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Abstract: We developed a novel control strategy of speed servo systems based on deep reinforcement
learning. The control parameters of speed servo systems are difficult to regulate for practical
applications, and problems of moment disturbance and inertia mutation occur during the operation
process. A class of reinforcement learning agents for speed servo systems is designed based on the
deep deterministic policy gradient algorithm. The agents are trained by a significant number of
system data. After learning completion, they can automatically adjust the control parameters of servo
systems and compensate for current online. Consequently, a servo system can always maintain good
control performance. Numerous experiments are conducted to verify the proposed control strategy.
Results show that the proposed method can achieve proportional–integral–derivative automatic
tuning and effectively overcome the effects of inertia mutation and torque disturbance.

Keywords: servo system; deep reinforcement learning; PID parameter tuning; torque disturbance;
inertia change

1. Introduction

Servo systems are widely used in robots, aerospace, computer numerical control machine tools,
and other fields [1–3]. Their internal electrical characteristics often change, namely, the inertia change
of the mechanical structure connected to them and the torque disturbance in the working process.
Servo systems generally adopt a fixed-parameter structure proportional–integral–derivative (PID)
controller to complete the system adjustment process. The control performance of the PID controller
with a fixed-parameter structure is closely related to its control parameters. When the state of the
control loop changes, it will not achieve a good control performance [4–6]. Servo systems often need to
reorganize their parameters and seek new control strategies to meet the needs of high-performance
control in various situations.

Many researchers have proposed several solutions for the problems of inertia variables and torque
disturbance in the application of servo systems such as fuzzy logic, synovial, and adaptive control to
improve the control accuracy of servo systems. Dong, Vu, and Han et al. [7] proposed a fuzzy neural
network adaptive hybrid control system, which obtained high robustness when torque disturbance
and servo motor parameters were uncertain. However, a systematic fuzzy control theory was difficult
to establish to solve the fuzzy control mechanism. A large number of fuzzy rules also needed to be
established to improve control accuracy, which greatly increased the algorithm complexity. Jezernik,
Korelič, and Horvat [8] proposed a sliding mode control method for permanent magnet synchronous
motors, which can have a fast dynamic response and strong robustness when changes in torque occur.
However, when the system parameters were changed, the controller output easily produced jitter.
In [9], an adaptive PID control method based on gradient descent method was proposed. The control
method presented a fast dynamic response and a small steady-state error when the internal parameters
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of the servo system changed. However, the algorithm was slow and difficult to converge. Although
defects remain in existing PID control methods, the PID control structure is still an important way to
improve the control performances of systems.

Deep reinforcement learning is an important branch of artificial intelligence and has made
great progress in recent years. In 2015, the Google DeepMind team proposed a deep reinforcement
learning algorithm, deep Q-network (DQN) [10,11], and verified its universality and superiority
in the games of Atari 2600, StarCraft, and Go [12]. The research progress of deep reinforcement
learning has attracted the attention of many researchers. Not only have many improvement strategies
been proposed, many researchers have begun to apply the research results of deep reinforcement
learning to practical engineering applications. Lillicrap T.P proposed a deep deterministic policy
gradient (DDPG) algorithm as a replay buffer to construct a target network to solve the problems
of a continuous motion space neural network convergence and a slow algorithm update [13]. Jiang,
Zhang, and Luo et al. [14] adopted a reinforcement learning method to realize an optimized tracking
control of completely unknown nonlinear Markov jump systems. Carlucho, Paula, and Villar et al. [15]
proposed an incremental q-learning adaptive PID control algorithm and applied it to mobile machines.
Yu, Shi, and Huang et al. [16] proposed an optimal tracking control of an underwater vehicle
based on the DDPG algorithm and achieved better control accuracy than that of the traditional
PID algorithm. Other studies such as [17,18] adopted the reinforcement learning of continuous state
space to energy management.

The aforementioned results lay a good theoretical foundation, however, there still exist three
shortcomings in the control process of a servo system: (1) Traditional control methods such as PID,
fuzzy logic control, and model predictive control require complex mathematical models and the
expertise of experts, however, these experiences and knowledge are very difficult to obtain. (2) The
optimal tracking curves optimized by particle swarm optimization, genetic algorithm, and neural
network algorithm [19,20] are usually effective only for specific cycle periods and lack on-line learning
capabilities and limited generalization ability. (3) Classic reinforcement learning methods such as
Q-learning are prone to dimension disaster problems, do not have good generalization ability, and are
usually only useful for specific tasks.

More than 90% of the industrial control processes adopt the PID algorithm, which is because
its simple structure and robust performance remain stable under complex conditions. Unfortunately,
it is very difficult to correctly adjust the gain of the PID controller, because the servo system is
often disturbed in the working process and has problems such as time-delays, inertia change, and
nonlinearity. DDPG is a data-driven control method that can learn the mathematical model of the
system according to the input and output data of the system and realize the optimal control of the
system according to the given reward. The core idea of deep reinforcement learning is to evaluate a
decision-making behavior in a certain type of process by giving an evaluation index to train a class of
agents through a large number of system data generated in the decision-making process. Therefore,
the reinforcement learning method can be used to automatically adjust the control parameters of servo
systems. Based on the tuning control system, reinforcement learning provides the best solution for
adjusting compensations on the basis of tuning control systems. Servo systems accordingly obtain
satisfactory control performances. This is the first time deep reinforcement learning has been applied
to a speed servo system. Deep reinforcement learning has good knowledge transfer ability, which is
necessary for a servo system to track signals with different amplitudes or frequencies.

