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Abstract: The machine learning techniques for Markov random fields are fundamental in various
fields involving pattern recognition, image processing, sparse modeling, and earth science,
and a Boltzmann machine is one of the most important models in Markov random fields. However,
the inference and learning problems in the Boltzmann machine are NP-hard. The investigation of
an effective learning algorithm for the Boltzmann machine is one of the most important challenges in
the field of statistical machine learning. In this paper, we study Boltzmann machine learning based on
the (first-order) spatial Monte Carlo integration method, referred to as the 1-SMCI learning method,
which was proposed in the author’s previous paper. In the first part of this paper, we compare
the method with the maximum pseudo-likelihood estimation (MPLE) method using a theoretical
and a numerical approaches, and show the 1-SMCI learning method is more effective than the
MPLE. In the latter part, we compare the 1-SMCI learning method with other effective methods,
ratio matching and minimum probability flow, using a numerical experiment, and show the 1-SMCI
learning method outperforms them.
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1. Introduction

The machine learning techniques for Markov random fields (MRFs) are fundamental in various
fields involving pattern recognition [1,2], image processing [3], sparse modeling [4], and Earth
science [5,6], and a Boltzmann machine [7–9] is one of the most important models in MRFs.
The inference and learning problems in the Boltzmann machine are NP-hard, because they include
intractable multiple summations over all the possible configurations of variables. Thus, one of the
major challenges of the Boltzmann machine is the design of the efficient inference and learning
algorithms that it requires.

Various effective algorithms for Boltzmann machine learning were proposed by many researchers,
a few of which are mean-field learning algorithms [10–15], maximum pseudo-likelihood estimation
(MPLE) [16,17], contrastive divergence (CD) [18], ratio matching (RM) [19], and minimum probability
flow (MPF) [20,21]. In particular, the CD and MPLE methods are widely used. More recently,
the author proposed an effective learning algorithm based on the spatial Monte Carlo integration
(SMCI) method [22]. The SMCI method is a Monte Carlo integration method that takes spatial
information around the region of focus into account; it was proven that this method is more effective
than the standard Monte Carlo integration method. The main target of this study is Boltzmann machine
learning based on the first-order SMCI (1-SMCI) method, which is the simplest version of the SMCI
method. We refer it to as the 1-SMCI learning method in this paper.

It was empirically shown through the numerical experiments that Boltzmann machine learning
based on the 1-SMCI learning method is more effective than MPLE in the case where no model
error exists, i.e., in the case where the learning model includes the generative model [22]. However,
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the theoretical reason for this was not revealed at all. In this paper, theoretical insights into the
effectiveness of the 1-SMCI learning method as compared to that of MPLE are given from an asymptotic
point of view. The theoretical results obtained in this paper state that the gradients of the log-likelihood
function obtained by the 1-SMCI learning method constitute a quantitatively better approximation
of the exact gradients than those obtained by the MPLE method in the case where the generative
model and the learning model are the same Boltzmann machine (in Section 4.1). This is one of the
contributions of this paper. In the previous paper [22], the 1-SMCI learning method was compared
with only the MPLE. In this paper, we compare the 1-SMCI learning method with other effective
learning algorithms, RM and MPF, through numerical experiments, and show that the 1-SMCI learning
method is superior to them (in Section 5). This is the second contribution of this paper.

The remainder of this paper is organized as follows. The definition of Boltzmann machine
learning and a briefly explanation of the MPLE method are given in Section 2. In Section 3, we explain
Boltzmann machine learning based on the 1-SMCI method: reviews of the SMCI and 1-SMCI learning
methods are presented in Sections 3.1 and 3.2, respectively. In Section 4, the 1-SMCI learning method
and MPLE are compared using two different approaches, the theoretical approach (in Section 4.1)
and the numerical approach (in Section 4.2), and the effectiveness of the 1-SMCI learning method as
compared to the MPLE is shown. In Section 5, we numerically compare the 1-SMCI method with
other effective learning algorithms and observe that the 1-SMCI learning method yields the best
approximation. Finally, the conclusion is given in Section 6.

