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Abstract: The Continuous Wavelet Transform (CWT) is an important mathematical tool in signal
processing, which is a linear time-invariant operator with causality and stability for a fixed scale and
real-life application. A novel and simple proof of the FFT-based fast method of linear convolution is
presented by exploiting the structures of circulant matrix. After introducing Equivalent Condition
of Time-domain and Frequency-domain Algorithms of CWT, a class of algorithms for continuous
wavelet transform are proposed and analyzed in this paper, which can cover the algorithms in
JLAB and WaveLab, as well as the other existing methods such as the cwt function in the toolbox of
MATLAB. In this framework, two theoretical issues for the computation of CWT are analyzed. Firstly,
edge effect is easily handled by using Equivalent Condition of Time-domain and Frequency-domain
Algorithms of CWT and higher precision is expected. Secondly, due to the fact that linear convolution
expands the support of the signal, which parts of the linear convolution are just the coefficients of
CWT is analyzed by exploring the relationship of the filters of Frequency-domain and Time-domain
algorithms, and some generalizations are given. Numerical experiments are presented to further
demonstrate our analyses.

Keywords: circulant matrix; continuous wavelet transform; linear convolution; circular convolution; FFT

1. Introduction

In recent years, different Time-frequency representations, such as, empirical mode decomposition [1],
wavelet transform [2] and its variants, empirical wavelet transform [3,4], synchrosqueezed wavelet
transforms [5], have been used for analyzing nonlinear and non-stationary signals. To name only a few,
the method of fused empirical mode decomposition and wavelets is applied to detection-location
of damage in a truss-type structure [6]; Wavelet transform is used for the pattern recognition for
diagnosis, condition monitoring and fault detection [7–9]. It is also used to design an algorithm for
Brain-computer interfacing [10], to detect the exact onset of chipping of the cutting tool from the
workpiece profile [11], to determine the length of piles [12]; Synchrosqueezed wavelet transform
is used for global and local health condition assessment of structures [13], for modal parameters
identification of smart civil structures [14].

This paper gives priority to the computation of continuous wavelet transform (CWT) for
Morlet-type wavelets. However, for this type of wavelets, it is not possible to use a multiresolution
framework for the computation of CWT [15]. Michael Unser [16] used Exponentials or B-spline
window to approximate Gabor window, which can achieve O(N) complexity per scale. Another kind
of method for the computation of CWT with Morlet-type wavelets concerns directly discretizing the
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integral expression of Wavelet transform. These methods allow us to use arbitrary values for the
scale variable, and require the explicit expression of wavelet function and cannot deal with those
wavelets without analytic expressions such as Daubechies wavelets [17]. This kind of method include
Time-domain methods [17] and Frequency-domain methods [18].

Frequency-domain methods for CWT are also widely used in the freewares such as JLAB
(available online http://www.jmlilly.net), Wavelab (available online http://www-stat.stanford.edu/$\
sim$wavelab), which can achieve satisfactory precision while the edge effect, defined in [18], may occur
and the complexity of those methods is O(N log(N)) where N is the length of the signal.

The function cwt in wavelet toolbox of MATLAB, which has poorer precision than
Frequency-domain methods mentioned above, is a representation of the Time-domain method [17].
For the details of the comparison of the different methods, we refer to [17].

The computation of linear convolution can be realized by using the circular convolution, while the
computation of circular convolution can be computed by using the FFT-based fast method [19]. In this
paper, a novel and simple method is given to prove the FFT-based fast method of linear convolution by
exploiting the structures of circulant matrix. After introducing Equivalent Condition of Time-domain
and Frequency-domain Algorithms of CWT, a class of algorithms for continuous wavelet transform
are proposed and analyzed, which can cover the algorithms in JLAB and WaveLab, as well as the other
existing methods such as the cwt function in the toolbox of MATLAB. In this framework, two theoretical
issues for the computation of CWT are analyzed.

Firstly, by using Equivalent Condition of Time-domain and Frequency-domain Algorithms of
CWT to design Frequency-domain Algorithm, the edge effect, defined in [18], can be avoided. To be
specific, in [18], the time series is padded with sufficient zeroes to bring the total length N up to the
next-higher power of two, thus limiting the edge effects and speeding up the Fourier transform. In fact,
the same number of zeros is padded for all scales in [18], which may cause some troubles, for example,
increasing the amount of data to process, and consequently the computational complexity. In this
article, the time series (the data) is padded with 2aT zeros while a is the scale. These two zero padding
methods are compared in Remark 2 of this paper.

