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Abstract: The neutrosophic cubic set can describe complex decision-making problems with its 

single-valued neutrosophic numbers and interval neutrosophic numbers simultaneously. The 

Dombi operations have the advantage of good flexibility with the operational parameter. In order 

to solve decision-making problems with flexible operational parameter under neutrosophic cubic 

environments, the paper extends the Dombi operations to neutrosophic cubic sets and proposes a 

neutrosophic cubic Dombi weighted arithmetic average (NCDWAA) operator and a neutrosophic 

cubic Dombi weighted geometric average (NCDWGA) operator. Then, we propose a multiple 

attribute decision-making (MADM) method based on the NCDWAA and NCDWGA operators. 

Finally, we provide two illustrative examples of MADM to demonstrate the application and 

effectiveness of the established method. 
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1. Introduction 

Fuzzy sets were presented by Zadeh [1] to describe fuzzy problems with the membership 

function. After Zadeh, some extensions of fuzzy sets have been proposed, including interval-valued 

fuzzy sets [2], intuitionistic fuzzy sets [3] and interval-valued intuitionistic fuzzy sets [4]. 

Interval-valued fuzzy sets can be described by the membership degree in an interval value of [0, 1]. 

Intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets can deal with different types of 

uncertainties by the non-membership function and membership function. Neutrosophic sets [5] 

were defined by Smarandache to express fuzzy problems using the truth, indeterminacy and falsity 

membership functions. Based on the neutrosophic sets, some simplified forms of neutrosophic sets 

were introduced for engineering applications, including interval neutrosophic sets [6], single valued 

neutrosophic sets [7] and simplified neutrosophic sets [8] and so on. The simplified forms of 

neutrosophic sets have been widely applied in multiple attribute decision-making (MADM) 

problems [9–13] and fault diagnosis [14]. Some extension forms of neutrosophic sets have been 

proposed by combining neutrosophic sets and other sets, for instance, multi-valued neutrosophic 

sets [15,16], intuitionistic neutrosophic soft set [17], rough neutrosophic sets [18], single-valued 

neutrosophic hesitant fuzzy [19], refined single-valued neutrosophic sets [20], neutrosophic soft sets 

[21], linguistic neutrosophic number [22,23], normal neutrosophic sets [24] and single-valued 

neutrosophic hesitant fuzzy set [25]. 

In the real world, the membership function in some fuzzy problems cannot be described 

completely only by an exact value or an interval-value. Hence, Jun et al. defined cubic sets by the 

combination of interval-valued fuzzy sets with fuzzy sets [26]. Cubic sets can describe vagueness 
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and uncertainty using an exact value and an interval-value simultaneously. Recently, Ali et al. 

extended cubic sets to the neutrosophic sets and introduced the definition of neutrosophic cubic sets 

(NCSs), containing external NCSs and internal NCSs [27]. Jun et al. discussed the P-union and 

P-intersection of NCSs [28]. Furthermore, several related studies have been conducted to solve 

decision-making problems based on NCSs. Zhan et al. presented the concepts of weighted geometric 

operator (GW) and the weighted average operator (AW) on NCSs to solve multi-criteria 

decision-making problem [29]. Banerjee et al. introduced the grey relational analysis method of 

NCSs for MADM [30]. Some similarity measures of NCSs were introduced for decision-making 

problems under neutrosophic cubic set environment [31,32]. Pramanik et al. proposed the 

NC-TODIM method for solving a multiple attribute group decision-making problem [33]. 

Aggregation operators play an important role in decision making. Hence, many researchers 

have presented various aggregation operators and their extensions [34–50], such as Harmonic 

aggregation operators [34,35], weighted Bonferroni mean operators [36–39], Einstein prioritized 

weighted operators [40], generalized weighted aggregation operators [41], Choquet integral 

operators [42] and so on. Dombi first developed the Dombi T-norm and T-conorm operations [51]. 