2. Boltzmann Machine Learning

Consider an undirected and connected graph, G = (V, E), with n nodes, where V := {1, 2, . . . , n}
is the set of labels of nodes and E is the set of labels of undirected links; an undirected link between
nodes i and j is labeled (i, j). Since an undirected graph is now considered, labels (i, j) and (j, i)
indicate the same link. On undirected graph G, we define a Boltzmann machine with random variables
x := {xi ∈ X | i ∈ V}, where X is the sample space of the variable. It is expressed as [7,9]

PBM(x | w) :=
1

Z(w)
exp

(
∑

(i,j)∈E
wijxixj

)
, (1)

where Z(w) is the partition function defined by

Z(w) := ∑
x

exp
(

∑
(i,j)∈E

wijxixj

)
,

where ∑x is the multiple summation over all the possible realizations of x; i.e., ∑x = ∏i∈V ∑xi∈X .
Here and in the following, if xi is continuous, ∑xi∈X is replaced by integration. w := {wij ∈ (−∞, ∞) |
(i, j) ∈ E} represents the symmetric coupling parameters (wij = wji). Although a Boltzmann machine
can include a bias term, e.g., ∑i∈V bixi, in its exponent, it is ignored in this paper for the sake of the
simplicity of arguments.

Suppose that a set of N data points corresponding to x, D := {x(µ) | µ = 1, 2, . . . , N} where
x(µ) := {x(µ)i ∈ X | i ∈ V}, is obtained. The goal of Boltzmann machine learning is to maximize the
log-likelihood

l(w;D) :=
1
N

N

∑
µ=1

ln PBM(x(µ) | w) (2)

with respect to w, that is, the maximum likelihood estimation (MLE). The Boltzmann machine, with w
that maximizes Equation (2), yields the distribution most similar to the data distribution (also referred
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to as the empirical distribution) in the perspective of the measure based on Kullback–Leibler divergence
(KLD). This fact can be easily seen in the following. The empirical distribution of D is expressed as

QD(x) :=
1
N

N

∑
µ=1

∏
i∈V

δ(xi, x(µ)i ), (3)

where δ(a, b) is the Kronecker delta function: δ(a, b) = 1 when a = b, and δ(a, b) = 0 when a 6= b. The
KLD between the empirical distribution and the Boltzmann machine in Equation (1),

DKL[QD ‖ PBM] := ∑
x

QD(x) ln
QD(x)

PBM(x | w)
, (4)

can be rewritten as DKL[QD ‖ PBM] = −l(w;D) + C, where C is the constant unrelated to w. From this
equation, we determine that w that maximizes the log-likelihood in Equation (2) minimizes the KLD.

Since the log-likelihood in Equation (2) is the concave function with respect to w [8], in principle,
we can optimize the log-likelihood using a gradient ascent method. The gradient of the log-likelihood
with respect to wij is

∆MLE
ij (w;D) :=

∂l(w;D)
∂wij

=
1
N

N

∑
µ=1

x(µ)i x(µ)j − EBM[xixj | w], (5)

where EBM[· · · | w] := ∑x(· · · )PBM(x | w) is the expectation of the assigned quantity over the
Boltzmann machine in Equation (1). In the optimal point of the MLE, all the gradients are zero, and
therefore, from Equation (5), the optimal w is the solution to the simultaneous equations

1
N

N

∑
µ=1

x(µ)i x(µ)j = EBM[xixj | w]. (6)

When the data points are generated independently from a Boltzmann machine, PBM(x | wgen), defined
on the same graph as the Boltzmann machine we use in the learning, i.e., the case without the model
error, the solution to the MLE, wMLE, converges to wgen as N → ∞ [23]. In other words, the MLE is
asymptotically consistent.

However, it is difficult to compute the second term in Equation (5), because the computations
of these expectations need the summation over O(2n) terms. Thus, the exact Boltzmann machine
learning, i.e., the MLE, cannot be performed. As mentioned in Section 1, various approximations
for Boltzmann machine learning were proposed by many authors, such as the mean-field learning
methods [10–15] and the MPLE [16,17], CD [18], RM [19], MPF [20,21] and SMCI [22] methods. In the
following, we briefly review the MPLE method.

In MPLE, we maximize the following pseudo-likelihood [16,17,24] instead of the true
log-likelihood in Equation (2).

lMPLE(w;D) :=
1
N

N

∑
µ=1

∑
i∈V

ln PBM(x(µ)i | x(µ)−{i}, w), (7)

where xA := {xi | i ∈ A ⊆ V} is the variables in A and −A := V \ A; i.e., x−{i} = x \ {xi}. The
conditional distribution in the above equation is the conditional distribution in the Boltzmann machine
expressed by

PBM(xi | x−{i}, w) =
PBM(x | w)