In this study, an adaptive compensation PID control strategy of a speed servo system based on
the DDPG algorithm is proposed. Two types of reinforcement learning agents with the same structure
are designed. The environment interaction object of the first class of agents is built by a servo system
controlled by a PID controller. The actor–critic framework and four neural networks are adopted
to construct the reinforcement learning agents. A reward function is constructed on the basis of
the absolute value of the tracking error of the speed servo system. A state set is constructed by the
output angle and error of the speed servo system. PI control structure is adopted in most practical
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application processes of the servo system. Hence, the Kd of PID controller is not considered in this
paper, and the PID parameters Kp, Ki construct an action set. The second agent class changes its
action set to the current that needs to be compensated after the PID output current on the basis of
the first agent class. The adaptive compensation for the PID output current is then realized. The
convergence speed of the neural network is enhanced through the dynamic adjustment of noise
strategy [21,22]. L2 regularization is used to prevent neural network overfitting [23,24]. The first
class of agents can automatically adjust the PID parameters. The second class can solve the control
performance degradation caused by the changes in the internal structural parameters of the servo
system due to the traditional PID control structure. And the second kind of reinforcement learning
agent can make the corresponding action according to the previous learning experience in the case of
an unknown disturbance and an unknown tracking curve by learning the input and output data of the
system. The effect is still better than the fixed parameter PID algorithm.

2. Model Analysis of a Speed Servo System

The speed servo system consists of current control loop, servo motor, load, and feedback system.
According to the analysis of the component of speed loop, the current closed loop, motor, and speed
detection are assumed as first-order systems. Using the PI control algorithm employed as a speed
regulator, the speed servo system structure diagram can be obtained in Figure 1.
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Figure 1. Diagram of the speed servo system structure. 
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Where Ks is the proportional gain of current loop. Ts is the integral time constant. Kt is the
servo system torque current coefficient. Ks f= 60m/p f T represents the speed feedback coefficient,
m is the number of detected pulses, p f represents the resolution of encoder, T is the speed detection
cycle. 2TΣ is the time constant of current closed-loop approximate system. Ts f is the time constant of
speed feedback approximate system. K is the stiffness coefficient of mechanical transmission. B is the
conversion coefficient of load friction.

When the impact of resonance on a servo system is ignored, the motor rotor and load object can
be assumed as a rigid body and the inertia of the servo system can be expressed as J = Jm + JL. Where
Jm represents motor inertia, JL is load inertia. The external load torque of the servo system is assumed
to be TL, and the speed-loop-controlled model can be expressed as:

Gso(s) =
KtKs f

((Jm + JL)s + B)(TΣns + 1)
. (1)

where TΣn = 2TΣ + Ts f . Equation (1) can be rearranged into:

Gso(s) =
B1

A1s2 + A2s + A3
(2)

where A1 = (Jm + JL)TΣn, A2 = (BTΣn + (Jm + JL)), A3 = B, and B1 = KtKs f .
The control time interval is used to discrete Equation (2), and the transfer function z of the

controlled object of the speed servo system is obtained as follows:
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Gso(z) =
b1z−1 + b2z−2

1 + a1z−1 + a2z−2 . (3)

Equation (3) can be rewritten into the following system difference equation for convenience:

ω(t) = −a1ω(t− 1)− a2ω(t− 2) + b1iq(t− 1) + b2iq(t− 2) (4)

where ω(t) is the speed at time t, iq represents the q axis component of the current. The load torque
disturbances can also be described by:

∆ ω(k) = ∆t×∆TL/(Jm + ∆JL). (5)

Equation (5) presents that the speed fluctuation caused by changes in load torque is associated
with the system inertia and load torque. A small inertia indicates great impacts of the same load torque
fluctuations on the speed control process. The system inertia and load torque should be carefully
considered during the servo system operation to obtain a stable velocity response. For example, during
the movement of the arm of a robot, its inertia is constantly changing. Thus in the CNC machining
process, the quality of the processed parts will reduce, which will lead to the change of converted
inertia of the feeding axis. When the characteristics of the load object changes, the characteristics of the
entire servo system will change. If the system inertia increases, the response of the system will slow
down, which is likely to cause system instability and result in climb. On the contrary, if the system
inertia decreases, dynamic response will speed up with speed overshoot as well as turbulence.

According to Equations (3)–(5), the relevant parameters of a specific type of servo system are
given as follows: TΣn of 1.25× 10−4, motor inertia of 6.329× 10−4 kg ·m2, and friction coefficient of
3.0× 10−4 N ·m · s/rad. We construct system 1 with torque of 1 N·m and load inertia of 2.5× 10−3 kg ·
m2, system 2 with torque of 1 N·m and load inertia of 6.3× 10−3 kg ·m2, and system 3 with torque of
3 N·m and load inertia of 2.5× 10−3 kg ·m2 to simulate the torque change and disturbance during the
operation of the servo system. The rotation inertia and external torque disturbance of the servo system
during operation can be considered the jump switches among systems 1, 2, and 3 at different times.
The transfer function of the system model can be obtained by taking the above described system 1, 2,
and 3 parameters into Equation (1). Using the control time interval ∆t = 100 us to discrete Equation (1),
the mathematical model of various servo systems can be obtained according to Equations (4), as shown
in Table 1.

Table 1. Servo system model.