Recently, Liu et al. presented Dombi Bonferroni mean operators of intuitionistic fuzzy sets and 

applied them in MADM problems [52]. Chen and Ye also extended the Dombi operations to single 

valued neutrosophic sets and proposed some single-valued neutrosophic Dombi weighted 

aggregation operators and applied them in MADM problems [53]. From the above review, the 

Dombi operations have the advantage of good flexibility with the operational parameter [53] and 

NCSs contain much more incomplete, inconsistent and indeterminate information to express actual 

decision-making problems [31]. Hence, the paper extends the Dombi operations to NCSs and 

proposes a neutrosophic cubic Dombi weighted arithmetic average (NCDWAA) operator and a 

neutrosophic cubic Dombi weighted geometric average (NCDWGA) operator. In order to solve 

MADM problems with neutrosophic cubic information, a MADM method based on the NCDWAA 

and NCDWGA operators is proposed in this paper. 

The remainder of the paper is arranged as follows. Section 2 briefly introduces some concepts of 

NCSs to be used for the following study. Some Dombi operations of NCSs are introduced in Section 

3. Section 4 presents the NCDWAA and NCDWGA operators and discusses their properties. In 

Section 5, we establish a MADM method based on the NCDWAA and NCDWGA operators. Section 

6 presents two illustrative examples to demonstrate the effectiveness and feasibility of the proposed 

method. Conclusions and future research are given in Section 7. 

2. Preliminaries 

In this section, we firstly present some concepts of interval neutrosophic sets, single-valued 

neutrosophic sets, cubic sets and NCSs and then introduce some ranking methods of NCSs based on 

their score, accuracy and certainty functions. 

Definition 1 ([6]). Let Z be a non-empty set. An interval neutrosophic sets G in Z is defined as follows: 

G = {v, <T(v), I(v), F(v)> | v  Z}, (1) 

where the intervals [ ( ), ( )] [0,1],( ) T v Tv vT    - +[ ( ), ( )] [0( 1]) , ,I v Iv vI   and [ ( ,( )  ) F vF v  

( )] [0,1] F v  for v  Z represent respectively the degrees of the truth-membership, 

indeterminacy-membership and falsity-membership. 

Definition 2 ([7]). Let Z be a universe of discourse. A single-valued neutrosophic sets H in Z is described as 

follows: 

H = {v, <t(v), i(v), f(v)> | v  Z}, (2) 

where the functions t(v), i(v), f(v)  [0, 1] with the condition 0 ≤ t(v) + i(v) + f(v) ≤ 3 for v  Z, represent 

respectively the degrees of the truth-membership, the indeterminacy-membership and falsity-membership.  
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Definition 3 ([26]). Let Z be a non-empty set, then a cubic set C in Z is constructed as the following form: 

C = {v, A(v), ă(v) | v  Z}, (3) 

for v  Z. It can be noted by C = {A, ă}. Then, C = {A, ă} in Z is called an internal cubic set if 

( ) ( ) ( )A v vă A v    for v  Z and C = {A, ă} in Z is called an external cubic set if ( ) [ ( ), ( )]v A v A vă    

for v  Z. 

Ali et al. [27] and Jun et al. [28] extended cubic sets to the neutrosophic sets and proposed the 

concept of a NCS as follows. 

Definition 4 ([27,28]). Let Z be a universe of discourse, then a neutrosophic cubic set X in Z is denoted as the 

following form: 

X = {v, <T(v), I(v), F(v)>, <t(v), i(v), f(v)> | v  Z}, (4) 

where <T(v), I(v), F(v)> is an interval neutrosophic set [6] in Z and the intervals 

[ ( ), ( )] [0,1],( ) T v Tv vT     - +[ ( ), ( )] [0( 1]) , ,I v Iv vI   and [ ( ), ( )( ) ] [0 ,1]F v F vF v     for v  

Z represent the truth, indeterminacy and falsity membership degrees, respectively; then <t(v), i(v), f(v)> is a 

single valued neutrosophic set [5,7] in Z and t(v), i(v), f(v)  [0, 1] for v  Z represent the membership 

degrees of truth, indeterminacy and falsity, respectively. 

Then, a neutrosophic cubic sets X = {v, <T(v), I(v), F(v)>, <t(v), i(v), f(v)> | v  Z} is called an 

internal NCS if ( ) ( ),T v t( v ) T v   ( ) ( ),I v i( v ) I v    and ( ) ( ),F v f ( v ) F v    for v  Z; and a 

NCS X is called an external NCS if t(v)  ( ( ), ( ))T v T v  , i(v)  ( ( ), ( ))I v I v   and f(v)  

( ( ), ( ))F v F v   for v  Z [27]. 

