presented approach. 

Keywords: 3D reconstruction; shape-from-shading; Oren–Nayar reflection model; eikonal 

equation; Godunov-based scheme; alternating sweeping strategy 

 

1. Introduction 

3D shape reconstruction from images has been an important topic in the field of robot vision. 

Shape-From-shading (SFS), initiated by Horn [1,2], is a classical method for determining the shape of 

a 3D surface from a one intensity image. He described the SFS problem by the so-called Image 

Irradiance Equation (IIR), which is a nonlinear Partial Differential Equation (PDE) of the first-order, 

and demonstrates the relationship between the 3D surface shape and its relevant 2D image intensity 

variations. 

There are primarily two steps when processing an SFS problem. The first step is that of setting 

up a partial differential IIR under certain assumptions. The assumptions are used to model the 

image formation process and are dependent on the reflection attribute of the surface, the light 

source, and the camera. The second step is that of building a numerical scheme to acquire a solution 

of the IIR, which is the 3D shape of the known intensity image. Since the pioneering work of Horn, 

the majority of the SFS works focuses on how to build a numerical scheme with the simple 

Lambertian model; thus, many SFS algorithms have been reported (one can see the extensive list of 

the references in the three surveys [3–5]). According to Zhang et al. [4], Durou et al. [5], and Tozza 



Algorithms 2018, 11, 75 2 of 13 

and Falcone [6], these algorithms are roughly divided into two categories: PDE-based approaches 

and optimization approaches. The early work of Horn [1] based on the method of characteristics and 

the viscosity solution theories-based methods [7–11] all belong to the first category. It is worth 

mentioning that Rouy and Tourin [7] first formulated the SFS problem as a 

Hamilton–Jacobi–Bellman (HJB) PDE, whose solution is obtained through the viscosity solution 

theories. Kimmel and Sethian [8] converted the partial differential IIR with Lambertian reflection 

model into an eikonal PDE. They adopted the fast-marching method [12] to compute its viscosity 

solution. These approaches [1,7,8] are based on an orthographic camera projection. For a 

perspective camera projection, Prados and Faugeras [9] associated the partial differential IIR with a 

Hamiltonian and approximated its viscosity solution using optimal control strategy on the basis of 

the work [7]. Breuß et al. [10,11] studied analytically and numerically the perspective SFS model 

introduced by Prados and Faugeras [9] and the related Hamilton–Jacobi (HJ) PDE. Also, they 

proved the convergence of a finite-difference scheme and a semi-Lagrangian scheme for the HJ PDE. 

The second category includes the minimization methods for the variational problem. Lee and Kuo 

[13] presented an iterative SFS method under the perspective camera projection. They 

approximated a smooth surface by the union of triangular surface patches which involved only the 

height variables. The shape was recovered by linearizing the reflectance map and minimizing a 

quadratic cost functional. Courteille et al. [14] introduced some form of regularization, by 

formulating a PDE-based weak perspective or perspective IIR in terms of a spline basis. We want to 

mention the work by Quéau et al. [15], who combined the advantages of PDE-based approaches 

and optimization approaches, and created a generic variational solution based on PDEs that is 

suitable for SFS under natural illumination and can handle a variety of scenarios for the camera and 

the lighting. Finally, in addition to these work, we should also mention that a latest work by 

Scheffler et al. [16], who gave a novel graph theoretical framework built on cycle bases. They 

proposed a linear program for realizing the approach to solve the disambiguation problem for SFS. 

As for the modeling process of the surface reflection, few are reported in the SFS literature. 

