
algorithms

Article

Gray Wolf Optimization Algorithm for
Multi-Constraints Second-Order Stochastic
Dominance Portfolio Optimization

Yixuan Ren 1 ID , Tao Ye 2, Mengxing Huang 1,3 and Siling Feng 1,∗ ID

1 College of Information Science & Technology, Hainan University, No. 58 Renmin Avenue,
Haikou 570228, China; a827315281@gmail.com (Y.R.); huangmx09@hainu.edu.cn (M.H.)

2 School of Economic and Management, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China;
yetao@hainu.edu.cn

3 State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University,
No. 58 Renmin Avenue, Haikou 570228, China

* Correspondence: fengsiling@hainu.edu.cn; Tel.: +86-131-1897-0779

Received: 11 April 2018; Accepted: 11 May 2018; Published: 15 May 2018
����������
�������

Abstract: In the field of investment, how to construct a suitable portfolio based on historical data is
still an important issue. The second-order stochastic dominant constraint is a branch of the stochastic
dominant constraint theory. However, only considering the second-order stochastic dominant
constraints does not conform to the investment environment under realistic conditions. Therefore,
we added a series of constraints into basic portfolio optimization model, which reflect the realistic
investment environment, such as skewness and kurtosis. In addition, we consider two kinds of risk
measures: conditional value at risk and value at risk. Most important of all, in this paper, we introduce
Gray Wolf Optimization (GWO) algorithm into portfolio optimization model, which simulates the
gray wolf’s social hierarchy and predatory behavior. In the numerical experiments, we compare the
GWO algorithm with Particle Swarm Optimization (PSO) algorithm and Genetic Algorithm (GA).
The experimental results show that GWO algorithm not only shows better optimization ability and
optimization efficiency, but also the portfolio optimized by GWO algorithm has a better performance
than FTSE100 index, which prove that GWO algorithm has a great potential in portfolio optimization.

Keywords: portfolio optimization; gray wolf optimization; second-order stochastic dominance;
risk; constraint

1. Introduction

Since the mean-variance (MV) model is proposed by Markowitz [1,2], the portfolio optimization
problem has attracted a lot of attention. In MV model, variance is used as the risk measure, and it is
assumed that returns are normally or elliptically distributed [3]. However, Chunhachinda et al. [4]
point out that the return to the world’s fourteen major stock market is not normally distributed,
which means MV model lacks effectiveness in practical applications. Besides, variance counts both
upward and downward deviation, which is contrary to the definition of investment risk. Later,
to supply the gap, Markowitz [5] replaces the risk measure with the semi-variance, which only counts
downward deviation. In addition, Konno [6] and Speranza [7] introduce the mean absolute deviation
(MAD) into portfolio optimization model as risk measure. MAD reduces the sensitivity of risk, while
it is difficult to do differential operation. Generally speaking, these risk measures are rather abstract.
As a new type of risk measure, value at risk (VaR) is put forward in the mid-90s. Roughly speaking,
VaR is a maximum quantile of the random loss in a specified period with some confidence level [8].
However, VaR also has some limitations. For example, Artzner et al. [9] point out that VaR is not a
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coherent measure of risk. Therefore, as an improvement on VaR, conditional value at risk (CVaR) gets
widely applications in the field of portfolio optimization.

Other than Markowitz MV model, the stochastic dominance (SD) model is another important
model for solving portfolio optimization problem. SD is proposed by Fishburn [10], then, Dentcheva
and Ruszczynski [11] introduce SD constraint into portfolio optimization model, which takes the risk
appetite into consideration and is more suited to the investors in realistic investment environments.
Thereinto, in the SD model, we mainly consider first-order stochastic dominance (FSD) constraint and
second-order stochastic dominance (SSD) constraint. Besides, Leshno and Levy [12] establish almost
stochastic dominance (ASD) rules which formally reveal a preference for most decision makers, but not
for all of them. Moreover, Javanmardi and Lawryshyn [13] introduce a new second-order stochastic
dominance efficiency model called SSD-DP model, which doesn’t require a benchmark portfolio.

On the basic of MV model and SD model, scholars refine their models by adding a series of
objectives or constraints into it. Arditti [14] points out that skewness has great importances of
financial economics. Then, Yu et al. [15] and Bhattacharyya et al. [16] study and develop the
mean-variance-skewness (MVS) model, which introduce skewness into MV model as one of the
objectives. Recently, Pouya et al. [17] add P/E criterion and experts’ recommendations on market
sectors to the primary MV model as two objectives. Moreover, Soleimani et al. [18] take sector
capitalization constraint into account. Generally speaking, the optimization of MV model and SD
model allows these models to be more widely used in realistic investment environments.

After adding these objectives to portfolio optimization model, the original single-objective
portfolio optimization problem has become a multi-objective optimization problem. Recently,
Macedo et al. [19] introduce the multi-objective evolutionary algorithms (MOEAs), including
non-dominated sorting genetic algorithm II (NSGA-II) and strength pareto evolutionary algorithm II
(SPEA-II), into solving mean-semivariance framework model. However, the portfolio optimization
entails considering competing and conflicting objectives, it’s unlikely that a portfolio can solve the
multi-objectives problem simultaneously [20]. Besides, normally multi-objective optimization problem
is transformed into a single-objective programming model by using fuzzy programming approach,
such as Chen et al. [21]. Therefore, in this paper, we take skewness, kurtosis, CVaR or VaR into SSD
framework as constraints, which we called it MCVSK and MVSK model respectively. What’s more,
we only use return as the objective.

