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Abstract: Effectiveness in managing disturbances and disruptions in railway traffic networks, when
they inevitably do occur, is a significant challenge, both from a practical and theoretical perspective.
In this paper, we propose a heuristic approach for solving the real-time train traffic re-scheduling
problem. This problem is here interpreted as a blocking job-shop scheduling problem, and a hybrid of
the mixed graph and alternative graph is used for modelling the infrastructure and traffic dynamics
on a mesoscopic level. A heuristic algorithm is developed and applied to resolve the conflicts by
re-timing, re-ordering, and locally re-routing the trains. A part of the Southern Swedish railway
network from Karlskrona centre to Malmö city is considered for an experimental performance
assessment of the approach. The network consists of 290 block sections, and for a one-hour time
horizon with around 80 active trains, the algorithm generates a solution in less than ten seconds.
A benchmark with the corresponding mixed-integer program formulation, solved by commercial
state-of-the-art solver Gurobi, is also conducted to assess the optimality of the generated solutions.

Keywords: railway traffic; disturbance management; real-time re-scheduling; job-shop scheduling;
optimization; alternative graph

1. Introduction

The definitions of “system performance” and “quality of service” in railway traffic and
transportation vary, but more recent reports, e.g., from the Boston Consultancy Group [1] and the
European Commission [2], indicate that many European countries face challenges with regard to the
reliability and punctuality of rail services. Several different factors contribute to these challenges,
where the frequency and magnitude of disruptions and disturbances is one factor. The effectiveness
in managing the disturbances and disruptions in railway traffic networks when they inevitably do
occur is another aspect to consider. In this paper, we focus on the latter, and more specifically, on the
problem of real-time train traffic re-scheduling, also referred to as train dispatching [3].

In general, the problem of re-scheduling train traffic in real-time is known to be a hard problem
to solve by expert traffic dispatchers in practice, as well as by state-of-the-art scheduling software.
There is thus often a trade-off that needs to be made regarding permitted computation time and
expected solution quality. Heuristic approaches, or approaches based on, e.g., discrete-event simulation,
are often rather quick, since they work in a greedy manner, but sometimes they fail to deliver a
reasonable solution or even end up in deadlock. Exact approaches, based on, e.g., mixed-integer
programming models solved by branch-and-cut algorithms are, on the other hand, less greedy, but can
be very time-consuming, especially if the search space is large, and suffer from significant redundancy.
Another aspect concerns the selected level of granularity of the traffic and infrastructure model, and
this may indirectly affect the computation time and the quality of the solution as well.
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Over the latest three decades, a variety of algorithms and methods have been proposed to
solve the train traffic re-scheduling (or, train dispatching) problem, see [3–6] for more recent surveys.
These previously proposed approaches have different strengths and limitations, depending on the
intended application and context in mind. In Section 2, we provide a more comprehensive summary
of state-of-the-art methods addressing this problem.

In this paper, we propose a heuristic approach to solve the real-time train traffic re-scheduling
problem. We view the problem as a blocking/no-wait, parallel-machine job-shop scheduling
problem [3]. A job corresponds to a train’s path along a pre-determined sequence of track sections
(i.e., machines). Each part of that path corresponds to an operation. “blocking/no-wait” constraint
refers to that there is no possibility to finish an operation if the next operation of the same job cannot
get access to the required machine for processing, i.e. there is no storage space between machines
that allows jobs and their current operation to wait for an occupied machine to become available.
That is, when an operation of a job is completed, the next operation of that job must immediately start.
This corresponds to the train needing at all times to have explicit access to a track section (independent
of whether the train is moving or waiting). This problem is here modeled as a graph, where the
graph is a hybrid between a mixed graph and an alternative graph. The benefit of using a hybrid
graph is the possibility of reducing the number of required computations when constructing the graph.
The problem is then solved by a heuristic algorithm. The proposed mixed graph model is discussed in
Section 3, and the proposed heuristic algorithm is presented in detail in Section 4. The performance of
the proposed approach is assessed in an experimental study, where the approach has been applied to
solve a number of disturbance scenarios for a dense part of the Swedish southern railway network
system. The performance assessment also includes a benchmark with the commercial optimization
software Gurobi (v 6.5.1), using the corresponding mixed integer programming (MIP) model (which is
presented in Appendix A). This experimental study is presented in Section 5. Section 6 presents some
conclusions from the experimental study and provides pointers to future work.

2. Related Work

Szpigel [7] was, in 1973, one of the pioneers, adapting the job-shop scheduling (JSS) problem
formulation for the train scheduling problem. This was later developed by other researchers such as
D’Ariano et al. [8], Khosravi et al. [9], Liu and Kozan [10], Mascis and Pacciarelli [11], and Oliveira and
Smith [12].

The JSS paradigm is also explored in the mixed-integer linear programming (MILP) approach
proposed by Törnquist Krasemann and Persson in 2007 [13], where the primary focus was on creating
and evaluating strategies for reducing the search space via model re-formulations. Different problem
formulations were experimentally evaluated in several disturbance scenarios occurring on a
double-tracked network with bi-directional traffic, and solved by commercial software for a time
horizon of 60–90 min. The effectiveness of the approach and the different strategies were shown to be
highly dependent on the size of the problem and type of disturbance.

A heuristic approach based on a MILP formulation was also proposed in [14]. A time horizon
of 30 to 60 min was defined for testing the disturbing scenarios. The commercial solver CPLEX was
used to solve the problem, with an allowed computation time of 180 s. Significant effort was made to
tune the heuristic algorithm, and the results were compared with exact ones. For up to a 40 min time
horizon, the algorithm generated good results.

A MIP model was also applied on a double-track railway corridor, where the focus is on local
re-routing of trains to allow for bi-directional traffic and special constraints to respect the safety
requirements [15].

As already mentioned, the real-time train traffic re-scheduling problem is a hard problem to solve.
This is often an effect of the large solution space, which may be difficult to efficiently navigate in due to
significant redundancy. That is, depending on the problem formulation and selected objective function,
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particularly, optimization solvers may find multiple equally good solutions and also have difficulties
finding strong bounds. Finding optimal, or near-optimal, solutions may thus be very time-consuming.

In order to reduce the computational time, one can partition the problem into a set of different
sub-problems and solve them in parallel, in a distributed manner with some sort of coordination
mechanism. The partitioning can be done in space (i.e., by dividing the infrastructure, or the associated
constraints, into separate parts), or in time (i.e., rolling-time horizon). Corman et al. [16–18] proposed
and benchmarked a centralized and a distributed re-scheduling approach for the management of a
part of the Dutch railway network based on a branch-and-bound approach. These variations come
from various static and dynamic priorities that are considered for scheduling. They also worked
on a coordination system between multiple dispatching areas. The aim was to achieve a globally
optimal solution by combining local solutions. Some constraints are defined for the border area and a
branch-and-bound algorithm solves the coordinator problem.