Generally, the Lambertian reflectance is a fundamental assumption in conventional SFS approaches 

for approximating the reflection attribute of the diffuse reflection. Unfortunately, the Lambertian 

model has been tested to be inexact, especially for rough diffuse surfaces [17]. Samaras and Metaxas 

[18] adopted the Deformable Models and Oren–Nayar [17] model to construct an approach for 

non-Lambertian SFS and estimating the light direction. Ragheb and Hancock [19] also reported a 

non-Lambertian SFS with the Oren–Nayar model and presented two solutions: the analytic solution 

and the lookup table. Ahmed and Farag [20] gave several non-Lambertian SFS models and solved 

the partial differential IIR using the Lax-Friedrichs sweeping scheme [21]. Tozza and Falcone [6] 

proposed a unified formulation for several non-Lambertian SFS models, solved by a 

semi-Lagrangian approximation scheme and proved a convergence result. In these non-Lambertian 

SFS approaches, the distant point light source and the orthographic camera projection are adopted. 

Because of their simplicity, our current study is based on these models. Of course, recent research 

focuses on the more realistic imaging model, including a nearby point light source and perspective 

camera projection. Ahmed and Farag [22] used the model proposed by Prados and Faugeras [9], 

where the point light source is ideally attached to the camera’s projection center, and a light 

attenuation term 1/r2 (r defines the distance between the position of the light source and the 3D 

surface point) has been considered in order to eliminate the ambiguity regarding convex and 

concave that makes the non-Lambertian SFS problem ill-posed. Moreover, Ju et al. [23] extended the 

work of Galliani et al. [24]: they used spherical surface parameterization to Oren–Nayar reflection 

model and thus could resolve an arbitrary position of the point light source. Nevertheless, the 

solving process needs transform the fast-marching method described in Cartesian coordinates [12] 

into spherical coordinates. 

In this paper, we present a new Oren–Nayar SFS approach for 3D reconstruction of diffuse 

surfaces by extending our work [25]. The Oren–Nayar reflection model is also applied to 

approximate the reflection attribute of the diffuse reflection. Then, a partial differential IIR with this 

model is set up under a single distant point light source and an orthographic camera projection 
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whose direction coincides with the light source. Although several works [6,20,26] have been 

reported in this situation, our main contribution is that we convert the IIR into a standard eikonal 

PDE by solving a quadratic equation which includes the 3D surface shape, after which we try to 

obtain the viscosity solution of the resulting eikonal equation by using the high-order 

Godunov-based scheme. 

2. IIR for Oren–Nayar Reflectance 

Under the basis that the image plane of the camera is an x y−  plane and the camera’s optical 

axis is a z− axis, the SFS problem is able to be expressed as reconstructing a 3D surface, ( , )z x y , 

which satisfies the partial differential IIR [1]: 

 
= =

 
( , ) ( , ) ( ( , ), ( , )),

z z
I x y R R p x y q x y

x y
 (1) 

where ( , )I x y  is the image irradiance that is considered to be equal to the image intensity, ( , )p x y  

and ( , )q x y  respectively stand for the first partial derivatives of the surface ( , )z x y  with respect to 

x  and y , and R  is the reflectance map derived from the reflection model. 

Assuming that the camera performs an orthographic projection of a surface which is irradiated 

by a single point light source placed distantly from the surface, we can adopt the formulation as 

follows to describe the normal vector n  at a 3D surface point ( , , ( , ))x y z x y , 

[ , , 1].p q= −n  (2) 

The reflected radiance of an ideal diffuse surface obeys Lambert’s law, which can be expressed 

by 

0
( ) cos ,
r i i

ρ
L θ I θ

π
=  (3) 

where 
i
θ , as illustrated in Figure 1, is the angle between the normal vector n , and the incident 

direction of the point light source L , ρ  is the albedo of diffuse surfaces that is constant in this 

paper, and 
0
I  is the radiant intensity of the light source. However, for a typical real diffuse surface, 

the Lambertian reflection model is tested to be an inexact approximation of the diffuse component 

of the surface reflection [17,25]. To eliminate the inexactness for diffuse reflection deriving from the 

assumption of the Lambertian model, Oren and Nayar [17] produced an advanced reflection model 

for rough diffuse surfaces where the roughness model has been used. The roughness model 

considers that the surface is constituted by extended symmetric V-shaped cavities, where every 

V-cavity consists of two planar facets which are considered to obey the Lambert’s law. The 

roughness of the surface is determined by a probability function of the planar facet orientations. 