Inspired by the level of leadership and hunting mechanisms of the Grey Wolf, Mirjalili proposed
Gray Wolf Optimization Algorithm, which simulates the gray wolf’s social hierarchy and predatory
behavior [22]. Compared with Immune particle swarm optimization (IPSO), Ant colony algrothrim
(ACA), GA, and Biogeography-based optimization(BBO), GWO has a simple structure and fast
convergence. Further details about bioinspired algorithms can be found in the literature [23,24].
In the GWO algorithm, the hunting behavior is performed by α, β, δ and ω follows the first three to
track the cocoon of the prey and finally complete the predation task. Recently, GWO is used to improve
the classification performance of Convolutional Neural Network (CNN) models. Kumaran N et al. [25]
propose a hybrid CNN-GWO approach for the recognition of human actions from the unconstrained
videos, the experimental validation of this approach shows better achievable results on the recognition
of human actions with 99.9% recognition accuracy. Besides, Mustaffa Z et al. [26] use GWO to train
Least Squares Support Vector Machine (LSSVM) for price forecasting and present a hybrid forecasting
model. In this paper, GWO algorithm is used to solve MCVSK and MVSK portfolio optimization
model. Besides, we compare GWO algorithm with PSO algorithm and GA in numerical experiments.

The rest of the paper is organized as follows. In Section 2, we discuss the MCVSK and MVSK
portfolio optimization model respectively. In Section 3, we discuss the GWO algorithm for MCVSK
and MVSK portfolio optimization model. In Section 4, we conduct numerical experiments and analyse
the result of experiments. In Section 5, we summarize the performance of MCVSK and MVSK portfolio
optimization model.
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2. The MCVSK and MVSK Portfolio Optimization Model

2.1. The Measure of Return and Risk

As the most fundamental objective, the return to the portfolio always catches investors’ attention.
In the portfolio optimization problem, our aim is to invest our capital in some assets in order to obtain
some desirable characteristics of the total return on investment.

Let n denote the number of assets, which are available for investment in the beginning of a
fixed period, and we assume that we have a fixed capital to be invested in them. Then we use

x = (x1, x2, . . . , xn)
T to denote the fractions of initial capital invested in n assets. Thereinto, i =

wi
w

,
i = 1, . . . , n where wi is the capital invested in asset i and w is the total amount of capital to be
invested. Let X denote a set of feasible portfolios where x ∈ X, and it is clear that X ∈ Rn is a bound
convex polyhedron. Besides, let Ri (ξ), i = 1, . . . , n denote the return of asset i in the case of discrete
distribution, where ξ : Ω→ Ξ is a random vector on probability space (Ω, F, P) [27]. and we assume
that E

[
| Rj |

]
< ∞ for all j = 1, . . . , n. In a word, if we have a fixed capital, the return to portfolio

g (x, ξ) can then be formulated as:

g (x, ξ) := R1 (ξ) x1 + R2 (ξ) x2 + . . . + Rn (ξ) xn (1)

The measure of risk has many forms, such as variance, semi-variance, mean absolute variance,
VaR, CVaR and so on. Variance is the risk measure of Markowitz MV model, which has a long history
and a wide range of applications. On the basic of variance, semi-variance, mean absolute variance and
other risk measures are appeared. In this paper, we mainly study two kinds of risk measures: VaR and
CVaR. VaR is one of the most well-known downside risk measures due to its intuitive meaning and
wide spectra of applications in practice [8]. For a fixed level α, the value at risk VaRα is defined as the
α-quantile of the cumulative distribution function FY [28]:

VaRα (Y) = F−1
Y (α) (2)

where Y = −X. However, VaR still has several noticeable limitations and drawbacks. For example,
it’s insensitive to the magnitude of losses beyond VaR, and it’s not a coherent risk measure [9].
Meanwhile, CVaR measures the conditional expectation of losses beyond VaR, which is a coherent
risk measure. Therefore, CVaR is theoretically more attractive and partly resolve the shortcomings of
VaR [29]. The CVaR is defined as the solution to an optimization problem:

CVaRα (Y) := in f
{

a +
1

1− α
E [Y− a]+ : a ∈ R

}
(3)

where [z]+ = max (z, 0). Besides, for smooth FY, CVaR equals the conditional expectation of Y [30]:

CVaRα (Y) = E (Y | Y > VaRα (Y)) (4)

2.2. The Second-Order Stochastic Dominance Constraint

The theory of stochastic dominance originates from the theory of discrete stochastic variable
optimization, and later develops into the theory of generalized stochastic variable optimization,
which is widely used in economic and financial fields nowadays. In the stochastic dominance theory,
the comparison between random variables is under their k-order distribution function F(k). Assuming
that there are portfolios X and Y, and the utility function of all investors is monotonically increasing.
If all the investors prefer portfolio X to portfolio Y, or believe that there are only part of them is no
difference, then we say portfolio X stochastically dominates portfolio Y in the first order [31].
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let x and y be the decision vectors and ξ be the random variable, it’s said that g (x, ξ) stochastically
dominates g (y, ξ) in the first order, denoted by g (x, ξ) �1 g (y, ξ), if:

