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Abstract: This study proposes a modified convolutional neural network (CNN) algorithm that is 

based on dropout and the stochastic gradient descent (SGD) optimizer (MCNN-DS), after 

analyzing the problems of CNNs in extracting the convolution features, to improve the feature 

recognition rate and reduce the time-cost of CNNs. The MCNN-DS has a quadratic CNN structure 

and adopts the rectified linear unit as the activation function to avoid the gradient problem and 

accelerate convergence. To address the overfitting problem, the algorithm uses an SGD optimizer, 

which is implemented by inserting a dropout layer into the all-connected and output layers, to 

minimize cross entropy. This study used the datasets MNIST, HCL2000, and EnglishHand as the 

benchmark data, analyzed the performance of the SGD optimizer under different learning 

parameters, and found that the proposed algorithm exhibited good recognition performance when 

the learning rate was set to [0.05, 0.07]. The performances of WCNN, MLP-CNN, SVM-ELM, and 

MCNN-DS were compared. Statistical results showed the following: (1) For the benchmark MNIST, 

the MCNN-DS exhibited a high recognition rate of 99.97%, and the time-cost of the proposed 

algorithm was merely 21.95% of MLP-CNN, and 10.02% of SVM-ELM; (2) Compared with 

SVM-ELM, the average improvement in the recognition rate of MCNN-DS was 2.35% for the 

benchmark HCL2000, and the time-cost of MCNN-DS was only 15.41%; (3) For the EnglishHand 

test set, the lowest recognition rate of the algorithm was 84.93%, the highest recognition rate was 

95.29%, and the average recognition rate was 89.77%. 
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1. Introduction 

The convolutional neural network (CNN) has attracted considerable attention because of its 

successful application in target detection, image classification, knowledge acquisition, and image 

semantic segmentation. Consequently, improving its performance is a research hotspot [1]. When 

solving the problem of image target detection, the central processing unit (CPU) controls the entire 

process and the data scheduling of the CNN, and the graphics processing unit (GPU) improves the 

convolution calculation in the neural network unit and the operation speed of the full-joint 

layer-merging cell [2]. Although the learning speed of the neural network has been improved, data 

conversion and scheduling between the CPU and the GPU lead to an increase in time-cost, and a 

weak GPU platform is prone to process interruption. In [3], an improved CNN based on the immune 

mechanism was obtained. Although a short recognition time of 108.501 s was obtained on the 

MNIST dataset, the recognition rate was merely 81.6%. In [4], the optimal network structure 

algorithm for the weighted value sharing of the multiple-input sigmoid activation function neural 
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network of a feature mapping model was obtained. In [5], different-sized neuron kernels were used 

to form a feature graph by introducing neuron elements into the largest collection layer, thus 

mapping neurons of different sizes to the collection layer. Although the method obtained a 96.33% 

recognition rate in the feature character set, it consumed considerable time. The convolutional neural 

network with fully connected Multilayer perceptron (MLP) (MLP-CNN) [6] improves the 

performance of the model by increasing the number of neural network features and uses a random 

gradient descent algorithm to optimize cross-entropy. 

Studies have been conducted to mitigate overfitting. In [7], an adjoint objective function was 

designed; additionally, an auxiliary listening mechanism and a normalized auxiliary listening 

strategy, based on the convolution filter and nonlinear activation function, were established. Then, a 

regularization strategy mechanism of the adjoint objective function was proposed to reduce this 

problem in CNNs. However, this method must use end-to-end supervised learning to fine-tune the 

regularization strategy, which requires additional time for the convolution filter and the nonlinear 

activation function. In [8], the network parameters were optimized using the Laplace–Beltrami 

operator, and good results were obtained in solving the weighted magnetic resonance image 

recognition problem. However, the overfitting problem caused by the small sample data needed to 

use supervised learning to fine-tune the training network. In [9], the CNN unsupervised learning 

function was used to introduce a bilinear interpolation into the CNN structure and the fine-grained 