Another approach for reducing the complexity of the problem is to use classical decomposition
techniques, which are becoming more frequently used to overcome the complexity (and the
associated long computation times) of the train re-scheduling problem when using exact approaches.
Lamorgese and Mannino proposed an exact method, which decomposes and solves the problem with
a master-slave procedure using column generation [19]. The master is associated with the line traffic
control problem and the slaves with the station traffic control.

Decomposition has also been used to reduce the complexity of the associated MIP model of the train
re-scheduling problem [20]. An iterative Lagrangian relaxation algorithm is used to solve the problem.

Tormo et al. [21] have investigated different disturbance management methods, for the purpose of
supporting railway dispatchers with the assessment of the appropriateness of each method for different
problems in the railway operations. They categorized the disturbance management approaches into
three subcategories. The first one is to minimize the overall delays at the network level. The second
one is the evaluation of disturbances based on the severity, and the third one is to assume the equal
importance of each incident. An incremental heuristic method has been compared with a two-phase
heuristic approach in [22]. At each processing step, partial resource allocation and partial scheduling
are repeated until a complete solution is generated. In a two-phase heuristic approach, the algorithm
creates the routes for all the trains with a complete labelling procedure in phase one, and then solves
the problem with an approximation algorithm in phase two.

The use of task parallelization to reduce computation time was explored by Bettinelli et al. [23],
who proposed a parallel algorithm for the train scheduling problem. The problem is modelled by a
graph. For conflict resolution, some dispatching rules are applied. The algorithm solves the problem in an
iterative, greedy manner, and to decrease the computational time, the tasks are parallelized. The algorithm
enhances the quality of the solutions using neighbourhood search and tabu search. The neighbourhood
search has a significant impact on the quality of generated solutions, according to the authors.

Another interesting study of different approaches to variable neighbourhood search and quality
assessment is available in [24]. Local search techniques are also used in [25], where the problem is
modeled as a hybrid job-shop scheduling problem.

In [10], the train scheduling problem is formulated as a blocking parallel-machine job-shop
scheduling problem and modeled as an alternative graph. A heuristic algorithm, referred to as “the
feasibility satisfaction procedure”, is proposed to resolve the conflicts. The model attempts to consider
train length, upgrading the track sections, increasing the trains’ speed on the identified tardy section
and shortening the local runtime of each train on bottleneck sections. The application was designed
for the train scheduling problem and is not considering re-scheduling. In the first step, the problem is
solved by a shifting bottleneck algorithm without considering the blocking condition. In the next step,
the blocking condition is satisfied by using an alternative graph model.

Khosravi et al. [9] also address the train scheduling and re-scheduling problem using a
job-shop scheduling problem formulation, and the problem is solved using a shifting bottleneck
approach. Decomposition is used to convert the problem into several single-machine problems.
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Different variations of the method are considered for solving the single-machine problems.
The algorithm benefits from re-timing and re-ordering trains, but no re-routing of trains is performed.

A job-shop scheduling approach is also used to insert additional trains to an existing timetable
without introducing significant consecutive delays to the already-scheduled trains [26]. A branch and
bound algorithm and an iterative re-ordering strategy are proposed to solve this problem in real-time.
Re-timing and re-ordering are conducted in a greedy manner. They have suggested a new bound for
the branch and bound algorithm and an iterative re-ordering algorithm, which helps to find solutions
in an acceptable computational time.

The main challenge in this study is to—inspired by previous promising research work—develop,
apply and evaluate an effective algorithm that, within 10 s, can find sufficiently good solutions to
a number of different types of relevant disturbance scenarios for a medium-sized sub-network and
a time horizon of 60–90 min. A hybrid of the mixed graph and alternative graph (a derivation of
the disjunctive graph, which satisfies the blocking constraint [11]) formulation is used for modelling
the train traffic re-scheduling problem. This graph allows us to model the problem with a minimum
number of arcs, which is expected to improve the efficiency of the algorithm. The model of the
infrastructure and traffic dynamics is on the mesoscopic level, which considers block sections, clear
time and headway distance, based on static parameter values. A heuristic algorithm is developed for
conflict resolution. This algorithm is an extension of the algorithm developed by Gholami and Sotskov
for hybrid job-shop scheduling problems [27]. The extended algorithm provides an effective strategy
for visiting the conflicting operations and the algorithm makes use of re-timing, re-ordering, and local
re-routing of trains while minimizing train delays.

3. Modelling the Job-Shop Scheduling Problem Using a Graph

A well-known and efficient way of modelling the job-shop scheduling problem is to use graphs.
Graph theory is a well-studied area in the computational sciences, and it provides efficient algorithms
and data structures for implementation. These features make the graph a suitable candidate for
modeling the problem addressed in this paper.

In a job-shop scheduling problem, there are n jobs that have to be served by m different types of
machines. Each job j ∈ J has its own sequence of operations Oj =

{
oj,1, oj,2, . . . , oj,m

}
to be served by

different predefined machines from the set M. The jobs have to be served by machines exclusively.
The job-shop scheduling problem can be formulated using a mixed graph model G = (O, C, D), or
equivalently by a disjunctive graph model. Let O denote the set of all operations to be executed by a
set of different machines M. The set C represents a predefined sequence of operations for each job j
to visit machines from the set M. The two operations oj,i and oj′,i′ which have to be executed on the
same machine m ∈ M, cannot be processed simultaneously. This restriction is modelled by an edge[
oj,i, oj′,i′

]
∈ D (if a mixed graph is used) or equivalently by pairs of disjunctive arcs

{(
oj,i, oj′,i′

)
, and(

oj′,i′, oj,i
)

} (if a disjunctive graph is used). In this paper, the mixed graph is used for modelling the
primary state of the problem. Two vertices, os and od as the source and destination vertices, respectively,
are added to the model to transform it to a directed acyclic graph.

Using the terms “arc” and “edge” may be confusing. Edges may be directed or undirected;
undirected edges are also called “lines”, and directed edges are called “arcs” or “arrows”. In this paper,
the term “edge” is used for undirected edges, and the term “arc” is used for directed edges.

To serve the operations in a job-shop scheduling problem, only one instance of each machine of
type m is available. In a hybrid job-shop as a derivation of the job-shop scheduling problem, a set Mm

(|Mm|≥ 1 ) is available to serve the operations [28]. The notation 〈m, u〉 is used to indicate a specific
machine or resource u from a set Mm if it is necessary. These uniform parallel machine sets increase
the throughput and provide more flexibility in the scheduling process.

A train is here synonymous with a job in the job-shop scheduling problem. A train route from the
source station to the destination can be considered to be a sequence of operations for a job j. Each railroad
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section is synonymous to a machine m. In Table 1, below, we introduce the notations that are used to
describe and define the hybrid graph model, algorithmic approach, and corresponding MIP model.

Table 1. The notations used for sets, indices, parameters, and variables.

Sets and Indices Description

M Set of all railway sections (i.e., machines).
m The index used to denote a specific section in the set M.

Mm The sub-set of tracks and platforms that belongs to section m. (i.e., parallel machines)
m, u A track/platform/resource instance number u from a set Mm.