∑xi∈X PBM(x | w)
=

exp
(
Ui(x∂(i), w)xi

)
∑xi∈X exp

(
Ui(x∂(i), w)xi

) , (8)
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where

Ui(x∂(i), w) := ∑
j∈∂(i)

wijxj, (9)

where ∂(i) ⊆ V is the set of labels of nodes directly connected to node i; i.e., ∂(i) := {j | (i, j) ∈ E}.
The derivative of the pseudo-likelihood with respect to wij is

∂lMPLE(w;D)
∂wij

= 2
( 1

N

N

∑
µ=1

x(µ)i x(µ)j −mMPLE
ij (w;D)

)
. (10)

mMPLE
ij (w;D) is defined by

mMPLE
ij (w;D) :=

1
2N

N

∑
µ=1

{
x(µ)j Mi(x

(µ)
∂(i), w) + x(µ)i Mj(x

(µ)
∂(j), w)

}
, (11)

where

Mi(x∂(i), w) :=
∑xi∈X xi exp

(
Ui(x∂(i), w)xi

)
∑xi∈X exp

(
Ui(x∂(i), w)xi

) (12)

and where, for a set A ⊆ V, x(µ)A is the µ-th data point corresponding to xA; i.e., x(µ)A = {x(µ)i | i ∈
A ⊆ V}. When X = {−1,+1}, Mi(x∂(i), w) = tanh Ui(x∂(i), w). In order to fit the magnitude of the
gradient to that of the MLE, we use half of Equation (10) as the gradient of the MPLE

∆MPLE
ij (w;D) :=

1
N

N

∑
µ=1

x(µ)i x(µ)j −mMPLE
ij (w;D). (13)

The order of the total computational complexity of the gradients in Equation (11) is O(N|E|),
where |E| is the number of links in G(V, E). The pseudo-likelihood is also the concave function
with respect to w, and therefore, one can optimize it using a gradient ascent method. The typical
performance of the MPLE method is almost the same as or slightly better than that of the CD method
in Boltzmann machine learning [24].

From Equation (13), the optimal w in the MPLE is the solution to the simultaneous equations

1
N

N

∑
µ=1

x(µ)i x(µ)j = mMPLE
ij (w;D). (14)

By comparing Equation (6) with Equation (14), it can be seen that the MPLE is the approximation
of the MLE such that EBM[xixj | w] ≈ mMPLE

ij (w;D). Many authors proved that the MPLE is also
asymptotically consistent (for example, [24–26]), that is, in the case without model error, the solution
to the MPLE, wMPLE, converges to wgen as N → ∞. However, the asymptotic variance of the MPLE is
larger than that of the MLE [25].

3. Boltzmann Machine Learning Based on Spatial Monte Carlo Integration Method

In this section, we present the reviews of both the SMCI method and the application of the
first-order of the SMCI method to Boltzmann machine learning, i.e., the 1-SMCI learning method.

3.1. Spatial Monte Carlo Integration Method

Assume that we have a set of i.i.d. sample points, S := {s(µ) | µ = 1, 2, . . . , N}, where s(µ) :=
{s(µ)i ∈ X | i ∈ V}, drawn from a Boltzmann machine, PBM(x | w), by using a Markov chain Monte
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Carlo (MCMC) method. Suppose that we want to know the expectation of a function f (xC), C ⊆ V,
for the Boltzmann machine EBM[ f (xC) | w]. In the standard Monte Carlo integration (MCI) method,
we approximate the desired expectation by the simple average of the given sample points S :

EBM[ f (xC) | w] ≈∑
x

f (xC)QS (x) =
1
N

N

∑
µ=1

f (s(µ)C ), (15)

where QS (x) is the distribution of the sample points, which is defined in the same manner as
Equation (3), and where, for a set A ⊆ V, s(µ)A is the µ-th sample point corresponding to xA; i.e.,

s(µ)A = {s(µ)i | i ∈ A ⊆ V}.
The SMCI method considers spatial information around xC, in contrast to the standard MCI

method. For the SMCI method, we define the neighboring regions of the target region, C ⊆ V, as
follows. The first-nearest-neighbor region, N1(C), is defined by

N1(C) := {i | (i, j) ∈ E, j ∈ C, i 6∈ C}. (16)

Therefore, when C = {i}, N1(C) = ∂(i). Similarly, the second-nearest-neighbor region, N2(C), is
defined by

N2(C) := {i | (i, j) ∈ E, j ∈ N1(C), i 6∈ C, i 6∈ N1(C)}. (17)

In a similar manner, for k ≥ 1, we define the k-th-nearest-neighbor region, Nk(C), by

Nk(C) := {i | (i, j) ∈ E, j ∈ Nk−1(C), i 6∈ Rk−1(C)}, (18)

where Rk(C) :=
⋃k

m=0 Nm(C) and N0(C) := C. An example of the neighboring regions in a square-grid
graph is shown in Figure 1.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

(a) (b)

Figure 1. Example of the neighboring regions: (a) when C = {13}, N1(C) = {8, 12, 14, 18}, N2(C) =
{3, 7, 9, 11, 15, 17, 19, 23}, and R2(C) = N1(C) ∪ N2(C), and (b) when C = {12, 13} and N1(C) =

{7, 8, 11, 14, 17, 18}.