aesthetic quality for predicting classification to achieve the automatic aesthetic evaluation of the 

photographs. Although the model addressed the incapability of the CNN in fully extracting the 

entire picture features of the high-quality photographs, a corresponding solution to the overfitting 

problem caused by the small digital photographic picture set was not proposed. In [10], a modified 

convolutional neural network was obtained by embedding a compute layer for local averaging and a 

quadratic feature extraction in each convolution layer, and its unique two-time feature extraction 

structure reduced the feature resolution. However, when the dataset scale was enlarged, the layer 

number of the CNN increased, which easily led to overfitting. The weighted CNN (WCNN) [11] 

uses the sigmoid function as the activation function to achieve the processing of the input signal by 

compounding multiple convolutions and pool layers. Meanwhile, the mapping relationship 

between the connecting layer and the output target is established, and the clustering algorithm is 

used to classify the features. In [12], two consecutive convolution operations were appended to each 

layer of the CNN, thereby increasing the recognition rate of image classification by doubling the 

number of feature extracts. However, this procedure has high memory requirements from the 

system. 

Focusing on the convergence speed of CNNs, reference [13] introduced multivariable 

maximum product and interpolation operator theory into the CNN structure using operator theory 

as the activation function. This study provided a detailed mathematical formula derivation but no 

application test results. Lee et al. [14] proposed deeply-supervised nets by introducing companion 

objective functions at all the hidden layers and an overall objective function at the output layer. The 

companion objective functions are usually an additional constraint/regularization within the 

learning process. Thus, the performance of this method relies on the design of a companion objective 

function, but , it is not easy to do that. 

The CNN technology provides a new method for image feature extraction. Although many 

scholars have attempted to improve the performance of the classic CNN [15], the following 

deficiencies in image feature extraction are still observed. 

• The input value, which is originally changed considerably in a wide range to output within the 

(0,1) range, can be squeezed when the sigmoid function is used as an activation function. When 

the training dataset is large, the sigmoid function easily causes gradient saturation and 

convergence is slowed. 

• In the CNN, the early stop and regularization strategies are often used to mitigate the 

overfitting problem. The dataset in the early stop strategy is divided into the training and test 

sets. The training set calculates the gradient and updates the connection and threshold. The test 

set evaluates the error. The training stop sign reduces the training set error and increases the 
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test set error. In the regularization strategy, the error objective function considers the factors 

that describe the complexity. When the number of learning layers in the CNN increases, the 

capability of these layers to solve the overfitting problem is reduced. 

• In the training and evaluation phases, the CNN adjusts the cumulative error of the minimum 

training set of the target gradient through the reverse propagation algorithm and the gradient 

descent strategy. Not every level of training evaluates the cumulative error but evaluates it after 

a given interval layer. Although the time lock decreases, the cumulative error increases. 

To address these problems, this study designs an improved activation function to increase the 

convergence rate by adding a dropout layer between the fully connected and output layers. This 

resolves the overfitting problem caused by the increasing number of iterations and introduces the 

stochastic gradient descent (SGD) optimizer to the gradient descent strategy to reduce the 

cumulative error and improve the training speed. Thus, a modified CNN algorithm based on 

dropout and the SGD optimizer (MCNN-DS) is proposed. 

The remainder of this paper is organized as follows. Section 2 presents some related works. Section 

3 is devoted to the description of the fundamentals of our proposed algorithms, and details the proposed 

algorithms. Section 4 presents the test environment, comparison algorithm, comprehensive experiments, 

and analysis. Finally, Section 5 concludes this paper and suggests some future research issues. 

2. Related Works 

2.1. Typical CNN Model 

CNN is a multilayer perceptron inspired by the visual neural mechanism [16]. Figure 1 shows a 

CNN with an input layer, a hidden layer, and an output layer. In the figure, the input layer generates 

the mean value and normalizes the data through PCA/whitening. The hidden layer is composed of 

the many neurons and connections between the input and output layers, and usually includes the 

convolution, excitation, and pool layers. If the CNN has multiple hidden layers, then multiple 

activation functions should be used. The commonly used activation functions include the ReLU and 

sigmoid functions. The output layer achieves the output results during the transmission of 

information after neuron connection, analysis, and balance. 