Secondly, due to the fact that linear convolution expands the support of the signal, which parts of
the linear convolution are just the coefficients of CWT is analyzed by exploring the relationship of the
filters of Frequency-domain and Time-domain algorithms (see Theorem 4), and some generalizations
are given (see Theorem 5).

This paper is organized as follows. Section 2 gives some definitions and theorems concerning
circulant matrix and linear convolution. Section 3 analyzes algorithms of continuous wavelet transform.
Section 4 presents numerical experiments to demonstrate our results and finally, we end this paper
with conclusions and discussions in Section 5.

2. Primary Definitions and Theorems

Definition 1. Circulant matrix: An N × N circulant matrix C takes the form [20,21]

C =



c0 cN−1 · · · c2 c1

c1 c0 cN−1 c2
... c1 c0

. . .
...

cN−2
. . . . . . cN−1

cN−1 cN−2 · · · c1 c0


(1)

A circulant matrix is fully specified by one vector, c, which appears as the first column of C.
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Definition 2. Discrete Fourier transform(DFT): The sequence of N complex numbers [x0, x1, · · · , xN−1]
T

is transformed into an N-periodic sequence of complex numbers [22]

Xk =
N−1

∑
n=0

xnω−n
k , k = 0, 1, · · · , N − 1, (2)

where i =
√
−1, ωk = e

2πki
N is the N-th root of unity.

Equation (2) can be written as 
X0

X1
...

XN−1

 = FN


x0

x1
...

xN−1

 (3)

where FN is a N × N matrix, defined as

FN(k, j) = ω
−(j−1)
k−1 , k, j = 1, 2, · · · , N. (4)

It is easy to verify that

FN
−1 =

1
N

FN
∗ (5)

where “∗” means conjugate transposition. Then, the inverse discrete Fourier transform (IDFT) is
given as 

x0

x1
...

xN−1

 =
1
N

FN
∗


X0

X1
...

XN−1

 (6)

Theorem 1. References [20,21] The matrix C defined in (1) can be diagonalized by the DFT matrix FN, namely,

C = FN
−1diag(FNc)FN (7)

where c is the first column of C, i.e., c = [ c0 c1 · · · cN−1 ]T.

Proof. It is easy to verify that the normalized eigenvectors of C are given by

vj =
1√
N
(1, ωj, ω2

j , · · · , ωN−1
j )T, j = 0, 1, · · · , N − 1, (8)

where ωj = e
2πij

N with i =
√
−1 is the N-th root of unity. The corresponding eigenvalues are then

given by

λj = c0 + cN−1ωj + cN−2ω2
j + · · ·+ c1ωN−1

j (9)

= c0ω−0
j + cN−1ωN

j ω
−(N−1)
j +

cN−2ωN
j ω
−(N−2)
j + · · ·+ c1ωN

j ω−1
j

=
N−1

∑
k=0

ckω−k
j , j = 0, 1, · · · , N − 1.
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From (2), (3) and (9), we have
λ0
...

λN−1

 = FN


c0
...

cN−1

 = FN c (10)

Using {vj}N−1
j=0 defined in Equation (8) as column vectors to form a N × N matrix UN

UN = [v0, v1, · · · , vN−1], (11)

then we have

C = UN


λ0

. . .

λN−1

 UN
∗. (12)

Furthermore, we have UN
∗ = 1√

N
FN, UN =

√
NFN

−1 from (4), (5) and (11). Then we have

C = FN
−1diag(FNc)FN (13)

Definition 3. Linear convolution [23]: A time-invariant linear operator L can be represented as a linear
convolution. To be specific, we denote by δ[n] the discrete Dirac

δ[n] =

1 if n = 0

0 if n 6= 0
.

Any signal f [n] can be decomposed as a sum of shifted Diracs:

f [n] =
+∞

∑
p=−∞

f [p]δ[n− p].

Let Lδ[n] = h[n] be the discrete impulse response. Linearity and time invariance implies that

g[n] = L f [n] =
∞

∑
p=−∞

f [p]h[n− p] :def
= f ? h[n], (14)

where “?” represents linear convolution.