F (g (x, ξ) ; η) ≤ F (g (y, ξ) ; η) , ∀η ∈ R (5)

where g (x, ξ) is the concave continuous function both in x and ξ, F (g (x, ξ) ; η) is the cumulative
distribution function of g (x, ξ). For a random variable X, the first order distribution function of X is
its right-continuous cumulative distribution function:

F(1)
x (η) =

∫ η

−∞
Px (dξ) = P {x ≤ η} , ∀η ∈ R (6)

In portfolio optimization problem, SSD is of interest because, for any decision maker with
risk-averse and non-satiable preferences, a portfolio which dominates a benchmark portfolio is
preferred to the benchmark [32]. Based on the definition of first-order stochastic dominance, we denote
g (x, ξ) stochastically dominates g (y, ξ) in the second order by g (x, ξ) �2 g (y, ξ), if:∫ η

−∞
F (g (x, ξ) ; α) dα ≤

∫ η

−∞
F (g (y, ξ) ; α) dα, ∀η ∈ R (7)

Thereinto, for two different profolios X and Y, the strict dominance relation�(k) is defined as follows:

X �(k) Y ⇔ X �(k) Y and Y �(k) X (8)

Fábián et al. [33] and Ogryczak et al. [34] prove that SSD is equivalent to the following
two inequalities:

E
[
(η − Rx)+

]
≤ E

[(
η − Ry

)
+

]
, ∀η ∈ R (9)

where E (·) denotes the expected value with respect to the probability distribution of ξ. Moreover,
for any increasing and concave utility function u, the following inequality exists:

E [u (Rx)] ≥ E
[
u
(

Ry
)]

(10)

where Rx and Ry are two random variables, and they may represent the returns of two portfolios x and
y [33]. Besides, let X and Y denote two different profolios, Noyan and Rudolf [35] point out that the
SSD constraint is equivalent to the continuum of CVaR constraints for all confidence levels α ∈ (0, 1]:

X �(2) Y ⇔ CVaRα (Rx) ≥ CVaRα

(
Ry
)

, ∀α ∈ (0, 1] (11)

2.3. The Skewness and Kurtosis Constraints

In order to get a more practical result by portfolio optimization model, many scholars try to achieve
this goal by adding several objectives and constraints into the model. For example, Soleimani et al. [18]
introduce transaction cost, cardinality constraints and market capitalization into Markowitz MV model
as constraints, which is optimized by genetic algorithm. Besides, Lwin et al. [3] introduce some
real-world constraints, such as cardinality, quantity, pre-assignment, round-lot and class constraints,
into Markowitz MV model. In this paper, we mainly consider the skewness and kurtosis constraints.

About transaction costs, Yoshimoto [36] points out that ignore the transaction costs will lead to
very ineffective portfolio implementation. Briefly, transaction costs can be used to model a number of
costs, such as brokerage fees, bid-ask spreads, taxes, or even fund load. Supposing the transaction cost
ci to be a V-shaped function of the difference between a given portfolio xo =

(
xo

1, . . . , xo
n
)

and a new
portfolio x = (x1, . . . , xn), which is incorporated into the portfolio return. Therefore, the transaction
cost of ith asset and total transaction cost can be expressed as follows [37]:
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ci = ki | xi − xo
i |, i = 1, 2, . . . , n (12)

n

∑
i=1

ci =
n

∑
i=1

ki | xi − xo
i | (13)

Generally speaking, the transaction cost can be modelled as the sum of fixed and variable cost [38].
In this paper, we only consider the situation under a single period, so we assume that the transaction
cost is as a relatively exogenous variable.

Chunhachinda et al. [4] point out that higher moments, including skewness and kurtosis, can’t be
neglected in the portfolio selection, which has great importances of financial economics. As shown
by Arditti [14], the investor’s preference for more skewness to less is consistent with the notion of
decreasing absolute risk aversion, because a positive-skewness asset return refers to a right-hand
elongated tail of density function of asset return. Let ζ be an uncertain variable with finite expected
value e, the skewness and kurtosis of ζ are respectively given by Equations (14) and (15):

skewness = S [ζ] = E
{
(ζ − e)3

}
(14)

kurtosis = K [ζ] = E
{
(ζ − e)4

}
(15)

2.4. The MCVSK and MVSK Portfolio Optimization Model

Above all, in this paper, we mainly study the following MCVSK portfolio optimization model:

min f (x, ξ)

s.t. g (x, ξ) �(2) g (y, ξ)

S (x) > S (y)

K (x) > K (y)

CVaRα (x)
g (x, ξ)