System Differential Equation Expression of The Mathematical Model

System 1 ω(k) = ω(k− 1) − 3.478× 10−4ω(k− 2) + 1.388iq(k− 1) + 0.1986iq(k− 2)

System 2 ω(k) = ω(k− 1)− 3.366× 10−4ω(k− 2) + 0.1263iq(k− 1) + 0.01799iq(k− 2)

System 3 ω(k) = ω(k− 1)− 3.478× 10−4ω(k− 2) + 1.388iq(k− 1) + 0.1986iq(k− 2) + 0.9148

3. Servo System Control Strategy Based on Reinforcement Learning

3.1. Strategic Process of Reinforcement Learning

The reinforcement learning framework can be described as the Markov decision process [25].
A limited range of discrete time discount Markov decision processes can be expressed as
M = (S, A, P, r, ρ0, γ, T), where S is the state set, A is the action set, P : S× A× S→ R is the transition
probability, r : S× A→ [−Rmax, Rmax] is the immediate reward function, ρ0 : S→ R is the initial
state distribution, γ ∈ [0, 1] is the discount factor, and τ = (s0, a0, s1, a1 · · ·) is a sequence of trajectories.
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The cumulative return is defined as R =
T
∑

t=0
γtrt. The goal of reinforcement learning is to find an

optimal strategy π that maximizes the reward under this strategy, defined as max
π

∫
R(τ)Pπ(τ)dτ.

3.1.1. DQN Algorithms

The Monte Carlo method is used to calculate the expectation of return value in the state value
function, and the expectation is estimated by a random sample. In calculating the value function,
the expectation of the random variable is replaced with the empirical average. Combining with
Monte Carlo sampling and dynamic programming methods, the one-step prediction method is used
to calculate the current state-value function to obtain the algorithm update formula of Q-learning [26]
as follows:

Q(st, at)← Q(st, at) + α
[
rt + γmax

a
Q(st+1, a)−Q(st, at)

]
(6)

where α ∈ [0, 1] is the learning rate, γ ∈ [0, 1] represents the discounting factor.
However, the state value of the servo system control is always continuous. The original Q-learning

is a learning algorithm based on Q table; therefore, a dimension failure easily occurs in processing
the continuous state. DQN can learn value function using a neural network. The network is trained
off-policy with samples from a replay buffer to minimize the correlation among samples, and the target
neural network is adopted to give consistent targets during temporal difference backups. The target
neural network is expressed as θQ− . The network that the value function approximates is expressed as
θQ, and the loss function is generated as:

L(θ) = E
([(

r + γmax
a

Q
(

s′, a′; θQ−
)
−Q

(
s, a; θQ

))2
])

. (7)

The network parameters of the action value function are updated in real time. The target neural
network uses the frozen parameter method to update every fixed number of steps. The gradient
descent updating formula of DQN is obtained as [10,11]

θQ
t+1 = θt

Q + α
[
r + γmax

a
Q
(

s′, a′; θQ−
)
−Q

(
s, a; θQ

)]
∇Q(s, a; θQ). (8)

3.1.2. Deterministic Policy Gradient Algorithms

The output actions of DQN are discretized and this will result in the failure to find the optimal
parameter, or the violent oscillation of the output current. On the basis of the Markov decision

process, the single R(τ) =
H
∑

t=0
R(st, ut) represents the cumulative reward of the track τ, P(τ, θ) is

defined as the probability of showing the occurrence of a trajectory τ, and the objective function of

reinforcement learning can be expressed as U(θ) = E
(

H
∑

t=0
R(st, ut); πθ

)
= ∑

τ
P(τ; θ)R(τ). The goal in

reinforcement learning is to learn an optimal parameter θ that maximizes the expected return from
the start distribution, defined as max

θ
U(θ) = max

θ
∑
τ

P(τ; θ)R(τ). The objective function is optimized

by using the gradient descent θnew = θold + α∇θU(θ); in the equation, ∇θU(θ) = ∇θ∑
τ

P(τ; θ)R(τ).

Further consolidation can be obtained as follows:

∇θ = ∑
τ

P(τ; θ)∇ log P(τ; θ)R(τ). (9)

The policy gradient algorithm has achieved good results in dealing with the problem of continuous
action space. According to the stochastic gradient descent [27], the performance gradient ∇θ J(πθ) can
be expressed as:

∇θ J(πθ) = Es∼ρπ ,a∼πθ
[∇θ log πθ(a|s)Qπ(s, a)]. (10)
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The framework of the actor–critic algorithm based on the idea of the stochastic gradient descent is
proposed and widely used [28]. The actor is used to adjust the parameter θ. The critic approximates the
value function Qω(s, a) ≈ Qπ(s, a), where ω = θQ is the parameter to be approximated. The algorithm
structure is shown in Figure 2.
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Lillicrap, Hunt, and Pritzel et al. [13] presented an actor–critic, model-free algorithm based on the
deterministic policy gradient [27], and the formula of the deterministic policy gradient is:

∇θ Jβ(µθ) = Es∼ρβ

[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
. (11)

β(a|s) 6= πθ(a|s) represents the state behavior strategy. Neural networks are employed to
approximate the action-value function Qω(s, a) and deterministic policy µθ(s). The updating formula
of the DDPG algorithm [13] is obtained as:

δt = rt + γQω−
(

st+1, µθ−(st+1)
)
−Qω(st, at)

ωt+1 = ωt + αωδt∇ωQω(st, at)

θt+1 = θt + αθ∇θµ µθ(st)∇aQω(st, at)|a=µθ(s)
θ− = τθ + (1− τ)θ−

ω− = τω + (1− τ)ω−

. (12)

3.2. PID Servo System Control Scheme Based on Reinforcement Learning

3.2.1. PID Parameter Tuning Method Based on Reinforcement Learning

This study uses actor–critic to construct the framework of reinforcement learning agent 1, with a
PID servo system as its environment object. The tracking error curve of incentive function is acquired.
The deterministic policy gradient algorithm is used to design an action network, and the DQN
algorithm is used to design an evaluation network. PID parameter self-tuning is realized. The structure
diagram of the adaptive PID control algorithm based on reinforcement learning is shown in Figure 3.