Moreover, using a Gaussian distribution, with the reflection geometry shown in Figure 1, a 

formulation for the surface reflected radiance 
r
L  is addressed: 

( )= +  −  0
( , ; , ; ) cos ( ) ( )sin tan max cos( ),0 ,
r i i r r i r i

ρ
L φ θ φ θ σ I θ A σ B σ α β φ φ

π
 (4) 

where max ,
i r

α θ θ=    , min ,
i r

β θ θ=    , 2 2( ) 1 0.5 ( 0.33)A σ σ σ= − +  and 2 2( ) 0.45 ( 0.09)B σ σ σ= + . 

The parameter σ  is standed as a measure of the surface roughness, and it represents the standard 

deviation of the Gaussian distribution. 

Considering that the direction of the point light source L  coincides with the camera’s 

direction V , we have ,
i r i r
φ φ θ θ= = , and α β= . Consequently, Equation (4) can be simplified to 

( )2

0
( ; ) ( )cos ( )sin .
r i i i

ρ
L θ σ I A σ θ B σ θ

π
= +  (5) 
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Generally speaking, Equation (5) can only be established under the assumptions that are a 

single distant point light source and an orthographic camera projection whose direction coincides 

with the light source or a nearby point light source attached to the projection center of the camera 

performing a perspective projection. If the camera’s direction does not coincide with the light 

source, our approach is no longer suitable, in which case one can refer to the work of [6,23]. 

Defining that the unit vectors of L  and V  are all [0,0, 1]−  and since 
i
θ  is the angle between the 

normal vector n  and L , we have 

2 2 2

1 1
cos ,

1 ( , ) 1
i
θ

p q z x y

=  = =
+ +  +

L n

L n
 


= − =

 +

2

2 2

2

( , )
sin 1 cos .

( , ) 1
i i

z x y
θ θ

z x y
 

(6) 

According to [1], taking Equation (6) into Equation (5), the reflectance map derived from the 

Oren–Nayar model is formulated as follows and now we can express the partial differential IIR for 

the Oren–Nayar reflectance: 

2

22

( , )1
( , ) ( ) ( ) ( , ).

( , ) 1( , ) 1

z x y
R p q A σ B σ I x y

z x yz x y


= + =

 + +

 (7) 

A similar IIR for the Oren–Nayar SFS has been reported in [26] and can be solved by a 

semi-Lagrangian approximation scheme. Here we convert the IIR into a standard eikonal PDE 

which will be solved by the high-order Godunov-based scheme. Obviously, the formulation (7) is 

able to be characterized by a quadratic equation in the variable 
2

( , ) 1z x y + . Applying the 

change of variable 
2

( , ) 1g z x y=  + , Equation (7) is formulated as 

2( ( , ) ( )) ( ) ( ) 0.I x y B σ g A σ g B σ− − + =  (8) 

Calculating Equation (8) and satisfying 1g  , we have 

=
− − −2

2 ( )
.

( ) ( ) 4( ( , ) ( )) ( )

B σ
g

A σ A σ I x y B σ B σ
 (9) 

Thus, the SFS problem (7) has been reformulated as a standard eikonal PDE: 

  = −  


=  

2( , ) 1 Ω,

( , ) ( , ) Ω,

z x y g x

z x y φ x y x
 (10) 

where ( , )φ x y  is a boundary condition and Ω  is a given image domain. 

n

r
φ

i
φ

i
θ

r
θ

VL

 

Figure 1. Reflection geometry model of a 3D surface with the normal vector n . L  and V  are 

the incident direction of the point light source and the camera’s direction, respectively. ,
i r

φ φ  and 

,
i r
θ θ  are their corresponding tilt and slant angles, respectively. 
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3. Numerical Algorithm for Solving the Resulting Eikonal PDE 

In this section, we employ the high-order Godunov-based scheme [27] that is accelerated by 

alternating sweeping strategy [28,29] to solve the viscosity solution of the resulting eikonal PDE 

(10). 