By using the conditional distribution,

PBM(xRk−1(C) | xNk(C), w) =
PBM(x | w)

∑xRk−1(C)
PBM(x | w)

, (19)

and the marginal distribution,

PBM(xNk(C) | w) = ∑
xV\Nk(C)

PBM(x | w), (20)
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the desired expectation can be expressed as

EBM[ f (xC) | w] = ∑
xRk−1(C)

∑
xNk(C)

f (xC)PBM(xRk−1(C) | xNk(C), w)PBM(xNk(C) | w), (21)

where, for a set A ⊆ V, ∑xA = ∏i∈A ∑xi∈X . In Equation (19), we used the Markov property of the
Boltzmann machine:

PBM(xRk−1(C) | xV\Rk−1(C), w) = PBM(xRk−1(C) | xNk(C), w).

In the k-th-order SMCI (k-SMCI) method, EBM[ f (xC) | w] in Equation (21) is approximated by

Ek[ f (xC) | w,S ] := ∑
xRk−1(C)

∑
xNk(C)

f (xC)PBM(xRk−1(C) | xNk(C), w)QS (x)

=
1
N

N

∑
µ=1

∑
xRk−1(C)

f (xC)PBM(xRk−1(C) | s(µ)Nk(C)
, w). (22)

The k-SMCI method takes the spatial information up to the (k− 1)-th-nearest-neighbor region
into account, and it approximates the outside of it (namely, the k-th-nearest-neighbor region) by the
sample distribution. For the SMCI method, two important facts were theoretically proven [22]: (i) the
SMCI method is asymptotically better than the standard MCI method and (ii) a higher-order SMCI
method is better asymptotically than a lower-order one.

3.2. Boltzmann Machine Learning Based on First-Order SMCI Method

Applying the 1-SMCI method to Boltzmann machine learning is achieved by approximating the
intractable expectations, EBM[xixj | w], by the 1-SMCI method in Equation (22) with k = 1. Although
Equation (22) requires sample points S drawn from PBM(x | w), as discussed in the previous section,
we can avoid the sampling by using dataset D instead of S [22]. We approximate EBM[xixj | w] by

m1SMCI
ij (w;D) := E1[x{i,j} | w,D] = 1

N

N

∑
µ=1

∑
xi ,xj∈X

xixjPBM(xi, xj | x(µ)N1({i,j})
, w). (23)

Since

PBM(xi, xj | x(µ)N1({i,j})
, w) ∝ exp

{(
Ui(x

(µ)
∂(i), w)− wijx

(µ)
j
)
xi +

(
Uj(x

(µ)
∂(j), w)− wjix

(µ)
i
)
xj + wijxixj

}
, (24)

the order of the computational complexity of e1SMCI
ij (w;D) is the same as that of mMPLE

ij (w;D) with
respect to n. For example, when X = {−1,+1}, Equation (23) becomes

m1SMCI
ij (w;D) = 1

N ∑N
µ=1 tanh

[
tanh−1

{
tanh

(
Ui(x

(µ)
∂(i), w)− wijx

(µ)
j
)

tanh
(
Uj(x

(µ)
∂(j), w)− wjix

(µ)
i
)}

+ wij

]
, (25)

where tanh−1(x) is the inverse function of tanh(x).
By using the 1-SMCI learning method, the true gradient, ∆MLE

ij (w;D), is thus approximated as

∆1SMCI
ij (w;D) :=

1
N

N

∑
µ=1

x(µ)i x(µ)j −m1SMCI
ij (w;D), (26)

and therefore, the optimal w in this approximation is the solution to the simultaneous equations:

1
N

N

∑
µ=1

x(µ)i x(µ)j = m1SMCI
ij (w;D). (27)
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The order of the total computational complexity of the gradients in Equation (23) is O(N|E|),
which is the same as that of the MPLE. The solution to Equation (27) is obtained by a gradient ascent
method with the gradients in Equation (26).