Algorithms 2018, 11, 65 7 of 18
Algorithms 2018, 11, x FOR PEER REVIEW  7 of 19 

PID Servo system

Actor
Network

Critic
Network

Speed

Memory 
M

( )|is µµ θ iS

( )1 |is µµ θ
−

+

( )|ts µµ θ tr t+1s

p
K −

i
K −

1is +

tS
( )|ts µµ θ

pK iK

ir
1iQ γ+ ∗

iQia iQ∇

iaµθ
∇

1is +

Noise

×

( )X t

+
+

+
−

ts

 
Figure 3. Adaptive proportional–integral–derivative (PID) control structure diagram based on 
reinforcement learning agent 1. 

In Figure 3, the upper dotted line frame is an adaptive PID parameter regulator based on 
reinforcement learning, which is composed of a reinforcement learning agent; the lower dashed box 
has a PID servo controller and a speed servo system as agent environment interaction objects. 

( ) ( ) ( ) ( )1 , ( 1), , ( ), +1 , +2X t e t X t e t H t H t− −    is a set of reinforcement learning agent states ts . 

[ ]( ), ( ), ( 1), ( 1), ( 2), ( 3)X t e t X t e t H t H t+ + + +  is a set of states 1ts + at the next moment, which is 

acquired by the interaction of agent 1 and servo environments. ( )1X t − , ( )X t , and ( )1X t +  denote 
the angular velocity at the last moment, the current moment, and the next moment of the servo 
system, respectively. ( )1H t + , ( )2H t + , and ( )3H t +  refers to the need to track the signal of the 

next moment, after two times, and after three times, respectively. ( )1e t − , ( )e t , and ( )1e t +
 are 

the output error values of the previous moment, at the current time, and at the next moment, 
respectively. ( )|ts µµ θ

 
indicates the action selected by the actor evaluation network according to 

the state ts , and ( )1 |is µµ θ
−

+  
indicates the action selected by the actor target network according to 

the state 1is + . The PID parameters p iK K  ，  are a set of action variables µ  to the reinforcement 

learning agent. The reward function is constructed by the absolute value of the tracking error of the 
output angle of the servo system. The data are obtained through the interaction of the agent and the 
servo environment and stored in the memory M . The network update data are obtained by memory 
playback, and the neural networks are trained using Equation (14). The reinforcement learning agent 
is obtained on the basis of the current state ts  to select the appropriate p iK K  ， , and automatic 

tuning of the parameters of the PID servo system is realized. 

3.2.2. Adaptive PID Current Compensation Method Based on Reinforcement Learning 

The adaptive PID current compensation agent 2 adopts the same control structure and algorithm 
as those of agent 1. The adaptive compensation of PID output current is realized. The structure 
diagram of the adaptive PID control algorithm based on reinforcement learning is shown in Figure 
4. 

Figure 3. Adaptive proportional–integral–derivative (PID) control structure diagram based on
reinforcement learning agent 1.

In Figure 3, the upper dotted line frame is an adaptive PID parameter regulator based on
reinforcement learning, which is composed of a reinforcement learning agent; the lower dashed
box has a PID servo controller and a speed servo system as agent environment interaction objects.
[X(t− 1), e(t− 1), X(t), e(t), H(t + 1), H(t + 2)] is a set of reinforcement learning agent states st.
[X(t), e(t), X(t + 1), e(t + 1), H(t + 2), H(t + 3)] is a set of states st+1 at the next moment, which is
acquired by the interaction of agent 1 and servo environments. X(t− 1), X(t), and X(t + 1) denote
the angular velocity at the last moment, the current moment, and the next moment of the servo system,
respectively. H(t + 1), H(t + 2), and H(t + 3) refers to the need to track the signal of the next moment,
after two times, and after three times, respectively. e(t− 1), e(t), and e(t + 1) are the output error
values of the previous moment, at the current time, and at the next moment, respectively. µ(st|θµ)

indicates the action selected by the actor evaluation network according to the state st, and µ
(

si+1|θµ−
)

indicates the action selected by the actor target network according to the state si+1. The PID parameters[
Kp, Ki

]
are a set of action variables µ to the reinforcement learning agent. The reward function is

constructed by the absolute value of the tracking error of the output angle of the servo system. The
data are obtained through the interaction of the agent and the servo environment and stored in the
memory M. The network update data are obtained by memory playback, and the neural networks are
trained using Equation (14). The reinforcement learning agent is obtained on the basis of the current
state st to select the appropriate

[
Kp, Ki

]
, and automatic tuning of the parameters of the PID servo

system is realized.

3.2.2. Adaptive PID Current Compensation Method Based on Reinforcement Learning

The adaptive PID current compensation agent 2 adopts the same control structure and algorithm
as those of agent 1. The adaptive compensation of PID output current is realized. The structure
diagram of the adaptive PID control algorithm based on reinforcement learning is shown in Figure 4.
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Figure 4. Adaptive PID current compensation control structure diagram based on reinforcement
learning agent 2.