>
CVaRα (y)

g (y, ξ)

x ∈ X

(16)

where y is benchmark investment, such as FTSE100 index portfolio. Towards the objective function
f (x, ξ), we mainly consider the following two forms [31]:

f (x, ξ) = −g (x, ξ) (17)

f (x, ξ) = −g (x, ξ)−
n

∑
i=1

x2
i (18)

where x is the investment proportion vector and ξ is a vector represents the return of assets. Thereinto,
the Equation (17) is relatively simple and the Equation (18) is more complicated. For Equation (18)
takes the impact on transaction cost into consideration, which prefer the big amounts investment in
portfolio. Besides, the first three constraints on the MCVSK model represent the SSD, skewness and
kurtosis constraints respectively. It is worth mentioning that we combine the CVaR with the return to
portfolio, which is introduced into the MCVSK model as a new constraint. This constraint is mainly
inspired by behavioral economics. We think the risk which investors can bear should not a fixed value.
It is obvious that the more return of portfolio, the higher risk we should bear. Moreover, we don’t
consider the short-selling, so X can be expressed as follows:

X =

{
(x1, . . . , xn) |

n

∑
j=1

xj = 1, xj ≥ 0, ∀j ∈ 1, . . . , n

}
(19)
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In practical application, in order to ensure the diversity of portfolio, the upper bound on the
fraction of capital invested in each asset is set to a relatively low vaule, and the specific value is adjusted
by the number of assets available for investment. Meanwhile, as a comparison, we change the risk
measure in MCVSK model into VaR and propose the following MVSK portfolio optimization model:

min f (x, ξ)

s.t. g (x, ξ) �(2) g (y, ξ)

S (x) > S (y)

K (x) > K (y)

VaRα (x)
g (x, ξ)

>
VaRα (y)
g (y, ξ)

x ∈ X

(20)

3. The GWO Algorithm for the MCVSK and MVSK Portfolio Optimization Model

Grey Wolf Optimization algorithm is a developed metaheuristic search algorithm inspired by
grey wolves proposed by Mirjalili, it be used to solve nonconvex engineering optimization problem,
which simulate the social stratum and hunting mechanism of grey wolves in nature. The grey wolves
being organized into four main levels [39] α wolves are the leaders and their responsibility is making
decisions. β wolves are second-level wolves that help α wolves in taking decisions or the other
activities. β wolf is the best candidate to be the next α wolf. δ wolves executes α and β instructions but
can direct other underlying individuals. Their responsibilities are scouts, sentinels, elders, hunters,
and caretakers. ω wolves are fourth-level wolves and acts as an executor throughout the wolves.
Besides, GWO are based on three main steps: searching prey, encircling prey and hunting. In this
section, we will mainly discuss these three steps [22].

3.1. Prey Searching

By the arbitral (random) initialization of grey wolves in the search space paves the way for the
searching operation. In order to search the prey, the grey wolf takes of the diversion from one wolf to
another and the wolves are merged after the detection of prey.

3.2. Prey Encirclement

The encirclement of prey initiates after the detection of prey. The encirclement characteristics can
be described mathematically as follows (21)

−→
X (t + 1) =

−→
X p (t)−

−→
A · −→D (21)

where
−→
X is the grey wolf position,

−→
X p is the prey position, t is the iteration number, and

−→
D given by

follows (22): −→
D =| −→C · −→X p (t)−

−→
X (t) | (22)

−→
A and

−→
C are vectors given by follows:

−→
A = 2−→a · −→r1 −−→a (23)

−→
C = 2−→r2 (24)

where −→a is linearly decreased from 2 to 0 over the course of iterations, which is given by Equation (25).
−→r1 and −→r2 are referred to as random vectors by the limit of [0, 1].

−→a = 2− t ∗ 2
l

(25)
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where l is the total iteration number allowed for the optimization.

3.3. Chasing (Hunting)

After the completion of prey encirclement procedure, the grey wolves focus on the hunting of
prey. Alpha wolf usually leads hunting. The beta and delta wolf also participate in hunting. However,
in the abstract search space, we don’t know about the best location (prey). In order to mathematically
simulate the hunting behaviour of grey wolves, we suppose that the alpha (best candidate solution),
beta and delta have better knowledge about the potential location of prey. Alpha, beta and delta can
be replaced by Equations (26)–(28):

−→
Dα =| −→C1 ·

−→
Xα −

−→
X | (26)

−→
Dβ =| −→C2 ·

−→
Xβ −

−→
X | (27)

−→
Dδ =|

−→
C3 ·
−→
Xδ −

−→
X | (28)

And the position vector of prey with respect to alpha, beta and delta wolves can be calculated
using the following mathematical formulation:

−→
X1 =

−→
Xα −

−→
A1 ·
−→
Dα (29)

−→
X2 =

−→
Xβ −

−→
A2 ·
−→
Dβ (30)

−→
X3 =

−→
Xδ −

−→
A3 ·
−→
Dδ (31)

The best position can be calculated from the average of alpha, beta and delta wolves as shown in
Equation (32):

−→
X (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(32)

For the MCVSK and MVSK models, we use the return of assets as a fitness function for the
gray wolf algorithm and constrain the initialized wolf pack vector to a 101-dimensional investment
proportion vector. The procedure chat of the GWO algorithm is shown in Figure 1 and the GWO
approach is described in Algorithm 1.

Algorithm 1 the main procedure of GWO algorithm for the MCVSK and MVSK model.