Fully 
connected 

layer

Output
 layer

Input layer
Hidden layer

 

Figure 1. Traditional convolutional neural network structure diagram. 

2.2. SGD Optimizer 

In the neural network setting, the high cost of running a back propagation over the full training 

set leads to a loss of optimization, which is a problem known to researchers. Batch methods such as 

the L-BFGS (Limited-memory Broyden Fletcher Goldfarb Shanno) [17] employ the full training set to 

obtain the later update to parameters at every iteration. Thus, the computing time for the entire 

training set can be very long on a single machine if the dataset is very big, and it is hard to 

incorporate new data in an online environment. 
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Stochastic Gradient Descent (SGD) [18] is a stochastic approximation of the gradient descent 

optimization and an iterative method for minimizing/maximizing an objective function, which 

struggles to discover the minima or maxima by iteration. SGD outperforms those bath methods by 

following the negative gradient of the objective after checking only a single or some training 

examples. In other words, when the number of training datasets is high, SGD works quickly because 

it does not use the whole training instances in each integration, which reduces the amount of 

calculation and improves the computing speed. Furthermore, SGD can dynamically adjust the 

estimation of the first- and second-order matrices of the gradient of each parameter according to the 

loss function. Thus, the risk of the model converging to the local optimum can be reduced. 

Considering those advantages, we speculate that the use of SGD can overcome the computing cost 

and lead to a fast convergence. 

Setting the dataset is represented as S. 𝑥𝑖 ∈ 𝑅𝑛  is a n-dimensional vector. 𝑦𝑖 ∈ {1, 𝑚 − 1} is the 

category of the ith training sample. Then, SGD can be detailed as follows [19]. 

Firstly, assign a zero vector to the weight value W1, and then randomly select a training sample 

(𝑥𝑖𝑡
, 𝑦𝑖𝑡

) from the whole training set, where 𝑖𝑡 ∈ {1, … , 𝑚} is the target of the selected training sample 

at the tth iteration. The objective function is 

min (𝑊) =
𝜆

2
‖𝑊‖2 + 𝑓(𝑊, (𝑥𝑖𝑡

, 𝑦𝑖𝑡
)) (1) 

Secondly, calculate the gradient according to Formula (1), and then the gradient can be 

expressed by 

∇𝑡= 𝜆𝑊𝑡 − 𝛼𝑡𝑦𝑖𝑡
𝑥𝑖𝑡

 (2) 

where α𝑡 = {
1, if y𝑖𝑡

⟨𝑊𝑡 ,𝑥𝑖𝑡
⟩ < 1

0, Otherwise
. 

The updated formula of matrix W is as follows. 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝑡𝛼𝑡  (3) 

where 𝜂𝑡 =
1

(𝜆𝑡)
. 

Then an updated weight matrix W based on Formulas (2) and (3) can be obtained by 

𝑊𝑡+1 = (1 −
1

𝑡
) 𝑊𝑡 + 𝑦𝑖𝑡

𝑥𝑖𝑡
 (4) 

In practice, Formula (4) is used to find minima or maxima by iteration. 

2.3. Dropout Layer 

Dropout is a model average [20]. It is the weighted average of the estimated or predicted results 

from different models. The combinatorial estimate and the combinatorial prediction are the most 

commonly used methods. The random selection in the dropout may ignore the hidden layer nodes 

in the training process, consequently, each training network is different, and each training can be 

regarded as a new model. In particular, the hidden nodes randomly appear according to certain 

probabilities. Any two hidden nodes are not guaranteed to appear in the model multiple times 

simultaneously; thus, the updating of weights does not depend on the interaction of the implicit 

nodes of the fixed relation and can avoid the possible dependence of several features on another 

particular feature. Figure 2 compares neural network units with and without dropout layers. The 

nodes in each layer in the middle of Figure 2a may be associated with any node in the other layer, 

and some of the nodes in Figure 2b may be randomly ignored. These ignored, hidden layer nodes 

can reduce the cost of calculation. Moreover, these nodes can weaken the coupling between the 

nodes to reduce overfitting, thus becoming conducive to discovering the most essential characteristics of 

the data. 
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(a) (b) 

Figure 2. Neural network unit connections with different mechanisms. (a) Without the dropout layer 

mechanism; (b) With the dropout layer mechanism. 