In Figure 4, the upper dotted box is the adaptive current compensator based on reinforcement
learning for reinforcement learning agent 2, and the lower dotted box comprises a PID servo controller
and a speed servo system as the environment interaction objects of the reinforcement learning agent.
The state definition is the same as that of agent 1. The current [It], as a set of action variables µ to the
reinforcement learning agent, is compensated. The reward function is constructed by the absolute
value of the tracking error of the output angle of the servo system. The reinforcement learning agent is
achieved on the basis of the current state st to select the appropriate [It], and the adaptive compensation
for the PID output current is realized.

3.3. Design Scheme of Reinforcement Learning Agent

3.3.1. Network Design for Actor

Two four-layer neural networks are established on the basis of the deterministic policy gradient
algorithm. They are the actor evaluation and target networks, which have the same structures but
different functions. The structure of the actor network is shown below:

As illustrated in Figure 5, the actor evaluation network has exactly the same number of neurons
and structure as those of the actor target network. The input layer of the actor evaluation network
has six neurons, which correspond to six input nodes, namely, for the angular velocity X(t− 1) at
the last moment, the output error value e(t− 1) of the previous moment, the angular velocity X(t)
at the current moment, the output error value e(t) at the current time, the signal H(t + 1) needed
to track in the next moment, and the signal H(t + 2) needed to track after two times, respectively.
[X(t− 1), e(t− 1), X(t), e(t), H(t + 1), H(t + 2)] is a set of reinforcement learning agent state st. The
action value µ(st|θµ) of the evaluation network is output. The inputs of the actor target network are
the current angular velocity X(t), the output error value e(t) at the current time, the angular velocity
X(t + 1) at the next moment after the interaction between action µ(st|θµ) and the environment, the
output error value e(t + 1) at the next moment, the signal H(t + 2) tracked after two times, and the
signal H(t + 3) tracked after three times. [X(t), e(t), X(t + 1), e(t + 1), H(t + 2), H(t + 3)] is a set of
states st+1 at the next moment. The action value µ

(
st+1|θµ−

)
of the target network is output. The

actor network contains three hidden layers. The first hidden layer comprises 200 neurons, and the
activation function in this layer is ReLu6. The second hidden layer also consists of 200 neurons and
the activation function is ReLu6. The third hidden layer is composed of 10 neural networks, and the
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activation function is ReLu. Each layer of neurons uses L2 regularization to prevent overfitting of the
neural network.
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3.3.2. Network Design for Critic

Two four-layer neural networks are established on the basis of the DQN algorithm. They are
the critic evaluation and target networks, which have the same structures but different functions.
The structure of the critic network is shown below:

As shown in Figure 6, the critic evaluation network has exactly the same number of neurons and
structure as those of the critic target network. The input layer of the critic evaluation network has
seven neurons, which correspond to seven input nodes, namely, for the angular velocity X(t− 1) at
the last moment, the output error value e(t− 1) of the previous moment, the angular velocity X(t)
at the current moment, the output error value e(t) at the current time, the signal H(t + 1) needed
to track for the next moment, the signal H(t + 2) to track after two times, and the output value
µ(st|θµ) of the actor evaluation network. The output layer contains a neuron, which outputs the
action-value function Q

(
st, µ(st|θµ)|θQ). [X(t− 1), e(t− 1), X(t), e(t), H(t + 1), H(t + 2)] is a set of

reinforcement learning agent state st. The critic target network also has seven nodes, namely, for
the angular velocity X(t) at the current moment, the output error value e(t) at the current time, the
angular velocity X(t + 1) at the next moment after the interaction between action µ(st|θµ) and the
environment, the output error value e(t + 1) at the next moment, the signal H(t + 2) to track after two
times, the signal H(t+ 3) to track after three times, and the output value µ

(
st+1|θµ−

)
of the actor target

network. The critic target network outputs the state-action value function Q
(

st+1, µ
(

st+1|θµ−
)
|θQ−

)
.

[X(t), e(t), X(t + 1), e(t + 1), H(t + 2), H(t + 3)] is a set of states st+1 at the next moment. The critic
network contains three hidden layers. The first hidden layer comprises 200 neurons, and its activation
function is ReLu6.The second hidden layer also consists of 200 neurons, and its activation function is
ReLu6. The third hidden layer is composed of 10 neural networks, and its activation function is ReLu.
L2 regularization is adopted to prevent overfitting of the neural network.
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3.4. Implementation Process of the Adaptive PID Algorithm Based on DDPG Algorithm

In this paper, two types of agents are designed with the same neural network structure. Agent 1
searches for the optimal PID parameters within 0 to 100 range, in order to realize the adaptive tuning
of the PID parameters of the speed servo system. The adaptive compensation of PID output current is
realized by Agent 2, which further reduces the steady state error.

Agent 1 is designed on the basis of the actor–critic network structure in 3.3. The critic
Q
(
st, µ(st|θµ)|θQ) and actor µ(st|θµ), with weights of θQ and θµ, respectively, are randomly initialized.