4. Comparison of 1-SMCI Learning Method and MPLE

It was empirically observed in some numerical experiments that the 1-SMCI learning method
discussed in the previous section is better than MPLE in the case without model error [22]. In this
section, first we provide some theoretical insights into this observation, and then some numerical
comparisons of the two methods in the cases with and without model error.

4.1. Comparison from Asymptotic Point of View

Suppose that we want to approximate the expectation EBM[xixj | w] in a Boltzmann machine, and
assume that the data points are generated independently from the same Boltzmann machine. Here, we
re-express mMPLE

ij (w;D) in Equation (11) and m1SMCI
ij (w;D) in Equation (23) as

mMPLE
ij (w;D) = 1

N

N

∑
µ=1

ρMPLE
ij (x(µ), w), (28)

m1SMCI
ij (w;D) = 1

N

N

∑
µ=1

ρ1SMCI
ij (x(µ), w), (29)

respectively, where

ρMPLE
ij (x, w) :=

1
2
{

xj Mi(x∂(i), w) + xi Mj(x∂(j), w)
}

,

ρ1SMCI
ij (x, w) := ∑

xi∈X
∑

xj∈X
xixjPBM(xi, xj | xN1({i,j}), w).

Since x(µ)s are the i.i.d. points sampled from PBM(x | w), ρMPLE
ij (x(µ), w) and ρ1SMCI

ij (x(µ), w) can

also be regarded as i.i.d. sample points. Thus, mMPLE
ij (w;D) and m1SMCI

ij (w;D) are the sample averages

over the i.i.d. points. One can easily verify that the two equations ∑x PBM(x | w)ρMPLE
ij (x, w) =

EBM[xixj | w] and ∑x PBM(x | w)ρ1SMCI
ij (x, w) = EBM[xixj | w] are justified (the former equation can

also be justified by using the correlation equality [27]). Therefore, from the law of large numbers,
mMPLE

ij (w;D) = m1SMCI
ij (w;D) = EBM[xixj | w] in the limit of N → ∞. This implies that, in the case

without model error, the 1-SMCI learning method has the same solution to the MLE in the limit of
N → ∞.

From the central limit theorem, the distributions of mMPLE
ij (w;D) and m1SMCI

ij (w;D)
asymptotically converge to Gaussians with mean EBM[xixj | w] and variances

vMPLE
ij (w) :=

1
N

(
∑
x

ρMPLE
ij (x, w)2PBM(x | w)− EBM[xixj | w]2

)
, (30)

v1SMCI
ij (w) :=

1
N

(
∑
x

ρSMCI
ij (x, w)2PBM(x | w)− EBM[xixj | w]2

)
, (31)

respectively, for N � 1. For the two variances, we obtain the following theorem.

Theorem 1. For a Boltzmann machine, PBM(x | w), defined in Equation (1), the inequality vMPLE
ij (w) ≥

v1SMCI
ij (w) is satisfied for all (i, j) ∈ E and for any N.

The proof of this theorem is given in Appendix A. Theorem 1 states that the variance in the
distribution of mMPLE

ij (w;D) is always larger than (or equal to) that of m1SMCI
ij (w;D). This means that,
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when N � 1, the distribution of m1SMCI
ij (w;D) converges to a Gaussian around the mean value (i.e., the

exact expectation) that is sharper than a Gaussian to which the distribution of mMPLE
ij (w;D) converges,

and therefore, it is likely that m1SMCI
ij (w;D) is closer to the exact expectation than mMPLE

ij (w;D) when

N � 1; that is, m1SMCI
ij (w;D) is a better approximation of EBM[xixj | w] than mMPLE

ij (w;D).
Next, we consider the differences between the true gradient in Equation (5) and the approximate

gradients in Equations (13) and (26) for wij:

eMPLE
ij (w;D) := ∆MPLE

ij (w;D)− ∆MLE
ij (w;D) = mMPLE

ij (w;D)− EBM[xixj | w], (32)

e1SMCI
ij (w;D) := ∆1SMCI

ij (w;D)− ∆MLE
ij (w;D) = m1SMCI

ij (w;D)− EBM[xixj | w]. (33)

For the gradient differences in Equations (32) and (33), we obtain the following theorem.

Theorem 2. For a Boltzmann machine, PBM(x | w), defined in Equation (1), the inequality

P
(∣∣eMPLE

ij (w;D)
∣∣ ≤ ε

)
≤ P

(∣∣e1SMCI
ij (w;D)

∣∣ ≤ ε
)
, ∀ε > 0,

is satisfied for all (i, j) ∈ E when N → ∞, where D is the set of N data points generated independently from
PBM(x | w).