3. Modified CNN Based on Dropout and the SGD Optimizer 

3.1. Quadratic CNN Structure 

This study constructs the nine-layer CNN model, as shown in Figure 3, which contains an input 

layer, five hidden layers composed of convolution and pool layers, a fully connected layer, and an 

output layer (softmax). In this structure, a dropout layer comes after the fully connected layer. The 

probability of the neuron node in the test is p = 0.5 in the training phase, and p = 1 in the trial phase. 

The activation functions of the layers, except the output, are all rectified linear unit (Leaky ReLU) 

functions. The two-dimensional convolution operation is carried out by Conv2d function. The 

calculation illustration is shown in Figure 4. 

Input 
28 28 
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Figure 3. Quadratic convolution neural network structure model. 

 

Figure 4. Illustration of the two-dimensional convolution operation process. 

The pooling operation (max pooling) is calculated using Formula (5). 
( 1) ( ) ( )

,( * )l l l l

j j i j i

j

x f x w b  , (5) 
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where w(l)i,j represents the weight of the i neuron in the j class of the l layer; bi represents the offset of 

the i class; * represents the convolution operation; ( )l

jx  represents the output of j neurons in the l 

layer convolution; ( 1)l

jx   represents the output of the j  neuron in the 1l   layer, i.e., the input 

data for the l  layer; and ( )f  represents the activation function of the model that has nonlinear 

characteristics. 

3.2. Activation Function Based on Leaky ReLU 

A traditional CNN often uses nonlinear functions, such as Tanh [21], ReLU [22], and Sigmoid 

[4], shown in Figure 5, to become an activation function. 

The sigmoid function, which maps a real number input to the [0,1] scope, encounters two 

problems as an activation function. (1) Gradient saturation: When the function activation value 

approaches the extremum 0 or 1, the gradient of the function tends to become 0. For the cost of the 

reverse propagation of the l layer neurons )(l , the formula is )(*)( ')1()()( l

j

lTll xfw   , where 

(w(l))T represents the weight of the l neurons in the t layer. When the neuron reverse propagation cost 

in the l + 1 layer )1( l  approaches 0, the computed gradient also approaches 0 to achieve the goal of 

not adjusting the update parameters. (2) Constantly positive weight: The average value of the 

function output is not 0, which causes the neuron layer to yield the signal input of the nonzero mean. 

This activity makes the data of the input neuron positive. Consequently, the weight becomes 

positive. These problems result in a slow parameter convergence and affect training efficiency and 

the model recognition effect. The tanh function can map a real input into the [−1,1] range but it is 

actually a variant of the sigmoid function, i.e., 1)2(2)tanh(  xsigmoidx . Moreover, the tanh 

function also exhibits the gradient saturation problem. 

The ReLU function f(x) = max(0, x) (x ∈ (0, +∞)) (Figure 5c) has the following features. (1) 

Unsaturated gradient: The formula for the gradient is }0{ xI . Therefore, the problem of gradient 

dispersion in the reverse propagation process is alleviated, and the parameters in the first layer of the 

neural network can be updated rapidly. (2) Low computational complexity: The ReLU function sets the 

thresholds, i.e., if, x < 0 then f(x) = 0; if x > 0, then f(x) = x. Unfortunately, ReLU units can be fragile during 

training and can “die” [23]. A “dead” ReLU always outputs the same value. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Nonlinear function. (a) Sigmoid function; (b) Tanh function; (c) ReLU function; (d) Leaky 

ReLU function. 
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The Leaky ReLUs activation function [24] with a small positive gradient for negative inputs was 

designed to solve the “dead” problem of ReLU. The formula of the Leaky ReLU is 𝑓 =

𝑚𝑎𝑥 (0.01𝑥, 𝑥), which has all the advantages of the ReLU activation function but without the “dead” 

problem. 