For convenient expression, a basic element (v, <T(v), I(v), F(v)>, <t(v), i(v), f(v)>) in a NCS X is 

denoted by + + +( [ , ], [ , ], [ , ] , ) , ,T T I I F F it fx      , which is called a neutrosophic cubic 

number (NCN) [31], where + + +[ , ], [ , ], [ , ] [0,1]T T I I F F     and t, i, f  [0, 1] satisfy the 

condition + + +0 + + 3T I F   and 0 ≤ t + i + f ≤ 3. 

For any neutrosophic cubic number, we provide the following score, accuracy and certainty 

functions. 

Definition 5 ([54]). Let + + +( [ , ], [ , ], [ , ] , ) , ,T T I I F F it fx       be a neutrosophic cubic 

number. Then, its score, accuracy and certainty functions are defined as follows: 

+ + +(4 + - - - - ) +(2 - - )]/9T T I I F F fS t ix     ( ) [  (5) 

+ +( + - - ) + ( - )]/3T T F F fA tx  ( [)  (6) 

+( + + )/3T T tC x ( )  (7) 

where, S(x), A(x) and C(x) represent the score, accuracy and certainty functions of the NCNs, respectively. 

The score function S(x) is a useful index in ranking NCNs. For a NCN, the bigger the 

truth-membership is, the greater the NCN is. At the same time, the smaller the memberships of 

indeterminacy and falsity are, the greater the NCN is. As to the accuracy function A(x), the larger 

the difference between truth-membership and falsity-membership is, the more effective the 

statement is. For the certainty function C(x), if the truth membership is bigger, then the NCN is 

more certainty. Hence, the score, accuracy and certainty functions are defined as shown above. 

According to the three functions S(x), A(x) and C(x), the comparison and ranking of two NCNs 

are defined as following definition. 
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Definition 6 ([54]). Let 1 1 1 1 1 1 1 1 11 ( [ , ], [ , ], [ , ] , , , )T T I I F F t ix f          and 2 22 ( [ , ],     Tx T  

2 2 2 2 2 2 2[ , ], [ , ] , , , )     I I F F t i f  be two neutrosophic cubic numbers. Then their ranking method is 

defined as follows: 

(1) If S(x1) > S(x2), then x1  x2; 

(2) If S(x1) = S(x2) and A(x1) > A(x2), then x1 x2; 

(3) If S(x1) = S(x2), A(x1) = A(x2) and C(x1) > C(x2), then x1  x2; 

(4) If S(x1) = S(x2), A(x1) = A(x2) and C(x1) = C(x2), then x1 ~ x2. 

Example 1. Let Ψ1 and Ψ2 be two NCNs. 

(1) Assume that Ψ1 = (<[0.8, 0.9], [0.1, 0.2], [0.2, 0.3]>, <0.7, 0.1, 0.2>) and Ψ2 = (<[0.5, 0.6], [0.3, 0.4], 

[0.4, 0.5]>, <0.5, 0.3, 0.4>). Referring to Definition 5, S(Ψ1) = 0.8111, S(Ψ2) = 0.5889, A(Ψ1) = 0.5667, 

A(Ψ2) = 0.1000, C(Ψ1) = 0.8000, C(Ψ2) = 0.5333. According to Definition 6, S(Ψ1) > S(Ψ2), therefore, Ψ1 

 Ψ2. 

(2) Assume that Ψ1 = (<[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]>, <0.5, 0.2, 0.3>) and Ψ2 = (<[0.3, 0.4], [0.1, 0.2], 

[0.2, 0.3]>, <0.3,0.1,0.2>). Referring to Definition 5, S(Ψ1) = 0.6556, S(Ψ2) = 0.6556, A(Ψ1) = 0.2000, 

A(Ψ2) = 0.1000, C(Ψ1) = 0.5333, C(Ψ2) = 0.3333. According to Definition 6, S(Ψ1) = S(Ψ2), A(Ψ1) > 

A(Ψ2), therefore, Ψ1  Ψ2. 