Definition 4. Causality and Stability [23]: A discrete filter L is causal if L f [p] depends only on the values
of f [n] for n ≤ p. The convolution formula (14) implies that h[n] = 0 if n < 0.

A discrete filter L is stable if any bounded input signal f [n] produces a bounded output signal L f [n].
One can verify that the filter is stable if and only if h ∈ l1(Z).

Proposition 1. Assume that the length of f and h are finite. To be specific, If f = [ f0, f1, . . . , fn−β−1]
T,

and h = [h0, h1, . . . , hβ]
T, then the linear convolution of f and h defined in (14) can be written as

g = f ? h = H f (15)

where H ∈ Rn×(n−β), and
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H =



h0

h1 h0
...

. . .

hβ
. . .

. . . h0
. . . h1

. . .
...

hβ



. (16)

Proof. We refer the reader to [19] for details.

Suppose we wish to compute the polynomial product c(x) = a(x) · b(x), the ordinary product
expression for the coefficients of c(x) involves a linear convolution.

Definition 5. Circular convolution [19]: The circular convolution of a signal {x[k]}N−1
k=0 with a signal

{c[k]}N−1
k=0 is defined as a matrix vector multiplication as follows.

y :def
= x ~ c = C ·


x[0]
x[1]

...
x[N − 1]

 (17)

where C is defined in equation (1), and “~” represents circular convolution.

Proposition 2. The computation of circular convolution can be realized by using FFT-based fast method.
In other word, Equation (17) can be written as

y = FN
−1diag(FNc)FNx. (18)

Proof. The matrix involved in (17) is a circulant matrix, thus (18) is obtained by using Theorem 1.

The equivalent condition of circular convolution and linear convolution will be given in the
following theorem.

Theorem 2. Assume f = [ f0, f1, . . . , fn−β−1]
T, h = [h0, h1, . . . , hβ]

T, f̃ = [ f0, f1, . . . , fn−β−1,
β

0, · · · , 0︸ ︷︷ ︸]T,

h̃ = [h0, h1, . . . , hβ,
n−β−1

0, · · · , 0︸ ︷︷ ︸]T, then linear convolution g = f ? h of f and h defined in (14) can be computed as

circular convolution f̃ ~ h̃ of f̃ and h̃, namely,

g = f ? h = f̃ ~ h̃ = FN
−1(FN h̃. ∗ FN f̃ ). (19)

where FN, FN
−1 are defined by (4), (5) respectively; “.∗”means componentwise product of two vectors.

Proof. From Proposition (1), we get g = H f , where H ∈ Rn×(n−β) is defined in (16). Now extend H
to a circulant matrix [21]



Algorithms 2018, 11, 24 6 of 17

C = [H, Ĥ] =



h0 hβ h1

h1 h0
. . .

...
...

. . . hβ

hβ
. . .

. . . h0
. . . h1 h0

. . .
...

...
. . .

hβ hβ−1 · · · h0



, (20)

thus the first column of C is h̃. Therefore,

g = H f = [H, Ĥ] f̃ = C f̃ = f̃ ~ h̃ = FN
−1(FN h̃. ∗ FN f̃ )

by using Definition 5 and Proposition 2.

From Theorem 2, the algorithm of linear convolution of g = f ? h is given as follows
(See Algorithm 1).

Algorithm 1: FFT-based fast method for linear convolution.
Input:
the signal, f [k], k = 0, 1, · · · , n− β− 1
the signal, h[k], k = 0, 1, · · · , β
Output:
the linear convolution of f and h, g[k], k = 0, 1, · · · , n− 1
1. Set n = length( f ) + length(h)− 1;
2. Appending an array of zeros to the end of h to obtain h̃ so that the length of h̃ is n.
3. Appending an array of zeros to the end of f to obtain f̃ so that the length of f̃ is n
4. g = i f f t( f f t(h̃). ∗ f f t( f̃ ))

Additionally, the asymptotic time complexity is O(nlog2(n)) for Algorithm 1. Note the condition
n = length( f ) + length(h)− 1 plays a pivotal role in the equivalence of linear convolution and circular
convolution. This condition will also be used in the following part of this paper.