3.1. High-Order Godunov-Based Scheme 

Consider a uniform discretization {( , ) ( , ), 1,2, , , 1,2, , }
m n
x y ms ns m r n c= = =  of the given 

image domain Ω  whose resolution and grid size are r c  and s s , respectively. Now our goal 

is to get a discrete solution 
,

( , )
m n m n
z z x y=  of the unknown 3D surface ( , )z x y . 

A first-order Godunov-based scheme proposed in [7,29] is employed to discretize resulting 

eikonal PDE (10): 

− + − +
 − −   − − 

− + − =   
      

2 2

, 1, 1, , , , 1 , 1 , 2

,
max , ,0 max , ,0 ,m n m n m n m n m n m n m n m n

m n

z z z z z z z z
F

s s s s
 (11) 

where 2

, ,
1

m n m n
F g= − . The substitution of 

− +
=

1, 1,
min[ , ]

a m n m n
z z z , 

− +
=

, 1 , 1
min[ , ]

b m n m n
z z z  and 

+
 

=


0
{ }

0 0

x x
x

x
 (12) 

into Equation (11), we have 

2 2

, , 2

,
.m n a m n b

m n

z z z z
F

s s

+ +    −   −       + =   
            

 (13) 

Hence, the first-order scheme viscosity solution of Equation (13) can be obtained thusly: 

2 2 2

,

,
,

, ,

2 ( )
| | ,

2
min[ , ] | | .

a b m n a b

a b m n
m n

a b m n a b m n

z z s F z z
z z sFz

z z sF z z sF

 + + − −
 − =
 + − 

 (14) 

To build a higher-order scheme, the 
,m n

p  and 
,m n

q  with higher-order accuracy need to be 

approximated. According to [27], since the third-order Weighted Essentially Non-Oscillatory 

(WENO) scheme has a uniform high order accuracy and is more efficient and robust than other 

schemes (e.g., the Essentially Non-Oscillatory (ENO) scheme), we also choose to employ the 

third-order WENO approximations. 

2 2

, 1 , 2 2

,
max ,0 max ,0 ,

new new

m n m n

m n

z z z z
F

s s

      − −   
+ =      

            

 (15) 

where 

− +

− +

= − +

= − +

1 , , , ,

2 , , , ,

min[( ),( ) ],

min[( ),( ) ],

old old

m n m n m n m n

old old

m n m n m n m n

z z sp z sp

z z sq z sq
 (16) 

with 

+ − − −−

− −

+ − + ++

+ +

 −   − + 
= − +      

   

 −   − + − 
= − +      

   

1, 1, , 1, 2,

,

1, 1, 2, 1, ,

,

3 4
(1 ) ,

2 2

4 3
(1 ) .

2 2

m n m n m n m n m n

m n

m n m n m n m n m n

m n

z z z z z
p α α

s s

z z z z z
p α α

s s

 (17) 
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Here 

− −

− −

− + −

+ +

+ +

+ + −

+ − +
= =

+ + − +

+ − +
= =

+ + − +

2

, 1, 2 ,

2 2

1, , 1,

2

2, 1, ,

2 2

1, , 1,

( 2 )1
,  ,

1 2 ( 2 )

( 2 )1
,  ,

1 2 ( 2 )

m n m n m n

m n m n m n

m n m n m n

m n m n m n

μ z z z
α β

β μ z z z

μ z z z
α β

β μ z z z

 (18) 

where μ  is a very small number keeping the denominator from getting too close to 0. In a similar 

way, 
,m n

q−  and 
,m n

q+  are specified. 