Input: problem to solve, problem; number of search agents, SearchAgents no; number of iterations,

Max iteration; number of variables, dim; etc
Output: the best portfolio and the return of the portfolio

1: [ Positions, Alpha pos, Alpha score, Beta pos, Beta score, Delta pos, Delte score ]← initialization

( SearchAgents no, beta)
2: eval fitness = problem
3: [ all restrictions ] = get constraint( )
4: fitness = eval fitness(Positions)
5: while halting criterion not being satisfied do
6: while iteration number < Max iteration do
7:

−→
Xα,
−→
Xβ,
−→
Xδ ← choose the best three wolves

8: new position of the wolf← update(the current wolf)
9: iteration number ++

10: end while
11: end while
12: return mean
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start

Set the function parameters

Initialize Alpha,Beta and Delta positions

Obtain model data and calculate

 the constraint parameters

Store the best fitness into alpha score and alpha positons,

the second best result into beta score and beta positions and 

the third best result into delta score and delta positons

Update positions for each group of wolves 

Iteration max?
No

Yes

Print the alpha score and position

(best result and varialbes)

End

 

 

 

 

Calculate fitness of grey wolves

Figure 1. The procedure chat of the GWO algorithm.
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4. Numerical Experiments

We have carried out a series of numerical tests by using GWO algorithm, PSO algorithm and GA
in MATLAB2014b install of a Lenovo PC with Windows 8.1 operating system and 8 GB of RAM. In the
actual investment market, there are a large number of assets for investors to choose. Therefore, in the
numerical experiments, we use the stocks involved in FTSE100 index as the data source. We collect
249 daily historical returns to 101 FTSE100 index assets prior to December 2016 to construct the
portfolio strategy. Specifically speaking, we use the first 200 daily historical returns to construct the
portfolio strategy, and the further 49 daily historical returns to an out-of-sample test. In this section,
we report and analyze the test results.

4.1. Backtesting and Out-of-Sample Test

In model (16) and model (20), we have introduced the basic MCVSK model and MVSK model

respectively. In this part, we use y =

(
1

101
, . . . ,

1
101

)
as the benchmark and we assume that

short-selling is prohibited. Besides, in order to ensure the diversity of the portfolio, the upper bound
on the fraction of capital invested in each asset is set to 5%. Above all, we propose the following
MCVSK model and MVSK model:

min − g (x, ξ)

s.t. g (x, ξ) �(2) g (y, ξ)

S (x) > S (y)

K (x) > K (y)

CVaRα (x)
g (x, ξ)

>
CVaRα (y)

g (y, ξ)

x ∈ X

X =

{
(x1, . . . , xn) |

n

∑
j=1

xj = 1, 0 ≤ xj ≤ 0.05, ∀j ∈ 1, . . . , n

}
(33)

min − g (x, ξ)

s.t. g (x, ξ) �(2) g (y, ξ)

S (x) > S (y)

K (x) > K (y)

VaRα (x)
g (x, ξ)

>
VaRα (y)
g (y, ξ)

x ∈ X

X =

{
(x1, . . . , xn) |

n

∑
j=1

xj = 1, 0 ≤ xj ≤ 0.05, ∀j ∈ 1, . . . , n

}
(34)

Comparing with the FTSE100 Index, we get the test results shown in Table 1 and the specific index
weight data of FTSE100 Index is shown in Table A1.

In Table 1 and the rest of the tables, “α” refers to the confidence level, “ algorithm ” indicates
the algorithm used to optimize the MCVSK model and MVSK model, “ skew ” and “ kurt ” refer
to the skewness and kurtosis of the portfolio, “ VaR ” and “ CVaR ” are two kinds of risk measures,
“E[g(x, ξ)]” means the return of portfolio, “ max ” is the largest investment ratio in the portfolio and
“ time ” indicates the average running time of algorithm. Among them, the algorithm parameters
are set as follows: the initial population of GWO algorithm, PSO algorithm and GA are 100, 10 and



Algorithms 2018, 11, 72 10 of 19

100 respectively. In addition, the number of iterations of the above three algorithms is 12. It is worth
mentioning that because the PSO algorithm has a slow speed in optimizing the portfolio optimization
model, in order to ensure that the algorithm optimization process has the same time-consuming, we set
the initial population of the PSO algorithm to a lower level. What’s more, we conduct thirty repeated
experiments in each case.

Table 1. The results of Backtesting.

α Algorithm Skew Kurt VaR CVaR E [g(x,ξ)] Max Time (s)

MCVSK

0.01
GWO 0.1726 4.0974 −2.2535 −2.7743 0.1430 0.0484 30.77
PSO 0.0878 3.9355 −2.3300 −2.7368 0.1107 0.0389 27.77
GA 0.1307 3.8451 −2.2777 −2.7744 0.1215 0.0378 28.59

0.05
GWO 0.0734 3.8483 −1.7844 −2.1648 0.1478 0.0488 24.94
PSO 0.0292 4.0188 −1.5916 −2.2091 0.1109 0.0369 32.45
GA 0.1362 4.0364 −1.7264 −2.1502 0.1282 0.0386 30.20

0.10
GWO 0.2033 3.8933 −1.1009 −1.7413 0.1512 0.0479 32.12
PSO 0.0346 3.9227 −1.0638 −1.7982 0.1110 0.0349 30.07
GA 0.2087 3.9117 −1.1509 −1.7554 0.1210 0.0356 27.47