Definition 6. Equivalent Condition of Linear Convolution and Circular Convolution: Let f , h, f̃ , h̃
be defined in Theorem 2. The condition length(h̃) = length( f̃ ) = length( f ) + length(h) − 1 is called
Equivalent Condition of Linear Convolution and Circular Convolution.

3. A Class of Algorithms for Continuous Wavelet Transform

3.1. Time-Domain Algorithm for CWT

Definition 7. Continuous wavelet transform: The continuous wavelet transform of a function f (t) at a
scale a ∈ R+ and translational value b ∈ R is expressed by the following integral [17]

W f (a, b) :def
=

∫ +∞

−∞
f (t)

1
a

ψ̄(
t− b

a
)dt (21)

where ψ(t) is a continuous function called the mother wavelet and the overline represents the operation of
complex conjugate.
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For real-life applications, the length of f (t) is finite and the support of ψ(t) is compact.
Without loss of generality, assume the sampling rates of the signal and the wavelet are equal to 1,
then Equation (21) can be written as

Wa
f [m] =

+∞

∑
k=−∞

f (k)
1
a

ψ̄(
k−m

a
), where m ∈ Z. (22)

Assume the sampled signal is { f [i]}N−1
i=0 and the support of the mother wavelet ψ(t) is [−T, T].

If define
ψ̃a(t) :def

=
1
a

ψ̄(
aT − t

a
) (23)

then the support of ψ̃a(t) is [0, 2aT]. Now, we can get the following result.

Theorem 3. Assume the length of f (t) is finite and the support of ψ(t) is compact, and the sampling rates of
the signal and the wavelet are equal to 1, then CWT of { f [i]}N−1

i=0 can be written as

Wa
f [m] =

N−1

∑
k=0

f (k)ψ̃a(m + aT − k) = f ? ψ̃a[m + aT], where m = 0, 1, · · · , N − 1, (24)

where we assume aT is an integer for the convenience of analysis. Furthermore, the corresponding filter is causal
and stable.

Proof. By using Proposition 1 and Equations (23) and (24) is deduced from (22). Furthermore, define

ha[i] = ψ̃a(i), i ∈ Z (25)

then the discrete filter {ha[i]}i∈Z is causal and stable since ha[i] = ψ̃a(i) = 0 if i < 0 and ha ∈ l2(Z).
Furthermore, Equation (24) can be written as

Wa
f [m] = f ? ha[m + aT], where m = 0, 1, · · · , N − 1. (26)

In brief, {Wa
f [i]}

N−1
i=0 are just the { f ? ha[i]}aT+N−1

i=aT while { f ? ha[i]}2aT+N−1
i=0 can be implemented

with linear convolution [17]. From Algorithm 1, we can get the algorithm of CWT (see Algorithm 2).

Algorithm 2: Time-domain fast algorithm for CWT.
Input:
the signal, f [n], n = 0, 1, · · · , N − 1
mother wavelet, ψ(t)
scale, a
T, where [−T, T] is the support of ψ(t).
Output:
wavelet coefficients, Wa

f [i], i = 0, 1, · · · , N − 1

1. Let f̃ = [ f0, f1, . . . , fN−1,
2aT

0, · · · , 0︸ ︷︷ ︸]T;

2. Let ψ̃a(t) = 1
a ψ̄( aT−t

a ), where the overline represents the operation of complex conjugate;
3. Let ha[n] = ψ̃a(n), n = 0, 1, · · · , 2aT;

4. Let h̃a = [ha[0], ha[1], . . . , ha[2aT],
N−1

0, · · · , 0︸ ︷︷ ︸]T;

5. tema[i] = i f f t( f f t( f̃ ). ∗ f f t(h̃a)), i = 0, 1, · · · , 2aT + N − 1;
6. Wa

f [i] = tema[aT + i], i = 0, 1, · · · , N − 1.
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3.2. Frequency-Domain Algorithm for CWT

The algorithm can be further optimized by taking advantage of the analytic expression of ψ̂(ω),
the Fourier transform of the mother wavelet ψ(t). In fact, the wavelet transform defined in (21) can
also be written as a frequency integration by applying the Fourier Parseval formula [23].