Thus, the higher-order scheme viscosity solution of Equation (13) can be obtained: 

2 2 2

1 2 , 1 2

1 2 ,
,

1 2 , 1 2 ,

2 ( )
| | ,

2
min[ , ] | | .

m n
new

m n
m n

m n m n

z z s F z z
z z sFz

z z sF z z sF

 + + − −
 − =
 + − 

 (19) 

3.2. Alternating Sweeping Strategy for Godunov-Based Scheme 

To speed up the convergence of the high-order Godunov-based scheme, the philosophy of 

alternating sweeping strategy and Gauss–Seidel iterations [28,29] are used as follows. The newest 

available values for z  are adopted when we calculate the derivatives 
,m n

p− , 
,m n

p+ , and 
,m n

q− , 
,m n

q+ . 

Simultaneously, the iterations of the scheme do not only sweep in a single direction, but in the four 

alternating directions as follows: (a) from upper left to lower right; (b) from lower left to upper right; 

(c) from lower right to upper left; (d) from upper right to lower left. As can be clearly demonstrated 

that varied values 
2,m n

z


, 
1,m n

z


 and 
, 2m n

z


, 
, 1m n

z


 will be taken into account according to the 

current sweeping direction within the preceding cycle. 

The high-order Godunov-based scheme accelerated by an alternating sweeping strategy is 

summarized in the following way: 

(1) Initialization: On the boundary Ω  we set the grid points to be accurate values, i.e., 0

,m n
z =  

,m n
φ , which are unchanged during the iterations of the scheme. The approximated solution 

from the first-order Godunov-based scheme is applied as the initial guess for all other grid 

points. 

(2) Iterations with Alternating Sweepings Orderings: We calculate 
,

new

m n
z  at ( 1)i + th iteration, 

updated by the rules (19) using Gauss–Seidel iterations with the following four alternating 

sweepings orderings: 

⚫ 1: , 1 :m r n c= = ; 

⚫ : 1, 1 :m r n c= = ; 

⚫ : 1, : 1m r n c= = ; 

⚫ 1: , : 1m r n c= = . 

(3) Convergence Test: If + − 
1

1i i

L
z z δ , where  0δ  is a known threshold value, the scheme 

stops and converges, or else comes back to (2). In this paper, −= 510δ  is taken. 

4. Experimental Results 

The effectiveness of the presented approach is assessed using several experiments on synthetic 

and real-world images. All the experiments were conducted on a general-purpose personal 

computer with an Intel Core i5-3570 CPU and 4 GB of DDR3 memory. We implemented all the 

approaches in Matlab, using C mex functions under Microsoft Windows operating system 

environments. 
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4.1. Experimental Results on Synthetic Images 

A synthetic image of the sphere which was produced using the following formulation (20) was 

employed in our experiments: 

2 2 2( , ) ,z x y R x y= − −  (20) 

where ( , ) [ 63,64] [ 63,64]x y  −  −  and 50R =  is the sphere’s radius. Another synthetic image of the 

vase which was produced using the following formulation (21) was also employed: 

2 2( , ) ( ) ,z x y f y x= −  (21) 

where 2 2( ) 0.025(6 1)(2 1)(2 1) (3 2) 0.15f y y y y y= − − + − + +  and ( , ) [ 0.5,0.5] [ 0.5,0.5]x y  −  − . We can 

map the x  and y  values to [ 63,64]−  and scale ( , )z x y  by a factor of 128. This yields a maximum 

height value of approximately 36.55. Their original height maps are demonstrated in Figure 2. 

 

(a) 

 

(b) 

Figure 2. The original height maps: (a) the sphere; (b) the vase. 