The proof of this theorem is given in Appendix B. Theorem 2 states that it is likely that the
magnitude of e1SMCI

ij (w;D) is smaller than (or equivalent to) that of eMPLE
ij (w;D) when the data points

are generated independently from the same Boltzmann machine and when N � 1.
Suppose that N data points are generated independently from a generative Boltzmann machine,

PBM(x | wgen), defined on Ggen, and that a learning Boltzmann machine, defined on the same graph as
the generative Boltzmann machine, is trained using the generative data points. In this case, since there
is no model error, the solutions of the MLE, the MPLE and the 1-SMCI learning methods are expected to
approach wgen as N → ∞, that is ∆MLE

ij (wgen;D), ∆MPLE
ij (wgen;D), and ∆1SMCI

ij (wgen;D) are expected

to approach zero as N → ∞. Consider the case in which N is very large and ∆MLE
ij (wgen;D) = 0.

From the statement in Theorem 2, ∆1SMCI
ij (wgen;D) is statistically closer to zero than ∆MPLE

ij (wgen;D).
This implies that the solution of the 1-SMCI learning method converges to that of the MLE faster than
the MPLE.

The theoretical results presented in this section have not reached a rigid justification of the
effectiveness of the 1-SMCI learning method, because some issues still remain, for instance: (i) since
we do not specify whether the problem of solving Equation (27), i.e., a gradient ascent method with the
gradients in Equation (26), is a convex problem or not, we cannot remove the possibility of existence
local optimal solutions which degrade the performance of the 1-SMCI learning method, (ii) although
we discussed the asymptotic property of ∆1SMCI

ij (w;D) for each link separately, a joint analysis of them
is necessary for a more rigid discussion, and (iii) a perturbative analysis around the optimal point is
completely lacking. However, we can expect that they constitute evidence that is important for gaining
insight into the effectiveness.

4.2. Numerical Comparison

We generated N data points from a generative Boltzmann machine, PBM(x | wgen) and then
trained a learning Boltzmann machine of the same size as the generative Boltzmann machine using the
generated data points. The coupling parameters in the generative Boltzmann machine, wgen, were
generated from a unique distribution, U[−λ, λ].

First, we consider the case where the graph structures of the generative Boltzmann machine and
the learning Boltzmann machine are the same: a 4× 4 square grid, that is the case “without” model
error. Figure 2a shows the mean absolute errors between the solutions to the MLE and the approximate
methods (the MLPE and the 1-SMCI learning method), ∑(i,j)∈E |wMLE

ij − wapprox
ij |/|E|, against N. Here,
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we set λ = 0.3. Since the size of the Boltzmann machine used here is not large, we can obtain the
solution to the MLE. We observe that the solutions to the two approximate methods converge to the
solution to the MLE as N increases, and the 1-SMCI learning method is better than the MPLE as the
approximation of the MLE. These results are consistent with the results obtained in [22] and the
theoretical arguments in the previous section.

Next, we consider the case in which the graph structure of the generative Boltzmann machine
is fully connected with n = 16 and that in which the learning Boltzmann machine is again a 4× 4
square grid, namely the case “with” model error. Thus, this case is completely outside the theoretical
arguments in the previous section. Figure 2b shows the mean absolute errors between the solution to
the MLE and that to the approximate methods against N. Here, we set λ = 0.2. Unlike the above case,
the solutions to the two approximate methods do not converge to the solution to the MLE because of
the model error. The 1-SMCI learning method is again better than the MPLE as the approximation of
the MLE in this case.

By comparing Figure 2a,b, we observed that the 1-SMCI learning method in (b) is worse than
in (a). The following reason can be considered. In Section 3.2, we replaced S , which is the sample
points drawn from the Boltzmann machine, by D in order to avoid the sampling cost. However, this
replacement implies the assumption of the case “without” model error, and therefore, it is not justified
in the case “with” model error.

N

102 103 104

M
A
E

10−3

10−2

MPLE
1−SMCI

N

102 103 104

M
A
E

10−3

10−2

MPLE
1−SMCI

(a) (b)

Figure 2. The mean absolute errors (MAEs) for various N: (a) the case without the model error and
(b) the case with the model error. Each plot shows the average over 200 trials. MPLE, maximum
pseudo-likelihood estimation; 1-SMCI, first-order spatial Monte Carlo integration method.