J Set of all trains (i.e., jobs).
j The index used to denote a specific train.

O Set of all train events (i.e., operations).
Oj Set of all events that belong to train j.
Om Set of all events to be scheduled on a section m.

Om,u Set of all events to be scheduled on track u of section m.
i The index used to denote a specific train event i.

oj,i The symbol used to denote the event i which belongs to train j.

〈j, i, m, u〉 Tuple which refers to train j and its event i which occurs in section m and scheduled for
track u. When the section is single line u will be ignored.

(′) Prime symbol used to distinguish between two instances (i.e., job j and j′ ).

Parameters Description

cm
The required minimum clear time that must pass after a train has released the assigned
track u of section m and before another train may enter track u of section m.

hm
The minimum headway time distance that is required between trains (head-head and
tail-tail) that run in sequence on the same track u of section m.

dj,i The minimum running time, or dwell time, of event i that belongs to train j.
binitial

j,i This parameter specifies the initial starting time of event i that belongs to train j.
einitial

j,i This parameter specifies the initial completion time of event i that belongs to train j.
psj,i This parameter indicates if event i includes a planned stop at the associated segment.

Variables Description

xbegin
j,i The re-scheduled starting time of event i that belongs to train j.
xend

j,i The re-scheduled completion time of event i that belongs to train j .
tj,i The tardiness (i.e., delay for train j to complete event i ).
zj,i Delay of event i, i ∈ O, exceeding µ time units, which is set to three minutes here.

qj,i,u A binary variable which is 1, if the event i uses track u.
γj,i,j′,i′ A binary variable which is 1, if the event i occurs before event i′.
λj,i,j′,i′ A binary variable which is 1, if the event i is rescheduled to occur after event i′.
bu f j,i Remaining buffer time for train j to complete an event 〈j, i〉.

TFDj
The delay for train j once it reaches its final destination, i.e., tj,last which corresponds to the
delay when completing its last event.

To solve the job-shop scheduling problem modelled by a graph, for every two conflicting
operations the algorithm is responsible for determining the best execution order to reduce the objective
function value. A potential conflict occurs when for two events oj,i, and oj′,i′ belonging to jobs j and j′

respectively, the following criteria become true:

xbegin
j,i < xbegin

j′ ,i′ and xend
j′ ,i′ ≤ xbegin

j,i + dj′ ,i′ (1)

The algorithm is in charge of replacing the set of edges D with a subset of arcs D′, which
defines the order to be served by a resource. As a result, the set of edges D will be substituted by a
selected subset of directed arcs D′, and the mixed graph G = (O, C, D) will be transformed into a
digraph G′ = (O, C ∪ D′,∅).

In this paper, a multi-track railway traffic network will be considered as a job-shop scheduling
problem with parallel machines (hybrid job-shop) at each stage.
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4. A Heuristic Algorithm for Conflict Resolution in the Mixed Graph G

When a disturbance occurs, a graph G has to be generated from the ongoing and remaining events
for all the trains within the predefined time horizon. Later, the algorithm has to resolve the conflicts
between trains affected by disturbance and potential knock-on effects. To resolve all the conflicts in
a graph G, the algorithm has to visit all conflict pairs, and by replacing the edges with directed arcs,
clarify the priorities for using the resources (i.e., the sections and associated tracks). In this research,
the objective is to minimize the sum of the total final delay that each train experiences at its final
destination (i.e., TFDj = Max

(
0, xend

j,last − einitial
j,last

)
, j ∈ J ). We also measure the corresponding when

the delay threshold is three minutes, i.e., only delays larger than three minutes are considered, i.e.,(
∑ TFD+3

j , i f TFDj ≥ 3 min
)

. The reason why the threshold of three minutes is selected is that this
threshold is used to log train delays in Sweden. Delays smaller or equal to three minutes are not registered
in the system of the responsible authority, Trafikverket (the Swedish National Transport Administration).
Furthermore, delays larger than three minutes may cause train connections to be missed, while below three
minutes the consequences for transfers in the studied regional-national train system are not that likely.

To visit the conflicting operations, we followed the strategy presented by Gholami and Sotskov for
the hybrid job-shop scheduling problem [27]. In this strategy, a list of potential candidate operations
for conflict resolution will be generated. This list is a collection of ongoing operations, or the first
operation of the next trains. After any conflict resolution, the list will be updated, some candidates
will be added and, if it is necessary, some will be deleted. An operation will be added to the list if
the in-degree value of the related vertex becomes zero (the number of arc ends to a vertex is called
the in-degree value of the vertex). The in-degree value decreases when the conflict resolution is done
for a parent vertex. When the list is regenerated, the shortest release time of all vertices in the list
will be calculated or updated again, and the minimum one will be selected for conflict resolution.
A re-ordering may cause a vertex to be deleted from the list. By this approach, all the vertices will be
visited only once, unless a re-ordering happens. This strategy decreases the computational time of the
algorithm. The second benefit of this approach is that adding a new arc (oj,i, oj′,i′ ) does not affect any
previously visited vertices unless a re-ordering occurs. Dynamic update of data is possible due to this
feature. In Algorithm 1, the pseudocode for conflict resolution is presented.

The algorithm starts from a vertex os and finds all the neighbourhood vertices and adds them to
a list of candidate vertices. At each iteration, a vertex with a minimum release time will be selected
from the candidate list for conflict resolution. If there is a conflict between the candidate event and those
events that previously used that track or section (checkList), a local re-routing will be applied. For local
re-routing, a platform or track with minimum availability time will be selected. Meanwhile, if there is
still a conflict, the algorithm tries to use re-timing or re-ordering. For conflict resolution between the
candidate operation oj′,i′ and an operation oj,i from the check list, a new arc will be added to the graph G.

After adding the arc (oj,i, oj′,i′ ), the start time (xbegin
j′,i′ ) of operation oj′,i′ will be postponed to the finishing

time (xend
j,i ) of operation oj,i on the conflicting track or platform. If the algorithm adds the opposite arc

(oj′,i′, oj,i ), then operation oj′,i′ have to be served before the operation oj,i, which means that the predefined
order of the trains for using this section is changed. This condition occurs when the algorithm tries
to prevent deadlocks (unfeasible solutions), or the operation oj,i has a high tardiness (a delayed train).
Six dispatching rules are provided for the conflict resolution process. Table 2 is a description of those
dispatching rules.

In the train scheduling problem, a train blocks its current section until obtaining the next section
or block. Therefore, swapping is not possible in the train scheduling problem. Accordingly, the addArc
function has to satisfy the blocking condition in the graph G (the alternative graph approach). To fulfil
the blocking condition, instead of adding an arc from the operation oj,i to the operation oj′,i′, an arc
from the next operation oj,i+1 with a zero weight will be added to the operation oj′,i′. This directed arc
means that the operation oj′,i′ cannot proceed with its execution on the machine m until the operation

oj,i+1 starts (xbegin
j′,i′ ≥ xbegin

j,i+1 , meanwhile, the operation oj,i is finished). This condition blocks job j′ on the
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previous machine, even if it is completed. If the operation oj,i is the last operation of job j, then an arc
with a weight dj,i has to be added.