This study uses the Leaky ReLU function as the activation function because of its advantages to 

solve the gradient saturation problem and improve convergence speed. 

3.3. Method Based on Dropout and SGD for Preventing Overfitting  

The dropout is introduced into the CNN to improve the normalization capability of the 

network. Any neuron in a neural network is temporarily discarded by the probability p, and the 

formula is as follows: 

( ) ( 1) ( ) ( ) ( 1) ( )

, ,

, ,

( 1| )

exp( ) / (1 exp )
a a

a

l l l l l l

i j j i i j j i

i j B i j B

p p x

w x b w x b 

 

 

      
 (6) 

To train the model, any indicator that makes the model “bad” is defined as a cost and cross 

entropy is used as the cost function ( )y  , which is defined as follows: 

( ) log( )i i

i

y   
  , 

(7) 

where   is the predicted probability distribution and '  is the actual distribution. In the model 

training phase, the SGD optimizer is used to optimize the cross entropy at different learning rates. 

3.4. Modified Convolutional Neural Network Based on Dropout and the SGD Optimizer 

On the basis of the design of the CNN structure, the Leaky ReLU activation function, and the 

overfitting prevention method that is based on dropout and the SGD, the Modified Convolutional 

Neural Network based on Dropout and the SGD Optimizer (MCNN-DS) is developed, which has 

the following main processes. 

• Step 1: Pretrain the filter, and initialize the filter size pixel as P1 × P2. 
• Step 2: Enter the image dataset for training. Process the image of the training set into the same 

picture as the filter size, and read the data to form the image data matrix X. 

• Step 3: Initialize the weight w(l)i,j and bias bi and invoke the kernel function def Kernel() provided 

by TensorFlow to initialize parallel operations. 

• Step 4: The Conv2d is used for two-dimensional convolution operation to obtain the first layer 

convolution feature matrix X(1). 

• Step 5: The first layer convolution feature matrix X(1) is used as the input data of the pool layer. 

Use Formula (5) for the pool operation to obtain the feature matrix X(2). 

• Step 6: Use the SGD optimizer function expressed in Formula (4) to derive the learning rate of 

the top-down tuning optimizer, and use the weights in TensorFlow and the update-biased 

interface to update the weight wi and the bias bi, thus obtaining the feature matrix X(3). 

• Step 7: Generate the second convolution following Steps 4, 5, and 6 to derive the feature matrix 

X(4). 

• Step 8: Merge the feature matrix X(4) into a column vector as the input of the neuron at the 

full-joint layer, multiply it with the weight matrix plus the bias, and then use the Leaky ReLU 

activation function to obtain the eigenvector b1. 

• Step 9: Use the eigenvector of the fully connected stratum as the input of the dropout layer, 

compute the output probability of the neuron in the dropout layer using Formula (6), and the 

eigenvector b2 is obtained. 

• Step 10: Use the eigenvector b2 as the input and the Softmax classifier [25] output to achieve the 

results. 
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Of note, in the convolution feature calculation for step 4 and step 5, the step length is 2 and the 

margin is set to 0. The pooling operation uses a 3 × 3 matrix on the basis of a policy previously 

presented in the literature [26] to ensure that the image input and output after feature extraction 

have the same size. The Leaky ReLU activation function is used in each step to activate the neuron. 