The target networks Q− and µ− with weights of θQ− ← θQ and θµ− ← θµ , respectively, are randomly
initialized. A memory library M1 with capacity C1 is built. The current state st is stored. Action µt is
taken. The reward rt and the next moment state st+1 are acquired. The first state s1 = [0, 0, 0, 0, 0, 0] is
initialized. The action at =

[
Kp, Ki

]
= µ(st|θµ) + Noise is selected on the basis of the actor evaluation

network. The action at is performed in the PID servo controller to obtain the return rt and the next state
st+1. The transition (st, at, rt, st+1) is stored in M1. A random minibatch of N transitions (si, ai, ri, si+1)

from M1 is sampled. yi = ri + γQ−
(

si+1, µ
(

si+1|θµ−
)
|θQ−

)
is computed, and the critic is updated

by minimizing the loss L = 1
N ∑i

(
yi −Q

(
si, ai|θQ))2 to integrate into Equation (8). The actor network

is updated with ∇θµ J ≈ 1
N ∑

i
∇aQ

(
s, a|θQ)|s=si ,a=µ(si)

∇θµ µ(s|θµ)|si on the basis of Equation (12).

The target network is updated with θQ− ← τθQ + (1− τ)θQ− , θµ− ← τθµ + (1− τ)θµ− .
Agent 2 is designed on the same neural network structure and state set as agent 1. By changing

the action space of agent 1, the current compensation of the PID controller is realized and the control
performance is further improved. The action at = [It] = µ(st|θµ) + Noise is selected on the basis of
the actor evaluation network. The same DDPG algorithm with agent 1 is adopted to train the agent 2.

4. Result and Discussion

4.1. Experimental Setup

In the actual application process, the speed servo system instruction is generally trapezoidal or
positive rotation. Therefore, only the performances of the servo control system in the two types of
instruction cases are analyzed and compared in this study on the basis of system control experiments
under the instructions of different amplitudes, frequencies, and rise and fall rates. In the control
process of the servo system, PID parameters play a key role in the control performance of the speed
servo system. The classic PID (Classic_PID) controller is adopted to compare with the algorithm
proposed in this paper. The control parameters turned based on the empirical knowledge from experts
are Kp = 0.5 and Ki = 2.985.

Reinforcement learning agent 1 is constructed on the basis of the method in 3.4.1 to realize
automatic tuning of the PID parameters of the servo system. The relevant parameters are set as follows:
the capacity of the memory M1 is C1 = 50,000, the actor target network updates the steps by 11,000, and
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the critic target network updates the steps by 10,000. The action range is [0 to 100]. The learning rate of
actor and critic αa = αc = 0.0001, and the batch size N = 256. Gaussian distribution is used to increase
noise, and the output value of the neural network is used as the distribution mean. Parameter var 1
is set as the standard deviation, and the initial action noise var 1 = 10. The noise strategy is adjusted
dynamically with the increase in learning frequency. Finally, var 1 = 0.01. In this paper, the control
precision of the controller is adopted as the control target. In consideration of the limitation of control
servo motor current and power consumption in practical engineering, the reward r is defined as:

rt= e−
1
2
[0.9∗|e(t)|+0.1∗|It |]2

σ2 (13)

where σ = 10. Table 1 presents that with the control servo system 1, the tracking amplitude is 1000, the
slope absolute value is 13,333.3, the isosceles trapezoidal signal is 0.5 s, the loop iteration is 5000 times,
and the environment interaction object is reinforcement learning agent 1. The trained agent model is
called MODEL_1.

Reinforcement learning agent 2_1 is constructed on the basis of the method in 3.4.2 to realize the
adaptive compensation of PID output current. The optimal control parameters learned by the adaptive
PID control algorithm in MODEL_1 are Kp = 0.9318 and Ki = 1.4824. The system performance of the
fixed PID control structure under these parameters is compared with the control performance of the
adaptive current compensation method proposed in this study.

The relevant parameters of the reinforcement agent 2_1 are set as follows: the capacity of the
memory M2 is C2 = 50,000, the actor target network updates the steps by 11,000, and the critic target
network updates the steps by 10,000. The action range is [−2 to 2]. The learning rate of actor and critic
αa = αc = 0.0001, and the batch size N = 256, and the initial action noise var 2 = 2. Finally, var 2 = 0.01.
The control output of agent 2_1 needs to compensate the PID current. Therefore, the angular velocity
error of PID control is constructed to build the reward function r, and the reward r is defined as:

rt = 0.9 ∗ e−
1
2

e(t+1)2

σ2 + 0.1∗e−|It | (14)

where σ = 2. The environment interaction object of agent 1 is adopted to the reinforcement learning
agent 2_1. Eight hundred episodes are trained to acquire the agent model, called MODEL_2.

Agent 2_2 is constructed on the basis of the structure of agent 2_1. Agent 2_2 changes the relevant
parameters on the basis of agent 2_1 as follows: the memory M2 is changed to M3, the capacity of
the memory M3 is C3 = 2000, the actor target network updates the steps by 1100, the critic target
network updates the steps by 1000, and the remaining indicators are unchanged by agent 2_2. The
compensation tracking amplitude is 10, and the frequency is 100 Hz sinusoidal signal. Four thousand
episodes are trained to acquire the agent model MODEL_3.

The system models of system inertia mutation and external torque disturbance are tested to verify
the adaptability of the proposed adaptive control strategy based on the adaptive speed servo system
of reinforcement learning in this study. The performance of the proposed method is quantitatively
analyzed with velocity tracking curve rendering, velocity tracking error value, and Integral of Absolute
Error (IAE) index value.