The two images are generated by the model in this paper with the direction vectors of the point 

light source and the camera all being [0,0, 1]T− . The variant approach of Kimmel and Sethian [8] 

and the approach of Ahmed and Farag [20] are used to compare with our presented approach. It 

has been noted that the approach of Ahmed and Farag [20] applied the Lax–Friedrichs sweeping 

scheme to solve the Oren–Nayar SFS, and that the existing approach of Kimmel and Sethian [8] 

used the first-order Godunov-based scheme to solve the Lambertian SFS and therefore cannot 

directly solve the Oren–Nayar SFS. However, it is able to solve our partial differential IIR (10) 

directly. We define the first-order Godunov-based scheme that is accelerated by an alternating 

sweeping strategy for the Oren–Nayar SFS as the variant approach of Kimmel and Sethian [8]. 

The experimental results of the sphere are illustrated in Figure 3. Figure 3a shows the synthetic 

intensity image which is adopted for the 3D reconstruction with the parameter set: 0.2σ = . Figure 

3b demonstrates the reconstructed height map using the variant approach of Kimmel and Sethian 

[8] and the known Dirichlet boundary condition z φ=  on Ω , while the error map with the 

original height map is shown in Figure 3c. Figure 3d demonstrates the reconstructed height map 

using the approach of Ahmed and Farag [20], while the error map with the original height map is 

shown in Figure 3e. Figure 3f demonstrates the reconstructed height map using our presented 

approach with the known Dirichlet boundary condition z φ=  on Ω , while the error map with 

the original height map is shown in Figure 3g. Finally, Figure 4 illustrates the corresponding 

experimental results of the synthetic vase. 
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(a) 

 
(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
 

(g) 

Figure 3. Experimental results of the synthetic sphere: (a) intensity image generated by Figure 2a 

with the parameter set: 0.2σ = . (b) reconstructed height map using the variant approach of [8]; (c) 

error map of (b) with Figure 2a; (d) reconstructed height map using the approach of [20]; (e) error 

map of (d) with Figure 2a; (f) reconstructed height map using our presented approach; (g) error 

map of (f) with Figure 2a. 

Figures 3 and 4 show that the variant approach of Kimmel and Sethian [8], the approach of 

Ahmed and Farag [20], and our presented approach can all obtain satisfactory reconstructed results 

of the diffuse surfaces. Moreover, we can further see that our presented approach gets a higher 
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accuracy and smaller errors than the variant approach of Kimmel and Sethian [8] and the approach 

of Ahmed and Farag [20]. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 4. Experimental results of the synthetic vase: (a) intensity images generated by Figure 2b with 

the parameter set: 0.2σ = . (b) reconstructed height map using the variant approach of [8]; (c) error 

map of (b) with Figure 2b; (d) reconstructed height map using the approach of [20]; (e) error map of 

(d) with Figure 2b; (f) reconstructed height map using our presented approach; (g) error map of (f) 

with Figure 2b. 

To further demonstrate the effectiveness of our presented approach, a quantitative comparison 

between the variant approach of Kimmel and Sethian [8], the approach of Ahmed and Farag [20], 

and our presented approach is adopted by using the CPU time, the Mean Absolute Error (MAE), 

and the Root Mean Square Error (RMSE). Table 1 lists the comparisons of the three approaches for 

the synthetic sphere and vase images. As is directly seen, our presented approach shows better 

performance in the reconstructed errors than the variant approach of Kimmel and Sethian [8], as 
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well as than the approach of Ahmed and Farag [20] in all the images which we performed. The 

MAE and RMSE of our proposed approach are about one-fiftieth and one-twentieth of the variant 

approach of Kimmel and Sethian [8] for the sphere, and about one-seventh and one-fourth for the 

vase, respectively. The approach of Ahmed and Farag [20] shows a slightly worse performance; 

maybe it is difficult to find a good estimate for the artificial viscosity term. However, our presented 

approach requires longer CPU time than the variant approach of Kimmel and Sethian [8], because 

the former adopts a complex high-order approximation scheme. 

Table 1. Comparisons of approaches for the synthetic images. 