W f (a, b)=
1

2π

∫ +∞

−∞
f̂ (ω) ¯̂ψ(aω)eibωdω (27)

Assume the sampled signal is { f [n]}N−1
n=0 . Discretizing (27) and considering the periodic property

of discrete Fourier transform yields

Wa
f [n] =

1
M

M
2

∑
k=−M

2 +1

f̂ (
2π

M
k) ¯̂ψ(

2π

M
ka)ei 2π

M kn

=
1
M

M−1

∑
k=0

f̂ (
2π

M
k) ¯̂ψ(

2π

M
ka)ei 2π

M kn,

where n = 0, 1, · · · , M− 1. (28)

It is seen by comparing (28) and (18) that (28) represents a circular convolution. By considering
Equivalent Condition of Linear Convolution and Circular Convolution, It is reasonable to let

M = 2aT + N. (29)

In this case, the values of { f̂ ( 2π
M k)}M−1

k=0 can be computed as the discrete Fourier transform of

f̃ = [ f0, f1, . . . , fN−1,
M−N

0, · · · , 0︸ ︷︷ ︸]T. As for the computation of { ¯̂ψ( 2π
M ka)}M−1

k=0 , we can make use of the

analytic expression of ψ̂(ω). For example, the Morlet wavelet is defined as [24]

ψ(t) :def
=

√
2

πσ2 e−
t2

2σ2 eiηt, (30)

then
¯̂ψ(ω) = ψ̂(ω) = 2e−

σ2(ω−η)2
2 , (31)

where σ2 is shape parameter, and η is center frequency. Furthermore, the Morlet wavelet is
approximately analytic and therefore ¯̂ψ( 2π

M ka) ≈ 0 for k < 0. So

¯̂ψ(
2π

M
ka) ≈ 0, for k >

M
2

, (32)

by the periodic property of discrete Fourier transform. Equation (32) will be used to design algorithm
of CWT (see the 4th–6th steps of Algorithms 3).

Definition 8. Equivalent Condition of Time-domain and Frequency-domain Algorithms of CWT:
M = 2aT + N in Equation (29) is called Equivalent Condition of Time-domain and Frequency-domain
Algorithms of CWT.

Remark 1. In freeware such as Wavelab, the parameter M in Equation (29) takes value N, where N is the
length of signal. In this case, { f̂ ( 2π

M k)}M−1
k=0 can be obtained as the discrete Fourier transform of the data.

Furthermore, the length of the result of ifft is just N. However, the method will produce artificial periodicity,
which is called edge effect by Torrence [18], in the wavelet coefficients if signal is not periodic. In order to limit



Algorithms 2018, 11, 24 9 of 17

the edge effect, in [18], the data is padded with sufficient zeros before doing the CWT, then the first N coefficients
of the corresponding convolution are just the coefficients of the CWT. Nevertheless, the reason for this is not
answered in previous papers in the author’s knowledge. Put another way. Why the last step of Algorithm 3 is
dissimilar from the last step of Algorithm 2? The answer will be given in the following Theorem 4.

Lemma 1. The filter used in Equation (27) is

˜̃ψa(t) =
1
a

ψ̄(
−t
a
). (33)

Proof. We refer the reader to [23] for details.

Theorem 4. The wavelet coefficients of the CWT of { f [n]}N−1
n=0 is the first N coefficients of (28). While the

length of the total coefficients of (28) is M.

Proof. The filter used in Theorem 3 is ψ̃a defined in (23); therefore, ˜̃ψa(t − aT) = ψ̃a(t). Define
Lψ̃a = f ? ψ̃a, then L ˜̃ψa = f ? ˜̃ψa. Denote ˜̃ψ = ˜̃ψa, ψ̃ = ψ̃a, ˜̃ψaT = ˜̃ψ(t− aT) = ψ̃ for the simplicity of
notation for this moment. By the property of time-invariant of L,

Lψ̃[n] = L ˜̃ψaT [n] = L ˜̃ψ[n− aT];

therefore
Lψ̃[n + aT] = L ˜̃ψ[n].

That is to say
{Lψ̃a[n + aT]}N−1

n=0 = {L ˜̃ψa[n]}N−1
n=0 .

From Theorem 3, {Lψ̃a[n + aT]}N−1
n=0 is the wanted wavelet coefficients; therefore {L ˜̃ψa[n]}N−1

n=0 =

{ f ? ˜̃ψa[n]}N−1
n=0 is the wanted wavelet coefficients.