(3) Assume that Ψ1 = (<[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]>, <0.5, 0.2, 0.3>) and Ψ2 = (<[0.3, 0.4], [0.2, 0.3], 

[0.1, 0.2]>, <0.3, 0.2, 0.1>). Referring to Definition 5, S(Ψ1) = 0.6556, S(Ψ2) = 0.6556, A(Ψ1) = 0.2000, 

A(Ψ2) = 0.2000, C(Ψ1) = 0.5333, C(Ψ2) = 0.3333. According to Definition 6, S(Ψ1) = S(Ψ2), A(Ψ1) = 

A(Ψ2), C(Ψ1) > C(Ψ2) therefore, Ψ1  Ψ2. 

3. Some Dombi Operations of NCNs 

Definition 7 ([51]). Let g and h be two real numbers, then the Dombi T-norm and T-conorm between g and 

h are defined as follows: 

11 1
1 { (  ) + (  )

(

}

1
)  

/

D g
g

,h ,
h

g h

  





 
(8) 

11 { (  ) + (  ) }
1

1
( )  1-

1

c

/

D g,h
g

g

,
h

h

  
 

  
(9) 

where (g, h)  (0, 1) × (0, 1) and if ρ > 0 then the operator D(g, h) is conjunctive and Dc(g, h) is disjunctive, 

satisfying D(0, 0) = D(0, 1) = D(1, 0) = 0, D(1, 1) = 1, Dc(0, 1) = Dc(1, 0) = Dc(1, 1) = 1 and Dc(0, 0) = 0 [51] 

and if ρ < 0 then the operator D(g, h) is disjunctive and the operator Dc(g, h) is conjunctive. 

According to Equations (8) and (9), some Dombi operations of NCNs are provided as following 

definition. 

Definition 8. Let X = {x1, x2, …, xn} be a NCS, where ( [ , ], [ , ] ,j j j jj T T Ix I      

[ , ] , , , )j j j j jF F t i f     for j = 1, 2, …, n is a collection of NCNs and , , , , , , , ,j j j j j j j j jT T I I F F t i f        

(0, 1) and λ > 0 and ρ > 0. Then, the Dombi T-norm and T-conorm operations of NCNs are defines as follows: 
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If some of the memberships , , , , , , , ,j j j j j j j j jT T I I F F t i f     （ ） are 0 or 1, then the above Dombi 

operations of NCNs are calculated by conjunction and disjunction according to Definition 7. 

Example 2. Let Ψ3 and Ψ4 be two NCNs. Assume that Ψ3 = (<[0, 0.5], [0, 0.2], [0, 0.4]>, <0.5, 0, 0>), Ψ4 = 

(<[0.5, 1], [0.7, 1], [0, 0]>, <1, 1, 0>) and ρ = 1. According to Definitions 7 and 8, Ψ3 Ψ4 is calculated as 

follows: 
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 
3 4
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4. Dombi Weighted Aggregation Operators of NCSs 

In this section, two Dombi weighted aggregation operators of NCNs are proposed based on the 

Dombi operators of NCNs in Definition 8 and then their properties are investigated. 

Definition 9. Let X = {x1, x2, …, xn} be a neutrosophic cubic set, where 

( [ , ], [ , ],[ , ] , , , )j j j j j j j j jj T T I I F t ix F f         for j = 1, 2, …, n is a collection of neutrosophic cubic 

numbers and their corresponding weight vector is ω = (ω1, ω2, …, ωn), satisfying ωj [0, 1] and 

1
1

n

jj
.


  Then, the neutrosophic cubic Dombi weighted arithmetic average and neutrosophic cubic 

Dombi weighted geometric average operators are defined, respectively, as follows: 

1 2( )  
n

jn j
j

NCDWAA , ,...,x ,x x x 
=1

 (14) 

1 2( )  j

n

jn
j

NCDWGA , ,...,x x x x .


 
=1

 (15) 

Theorem 1. Let ( [ , ], [ , ], [ ] , , ) , ,j j j j j j j j j jT T I I F F t fx i          (j = 1, 2, …, n) is a collection of 

NCNs and their corresponding weight vector is ω = (ω1, ω2, …, ωn), satisfying ωj [0, 1] and 

1
1




n

jj
. Then, the aggregated value of the NCDWAA operator is still a NCN, which can be calculated 

as follows: 
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(16) 

We can prove Theorem 1 by the mathematical induction. 