4. Experiment and Analysis 

4.1. Test Environment 

The Python programming language is used in a 64-bit Ubuntu 16.04.4 implemented with the 

quadratic CNN learning algorithm. TensorFlow 1.5.0 is installed to evaluate the performance of the 

designed algorithm. Under various SGD learning rates, the performance of the CNN algorithm 

based on dropout and the SGD optimizer is tested, analyzed, and compared with that of four other 

algorithms. The results are measured on the same model computers purchased in multiple batches 

of the same batch and configured as follows: NVIDIA, GEFORCE GTX1080, with 8 GB internal 

storage. 

4.2. Comparison Algorithm 

The details of the four algorithms used for comparison are as follows. 

(1) Algorithm 1: weighted CNN (WCNN) [11]. This algorithm uses a sigmoid function as the 

activation function through compounded multiple convolutions and pooling layers to achieve 

input signal processing. Simultaneously, the mapping relationship between the connection 

layer and output target is established and the clustering algorithm is used to classify the 

feature. 

(2) Algorithm 2: convolutional neural network with fully connected Multilayer perceptron (MLP) 

(MLP-CNN) [6]. This algorithm improves model performance by increasing the characteristic 

number of the neural networks and using the stochastic gradient descent algorithm to optimize 

the cross entropy. 

(3) Algorithm 3: extreme learning machine(ELM)for multi-classification called SVM-ELM(ELM 

optimized with support vector machine) [27]. This calculation combines the fast learning 

machine and SVM, reduces the number of hidden nodes as a class number, and optimizes the 

linear decision function of each node through the SVM. 

The structures of WCNN, MLP-CNN, and SVM-ELM are shown in Figure 6. 
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Figure 6. Convolution neural network structure model of comparison algorithms. (a) WCNN; (b) 

MLP-CNN; (c) SVM-ELM. 
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4.3. Datasets and Settings 

The dataset used in the test includes three categories: MNIST handwritten numeral sets, 

HCL2000 handwritten Chinese character datasets, and EnglishHand handwritten alphabet datasets, 

all of which are grayscale images, as shown in Figure 7 (Table 1). MNIST was established by the 

National Institute of Standards and Technology for the study of handwritten numeral recognition 

and contains 60,000 training samples and 10,000 test samples, each with 28 px × 28 px BMP images. 

HCL2000 is a national standard database of off-line handwritten Chinese characters established by 

the Beijing University of Posts and Telecommunications, funded by the National 863 Program, and it 

collects 1300 written handwritings for 3755 first-level Chinese characters to form 1300 × 3755 

samples. Each Chinese character has a sample of a 64 px × 64 px two-valued pixel. In this 

experiment, 3000 Chinese characters are randomly selected to form the training or test set, which is 

divided into 10 categories. The dataset is then adjusted to 28 px × 28 px size, and the pixel is 

normalized to [0,1]. EnglishHand is a public, handwritten alphabet dataset downloaded from the 

network (https://pan.baidu.com/s/1jJPtPSa). It mainly consists of 2860 lowercase letters and 2860 

uppercase data samples, which are divided into 26 categories. 

The 60,000 test samples and 10,000 training samples selected from the MNIST dataset are 

divided into 10 categories, i.e., 0–9 for a total of 10 characters corresponding to the training and test 

sets. The 2000 test samples and 1000 training samples selected from the HCL2000 dataset are 

divided into 10 categories, i.e., each Chinese character corresponds to the training and the test sets. 

The 1520 test samples and 5200 training samples selected from the EnglishHand dataset are divided 

into 26 categories, i.e., each alphabet character corresponds to the training and test sets. The volume 

kernel size of the convolution layer is 7 × 7 and 5 × 5, the pool factor is 3 × 3, the maximum number 

of iterations is 20,000, and the number of experiments is 10 times. The dropouts in the training and 

test phases have probabilities of p = 0.5 and p = 1, respectively. 

Table 1. Test and training datasets. 