Theorem 5. Assume that (Without loss of generality, aT is assumed to be an integer.)

Lm[n] =
1
M

M−1

∑
k=0

f̂ (
2π

M
k) ¯̂ψ(

2π

M
ka)e−i 2π

M kmaTei 2π
M kn,

n = 0, 1, · · · , M− 1; m = 0, 1, 2, (34)

then
{Wa

f [n]}
N−1
n=0 = {L0[n]}N−1

n=0 = {L1[n]}aT+N−1
n=aT = {L2[n]}M−1

n=M−N .

Proof. If m = 0, Equation (34) is simply Equation (28), the conclusion is deduced from Theorem 4.
Since

F[ψ̃a](ω) =
∫ +∞

−∞

1
a

ψ̄(
aT − t

a
)e−itωdt (35)

= e−iaTω ¯̂ψ(aω),

thus L1[n] = f ? ψ̃a, the conclusion is deduced from Theorem 3. If define ψ
(3)
a = 1

a ψ̄( 2aT−t
a ),

the conclusion for the m = 2 case can also be proved in the same way.

Now, Frequency-domain algorithm of CWT with Morlet wavelet as the mother wavelet is given
as follows.
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Algorithm 3: Frequency-domain fast algorithm for CWT (In real application, the case m = 0 is
enough for the calculation of CWT).

Input:
the signal, f [n], n = 0, 1, · · · , N − 1
scale, a
ψ̂(ω), the Fourier transform of the Morlet wavelet ψ(t)
T, where [−T, T] is the support of ψ(t).
Output:
wavelet coefficients, Wa

f [i], i = 0, 1, · · · , N − 1

1. Let f̃ = [ f0, f1, . . . , fN−1,
2aT

0, · · · , 0︸ ︷︷ ︸]T;

2. Define ϕm(ω) = e−imaTω ¯̂ψ(aω), m = 0, 1, 2, where the overline represents the operation of
complex conjugate;

3. Let M = 2aT + N;

4. If M is even, Let ˆ̃ha = [ϕm(
2π
M · 0), ϕm(

2π
M · 1), . . . , ϕm(

2π
M ·

M
2 ),

M
2 −1

0, · · · , 0︸ ︷︷ ︸]T;

5. else ˆ̃ha = [ϕm(
2π
M · 0), ϕm(

2π
M · 1), . . . , ϕm(

2π
M ·

M−1
2 ),

M−1
2

0, · · · , 0︸ ︷︷ ︸]T;

6. end if
7. tema[i] = i f f t( f f t( f̃ ). ∗ ( ˆ̃ha)), i = 0, 1, · · · , 2aT + N − 1;
8. switch(m)

case 0 Wa
f [i] = tema[i], i = 0, 1, · · · , N − 1;

case 1 Wa
f [i] = tema[i + aT], i = 0, 1, · · · , N − 1;

case 2 Wa
f [i] = tema[i + 2aT], i = 0, 1, · · · , N − 1.

Remark 2. Note that the previous data preparation method takes M = 2q, where q = minn∈Z{2n > N} [17,18].
However, this method may fail for some real life data. We propose M = N + 2aT, Equivalent Condition of
Time-domain and Frequency-domain Algorithms of CWT, then the edge effect, defined in [18], that may occur in
JLAB, Wavelab and [25] can be avoided. See Figures 6 and 7 for details.

4. Numerical Experiments

The experiments are conducted on two types of data, one for synthetic data, another for real-life
data. Entropy can be used to measure the sparsity of wavelet coefficients [17]. In order to define
entropy, {|W f (ai, bj)|2}i,j are rearranged as {ck}k=1,...,M, then are normalized to obtain:

dk =
ck

∑M
k=1 ck

. (36)

The wavelet entropy is calculated as

Entropy = −
M

∑
k=1

dk log dk, (37)

with the convention 0 log 0 = 0 by definition.
Experiments for Data 1: Data 1 is a synthetic signal with length N. The first half

contains sinusoidal signal superimposition with three different frequencies,namely a4 sin(30πt) +
a3 sin(60πt) + a1 sin(120πt); The latter half contains the 60 Hz sinusoidal signal with amplitude a2,
namely a2 sin(120πt), where a4 = 1, a3 = 1.2, a1 = 1.4, a2 = 0.6, and the sampling frequency is
400 Hz. Data 1 with length N = 1024 is presented in Figure 1a. Figure 1b, the absolute values of CWT
coefficients of Figure 1a, computed with the awt function in Wavelab, where the shape parameter
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σ2 = 1 and the center frequency η = 8, manifests edge effects. Figure 1c without edge effects is
computed by using the case 0 of Algorithm 3.