Proof. If n = 2, according to the Dombi operations of NCNs in Definition 8, we can get the following 

result:  
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If n = k, by Equation (16), we obtain the following formula: 
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If n = k + 1, based on Equations (17) and (18), we have the following result: 
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Thus, Equation (16) holds for all n. Hence, Theorem 1 is true. The proof is finished. □ 

Then, the NCDWAA operator contains the following properties: 

(i) Reducibility: If ω = (1/n, 1/n, …, 1/n), then there exists 
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(ii) Idempotency: Let ( [ , ], [ , ], [ ] , , ) , ,j j j j j j j j j jT T I I F F t fx i          (j = 1, 2, ..., n) be a 

group of NCNs. When xj = x for j = 1, 2, …, n, there is NCDWAA (x1, x2, …, xn) = x. 

(iii) Commutativity: Suppose the 1 2NCSs , ..., ( ),' ' '

nx x x  be any permutation of (x1, x2, …, xn). 

Then,  1 2 1 2( ) =, ...,   , .' ' '

n nNCDWAA x x x NCDWAA x ,x , ,x  

(iv) Boundedness: Let 
min ( [min( ), min( )], [max( ), max( )], [max( ), max( )] , mi ,(n )j j j j j j j
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Equation (16), we can get the result as follows: 
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Hence, NCDWAA (x1, x2, …, xn) = x holds. 

(iii) The property is obvious. 
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We can obtain the similar inequalities for - - -  and , , ,  

j j j j j jT T ,I I ,F F .  Hence, xmin ≤ NCDWAA (x1, 

x2, …, xn) ≤ xmax holds. □ 

Theorem 2. Let ( [ , ], [ , ], [ ] , , ) , ,j j j j j j j j j jT T I I F F t fx i          (j = 1, 2, ..., n) be a group of 

NCNs. The weight vector of NCN xj is ω = (ω1, ω2, …, ωn), satisfying ωj[0, 1] and 
1

1
n

jj
.




Then, the aggregated value of the NCDWGA operator is still a NCN, which can be calculated as follows: 
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Theorem 2 can be proved by a similar proof process as Theorem 1. Hence, it is not repeated 

here. 

Obviously, the NCDWGA operator also satisfies the following properties: 

(i) Reducibility: If ω = (1/n, 1/n, …, 1/n), then there exists 
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(21) 

(ii) Idempotency: Let xj = x for j = 1, 2, …, n, there is NCDWGA (x1, x2, …, xn) = x. 

(iii) Commutativity: Suppose the 1 2NCSs , ..., ( ),' ' '

nx x x  be any permutation of (x1, x2, …, xn). 

Then,  1 2 1 2( ) =, ...,   , .' ' '

n nNCDWGA x x x NCDWGA x ,x , ,x  

(iv) Boundedness: Let
min ( [min( ), min( )], [max( ), max( )], [max( ),max( )] ,        j j j j j j

j j j j j j
T T I Fx I F  

min ), max ( ), max ( ) )( j j j
j j j

t i f  
maxand ( [max( ), max( )], [min( ),min( )], [min( ),      j j j j j

j j jj j
T T I I Fx  

min( )] , max ), min( ), min( ) )( .   j j j j
j j jj

F t i f  Then, xmin ≤ NCDWGA (x1, x2, …, xn) ≤ xmax. 

We can prove these properties by the same way as that of Theorem 1. Thus, they are omitted 

here. 

5. MADM Method Using the NCDWAA or NCDWGA Operators 

In this section, a MADM method based on the NCDWAA operator or the NCDWGA operator 

is proposed to handle MADM problems with neutrosophic cubic information. 

In a MADM problem with NCN information, let X = {X1, X2, …, Xm} be a set of m alternatives 

and Y = {Y1, Y2, …, Yn} be a set of attributes. Suppose that ωY = (ωY1, ωY2, …, ωYn) is the weight vector 

of the attributes Yj (j = 1, 2, …, n) with ωY j  [0, 1] and 
1

1
n

Yjj
.