Algorithm 1. The pseudocode for conflict resolution strategy

Heuristic Algorithm for Conflict Resolution in the Mixed Graph G

Require: The weighted mixed graph G = (O, C, D);
candidList = findNeighbours(os);
current = findMinimumReleaseTime(candidList);
while (current 6= od);

checkList = findConflictOperations(current.machineNumber);

if (conflictExist(current, checkList)) /*local re-routing*/

vt = minimumVacantTrack(current.machineNumber);

modifyGraph(G, current, vt);

checkList = findConflictOperations(vt);

end_if
for (node cl: checkList) /*conflict resolution, re-timing, re-ordering*/

a,b = findBestOrder(current, cl);

if (not reachable(b, a))

addArc(a, b);

updateData(G,a);

else_if (not reachable(a,b))

addArc(b, a);

updateData(G,b);

else
checkFeasibility(G);

end_if
end_if
end_for
candidList += findNeighbours(current);

candidList -= current;

current = findMinimumReleaseTime(candidList);

end_while

Table 2. Description of dispatching rules used for conflict resolution.

Conflict Resolution
Strategy Description

1. Minimum release time
goes first

The train with the earliest initial start time (binitial
j,i ) goes first if no deadlock occurs.

2. More delay goes first
If there is a conflict between two trains, the one with the largest tardiness (delay) goes first.

The tardiness is calculated as tj,i = Max
(

0, xbegin
j,i − binitial

j,i

)
.

3. Less real buffer time goes
first

The train with the smallest buffer time goes first. Buffer time is defined as a subtraction of

initial ending time and real finishing time
(

bu f j,i = einitial
j,i −

(
xbegin

j,i + dj,i

))
for two

operations to be scheduled on the same, occupied machine.

4. Less programmed buffer
time goes first

The train with smallest buffer time goes first. Buffer time is defined as a subtraction of

initial ending time and programmed ending time
(

bu f j,i = einitial
j,i −

(
binitial

j,i + dj,i

))
for

two operations to be scheduled on the same, occupied machine.

5. Less total buffer goes
first

The train with smallest total buffer time goes first. Total buffer time is defined as a
summation of programmed buffer times until the destination point for the trains,

i.e.,
(

last
∑

k=i
bu f j,k

)
.

6. Less total processing
time

The train with smallest running time to get to the destination goes first (i.e., the minimum
total processing time). The total processing time is defined as a summation of required

time to pass each section, for a train, i.e.,
(

last
∑

k=i
dj,k

)
.
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Figures 1 and 2 illustrate the difference between the mixed graph and alternative graph models
for conflict resolution. There are two conflicting trains in the same path on the sections m1 and m2.
The train j1 is planned on the sections m1, m2, and m3. The route for the train j2 is m1, m2, and m4.
The events o1,1 and o2,1 have a conflict on the machines m1 and events o1,2 and o2,2 on the machine m2.
To present a conflict between the two operations in the mixed graph approach only one edge is required
(
[
oj,i, oj′ ,i′

]
∈ D) (See Figure 1a). While in the alternative graph model two arcs are needed, denoted

as ( oj,i+1, oj′,i′ ) and (oj′ ,i′+1 oj,i ) (See Figure 1b).
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After conflict resolution in the mixed graph mode (Figure 2a), the operation o2,2 could start its
processing in minute 14 on the machine m2 (immediately after the completion of the operation o1,2).
While in the alternative graph case (Figure 2b), the starting time of events o2,2 is postponed to minute
16, which job j1 has started the event o1,3. The job j1 has waited for 2 min for the machine m3 and is
blocked on the machine m2.

In this paper, we propose an approach that is a hybrid between the mixed graph and alternative
graph. This hybrid approach makes use of (1) a mixed graph formulation to represent the
non-rescheduled timetable in the initial stage of the solution process, and (2) an alternative graph
approach when the timetable is to be re-scheduled. The reasons for doing so are as follows:

One way to speed up the algorithm is to reduce the number of edges and arcs in the graph G.
This reduction leads to a lower number of neighbourhood vertices needing to be handled, less feasibility
and constraint checking being required, less computational time to update the data at each stage, and a
faster traverse in the graph. As the mixed graph model uses one edge to present a conflict between two
vertices and alternative graph needs two arcs, the non-rescheduled timetable in the initial stage uses
the mixed graph approach (See Figure 1a). However, after the conflict resolution, the algorithm uses
the alternative graph approach (adding an arc from next operation) to satisfy the blocking condition
(See Figure 2b). This means that for the unsolved part, the graph is modelled like a mixed graph, and
for the solved part, it follows the alternative graph modelling approach.

For safety reasons, the trains have to obey a minimum clear time and headway time distance [23].
The clear time (cm ) is the minimum time that a train j′ must wait before entering a section m, which
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the train j just left. This time interval between completion of train j and start time of the train j′ can
be modelled by changing the weight of the priority arc from zero to cm. The headway time distance
(hm ) is the minimum time between two trains j and j′ running in the same direction and on the same
track of section m. The headway distance is the minimum time interval between the start times, and
end times respectively, of two consecutive trains, j and j′, which can be modelled by adding a new
arc with a weight hm from operation oj,i to oj′,i′. The addArc procedure is responsible for adopting the
clear time and headway distance.

Figure 3, is an illustration of conflict resolution, considering the clear time and headway distance
for the alternative graph model. In Figure 3a, the starting time of operation o2,1 is increased to minute
11, because, the operation o1,1 had 4 min of processing time and 1 min of clear time. In Figure 3b, the
headway distance is h1 = 7, which means that the start time of operation o2,1 must be at least 7 min
after the start time of the operation o1,1. The starting time of the operation o2,1 is increased to minute 13.
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For a decision-making procedure, the algorithm needs some data, such as release time, or buffer time.
After any re-timing, re-ordering or local re-routing, these data change. The experiments demonstrate that
recalculation of these data has a significant effect on the computational time of the algorithm. Our special
visiting approach enables a dynamic update of data for those vertices that will be affected.

After adding a new directed arc from the operation oj,i to the operation oj′,i′, by considering the
commercial stop time (passenger trains are not allowed to leave a station before the initial completion
time einitial

j,i ) the minimum start time of an operation oj′,i′ on a track m.u will be

xbegin
j′,i′ =


Max(binitial

j′ ,i′ , xend
j′ ,i′−1, max

j∈O′m,u

(
xbegin

j,i + dj,i

)
) if i′ − 1 was a commercial stop,

Max(xend
j′ ,i′−1, max

j∈O′m,u

(
xbegin

j,i + dj,i

)
) if i′ − 1 was not a commercial stop,

(2)

where O′m,u is a set of all operations processed by the same resource u from a set Mm until now.
Additionally, the ending time can be calculated as follows:

xend
j′ ,i′ =

 max
(

einitial
j′ ,i′ , xbegin

j′ ,i′ + dj′ ,i′
)

if i′ is a commercial stop.

xbegin
j′ ,i′ + dj′ ,i′ if i′ is not a commercial stop.