Figure 1. (a) is Data 1 with N = 1024. (b) the absolute values of CWT coefficients of (a), computed
with the awt function in Wavelab, where the shape parameter σ2 = 1 and the center frequency η = 8,
manifests edge effects. (c) without edge effects is computed with Algorithm 3.

Table 1 gives the computational results of Data 1 with wavelet parameter σ2 = 1, η = 8 by using
different methods. “cwt” means the cwt function in wavelet toolbox of Matlab. “Zhao’s method” is
an improved version of cwt [26]. ”Direct” means the computation method of linear convolution by
using Equation (15). If the length of signal is far larger than the length of the filter, an “Overlap-add”
procedure for the calculation of linear convolution is faster than Direct method and Algorithm 1 [23].
The “wavelet entropy” shown in Table 1 can measure the sparsity of wavelet coefficients [17].
“Err_i” means the relative error of ai and the corresponding maximum amplitude of CWT coefficients.

From Table 1, we know that the precision, wavelet entropy of “Direct”, Algorithms 2 and 3,
“Overlap-add” are almost the same and are more optimal to cwt function in toolbox of Matlab. In fact,
the precision of two methods in [17], “FFT based method” and the proposed method is almost the same.
This phenomenon indicates some equivalence of these two methods. As a matter of fact, these two
methods can be categorized as Algorithms 2 and 3 respectively.

Figure 2 is computed by using the case 1 of Algorithm 3. The wavelet coefficients of Figure 2b
can exactly characterize the time-frequency local properties of data of Figure 1a. At the same time,
Figure 2a,c fail to do so. In fact, it is known from the case 1 of Algorithm 3, the wavelet coefficients
should be chosen as the middle part of the coefficients of the convolution. However, the wavelet
coefficients of Figure 2a,c are respectively chosen as the first N and the last N part of the coefficients of
the convolution.
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Table 1. Comparisons between the different CWT methods for Data 1.

Algorithm N CPU Entropy Err1 Err2 Err3 Err4

cwt 1024 0.2468 8.7125 3.3605× 10−2 3.5635× 10−2 −1.4622× 10−2 −4.0837× 10−2

2048 0.2560 9.3815 3.3605× 10−2 3.5635× 10−2 −1.4622× 10−2 −4.0837× 10−2

Zhao’s 1024 0.0495 8.7068 −1.0144× 10−2 3.6888× 10−3 −1.6761× 10−2 −2.8041× 10−2

2048 0.0562 9.3762 −1.0144× 10−2 3.6888× 10−3 −1.6755× 10−2 −2.8041× 10−2

Direct 1024 0.4724 8.7097 −2.0333× 10−4 −1.8504× 10−15 −1.9882× 10−4 4.9072× 10−14

2048 0.8697 9.3784 −2.0333× 10−4 −7.0314× 10−15 −1.9767× 10−4 −9.6064× 10−11

Overlap-Add 1024 0.0291 8.7083 −2.0333× 10−4 −1.8504× 10−15 −1.9882× 10−4 4.8517× 10−14

2048 0.0359 9.3777 −2.0333× 10−4 −6.4763× 10−15 −1.9767× 10−4 −9.6065× 10−11

Algorithm 2 1024 0.0204 8.7083 −2.0333× 10−4 −1.8504× 10−15 −1.9882× 10−4 4.8517× 10−14

2048 0.0291 9.3777 −2.0333× 10−4 −6.4763× 10−15 −1.9767× 10−4 −9.6065× 10−11

Algorithm 3 1024 0.0155 8.7083 −2.0333× 10−4 −2.4055× 10−15 −1.9882× 10−4 4.7851× 10−14

2048 0.0223 9.3777 −2.0333× 10−4 −7.0314× 10−15 −1.9767× 10−4 −9.6065× 10−11

Figure 2. Figure 2 is computed by using the case 1 of Algorithm 3. The wavelet coefficients of (b) can
exactly characterize the time-frequency local properties of data of (a). At the same time, (a,c) fail to
do so.