4.2. Experimental Results

Test case #1

The following figure shows the data of the successful training of each model. The performance
test of MODEL_1 is shown in Figure 7a, in which the tracking amplitude of agent 1 is 1000, the absolute
value of the slope is 13,333.3, and the isosceles trapezoid tracking effect presents an inconsiderable error.
The reinforcement learning output action values of Kp, Ki present a straight line. The optimal control
parameters are Kp = 0.9318 and Ki = 1.4824. It can be seen from the Figure 7b that the improved
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PID (Improved_PID) with good parameters can achieve better control performance than Classic_PID.
Figure 7c indicates that 800 episode values are trained to acquire the average reward for agent 2_1. The
training is started by exploring a large degree, where in the average reward value is very low. As the
training steps increase, the average reward increases gradually, and MODEL_2 eventually converges.
Figure 7d depicts the average reward of agent 2_2 when training 4000 episode values. The average
reward eventually increases and tends to be stable. The correctness and effectiveness of the agent
model of the proposed method in this study are verified according to the above results.
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Test case #2

The tracking command signal of the setting system is set with the amplitude value of 1000, the
slope absolute value of 13,333.3 isosceles trapezoid signal, amplitude of 0.1, zero mean, variance of
1, and random white Gaussian noise signal. When tracking 0.5 s, system 1 is selected as the servo
system in the tracking process. The reinforcement learning adaptive PID current compensation method
is compared with PID control. The MODEL_2 control and the performance comparison of the PID
approaches are shown in Figure 8.

Figure 8a presents the tracking effect diagram of 0.50 s for the reinforcement learning adaptive
PID current compensation method. A good tracking performance is obtained. The circle-part
amplification is shown in the figure. Agent 2_1 tracking effect (RL_PID) is compared with Classic_PID
and Improved_PID. In the absence of external disturbances, the proposed method can rapidly
and accurately track the command signal, and the Classic_PID control structure produces a large
tracking error. The control performance of Improved_PID is between Classic_PID and RL_PID. The
parameter tuning method proposed in this paper can achieve better control performance than the
Classic_PID. Figure 8b depicts the IAE index for RL_PID, Improved_PID, and Classic_PID. The IAE of
the reinforcement learning adaptive PID control algorithm is smaller than that of the PID algorithm
under the condition of the same system. The results prove that the proposed control strategy is feasible
in tracking trapezoidal signal and can achieve a good control performance.
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Test case #3

The tracking command signal of the setting system has an amplitude value of 2000, aslope
absolute value of 26,666.6 isosceles trapezoid signal, an amplitude of 0.1, zero mean, variance of 1,
and a random white Gaussian noise signal. When tracking 0.5 s, system 1 is selected as the servo
system. The inertia and moment disturbance of the random system are added between 0.075 and
0.375 s. The reinforcement learning adaptive PID current compensation method (RL_PID) is compared
with Improved_PID control, and Classic_PID. The MODEL_2 control and the performance comparison
of the PID approaches are shown in Figure 9.
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Figure 9a presents the tracking effect diagram of 0.50 s for the reinforcement learning adaptive PID
current compensation method. A good tracking performance is observed. The circle-part amplification
is shown in the figure. Agent 2_1 tracking effect (RL_PID) is compared with Improved_PID
and Classic_PID. The proposed method follows the signal amplitude. The slope with changed
circumstances shows a better tracking effect than that of the Improved_PID and Classic_PID. This
method is verified to have good adaptability. Figure 9b shows a schematic of the control system of
the adaptive PID and PID control algorithms, where 0 represents system 1, 1 represents system 2,
and 2 represents system 3. Figure 9c depicts the comparison chart of the reinforcement learning
adaptive PID control algorithm and the PID control algorithm IAE. The IAE value of the reinforcement
learning adaptive PID control algorithm is always less than that of the PID algorithm under the same
system. The image above Figure 9d shows the comparison diagram of the RL_PID, Improved_PID and
Classic_PID tracking error. When the system changes, the tracking error of the reinforcement learning
is less than that of the Improved_PID and Classic_PID. It can be obtained from the figure that the PID
controller after turning the parameter of the agent 1 is better than the classical PID controller to reduce
the tracking error caused by the mutation of inertia. Current compensation in the PID controller after
turning parameters can reduce the error further. The figure below Figure 9d shows the current value of
the RL_PID based on reinforcement learning output. When the system undergoes mutation, the output
current value of the reinforcement learning (RL_PID_RL) in adaptive PID based on reinforcement
learning and the value of PID (RL_PID_PID) in adaptive PID based on reinforcement learning change
to adapt to the system. The results prove that the proposed control strategy in tracking trapezoidal
signal amplitude, slope change, system inertia, and torque under the condition of random mutation is
still better than Improved_PID and Classic_PID. The applicability and superiority of the proposed
method are verified.

Test case #4

The tracking command signal is set with a signal amplitude of 10, a frequency of 100 Hz sinusoidal
signal, an amplitude of 0.1, zero mean, variance of 1, and random white Gaussian noise signal. When
tracking 0.02 s, system 1 is selected as the servo system, and agent 2_2 is tested. The reinforcement
learning adaptive PID current compensation method is compared with Improved_PID control and
Classic_PID control. The MODEL_3 control and the performance comparison of Improved_PID and
Classic_PID are shown in Figure 10.
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Figure 10a is the tracking effect diagram of 0.02 s for the reinforcement learning adaptive
PID current compensation method. A good tracking performance is yielded, and the circle-part
amplification is shown in the figure. Agent 2_2 tracking effect is compared with Improved_PID and
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Classic_PID. In the absence of external disturbances, the proposed method can rapidly and accurately
track the command signal, and the Classic_PID control structure produces a large tracking error. The
control performance of Improved_PID with good parameters is better than that of Classic_PID, which
verifies that the parameters searched by the reinforcement learning agent 1 can still be applied when
the tracking signal type changes. Figure 10b shows the IAE index for the reinforcement learning
adaptive PID control algorithm, Improved_PID and Classic_PID control algorithm. The IAE of the
reinforcement learning adaptive PID control algorithm is smaller than that of the Improved_PID
algorithm and Classic_PID algorithm under the condition of the same system. The results confirm that
the control strategy proposed in this study is feasible to track sinusoidal signal and can obtain a good
control performance.