MVSK

0.01
GWO 0.3197 3.9699 −2.1251 −2.6291 0.1402 0.0494 30.12
PSO 0.0934 3.8752 −2.4055 −2.8165 0.1117 0.0353 31.21
GA 0.0898 3.9745 −2.2682 −2.7807 0.1228 0.0366 27.47

0.05
GWO 0.2464 4.1137 −1.6823 −2.0712 0.1451 0.0487 28.60
PSO 0.1575 3.9913 −1.7283 −2.1363 0.1347 0.0423 27.77
GA 0.1324 3.9691 −1.7344 −2.1379 0.1215 0.0359 23.86

0.10
GWO 0.1880 4.1003 −1.1198 −1.7461 0.1393 0.0479 26.73
PSO 0.0440 3.9591 −0.9915 −1.7541 0.1064 0.0333 26.81
GA 0.1612 3.9245 1.1932 1.7606 0.1261 0.0341 26.02

FTSE100
0.01

× 0.0151 4.3361
−2.6739 −3.2503

0.1017 0.0730 ×0.05 −1.5442 −2.3205
0.10 −1.1953 −1.8086

y
0.01

× −0.1992 4.6663
−3.1508 −3.2600

0.0612 0.0099 ×0.05 −1.6022 −2.4337
0.10 −1.0599 −1.8505

The Figures 2–11 show the specific asset structure of optimal portfolio and the return to optimal
portfolio in each period by GWO algorithm. Specifically speaking, Figures 2–7 show the specific asset
composition of the portfolio optimized by GWO algorithm and there are a total of 101 assets that can be
invested in each portfolio. Figure 8 shows the specific asset composition of the FTSE100 index portfolio.
Figures 9–11 show the return of optimal portfolio by model (33) and model (34) in each period by
GWO algorithm and the FTSE100 Index portfolio in backtesting with three kinds of confidence levels.
Among them, the data set for the backtesting is the historical rate of return for the previous 200 days,
which is the x-axis scale in Figures 9–11.

In the above, we set up a backtest which compares the optimal portfolio obtained from MCVSK
model and MVSK model by GWO algorithm, PSO algorithm and GA with FTSE100 index. Furthermore,
we set up an out-of-sample test to evaluate the performance of the selected portfolio over the remaining
49 samples. The Figures 12–14 show the return of optimal portfolio in another 49 days.
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Figure 2. The specific asset structure of optimal portfolio in α = 0.01 of model (33) for 101 assets by
GWO algorithm.
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Figure 3. The specific asset structure of optimal portfolio in α = 0.05 of model (33) for 101 assets by
GWO algorithm.

Asset i

0 10 20 30 40 50 60 70 80 90 100

ra
tio

 b
et

w
ee

n 
in

ve
st

m
en

ts
 (

%
) 

0

1

2

3

4

5

6

Figure 4. The specific asset structure of optimal portfolio in α = 0.10 of model (33) for 101 assets by
GWO algorithm.
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Figure 5. The specific asset structure of optimal portfolio in α = 0.01 of model (34) for 101 assets by
GWO algorithm.
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Figure 6. The specific asset structure of optimal portfolio in α = 0.05 of model (34) for 101 assets by
GWO algorithm.

Asset i

0 10 20 30 40 50 60 70 80 90 100

ra
tio

 b
et

w
ee

n 
in

ve
st

m
en

ts
 (

%
) 

0

1

2

3

4

5

6

Figure 7. The specific asset structure of optimal portfolio in α = 0.10 of model (34) for 101 assets by
GWO algorithm.
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Figure 8. The specific asset structure of FTSE100 index portfolio for 101 assets.
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Figure 9. The return of optimal portfolio by model (33) in each period with model (34) by GWO
algorithm and the FTSE100 Index portfolio in backtesting with α = 0.01.
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Figure 10. The return of optimal portfolio by model (33) in each period with model (34) by GWO
algorithm and the FTSE100 Index portfolio in backtesting with α = 0.05.
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Figure 11. The return of optimal portfolio by model (33) in each period with model (34) by GWO
algorithm and the FTSE100 Index portfolio in backtesting with α = 0.10.

Time period (day)
200 205 210 215 220 225 230 235 240 245 250

R
e

tu
rn

 (
%

)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

MCVSK model: α = 0.01

MVSK model: α = 0.01

FTSE100 portfolio

Figure 12. The return of optimal portfolio by model (33) in each period with model (34) by GWO
algorithm and the FTSE100 Index portfolio in out-of-sample test with α = 0.01.
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Figure 13. The return of optimal portfolio by model (33) in each period with model (34) by GWO
algorithm and the FTSE100 Index portfolio in out-of-sample test with α = 0.05.
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Figure 14. The return of optimal portfolio by model (33) in each period with model (34) by GWO
algorithm and the FTSE100 Index portfolio in out-of-sample test with α = 0.10.

4.2. Numerical Analysis

In the above experiment, we conduct in-sample test and out-of-sample test of MCVSK and MVSK
portfolio optimization models by GWO algorithm, PSO algorithm and GA respectively, then we
compare them with FTSE100 index and the control group y. In this section, we mainly consider four
indicators: skewness, kurtosis, VaR or CVaR and E[g(x, ξ)]. From the results of backtesting, it’s shown
that the skewness of portfolio derived from MCVSK and MVSK model are higher than FTSE100 index
and control group y. Simultaneously, its value of kurtosis is rather lower than FTSE100 index and
control group y. On the indicator of risk measure, MCVSK model take CVaR as risk measure while
MVSK model’s risk measure is VaR. It can be seen from the experimental results that the portfolio
optimized by GWO algorithm are generally much more profitable than FTSE100 index and control
group y while having lower risks.