5. Numerical Comparison with Other Methods

In this section, we demonstrate a numerical comparison of the 1-SMCI learning method with
other approximation methods, RM [19] and MPF [20,21]. The orders of the computational complexity
of these two methods are the same as that of the MPLE and 1-SMCI learning methods. The four
methods were implemented by a simple gradient ascent method, w(t+1)

ij ← w(t)
ij + η∆ij, where η > 0 is

the learning rate.
As described in Section 4.2, we generated N data points from a generative Boltzmann machine,

PBM(x | wgen) and then trained a learning Boltzmann machine of the same size as the generative
Boltzmann machine using the generated data points. The coupling parameters in the generative
Boltzmann machine, wgen, were generated from U[−0.3, 0.3]. The graph structures of the generative
Boltzmann machine and of the learning Boltzmann machine are the same: a 4× 4 square grid. Figure 3
shows the learning curves of the four methods. The horizontal axis represents the number of the step,
t, of the gradient ascent method, and the vertical axis represents the mean absolute errors between
the solution to the MLE, wMLE, and the values of the coupling parameters at the step, w(t). In this
experiment, we set η = 0.2, and the values of w were initialized as zero.
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number of update
20 40 60

M
A

E

10−2

10−1 MPLE
RM
MPF
1−SMCI

number of update
20 40 60

M
A

E

10−3

10−2

10−1
MPLE
RM
MPE
1−SMCI

(a) (b)

Figure 3. Mean absolute errors (MAEs) versus the number of updates of the gradient ascent method:
(a) N = 200 and (b) N = 2000. Each plot shows the average over 200 trials. RM, ratio matching.

Since the vertical axises in Figure 3 represents the the mean absolute error from the solution to
the MLE, the lower one is the better approximation of the MLE. We can observe that the MPF shows
the fastest convergence and the MPLE, RM, and MPF converge to almost the same values, while
the 1-SMCI learning method converges to the lowest values. This concludes that, among the four
methods, the 1-SMCI learning method is the best as the approximation of the MLE. However, the
1-SMCI learning method has a drawback. The MPLE, RM, and MPF are convex optimization problems
and they have unique solutions, whereas, we do not specify whether the 1-SMCI learning method is a
convex problem or not in the present stage. We cannot eliminate the possibility of the existence of local
optimal solutions that degrade the accuracy of approximation.

As mentioned above, the orders of the computational complexity of these four methods, the
MPLE, RM, MPF, and 1-SMCI learning methods, are the same, O(N|E|). However, it is important to
check the real computational times of these methods. Table 1 shows the total computational times
needed for the one-time learning (until convergence), where the setting of the experiment is the same
as that of Figure 3b.

Table 1. Real computational times of the four learning methods. The setting of the experiment is the
same as that of Figure 3b.

MPLE RM MPF 1-SMCI

time (s) 0.08 0.1 0.04 0.26

The MPF method is the fastest, and the 1-SMCI learning method is the slowest which is about 6–7
times slower than the MPF method.

6. Conclusions

In this paper, we examined the effectiveness of Boltzmann machine learning based on the 1-SMCI
method proposed in [22] where, by numerical experiments, it was shown that the 1-SMCI learning
method is more effective than the MPLE in the case where no model error exists. In Section 4.1, we gave
the theoretical results for the empirical observation from the asymptotic point of view. The theoretical
results improved our understanding of the advantage of the 1-SMCI learning method as compared
to the MPLE. The numerical experiments in Section 4.2 showed that the 1-SMCI learning method
is a better approximation of the MPLE in the case with and without model error. Furthermore, we
compared the 1-SMCI learning method with the other effective methods, RM and MPF, using the
numerical experiments in Section 5. The numerical results showed that the 1-SMCI learning method is
the best method.
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However, issues related to the 1-SMCI learning method still remain. Since the objective function of
the 1-SMCI learning method, e.g., Equation (7) for the MPLE, is not revealed, it is not straightforward
to specify whether the problem of solving Equation (27), i.e., a gradient ascent method with the
gradients in Equation (26), is a convex problem or not. This is one of the most challenging issues of the
method. As shown in Section 4.2, the performance of the 1-SMCI learning method decreases when
model error exists, i.e., when the learning Boltzmann machine does not include the generative model.
The decrease may be caused by the replacement of the sample points, S , by the data points, D, as
discussed in the same section. It is expected that combining the 1-SMCI learning method with an
effective sampling method, e.g., the persistent contrastive divergence [28], relaxes the problem of the
performance degradation.