  The evaluation value of an 

alternative Xk (k = 1, 2, …, m) under an attribute Yj (j = 1, 2, …, n) is expressed by a NCN 

( [ , ], [ , ], [ , ] , , , ) k kj kj j kj kj kj kj kj kj kjT T I I F i fx F t           (k = 1, 2, …, m; j = 1, 2, …, n), where 

 [ , ], [ , ], [ , ] [0,1] , , 0 1kj kj kj kj kj kj kj kj kjT T I I F F t i .,f       ,  and  Then, we can construct a NCN decision 

matrix M = (xkj)m×n. 
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In this case, we present a MADM method based on the NCDWAA operator or the NCDWGA 

operator to handle MADM problems with NCN information and the decision steps can be 

described as following: 

Step 1. Derive the collective NCN xk (k = 1, 2, …, m) for the alternative Xk (k = 1, 2, …, m) by 

using the NCDWAA operator: 
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or by using the NCDWGA operator: 
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(23) 

where ωYj  [0, 1] and 
1

1
n

Yjj



  for j = 1, 2, …, n. 

Step 2. Calculate the score values of S(xk) (the accuracy values of A(xk) or certainty values C(xk) 

if necessary) of the collective NCN xk (k = 1, 2, …, m) by using Equations (5)–(7). 

Step 3. Rank all the alternatives and select the best one(s) according to the values of S(xk), A(xk) 

and C(xk). 

Step 4. End. 

6. Illustrative Examples and Comparison Analysis 

6.1. Illustrative Examples 

In order to demonstrate the application of the proposed MADM method, in this section, we 

provide two illustrative examples with neutrosophic cubic information adapted from [29]. 

Example 3 ([29]). A passenger needs to make a travel decision from four possible vans (alternatives) Xj (j = 

1, 2, 3, 4). The customer needs to evaluate the four alternatives according to the following four attributes: (1) 

Y1 is the facility; (2) Y2 is the rent saving; (3) Y3 is the comfort; (4) Y4 is the safety. The weight vector of the 
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attributes is given by ωY = (0.5, 0.0.25, 0.125, 0.125). Thus, the decision matrix can be constructed using the 

form of NCNs as follows: 

1

( 0 2 0 5] [0.3,0.7],[0.1,0.2] 0 9 0 7 0 2 ) ( 0 2 0 4] [0.4,0.5],[0.2,0.5] 0 7 0 4 0 5 )
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Then, we apply the NCDWAA operator or the NCDWGA operator to solve the MADM 

problem with NCN information. 

Now, we use the NCDWAA operator to handle this decision-making problem as follows: 

Step 1. By using Equation (22) for ρ = 1, the collective NCNs for the alternatives Xj (j = 1, 2, 3, 4) 

can be obtained based on the NCDWAA as follows: 

X1 = (<[0.1887, 0.5340], [0.3310, 0.6004], [0.1481, 0.2999]>, <0.8462, 0.5657, 0.2887>) 

X2 = (<[0.2889, 0.8636], [0.2824, 0.7278], [0.2963, 0.5161]>, <0.7000, 0.4835, 0.5283>) 

X3 = (<[0.3538, 0.6571], [0.2400, 0.4364], [0.2233, 0.5676]>, <0.6055, 0.3333, 0.2308>) 

X4 = (<[0.3824, 0.8395], [0.1586, 0.6892], [0.1778, 0.3981]>, <0.2706, 0.4647, 0.2564>) 

Step 2. By using Equation (5), the score values of S(Xj) of the collective NCN for the 

alternatives Xj (j = 1, 2, 3, 4) can be calculated as the following results: 

S(X1) = 0.5928, S(X2) = 0.5576, S(X3) = 0.6206, S(X4) = 0.5942. 

Step 3. According to the above score values, the ranking order of the alternatives is X3  X4  

X1  X2 and thus X3 is the best alternative. 

Or we can use the NCDWGA operator for the MADM problem as follows: 

Step 1’. By using Equation (23) for ρ = 1, the collective NCNs for the alternatives Xj (j = 1, 2, 3, 

4) can be obtained based on the NCDWGA as follows: 

X1 = (<[0.1778, 0.4970], [0.3412, 0.7241], [0.2690, 0.5385]>, <0.7456, 0.6364, 0.4419>) 

X2 = (<[0.2824, 0.7683], [0.4000, 0.7767], [0.3708, 0.6250]>, <0.5727, 0.6235, 0.6643>) 

X3 = (<[0.2909, 0.4561], [0.3166, 0.6993], [0.2449, 0.5862]>, <0.1523, 0.3924, 0.2680>) 

X4 = (<[0.4000, 0.6933], [0.3859, 0.7600], [0.2826, 0.5514]>, <0.1564, 0.6049, 0.4483>) 

Step 2’. By using Equation (5), the score values of S(Xj) of the collective NCN for the 

alternatives Xj (j = 1, 2, 3, 4) can be calculated as the following results: 

S(X1) = 0.4966, S(X2) = 0.4626, S(X3) = 0.4880, S(X4) = 0.4685. 