Approaches 
Sphere Vase 

MAE  RMSE  CPU time MAE RMSE CPU time 

Variant approach of [8] 0.6903 0.8380 0.006 s 0.5464 0.6515 0.005 s 

Approach of [20] 1.0637 1.4887 0.276 s 0.6852 1.0867 0.217 s 

Presented approach 0.0134 0.0415 0.093 s 0.0793 0.1537 0.067 s 

4.2. Experimental Results on Real-World Image 

In order to evaluate the performance of our presented approach for real diffuse surfaces, we 

performed it on a real-world image and compared the reconstructed result with the existing 

approach of Kimmel and Sethian [8], the variant approach of Kimmel and Sethian [8], and the 

approach of Ahmed and Farag [20]. The image is the real-world vase used in the surveys [4] and 

[5], which is shown in Figure 5a. Figures 5b gives the ground truth referred to [5]. Figures 5c–f 

illustrate the reconstructed height maps using the approach of Kimmel and Sethian [8] with exact 

height values at each singular point, the variant approach of Kimmel and Sethian [8] with the 

known Dirichlet boundary condition z φ=  on Ω , the approach of Ahmed and Farag [20], and 

our presented approach with the known Dirichlet boundary condition z φ=  on Ω , respectively. 

Similarly, we calculated the MAE and RMSE errors of these approaches and the comparisons 

results are listed in Table 2. From the reconstructed results illustrated in Figure 5c–f, we can see that 

our presented approach and the variant approach of Kimmel and Sethian [8] are more vivid than 

the approach of Kimmel and Sethian [8]. The same conclusion can be drawn from Table 2: our 

presented approach shows best performance since our approach employs the advanced reflection model 

for diffuse surfaces and high-order accurate numerical scheme. Recall that the approach of Kimmel and 

Sethian [8] assumes the Lambertian reflection model for diffuse surfaces. As previously, the approach of 

Ahmed and Farag [20] shows a slightly worse performance as can be seen from Figure 5e. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5. Experimental results of the real-world vase: (a) real intensity image; (b) ground truth 

referred to [5]; (c) reconstructed height map using the approach of [8]; (d) reconstructed height map 

using the variant approach of [8]; (e) reconstructed height map using the approach of [20]; (f) 

reconstructed height map using our presented approach. 

Table 2. Comparisons of approaches for the real-world vase. 

Approaches MAE RMSE 

Approach of [8] 0.2731 0.3804 

Variant approach of [8] 0.1882 0.2429 

Approach of [20] 0.2648 0.3496 

Presented approach 0.0771 0.0987 

5. Conclusions 

This paper reports a new Oren–Nayar SFS approach for 3D reconstruction of diffuse surfaces. 

We employed a Oren–Nayar reflection model instead of Lambertian model to approximate the 

reflection attribute of the diffuse reflection. The partial differential IIR for Oren–Nayar reflectance 

was set up with the model that the direction of the distant point light source is the same as the 

camera performing an orthographic projection. A standard eikonal PDE was derived from the IIR 

by solving a quadratic equation in the variable which includes of the 3D surface shape, and we 

obtained the viscosity solution of the resulting eikonal PDE using the high-order Godunov-based 

scheme that was accelerated by the philosophy of alternating sweeping strategy and Gauss–Seidel 

iterations. Experiments were conducted on synthetic and real-word images and the experimental 

results illustrate that our presented approach is effective and can get a higher accuracy than the 

first-order Godunov-based scheme and the Lax-Friedrichs scheme. 

Frankly speaking, the presented approach in the paper can be only used in the situation with a 

single distant point light source and an orthographic camera projection whose direction coincides 

with the light source. Nevertheless, we believe that the idea of solving the quadratic IIR can be 

employed to alternately solve the SFS problem with a nearby point light source attached to the 

projection center of the camera performing a perspective projection. At the same time, the light 
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attenuation term can be considered in order to eliminate the ambiguity regarding convex and 

concave that makes the SFS problem ill-posed. This work will be explored in the future. 
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