The presented the 1-SMCI learning method can be applied to other types of Boltzmann machines,
e.g., restricted Boltzmann machine [1], deep Boltzmann machine [2,29]. Although we focused on the
Boltzmann machine learning in this paper, the SMCI method can be applied to various MRFs [22].
Hence, there are many future directions of application of the SMCI: for example, graphical LASSO
problem [4], Bayesian image processing [3], Earth science [5,6] and brain-computer interface [30–33].
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JSPS KAKENHI, Grant Numbers, 15K00330 and 15H03699, and MIC SCOPE (Strategic Information and
Communications R&D Promotion Programme), Grant Number 172302009.
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Appendix A. Proof of Theorem 1

The first term in Equation (30) can be rewritten as:

∑x ρMPLE
ij (x, w)2PBM(x | w) = ∑x

(
∑xi∈X ∑xj∈X ρMPLE

ij (x, w)2PBM(xi, xj | xN1({i,j}), w)
)

PBM(x | w). (A1)

Since, for (i, j) ∈ E, xN1({i,j}) = xN1({i}) ∪ xN1({j}) \ {xi, xj}, we obtain the two expressions:

PBM(xi, xj | xN1({i,j}), w) = PBM(xi | xj, xN1({i,j}), w)PBM(xj | xN1({i,j}), w)

= PBM(xi | xN1({i}), w)PBM(xj | xN1({i,j}), w) (A2)

and the expression, obtained by alternating i and j,

PBM(xi, xj | xN1({i,j}), w) = PBM(xj | xN1({j}), w)PBM(xi | xN1({i,j}), w). (A3)

From Equations (A2) and (A3), we obtain:

ρSMCI
ij (x, w) =

1
2

(
∑

xi∈X
xi Mj(x∂(j), w)PBM(xi | xN1({i,j}), w) + ∑

xj∈X
xj Mi(x∂(i), w)PBM(xj | xN1({i,j}), w)

)
= ∑

xi∈X
∑

xj∈X
ρMPLE

ij (x, w)PBM(xi, xj | xN1({i,j}), w), (A4)

where we use the relation Mi(x∂(i), w) = ∑xi∈X xiPBM(xi | xN1({i}), w). From this equation, we obtain

∑x ρ1SMCI
ij (x, w)2PBM(x | w) = ∑x

(
∑xi∈X ∑xj∈X ρMPLE

ij (x, w)PBM(xi, xj | xN1({i,j}), w)
)2

PBM(x | w). (A5)

Finally, from Equations (A1) and (A5), the inequality:

vMPLE
ij (w)− v1SMCI

ij (w) = 1
N ∑x

{
∑xi∈X ∑xj∈X ρMPLE

ij (x, w)2PBM(xi, xj | xN1({i,j}), w)

−
(

∑xi∈X ∑xj∈X ρMPLE
ij (x, w)PBM(xi, xj | xN1({i,j}), w)

)2}
PBM(x | w) ≥ 0

(A6)

is obtained.
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Appendix B. Proof of Theorem 2

As mentioned in Section 4.1, from the central limit theorem, the distribution of mMPLE
ij (w;D)

converges to the Gaussian with mean EBM[xixj | w] and variance vMPLE
ij (w) for N → ∞. Therefore,

the distribution of eMPLE
ij (w;D) converges to the Gaussian with mean zero and variance vMPLE

ij (w).
This leads to

P
(∣∣eMPLE

ij (w;D)
∣∣ ≤ ε

)
= P

(
− ε ≤ eMPLE

ij (w;D) ≤ ε
)
→
∫ ε

−ε
N (t | vMPLE

ij (w))dt (N → ∞), (A7)

where N (t | σ2) := exp{−t2/(2σ2)}/
√

2σ2. Equation (A7) is expressed as:∫ ε

−ε
N (t | vMPLE

ij (w))dt = erf
( ε√

2vMPLE
ij (w)

)
(A8)

by using the error function

erf(x) :=
1√
π

∫ x

−x
e−t2

dt. (A9)

We obtain

P
(∣∣e1SMCI

ij (w;D)
∣∣ ≤ ε

)
→ erf

( ε√
2v1SMCI

ij (w)

)
(N → ∞) (A10)

by using the same derivation as Equation (A8). Because the error function in Equation (A9) is the
monotonically increasing function, from the statement in Theorem 1, i.e., vMPLE

ij (w) ≥ v1SMCI
ij (w),

we obtain

erf
( ε√

2vMPLE
ij (w)

)
≤ erf

( ε√
2v1SMCI

ij (w)

)
. (A11)

This inequality leads to the statement of Theorem 2.
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