(3)

Considering the clear time restriction, the starting time for an operation oj′,i′ will be calculated
as follows:

xbegin
j′,i′ =


Max(binitial

j′,i′ , xend
j′ ,i′−1, max

j∈O′m,u

(
xend

j,i + cm

)
) if i′ − 1 was a commercial stop.

Max(xend
j′ ,i′−1, max

j∈O′m,u

(
xend

j,i + cm

)
) if i′ − 1 was not a commercial stop.

(4)
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The proposed starting time with consideration of headway distance will change to:

xbegin
j′,i′ =


Max(binitial

j′,i′ , xend
j′ ,i′−1, max

j∈O′m,u

(
xend

j,i + cm, xbegin
j,i + hs

)
) if i′ − 1 was a commercial stop.

Max(xend
j′ ,i′−1, max

j∈O′m,u

(
xend

j,i + cm, xbegin
j,i + hs

)
) if i′ − 1 was not a commercial stop.

(5)

A recursive function is used in the updateData function, which updates the release time for all
operations that are reachable by the operation oj′,i′ until od. The recursive function stops whenever

the xbegin
j′,i′ value does not change. By viewing the headway distance in the updateData function

(Equation (5)), it is possible to ignore the extra arc for the headway distance (see Figure 3). Deletion of
this extra arc, which was needed for considering the headway time distance, also helps to reduce the
computational time.

Before adding a new arc, the algorithm applies the solution feasibility function. If, by adding
a new arc, a circuit appears in the graph G, the generated solution is not feasible. A circuit in the
graph is a sign of infeasible resource allocation. A circuit is a chain of two or more operations that are
trying to exchange the machines with the next operations (swapping condition). To avoid a circuit, the
following lemma is used:

Lemma 1. In a directed acyclic graph G, by adding an arc from vertex a to b, a circuit appears if and only if a is
reachable from vertex b in the graph G.

If the reachability test confirms a circuit, the algorithm considers the opposite priority and applies
the arc related to the opposite alternative approach (re-ordering). Mostly, by adding the opposite
alternative arc, no circuit appears, but in rare cases when the algorithm generates a new circuit, the
solution would be rejected.

5. Experimental Application and Performance Assessment

5.1. Experimental Set-Up

For the experimental evaluation, the approach was applied to a number of disturbance scenarios
occurring within a selected sub-network in the south of Sweden, namely the railway stretch between
Karlskrona city to Malmö, via Kristianstad and Hässleholm (see Figure 4, below). From Karlskrona to
Hässleholm, the railway line is single-track, and from Hässleholm to Malmö, the line is double-track
with a small portion having four tracks between Arlöv and Malmö. This stretch consists of
approximately 90 segments, with a total of 290 block sections. For the regional trains that operate
between Karlskrona and Malmö (and even further, into Denmark via the Öresund Bridge), there
is a travel time of 1 h and 31 min between Karlskrona and Kristianstad, and a travel time between
Kristianstad and Malmö of 1 h and 5 min.

In line with the categorization suggested in [29], three types of disturbance scenarios are used:

• Category 1 refers to a train suffering from a temporary delay at one particular section, which
could occur due to, e.g., delayed train staff, or crowding at platforms resulting in increasing dwell
times at stations.

• Category 2 refers to a train having a permanent malfunction, resulting in increased running times
on all line sections it is planned to occupy.

• Category 3 refers to an infrastructure failure causing, e.g., a speed reduction on a particular
section, which results in increased running times for all trains running through that section.
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All disturbance scenarios occur between 16:00 and 18:00, which is during peak hours. The
re-scheduling time horizons are 1 and 1.5 h time windows, respectively, counting from when the
disturbance occurs. The scenarios are described in Table 3 below. The experiments were tested on a
laptop with 64-bit Windows 10, equipped with an Intel i7-CPU, 2.60 GHz, with 8 Gigabytes of RAM.

Table 3. Description of the 30 × 2 scenarios that were used in the experimental study. The first
number in the scenario-ID specifies which disturbance category it is. For category 2, the disturbance
is a percentage increase of the runtime, e.g., 40%. The two rightmost columns specify the size of the
problem expressed in a number of train events that are to be re-scheduled.

Scenario Disturbance Problem Size: #Events 1

Category: ID Location Initially Disturbed Train Initially Delay
(min)

1 h Time
Window

1.5 h Time
Window

1:1 Karlshamn-Ångsågsmossen 1058 (Eastbound) 10 1753 2574
1:2 Bromölla Sölvesborg 1064 (Eastbound) 5 1717 2441
1:3 Kristianstad-Karpalund 1263 (Southbound) 8 1421 2100
1:4 Bergåsa-Gullberna 1097 (Westbound) 10 1739 2482
1:5 Bräkne Hoby-Ronneby 1103 (Westbound) 15 1393 2056
1:6 Flackarp-Hjärup 491 (Southbound) 5 1467 2122
1:7 Eslöv-Dammstorp 533 (Southbound) 10 1759 2578
1:8 Burlöv-Åkarp 544 (Northbound) 7 1748 2572
1:9 Burlöv-Åkarp 1378 (Northbound) 4 1421 2100
1:10 Höör-Stehag 1381 (Southbound) 10 1687 2533
2:1 Karlshamn-Ångsågsmossen 1058 (Eastbound) 40% 1753 2574
2:2 Bromölla Sölvesborg 1064 (Eastbound) 20% 1717 2441
2:3 Kristianstad-Karpalund 1263 (Southbound) 20% 1421 2100
2:4 Bergåsa-Gullberna 1097 (Westbound) 40% 1739 2482
2:5 Bräkne Hoby-Ronneby 1103 (Westbound) 100% 1393 2056
2:6 Flackarp-Hjärup 491 (Southbound) 100% 1467 2122
2:7 Eslöv-Dammstorp 533 (Southbound) 50% 1759 2578
2:8 Burlöv-Åkarp 544 (Northbound) 80% 1748 2572
2:9 Burlöv-Åkarp 1378 (Northbound) 40% 1421 2100
2:10 Höör-Stehag 1381 (Southbound) 40% 1687 2533
3:1 Karlshamn-Ångsågsmossen All trains passing through 4 1753 2574
3:2 Bromölla Sölvesborg All trains passing through 2 1717 2441
3:3 Kristianstad-Karpalund All trains passing through 3 1421 2100
3:4 Bergåsa-Gullberna All trains passing through 6 1739 2482
3:5 Bräkne Hoby-Ronneby All trains passing through 5 1393 2056
3:6 Flackarp-Hjärup All trains passing through 3 1467 2122
3:7 Eslöv-Dammstorp All trains passing through 4 1759 2578
3:8 Burlöv-Åkarp All trains passing through 2 1748 2572
3:9 Burlöv-Åkarp All trains passing through 2 1421 2100
3:10 Höör-Stehag All trains passing through 2 1687 2533

1 The size of the generated graph G is the squared size of number of events.
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5.2. Results and Analysis

In Tables 4 and 5, the results are summarized. The grey cells include the best solution values
found by different dispatching rules (DR-1 to DR-6) configurations. These solution values can be
compared with the optimal values generated by MIP model. The two rightmost columns compare
the computational time for the MIP model and heuristic algorithm. Since the computation time of the
algorithm is not significantly affected by the choice of dispatching rule, the computation time is very
similar for all six different configurations, and therefore only one computation time value per scenario
is presented in Tables 4 and 5.