Datasets Size of Training Set Size of Test Set Number of Image Category 

MNIST 60,000 10,000 10 

HCL2000 2000 1000 10 

EnglishHand 4200 1520 26 

 

  

(a) (b) 

 
(c) 

Figure 7. Sample of handwriting character images. (a) MNIST dataset; (b) HCL2000 dataset; (c) 

EnglishHand dataset. 
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4.4. Experimental Results and Analysis of Recognition Performance under Different Learning Rates 

According to the experimental settings presented in the previous section, a different learning 

rate is provided to test the performance of the algorithm and determine the influences of the 

various learning rates of the SGD optimizer on the performance of the algorithm. The SGD 

optimizer minimizes the cross entropy learning rate, set to 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 

and 0.10. The statistical results and the boxplot of the recognition rate under each of the 10-time 

learning rates are shown in Figures 8 and 9. 

 

Figure 8. Recognition value under different stochastic gradient descent (SGD) learning rates. 

  
(a) (b) 

 
(c) 

Figure 9. Boxplot of the recognition rate obtained by MCNN-DS under different SGD learning rates. 

(a) MNIST dataset; (b) EnglishHand dataset; (c) HCL2000 dataset. 

For the three datasets tested, the recognition rate of the model increases with the learning rate 

and the learning and recognition rates show a positive correlation when learning is in the [0.02, 

0.05] range (Figure 8). When the learning rate distribution of the SGD optimizer is 0.05–0.07, the 

recognition rate of the model is in a relatively stable state. At this time, the recognition rate of the 

0

0.2

0.4

0.6

0.8

1

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
v
er

ag
e 

re
co

g
n

it
io

n
 r

at
e 

SGD learning rate

EnglishHand

HCL2000

MNIST

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SGD learning rate

R
ec

o
g

n
it

io
n

 r
at

e



Algorithms 2018, 11, 28 11 of 14 

model shows a weak growth trend with the learning rate. When the learning rate is increased to 

more than 0.06, the recognition rate decreases significantly with any increase in learning rate. In 

particular, when the learning rate reaches 0.1, the recognition rate reaches the lowest level of 

approximately 20%. According to Figure 9, when the SGD learning rate is 0.06, the midline of the 

box diagram is higher and the rectangular area is the smallest, and it has no outliers. Analysis and 

testing based on three data sets show that tests conducted on this dataset show that the 

introduction of the SGD optimizer can affect the recognition rate. When the learning rate is 

0.05–0.07, the performance of the system is enhanced. In the comparison experiment presented in 

the subsequent section, the learning rate of the SGD optimizer is set to 0.06. 

4.5. Comparison and Analysis of the Three Kinds of Algorithms 

The proposed algorithm runs 10 times for each test set. The recognition rates of the algorithms 

are shown in Table 2 and Figure 10. WCNN and MLP-CNN have no test results for the HCL2000 

dataset. Thus, their data are not reflected in the figure. Table 3 is the time overhead of each algorithm 

on the test set. It is worth noting that because the algorithm WCNN does not give the result of the 

time overhead test, their data are not reflected in Table 3. 

For the MNIST test set, the averages of WCNN, MLP-CNN, SVM-ELM, and the 10 operations of 

the proposed algorithm under the lowest recognition rate are 95.11%, 97.82%, 89.5%, and 97.36%, 

respectively (Table 2). In this study, the performance of the proposed algorithm ranks first, 

MLP-CNN ranks second, and SVM-ELM exhibits the worst performance. Under the highest and 

average recognition rates, the performance of the proposed algorithm ranks first, that of WCNN 

ranks second, and that of MLP-CNN shows the worst performance. According to the WCNN and 

MLP-CNN models and the performance of the proposed algorithm in feature recognition, our model 

is better than SVM-ELM in feature extraction and fusion even when it is the worst. Table 2 shows 

that the recognition rate of the proposed algorithm is the best, reaching a maximum of 99.97%. 