Specifically speaking, when the confidence coefficient α is 1%, 5% or 10%, the CVaR of portfolio
obtained by MCVSK model is−2.7743, −2.1648 and−1.7413 respectively, which is lower than−3.2503,
−2.3205 and −1.8086. At the same time, the return of portfolio obtained by MCVSK model is 0.1430,
0.1478 and 0.1512 respectively, which is greatly higher than 0.1017. Compare the MCVSK model
with the MVSK model, it can be found that portfolio obtained by MCVSK model generally has a
better performance than MVSK model on the rate of return indicator. Specifically speaking, when
the confidence coefficient α is 1%, the return of portfolio obtained by MCVSK model is 0.1430 while
the portfolio obtained by MVSK model is 0.1402. When the confidence coefficient α is 5% and 10%,
there is also the same phenomenon. Therefore, in a sense, CVaR has its special advantage as a type of
risk measure.

Then we compare the GWO algorithm with PSO algorithm and GA. From the experimental
results, it can be seen that all three algorithms can obtain excess returns when all the constraints
on the portfolio optimization model are met. However, as a main evaluation index, the return to
portfolio optimized by GWO algorithm is much higher than that of PSO algorithm and GA. Specifically
speaking, when the confidence level is 1%, the GWO algorithm optimizes the MCVSK model to obtain
a return on portfolio of 0.1430. Under the same conditions, the PSO algorithm optimizes the return on
portfolio to 0.1107 and GA to 0.1215. This phenomenon also exists when the confidence level is 5% and
10%. While having a higher rate of return, the risk of portfolio optimized by GWO algorithm is similar
to the portfolios optimized by PSO algorithm or GA. This shows that the GWO algorithm has a higher
optimization capability in optimizing the MCVSK and MVSK portfolio optimization model.

From the results of out-of-sample tests, the MCVSK model and MVSK model optimized by GWO
algorithm also have a wonderful performance. Generally speaking, the experimental results prove that
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the GWO algorithm has great potential in solving single-objective portfolio optimization problems.
The GWO algorithm not only has a faster optimization speed, but also maintains a high optimization
quality. It’s believed that GWO algorithm will have a much wider application.

5. Conclusions and Future Research

In this paper, we introduce several constraints, including skewness and kurtosis, into the basic
second-order stochastic dominance portfolio optimization model. Besides, we use two different risk
measures in the model, which we call them MCVSK model and MVSK model. As a single-objective
optimization model, the portfolio optimized by GWO algorithm can achieve more return than PSO
algorithm, GA and FTSE100 index from the experimental results. We also find that, compared
with using VAR as risk measure, using CVAR as risk measure can achieve better and more stable
performance. Generally speaking, the GWO algorithm can get a better portfolio faster, which shows
the excellent optimization ability and optimization efficiency of the GWO algorithm. It is believed that
GWO algorithm has great potential in solving portfolio optimization problem.

As a single-objective optimization model, MCVSK model and MVSK model only take return
as one and only optimization goal. Therefore, the portfolio optimized by MCVSK model or MVSK
model will have a higher risk than FTSE100 index, which means the portfolio obtained by MCVSK
model and MVSK model will not meet the specific risk appetite of all investors. In the future, we will
try to discuss the multiple objective portfolio optimization model based on second-order stochastic
dominance constraint, which is designed to make up for the shortcomings in the single-objective
portfolio optimization model. Moreover, From the result of experiment, we find that the efficiency
of the model is closely related to the choice of benchmark. Therefore, we will pay attention to this
problem in the following research.
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Abbreviations

The following abbreviations are used in this manuscript:

GWO Gray Wolf Optimization
PSO Particle Swarm Optimization
GA Genetic Algorithm
MV Mean-Variance
MAD Mean Absolute Deviation
VaR Value at Risk
CVaR Conditional Value at Risk
SD Stochastic Dominance
FSD First-Order Stochastic Dominance
SSD Second-Order Stochastic Dominance
ASD Almost Stochastic Dominance
MVS Mean-Variance-Skewness
MOEAs Multi-Objective Evolutionary Algorithms
NSGA-II Non-Dominated Sorting Genetic Algorithm II
SPEA-II Strength Parato Evolutionary Algorithm II
MCVSK Mean-CVaR-skewness-kurtosis
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MVSK Mean-VaR-skewness-kurtosis
IPSO Immune Particle Swarm Optimization
ACA Ant Colony Algrothrim
BBO Biogeography-based Optimization
CNN Convolutional Neural Network
LSSVM Least Squares Support Vector Machine

Appendix A

Table A1. The specific index weight data of FTSE100 Index.