Table 4. Computational results for 1 h time horizon.

Scenario TFD+3
j Objective Function (hh:mm:ss) Computational Time

(hh:mm:ss)

Category: ID Optimal
Results

Dispatching Rules (DR)
MIP Model

Heuristic
Algorithm1 2 3 4 5 6

1:1 0:01:03 00:01:14 00:01:14 00:01:14 00:15:22 00:15:22 00:24:05 00:00:04 00:00:06
1:2 0:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 01:16:47 00:00:04 00:00:05
1:3 0:00:00 00:02:09 00:02:09 00:02:09 00:36:33 00:36:33 00:26:32 00:00:04 00:00:03
1:4 0:01:02 00:02:28 00:02:28 00:02:28 00:12:40 00:12:40 00:08:11 00:00:06 00:00:06
1:5 0:07:01 00:16:15 00:16:15 00:16:15 00:19:49 00:19:49 00:13:14 00:00:05 00:00:03
1:6 0:00:23 00:05:46 00:05:46 00:05:46 00:05:46 00:05:46 00:05:46 00:00:04 00:00:03
1:7 0:05:05 00:06:24 00:06:24 00:06:24 00:06:24 00:06:24 00:14:45 00:00:04 00:00:05
1:8 0:01:34 00:12:01 00:12:01 00:12:01 00:12:01 00:12:01 00:13:40 00:00:04 00:00:06
1:9 0:00:00 00:14:01 00:14:01 00:14:01 00:13:02 00:13:02 00:14:01 00:00:04 00:00:03
1:10 0:00:00 00:01:18 00:01:18 00:00:00 00:00:00 00:00:00 00:01:33 00:00:04 00:00:05
2:1 0:05:24 00:45:37 00:45:37 00:06:42 00:06:42 00:06:42 00:08:16 00:00:04 00:00:06
2:2 0:02:43 00:03:29 00:39:53 00:03:29 00:03:29 00:03:29 01:06:56 00:00:05 00:00:05
2:3 0:01:01 00:01:47 00:20:06 00:20:06 00:01:47 00:01:47 00:20:14 00:00:03 00:00:03
2:4 0:15:12 00:22:12 00:22:50 00:22:50 00:22:12 00:22:12 00:55:54 00:00:05 00:00:05
2:5 0:42:09 00:43:24 00:58:03 00:58:03 01:05:08 01:05:08 00:59:16 00:00:04 00:00:03
2:6 0:01:24 00:02:44 00:02:44 00:02:44 00:02:44 00:02:44 00:02:44 00:00:06 00:00:04
2:7 0:05:27 00:08:09 00:08:09 00:08:09 00:08:09 00:08:09 00:09:43 00:00:04 00:00:10
2:8 0:21:12 00:43:37 00:38:42 00:38:42 00:43:37 00:43:37 00:40:16 00:00:06 00:00:06
2:9 0:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:05 00:00:03
2:10 0:00:08 00:05:09 00:05:09 00:05:09 00:05:09 00:05:09 00:06:43 00:00:04 00:00:06
3:1 0:01:00 00:01:00 00:01:00 00:01:00 00:01:00 00:01:00 00:25:05 00:00:04 00:00:06
3:2 0:00:00 00:00:00 00:00:00 00:00:00 00:00:19 00:00:19 00:25:54 00:00:04 00:00:06
3:3 0:00:00 00:03:49 00:21:38 01:05:52 00:01:17 00:15:40 00:54:14 00:00:05 00:00:03
3:4 0:12:21 00:16:59 00:20:13 00:20:13 00:16:59 00:16:59 00:20:22 00:00:07 00:00:06
3:5 0:05:20 00:05:25 00:57:34 00:15:58 00:05:25 00:05:25 00:16:12 00:00:03 00:00:03
3:6 0:00:00 00:21:04 00:21:04 00:21:04 00:23:12 00:23:12 00:28:42 00:00:05 00:00:03
3:7 0:00:09 00:07:42 00:14:11 00:14:11 00:14:11 00:14:11 00:15:45 00:00:10 00:00:05
3:8 0:00:00 00:00:00 00:05:06 00:05:06 00:00:00 00:00:00 00:07:54 00:00:04 00:00:05
3:9 0:00:00 00:00:00 00:00:41 00:00:41 00:00:00 00:00:00 00:00:00 00:00:04 00:00:04
3:10 0:00:00 00:04:53 00:04:53 00:03:35 00:01:04 00:01:04 00:02:38 00:00:03 00:00:05

Table 5. The computational results for 1.5 h time horizon (hh:mm:ss).

Scenario TFD+3
j Objective Function Computational Time

Category: ID Optimal
Results

Dispatching Rules (DR)
MIP Model

Heuristic
Algorithm1 2 3 4 5 6

1:1 0:01:03 00:01:14 00:01:14 00:01:14 00:45:13 00:45:13 00:46:56 00:00:12 00:00:20
1:2 0:00:00 00:00:00 00:00:00 00:00:00 00:12:09 00:12:09 05:09:54 00:00:10 00:00:15
1:3 0:00:00 00:02:09 00:02:09 00:02:09 01:34:59 01:34:59 00:25:21 00:00:11 00:00:10
1:4 0:00:00 00:01:27 00:01:27 00:01:27 01:38:16 01:38:16 00:51:24 00:00:13 00:00:16
1:5 0:02:08 00:10:23 00:10:23 00:10:23 00:24:07 00:24:07 00:12:14 00:00:07 00:00:09
1:6 0:00:23 00:05:46 00:05:46 00:05:46 00:05:46 00:05:46 00:05:46 00:00:12 00:00:10
1:7 0:05:05 00:06:24 00:06:24 00:06:24 00:06:24 00:06:24 00:14:45 00:00:11 00:00:18
1:8 0:01:34 00:12:01 00:12:01 00:12:01 00:12:01 00:12:01 00:13:40 00:00:12 00:00:17
1:9 0:00:00 00:13:00 00:13:00 00:13:00 00:13:16 00:13:16 00:38:13 00:00:07 00:00:10

1:10 0:00:00 00:01:18 00:01:18 00:00:00 00:00:00 00:00:00 00:01:33 00:00:11 00:00:16
2:1 0:03:36 00:45:37 00:45:37 00:04:31 00:17:11 00:17:11 00:14:16 00:00:11 00:00:17
2:2 0:00:00 00:00:23 01:21:00 00:00:23 00:00:23 00:00:23 04:36:13 00:00:12 00:00:15
2:3 0:02:40 00:29:31 00:32:58 00:32:58 00:39:25 00:39:25 00:33:46 00:00:07 00:00:09
2:4 0:26:34 00:43:50 01:11:40 01:11:40 00:43:50 00:43:50 01:57:35 00:00:16 00:00:15
2:5 1:11:44 01:17:47 01:40:09 01:40:09 01:41:32 01:41:32 01:35:29 00:00:12 00:00:08
2:6 0:01:24 00:02:44 00:02:44 00:02:44 00:02:44 00:02:44 00:02:44 00:00:11 00:00:09
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Table 5. Cont.