Furthermore, the average recognition rate of the MCNN-DS algorithm in the three databases is 98.4, 

90.98, and 89.77, with a standard deviation of 0.0084, 0.0396, and 0.0280, respectively. The standard 

deviation is small and average recognition accuracy is high, which indicates that the MCNN-DS 

algorithm can stably extract abundant feature information. The algorithm also has the same 

advantage in terms of time to unlock precisely because of the implementation of the algorithm 

parallelization. Furthermore, the time-cost of this algorithm is merely 21.95% of the MLP-CNN 

algorithm, and 10.02% of the SVM-ELM algorithm. 

Table 2. Algorithm recognition performance comparison. 

Dataset Metric WCNN [11] MLP-CNN [6] SVM-ELM [27] MCNN-DS 

MNIST 

The lowest recognition rate (%) 95.11 97.82 89.5 97.36 

The highest recognition rate (%) 95.71 98.96 91.35 99.97 

The average recognition rate (%) 95.36 96.32 90.26 98.43 

Standard deviation of recognition rate -- -- -- 0.0084 

HCL2000 

The lowest recognition rate (%) -- -- 83.60 85.42 

The highest recognition rate (%) -- -- 90.00 93.99 

The average recognition rate (%) -- -- 88.63 90.98 

Standard deviation of recognition rate -- -- -- 0.0396 

EnglishHand 

The lowest recognition rate (%) -- -- -- 84.93 

The highest recognition rate (%) -- -- -- 95.29 

The average recognition rate (%) -- -- -- 89.77 

Standard deviation of recognition rate -- -- -- 0.0280 

Table 3. Statistic results of time overhead. 

Algorithms 
Time/ms 

MNIST HCL2000 EnglishHand 

MLP-CNN 290,491 -- -- 

SVM-ELM 132,634 316,372 -- 

MCNN-DS 13,236 20,531 21,617 
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Compared with the SVM-ELM algorithms, this algorithm has an advantage over the HCL2000 

test set. The lowest recognition rate of the proposed model is 1.82% higher than that of SVM-ELM. 

The highest recognition rate of the algorithm is 3.99% higher than that of SVM-ELM. The average 

recognition rate of the algorithm is 2.35% higher than that of SVM-ELM. The time-cost of this 

algorithm is merely 15.41% of the SVM-ELM. For the EnglishHand test set, the lowest recognition 

rate of this algorithm is 84.93%, the highest recognition rate is 95.29%, the average recognition rate is 

89.77%, and its time overhead is 21.617 s. In fact, the time of computations strongly rely on the 

number of layers and connections, and SGD follows the negative gradient of the objective after 

checking only a single or some training examples. It is because the change of the structure, the use of 

the Leaky ReLU activation function, and the overfitting prevention method based on Dropout and 

SGD result in the acceleration. 

 

Figure 10. Boxplot of the recognition rate obtained by MCNN-DS. 

In summary, the algorithm proposed in this study is robust and superior to the algorithms used 

for comparison in terms of recognition, time-cost, and rate. 

5. Conclusions 

To improve the accuracy of feature extraction while reducing time-cost, this study investigates 

the structure of the CNN, the overfitting problem, and combines dropout and the SGD optimizer 

with the CNN. An improved CNN algorithm based on dropout and the SGD optimizer is proposed, 

and parallelization is achieved using TensorFlow. The use of SGD leads the MCNN-DS to work 

faster because it does not use the whole training instances in each integration and can dynamically 

adjust the estimation of the first- and second-order matrices of the gradient of each parameter 

according to the loss function, which can reduce the amount of calculations and improve the 

computing speed. Furthermore, by improving the activation function, the algorithm avoids the 

problem of the neuron node output becoming 0, improves recognition accuracy, and reduces 

time-cost. As the present test dataset is limited, future studies need to use additional test sets to 

improve the performance of the algorithm. Moreover, the algorithm should be combined with the 

service robot system [28] established by the research group to conduct application research and to 

develop and improve model robustness. In addition, reducing the number of neurons in the CNN 

can lead to the reduction of computations at the working and testing stages; however, the dropout 

algorithm used at the learning stage increases the time of processing. We focused on improving the 

recognition accuracy at the beginning of the research. The time consumption of both stages requires 

further investigation. 
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