Step 3’. According to the above score values, the ranking order of the alternatives is X1  X3  

X4  X2 and thus X1 is the best alternative. 

Further, all the ranking results of alternatives are listed in Tables 1 and 2 when the parameter ρ 

is changed from 1 to 5 in the NCDWAA and NCWGA operators. 
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Table 1. Ranking results of the NCDWAA operator for different operational parameters. 

ρ S(x1) S(x2) S(x3) S(x4) Ranking Order The Best Alternative 

1 0.5928, 0.5576, 0.6206, 0.5942 X3  X4  X1  X2 X3 

2 0.6176, 0.5896, 0.6763, 0.6360 X3  X4  X1  X2 X3 

3 0.6334, 0.6091, 0.7047, 0.6631 X3  X4  X1  X2 X3 

4 0.6441, 0.6210, 0.7215, 0.6802 X3  X4  X1  X2 X3 

5 0.6516, 0.6289, 0.7323, 0.6916 X3  X4  X1  X2 X3 

Table 2. Ranking results of the NCDWGA operator for different operational parameters. 

ρ S(x1) S(x2) S(x3) S(x4) Ranking Order The Best Alternative 

1 0.4966, 0.4626, 0.4880, 0.4685 X1  X3  X4  X2 X1 

2 0.4524, 0.4246, 0.4645, 0.4112  X3  X1  X2  X4 X3 

3 0.4238, 0.3980, 0.4483, 0.3781  X3  X1  X2  X4 X3 

4 0.4053, 0.3803, 0.4364, 0.3584 X3  X1  X2  X4 X3 

5 0.3925, 0.3680, 0.4274, 0.3456 X3  X1  X2  X4 X3 

Example 4 ([29]). A customer wishes to buy a mobile phone and needs to evaluate three models (alternatives) 

Qk (k = 1, 2, 3) according to the following three attributes (specifications): H1 = Processor; H2 = Camera; (3) 

H3 = Battery. The weight vector of the attributes is given by 
1 1 1

(  , ,   )
2 3 6

H  . The decision matrix can be 

constructed under the NCS environment as follows: 

2

 ( 0 2 0 7] [0.3,0.7],[0.3,0.8] 0 3 0 4 0 1 )   ( 0 4 0 7] [0.3,0.7],[0.5,0.8] 0 2 0 4 0 5 ) 

( 0 2 0 7] [0.3,0.7],[0.4,0.6] 0 9 0 6 0 2 )   ( 0 2 0 3] [0.3,0.6],[0.1,0.4] 0 6 0 7 0 6 )

(
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(

. , . , , . , . , . . , . , , . , . , .

. , . , , . , . , .

. , . , , . , . , .




        

   

   





[ [

[

[

[ 0 2 0 5] [0.3,0.4],[0.3,0.4] 0 2 0 4 0 6 )  . , . , , . , . , .



  





 

Then, we use the NCDWAA operator or the NCDWGA operator to solve the MADM problem 

with NCN information. By the same steps as that of Example 2, we obtain the ranking results of the 

alternatives. Tables 3 and 4 list the ranking results of the NCDWAA operator and NCWGA 

operator, respectively, when the parameter ρ is changed from 1 to 5. 

Table 3. Ranking results of the NCDWAA operator for different operational parameters. 

ρ S(Q1) S(Q2) S(Q3)  Ranking Order The Best Alternative 

1 0.5241, 0.5739, 0.5437 Q2  Q3  Q1 Q2 

2 0.5410, 0.5934, 0.5474 Q2  Q3  Q1 Q2 

3 0.5534, 0.6041, 0.5513 Q2  Q1  Q3 Q2 

4 0.5626, 0.6109, 0.5547 Q2  Q1  Q3 Q2 

5 0.5697, 0.6158, 0.5574 Q2  Q1  Q3 Q2 

Table 4. Ranking results of the NCDWGA operator for different operational parameters. 