Scenario TFD+3
j Objective Function Computational Time

Category: ID Optimal
Results

Dispatching Rules (DR)
MIP Model

Heuristic
Algorithm1 2 3 4 5 6

2:7 0:05:27 00:08:09 00:08:09 00:08:09 00:08:09 00:08:09 00:09:43 00:00:11 00:00:17
2:8 0:21:12 00:44:42 00:48:13 00:48:13 00:44:54 00:44:54 01:08:14 00:00:36 00:00:17
2:9 0:00:00 00:00:00 00:00:00 00:00:00 00:00:13 00:00:13 00:00:00 00:00:07 00:00:10
2:10 0:00:08 00:05:09 00:05:09 00:05:09 00:05:09 00:05:09 00:06:43 00:00:12 00:00:16
3:1 0:00:00 00:00:00 00:22:42 00:00:00 00:00:00 00:00:00 00:46:56 00:00:12 00:00:17
3:2 0:00:00 00:00:17 00:00:17 00:00:17 00:00:36 00:00:36 01:36:46 00:00:11 00:00:14
3:3 0:01:16 00:09:36 00:57:38 01:22:08 00:07:17 00:14:39 02:07:54 00:00:11 00:00:10
3:4 0:16:37 00:31:06 00:32:34 00:32:34 00:23:26 00:23:26 01:10:03 00:00:35 00:00:15
3:5 0:04:44 00:04:58 00:55:43 00:13:08 00:10:16 00:10:16 00:19:59 00:00:10 00:00:09
3:6 0:00:00 00:50:13 00:50:13 00:50:13 00:27:54 00:27:54 01:07:29 00:00:17 00:00:15
3:7 0:00:41 00:06:48 00:15:45 00:15:45 00:15:45 00:15:45 00:17:19 00:00:18 00:00:19
3:8 0:00:00 00:00:00 00:01:22 00:01:22 00:00:00 00:00:00 00:03:58 00:00:11 00:00:17
3:9 0:00:00 00:02:06 00:03:32 00:02:48 00:02:06 00:02:06 00:02:06 00:00:14 00:00:10
3:10 0:00:00 00:08:07 00:08:31 00:07:13 00:01:28 00:01:28 00:03:02 00:00:11 00:00:16

The minimum release time goes first (DR-1) was the best dispatching rule, considering the ∑ TFD+3
j

objective function. The average ∑ TFD+3
j for the MIP model was 259 s for the 1 h time window and

332 s for the 1.5 h time window. The average ∑ TFD+3
j for the minimum release time goes first (DR-1)

was 597 and 849 s, respectively.
Statistical analyses of the results belonging to disturbance scenario type 1 revealed that the less

real buffer time goes first (DR-3) dispatching rule, with an average delay of 361 s for a 1 h time window
and 314 s for a 1.5 h time window, works better than the other dispatching rules. Additionally, an
inefficient solution is not able to absorb the delays (i.e., the delays after a temporary route blocking
may remain in the system until midnight). The analysis also shows that for all dispatching rules in
scenario 1, the ∑ TFD+3

j objective function values of the 1.5 h time window are lower than the values
for the 1 h time window, which confirms that the algorithm successfully attempts to make the timetable
absorb delays when possible.

For scenario type 2, the minimum release time goes first (DR-1), less programmed buffer time goes first
(DR-4), and less total buffer goes first (DR-5) worked somewhat the same, and better than the others.
The average ∑ TFD+3

j objectives were 1056, 953, and 953 s for a 1 h time window, and 1547, 1581, and
1581 for a 1.5 h time window. The optimal values are 568 s for a 1 h time window and 796 s for a
1.5 h time window. In scenario type 3, the minimum release time goes first worked better than the others
with an average of 365 s delay, but for a 1.5 h time window the less total buffer goes first (DR-5) with an
average of 532 s was the best. The optimal values were 113 and 139 s, respectively.

With the help of a visualization software, the resulting, revised timetables can be analysed beyond
aggregated numbers. The more delay goes first (DR-2) dispatching rule gives priority to the trains
with the largest tardiness. We observed in the visualization of the solutions that, when the conflict
is between two tardy trains, this strategy works well and reduces the delay. However, for conflicts
between an on-time train and a tardy train, this dispatching rule gives priority to the tardy train, which
causes a delay for an on-time train. In other words, when the tardy train reaches the destination, e.g.,
Karlskrona or Malmö, this strategy causes a delay for new trains that have recently started the journey.
A more effective decision would potentially be to prioritize the on-time train, because the late train is
near to its final destination.

The less real buffer time goes first (DR-3) dispatching rule, gives priority to the train with least
buffer time. This strategy helps the algorithm to reduce the delay for tardy trains. When the conflict is
between two tardy trains, this policy is fair. The less programmed buffer time goes first (DR-5) considers
the sum of buffer time for a train to its destination. In a disturbance area, this strategy works well.
The algorithm gives priority to a train with less programmed buffer time, which seems to be fair
between two tardy trains. However, when a tardy train has a conflict with an on-time train, this
dispatching rule gives priority to the tardy one, which is not effective if the on-time train is at the
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beginning of its itinerary and thus may cause knock-on delays if it is delayed. The less total processing
time (DR-6) dispatching rule, tries to give priority to trains with less remaining events to leave the
tracks as soon as possible. The experimental results demonstrate that this strategy does not work well
compared to other dispatching rules.

The choice of dispatching rule does not affect the computational time, but the number of
events in the re-scheduling time window and selected sub-network has a significant effect on the
computational time since the size of the graph G increases quadratically. Figure 5 illustrates the
increase of computational time against increase of the time horizon and number of events. Both the
size of graph G and the computational time increase quadratically.
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6. Conclusions and Future Work

This paper addresses the real-time train traffic re-scheduling problem. A mixed graph is used for
modeling the problem as a blocking job-shop scheduling problem. A heuristic algorithm is proposed
that benefits from re-timing, re-ordering, and local re-routing. The algorithm benefits also from a
dynamic update of data, which accelerates the computations.