Test case #5

The tracking command signal is set with a signal amplitude of 20, a frequency of 200 Hz sinusoidal
signal, an amplitude of 0.1, zero mean, variance of 1, and random white Gaussian noise signal. When
tracking 0.02 s, system 1 is selected as the servo system. The torque mutation system is switched
to system 3 at 0.01 s, and agent 2_2 is tested. The reinforcement learning adaptive PID current
compensation method is compared with Improved_PID and Classic_PID. The MODEL_3 control and
the performance comparison of the PID approaches are shown in Figure 11.Algorithms 2018, 11, x FOR PEER REVIEW  16 of 19 
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Figure 11a presents the tracking effect diagram of 0.02 s for the reinforcement learning adaptive
PID current compensation method. A good tracking performance is obtained, and the circle-part
amplification is shown in the figure. From the comparison between the tracking effect (RL_PID),
Improved_PID and Classic_PID tracking effect, the tracking effect of the proposed method is still better
than that of the no current compensation PID control structure. Figure 11b is the error graph of the
adaptive PID, Improved_PID, and Classic_PID control algorithms. The error value of the adaptive PID
control algorithm is significantly smaller than that of the Improved_PID algorithm and the Classic_PID
algorithm under the same system. The Improved_PID has a better PID parameter that can achieve
a smaller tracking error than Classic_PID when the load is a mutation. The results prove that the
presented control strategy under the condition of torque mutation has a better tracking performance
than that of Improved_PID and Classic_PID. The applicability and superiority of the proposed method
are verified.

Test case #6

The proposed control strategy based on reinforcement learning is compared with fixed parameter
PID control performance of servo system structure under the circumstances of different signal types,
signal amplitudes, torques, and inertia mutations, with its IAE as the evaluation index. For the system
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with random mutation, random system inertia is added, and the torque disturbance ranges from
0.075 s to 0.375 s. For the system with inertia mutation, 0.01 s switch to system 2 is required. For the
system with load mutation, 0.01 s system to switch to system 3 is needed. The results are shown in
Tables 2–5.

Table 2. Amplitude value with 1000 slope 13,333.3 isosceles trapezoid tracking signal under 0.5 s
RL_PID, Improved_PID and Classic_PID IAE indicator table.

System RL_PID Improved_-PID Classic_PID

System 1 1199.56 2087.81 3883.61
system with random mutation 4000.01 5444.85 8017.54

Table 3. Amplitude value with 2000 slope 26,666.6 isosceles trapezoid tracking signal under 0.5 s
RL_PID, Improved_PID and Classic_PID IAE indicator table.

System RL_PID Improved_PID Classic_PID

System 1 2937.40 4144.64 7705.06
system with random mutation 7144.29 8307.17 14,608.11

Table 4. Amplitude with 10 frequency 100 sinusoidal tracking signal under 0.02 s RL_PID,
Improved_PID and Classic_PID IAE indicator table.

System RL_PID Improved_PID Classic_PID

System 1 17.126 54.412 99.760
system with inertia mutation 199.045 271.327 427.420
system with load mutation 60.300 89.819 166.420

Table 5. Amplitude with 20 frequency 200 sinusoidal tracking signal under 0.02 s RL_PID,
Improved_PID and Classic_PID IAE indicator table.

System RL_PID Improved_PID Classic_PID

System 1 112.418 217.766 403.680
system with inertia mutation 827.467 952.202 1278.677
system with load mutation 129.000 226.029 417.880

According to the experimental results in different velocity commands and complex disturbances
and inertia change under such circumstances, the IAE index of the method proposed in this study
is less than the IAE index value of the fixed parameter PID control system. The proposed method
has a better control performance than the PID control structure with fixed parameters and has good
adaptability. In addition, the proposed PID parameter tuning method based on deep reinforcement
learning can search better control parameters, create the fixed parameter PID control system under the
condition of the system of inertia, and load mutations that can obtain better control performance than
classic PID.

5. Conclusions

In this study, we design a reinforcement learning agent to automatically control the parameters of
a speed servo system. The agent establishes the networks of action and critic functions on the basis of
the DDPG algorithm. The action network realizes the optimal approximation of the strategy. The critic
network realizes the optimal approximation of the value function and adopts the strategies of memory
playback, parameter freezing, and noise dynamic adjustment to improve the convergence speed of
neural networks. The tuning parameters of the servo system are obtained, and the same reinforcement
learning intelligent structure is adopted to enhance the control accuracy.
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The use of reinforcement learning cannot only make the control parameters of the servo system
have fast and accurate tuning, but also can perform current online compensation on the basis of the
state of the servo system. The system can effectively overcome the influences of external factors. This
study proposes a servo system control strategy based on reinforcement learning in different types of
instructions, torque disturbances, and inertia cases. A satisfactory performance of the control system
is obtained. The experimental results demonstrate the effectiveness and robustness of the proposed
method. In this paper, the tuning of PID parameters of the servo system and the compensation of
current are two agents. Multi-task learning may solve this problem and this will be the topic of a
future work. In addition, we find that L2 regularization can improve the generalization ability of
reinforcement learning agents. The contributions in this paper will be beneficial to the application of
deep reinforcement learning in a servo system.
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