Constitution Index Weight (%) Constitution Index Weight (%)

3i Group 0.38 Admiral Group 0.2
Anglo American 0.84 Antofagasta 0.13
Ashtead Group 0.44 Associated British Foods 0.53
AstraZeneca 3.1 Aviva 1.09
Babcock International Group 0.27 BAE Systems 1.04
Barclays 2.09 Barratt Developments 0.26
BHP Billition 1.53 BP 5.3
British American Tobacco 4.77 British Land Co 0.36
BT Group 1.7 Bunzl 0.39
Burberry Group 0.37 Capita 0.19
Carnival 0.42 Centrica 0.7
Coca-Cola HBC AG 0.19 Compass Group 1.37
ConvaTec Group 0.08 CRH 1.3
Croda International 0.23 DCC 0.3
Diageo 2.94 Direct Line Insurance Group 0.28
Dixons Carphone 0.2 Easyjet 0.14
Experian 0.84 Fresnillo 0.11
GKN 0.31 GlaxoSmithKline 4.21
Glencore 1.79 Hammerson 0.25
Hargreaves Lansdown 0.16 Hikma Pharmaceuticals 0.15
HSBC HIdgs 7.3 Imperial Brands 1.89
Informa 0.31 InterContinental Hotels Group 0.4
International Consolidated Airlines Group 0.41 Intertek Group 0.31
Intu Properties 0.14 ITV 0.43
Johnson Matthey 0.34 Kingfisher 0.44
Land Securities Group 0.46 Legal & General Group 0.81
LIoyds Banking Group 2.22 London Stock Exchange Group 0.51
Marks & Spencer Group 0.31 Mediclinic International pIc 0.17
Merlin Entertainments 0.18 Micro Focus International 0.27
Mondi 0.34 Morrison (Wm) Supermarkets 0.28
National Grid 1.99 Next 0.39
Old Mutual 0.56 Paddy Power Betfair 0.4
Pearson 0.37 Persimmon 0.3
Provident Financial 0.23 Prudential 2.33
Randgold Resources 0.33 Reckitt Benckiser Group 2.4
RELX 0.88 Rio Tinto 2.12
Rolls-Royce Holdings 0.61 Royal Bank Of Scotland Group 0.41
Royal Dutch Shell A 5.43 Royal Dutch Shell B 4.89
Royal Mail 0.23 RSA Insurance Group 0.33
Sage Group 0.39 Sainsbury (J) 0.23
Schroders 0.19 Severn Trent 0.29
Shire 2.34 Sky 0.58
Smith & Nephew 0.6 Smiths Group 0.31
Smurfit Kappa Group 0.24 SSE 0.87
St. James’s Place 0.29 Standard Chartered 0.99
Standard Life 0.41 Taylor Wimpey 0.28
Tesco 0.93 TUI AG 0.3
Unilever 2.2 United Utilities Group 0.34
Vodafone Group 2.94 Whitbread 0.38
Wolseley 0.69 Worldpay Group 0.25
WPP 1.29
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34. Ogryczak, W.; Ruszczyński, A. From stochastic dominance to mean-risk models: Semideviations as risk

measures. Eur. J. Oper. Res. 1999, 116, 33–50. [CrossRef]
35. Noyan, N.; Rudolf, G. Optimization with Multivariate Conditional Value-at-Risk Constraints. Oper. Res.

2013, 61, 990–1013. [CrossRef]
36. Yoshimoto, A. The mean-variance approach to portfolio optimization subject to transaction costs. J. Oper.

Res. Soc. Jpn. 1996, 39, 99–117. [CrossRef]
37. Bhattacharyya, R.; Chatterjee, A.; Kar, S. Uncertainty theory based multiple objective mean-entropy-skewness

stock portfolio selection model with transaction costs. J. Uncertain. Anal. Appl. 2013, 1, 16. [CrossRef]
38. Lobo, M.S.; Fazel, M.; Boyd, S. Portfolio optimization with linear and fixed transaction costs. Ann. Oper. Res.

2007, 152, 341–365. [CrossRef]
39. Zawbaa, H.M.; Emary, E.; Grosan, C.; Snasel, V. Large-dimensionality small-instance set feature selection:

A hybrid bio-inspired heuristic approach. Swarm. Evol. Comput. 2018. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0378-4266(02)00271-6
http://dx.doi.org/10.21314/JOR.2000.038
http://dx.doi.org/10.3390/a10030100
http://dx.doi.org/10.1016/j.ejor.2017.06.067
http://dx.doi.org/10.1007/s10107-009-0326-1
http://dx.doi.org/10.1016/S0377-2217(98)00167-2
http://dx.doi.org/10.1287/opre.2013.1186
http://dx.doi.org/10.15807/jorsj.39.99
http://dx.doi.org/10.1186/2195-5468-1-16
http://dx.doi.org/10.1007/s10479-006-0145-1
http://dx.doi.org/10.1016/j.swevo.2018.02.021
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The MCVSK and MVSK Portfolio Optimization Model
	The Measure of Return and Risk
	The Second-Order Stochastic Dominance Constraint
	The Skewness and Kurtosis Constraints
	The MCVSK and MVSK Portfolio Optimization Model

	The GWO Algorithm for the MCVSK and MVSK Portfolio Optimization Model
	Prey Searching
	Prey Encirclement
	Chasing (Hunting)

	Numerical Experiments
	Backtesting and Out-of-Sample Test
	Numerical Analysis

	Conclusions and Future Research
	
	References