The response time for such a real-time computational scheduling tool is a vital factor. In the
proposed solution approach, the problem for a 1 h time window is solved in less than 10 s, and for a
1.5 h time window, the computational time is less than 20 s. It is also unknown what time horizon is
necessary to consider in different situations and what role this uncertainty would play. Interviews with
dispatchers suggest that it differs a lot depending on the situation, context and associated working load.

The TFD+3
j objective function is a relevant criterion to control the lateness of trains.

However, based on the situation and type of disturbance scenario, the dispatchers also have other
concerns and objectives. The investigation of other objective functions and useful solution quality
metrics is necessary to investigate in future research. The graph G is represented by an adjacency
matrix in the current implementation. Using alternative data structures such as adjacency lists, can be
an option to investigate the possibility to reduce computational time further.
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Appendix A

The MIP formulation is based on the model developed by Törnquist and Persson [13]. The model
was implemented in Java and solved by Gurobi 6.5.1. Let J be the set of trains, M the set of segments,
defining the rail infrastructure, and O the set of events. An event can be seen as a time slot request by
a train for a specific segment. The index j is associated with a specific train service, and index m with a
specific infrastructure segment, and i with the event. An event is connected both to an infrastructure
segment and a train. The sets Oj ⊆ O are ordered sets of events for each train j, while Om ⊆ O are
ordered sets of events for each segment m.

Each event has a point of origin, mj,i, which is used for determining a change in the direction
of traffic on a specific track. Further, for each event, there is a scheduled start time and an end time,
denoted by binital

j,i and einital
j,i , which are given by the initial timetable. The disturbance is modelled using

parameters bstatic
j,i and estatic

j,i , denoting the pre-assigned start and end time of the already active event.
There are two types of segments, modeling the infrastructure between stations and within stations.

Each segment m has a number of parallel tracks, indicated by the sets Mm and each track requires a
separation in time between its events (one train leaving the track and the next enters the same track).
The minimum time separation between trains on a segment is denoted by ∆Meeting

m for trains that travel
in opposite directions, and ∆Following

m for trains that follow each other; the separation is only required if
the trains use the same track on that specific segment.

The parameter psj,i indicates if event i includes a planned stop at the associated segment (i.e., it
is then normally a station). The parameter dj,i represents the minimum running time, pre-computed
from the initial schedule, if event i occurs on a line segment between stations. For station segments, dj,i
corresponds to the minimum dwell time of commercial stops, where transfers may be scheduled.

The variables in the model are either binary or continuous. The continuous variables describe the
timing of the events and the delay, and the binary variables describe the discrete decisions to take on
the model concerning the selection of a track on segments with multiple tracks or platforms, and the
order of trains that want to occupy the same track and/or platform. The continuous, non-negative,
variables are xbegin

j,i , xend
j,i , and zj,i (delay of the event i, i ∈ O, exceeding µ time units, which is set to

three minutes here).
The variables xend

j,i and xbegin
j,i are modelling the resource allocation, where a resource is a specific

track segment. The arrival time at a specific segment is given by xbegin
j,i and departure from a specific

segment is given by xend
j,i for a specific train. The binary variables are defined as:

qj,i,u =

{
1, if event i uses track u, i ∈ Om, u ∈ Mm, m ∈ M, j ∈ J
0, otherwise

γj,i,j′,i′ =

{
1, if event i occurs before event i′, i ∈ Om, m ∈ M : i < i′, j and j′ ∈ J
0, otherwise

λj,i,j′,i′ =

{
1, if event i is rescheduled to occur after event i′, i ∈ Om, m ∈ M : i < i′, j and j′ ∈ J
0, otherwise
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With the objective to minimize the sum of all delays for all trains reaching their final destination
with a delay larger than three minutes, the objective function can be formulated as follows, where the
parameter nj for each train j ∈ J holds the final event of train j :

min
z

f := ∑
j∈J

znj (A1)

We also have the following three blocks of constraints. The first block concerns the timing of
the events belonging to each train j and its sequence of events, defined by the event list Oj ⊆ O.
These constraints define the relation between the initial schedule and revised schedule, as an effect
of the disturbance. Equation (A7) is used to compute the delay of each event exceeding µ time units,
where µ is set to three minutes in this context.

xend
j,i = xbegin

j,i+1 , i ∈ Oj, j ∈ J : i 6= nj, j ∈ J (A2)

xbegin
j,i = bstatic

j,i , i ∈ O : bstatic
j,i > 0, j ∈ J (A3)

xend
j,i = estatic

j,i , i ∈ O : estatic
j,i > 0, j ∈ J (A4)

xend
j,i ≥ xbegin

j,i + dj,i, i ∈ O, j ∈ J (A5)

xbegin
j,i ≥ binitial

j,i , i ∈ O : psj,i = 1, j ∈ J (A6)

xend
j,i − einitial

j,i − u ≤ zj,i, i ∈ O, j ∈ J (A7)

In the following part, N is a large constant. The second block of constraints concerns the
permitted interaction between trains, given the capacity limitations of the infrastructure (including
safety restrictions):

∑
u∈Mm

qj,i,u = 1, i ∈ Om, m ∈ M, j ∈ J (A8)

qj,i,u + qj′,i′,u − 1 ≤ λj,i,j′ ,i′ + γj,i,j′ ,i′ , i, i′ ∈ Om, u ∈ Mm, m ∈ M : i < i′, j 6= j′ ∈ J (A9)

xbegin
j′,i′ − xend

j,i ≥ ∆Meeting
m γj,i,j′ ,i′ − N

(
1− γj,i,j′ ,i′

)
, i, i′ ∈ Om, m ∈ M : i < i′, mi′ 6= mi, j 6= j′ ∈ J (A10)

xbegin
j′,i′ − xend

j,i ≥ ∆Following
m γj,i,j′ ,i′ − N

(
1− γj,i,j′ ,i′

)
, i, i′ ∈ Om, m ∈ M : i < i′, mi′ 6= mi j 6= j′ ∈ J (A11)

xbegin
j,i − xend

j′ ,i′ ≥ ∆Meeting
m λj,i,j′ ,i′ − N

(
1− λj,i,j′ ,i′

)
, i, i′ ∈ Om, m ∈ M : i < i′, mi′ 6= mi j 6= j′ ∈ J (A12)

xbegin
j,i − xend

j′ ,i′ ≥ ∆Following
m λj,i,j′ ,i′ −N

(
1− λj,i,j′ ,i′

)
, i, i′ ∈ Om, m ∈ M : i < i′, mi′ 6= mi, j 6= j′ ∈ J (A13)

λj,i,j′,i′ + γi,i′ ≤ 1, i, i′ ∈ Om, m ∈ M : i < i′, j 6= j′ ∈ J (A14)

xbegin
j,i , xend

j,i , zj,i ≥ 0, i ∈ O, j ∈ J (A15)

γj,i,j′,i′, λj,i,j′,i′ ∈ {0, 1}, i′ ∈ Om, i ∈ M : i < i′, j 6= j′ ∈ J (A16)

qj,i,u ∈ {0, 1}, i ∈ Om, u ∈ Mm, m ∈ M, j ∈ J (A17)
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