ρ S(Q1) S(Q2) S(Q3) Ranking Order The Best Alternative 

1 0.4760, 0.4856, 0.5095 Q3  Q2  Q1 Q3 

2 0.4604, 0.4502, 0.4883 Q3  Q1  Q2 Q3 
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3 0.4509, 0.4300, 0.4737 Q3  Q1  Q2 Q3 

4 0.4448, 0.4176, 0.4637 Q3 Q1  Q2 Q3 

5 0.4406, 0.4093, 0.4567 Q3  Q1  Q2 Q3 

6.2. Comparison Analysis 

From Tables 1–4, we see that the ranking orders corresponding to the NCDWAA and 

NCDWGA operators show obvious difference in the MADM problem. In Example 3, Table 1 

indicates that the different parameters of ρ may not influence the ranking orders corresponding to 

the NCDWAA operator; while Table 2 shows the different parameters of ρ can change the ranking 

orders based on the NCDWGA operator. In Table 2, when ρ = 1, the best alternative is X1, while the 

worst alternative is X2; when ρ = 2, ρ = 3, ρ = 4 and ρ = 5, the ranking order is changed and the best 

alternative is X3 and the worst alternative is X4. In Example 4, Tables 3 and 4 indicate that the 

different values of ρ can change the ranking orders based on the NCDWGA and NCDWGA 

operators. In Table 3, when ρ = 1 and ρ = 2, Q1 is the worst alternative; when ρ = 3, ρ = 4 and ρ = 5, 

the ranking order is changed and Q3 is the worst alternative. In Table 4, when ρ = 1, Q1 is the worst 

alternative; when ρ = 2, ρ = 3, ρ = 4 and ρ = 5, the ranking order is changed and Q2 is the worst 

alternative. 

From the results of Tables 1–4, we can say that the NCDWAA and NCDWGA operators are 

sensitive to ρ. Hence, decision makers can specify some parameter ρ according to actual 

requirements and/or their preference. 

Compared with the existing MADM method for NCSs introduced in [29], Table 5 lists the 

MADM results using NCDWAA and NCDWGA operators proposed in this paper and the weighted 

average operator (𝓐W) of NCSs in the relevant paper [29], respectively. From Table 5, we see that 

the ranking orders based on the Dombi operators proposed in this paper and the weighted average 

operator (𝓐W) of NCSs have obvious difference since different aggregation operators may be result 

in different ranking orders. Due to no parameter selected in [29], the proposed MADM based on 

Dombi aggregation operators is more flexible than the approach provided in [29]. 

Table 5. Decision results of MADM problem with neutrosophic cubic information. 

Example MADM Method Ranking Order The Best Alternative 

Example 3 

NCDWAA (ρ = 1) X3  X4  X1  X2 X3 

NCDWGA (ρ = 1) X1  X3  X4  X2 X1 

Weighted average operator (𝓐W) [29] X4  X2  X3  X1 X4 

Example 4 

NCDWAA (ρ = 1) Q2  Q3  Q1 Q2 

NCDWGA (ρ = 1) Q3  Q2  Q1 Q3 

Weighted average operator (𝓐W) [29] Q3  Q1  Q2 Q3 

For further comparison, the existing related decision-making approaches [51–53] based on 

some Dombi operations cannot deal with the decision-making problem with NCSs. However, the 

decision-making method presented in this paper can describe attributes with interval neutrosophic 

sets and single valued neutrosophic sets information simultaneously. Therefore, the paper provides 

a new effective way for decision makers to deal with MADM problems under neutrosophic cubic 

environment. 

7. Conclusions 

This paper proposed the NCDWAA and NCDWGA operators and discussed their properties. 

Then, we presented a MADM method based on the NCDWAA and NCDWGA operators to handle 

MADM problems under a NCN environment, in which attribute values of the alternatives were 

ranked and the best one(s) was determined according to their score (accuracy) function values. 
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Finally, two illustrative examples were provided to illustrate the application and effectiveness of 

the established MADM method. The developed MADM method can effectively solve 

decision-making problems with flexible operational parameter under neutrosophic cubic 

environments. In future work, we will further develop more aggregation operators for hesitant 

neutrosophic cubic sets and apply them in these areas, such as decision-making problems and fault 

diagnosis. 
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