Experiments for Data 2: Data 2 is the annual average temperature from 1 January 1951 to
31 December 2010 for No. 50978 weather station, Heilongjiang, China. Figures 3–5, computed with
different methods of CWT, namely, Algorithm 2, Zhao’s method, cwt function in wavelet toolbox
of Matlab, are the contours of the real part of coefficients of CWT for Data 2. The Morlet wavelet
parameters are σ2 = 1, η = 5. The coefficients with negative values are plotted with a dotted, blue line,
while the coefficients with positive values are plotted with a dashed, red line. It is obvious from these
figures that the precision of Algorithm 2 is superior to that of Zhao’s method and cwt function of Matlab.

It is seen from Table 2 that the wavelet entropy for Algorithm 2 is the smallest of all the methods.
Therefore, Algorithm 2 is the most suitable method for this temperature data.

Figures 6 and 7 are calculated with different data preparation methods. To be specific, Figure 6
is computed with the frequency-domain method of CWT with data preparation method given in
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previously published papers, namely, M = 2q, q = minn∈Z{2n > N} while Figure 7 is computed with
the case 0 of Algorithm 3 with M = N + 2aT. Note the different structures of contours in the upper
edge of these two figures. The contour is not closed in the upper edge of Figure 6, which means that
there will be a valley and a peak in the left and right part of this edge. So the edge effect is obvious in
Figure 6.
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Figure 3. This contour is computed by using Algorithm 2 with the Morlet wavelet parameter
σ2 = 1, η = 5 for Data 2.
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Figure 4. This contour is computed by using Zhao’s method with the Morlet wavelet parameter
σ2 = 1, η = 5 for Data 2.



Algorithms 2018, 11, 24 14 of 17

t/year

pe
ro

id
/y

ea
r

1950 1960 1970 1980 1990 2000 2010
0

10

20

30

40

50

60

Figure 5. This contour is computed by using CWT function in wavelet toolbox of Matlab with the
Morlet wavelet parameter σ2 = 1, η = 5 for Data 2.
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Figure 6. This contour, computed with frequency-domain method of CWT with data preparation
method given in previously published papers, namely, M = 2q, q = minn∈Z{2n > N},
manifests edge effect.
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Figure 7. This contour, computed with the case 0 of Algorithm 3 with M = N + 2aT, manifests no
edge effect.

Table 2. The wavelet entropy corresponding to different wavelet transform methods.

σ2 η CWT Zhao’s Method Algorithm 2 Algorithm 3

1 5 9.5190 9.4150 9.4144 9.4534
1 6 9.5051 9.4044 9.4042 9.4332
1 7 9.4869 9.3897 9.3893 9.4117
1 8 9.4677 9.3713 9.3709 9.3892

1.5 5 9.5012 9.4030 9.4026 9.4304
1.5 6 9.4797 9.3832 9.3831 9.4037
1.5 7 9.4545 9.3601 9.3598 9.3762
1.5 8 9.4323 9.3377 9.3374 9.3513

5. Conclusions

The continuous wavelet transform of a signal with finite length for a fixed scale is considered
as a linear time-invariant operator. Furthermore, the filter with causal and stability is constructed.
The algorithm of linear convolution constitutes a unifying framework to the continuous wavelet
transform methods previously published in [17]. The precision of these methods based on this
framework is almost the same, no matter what method is used, and higher than other methods that use
the approximation of wavelet, for example, the cwt function in wavelet toolbox of Matlab. The edge
effect is also easily handled by using Equivalent Condition of Time-domain and Frequency-domain
Algorithms of CWT.

The algorithms of CWT consist of two methods, time-domain method and frequency-domain
method. For time-domain method, by constructing the causal filter ψ̃a(t), we know the wavelet
coefficients are just the middle part of the corresponding linear convolution. For frequency-domain
method, by exploring the relationship of ψ̃a(t) and ˜̃ψa(t), we know the wavelet coefficients are just
the first N coefficients of the corresponding convolution. Furthermore, by constructing the different
filters, the wavelet coefficients can be the first N coefficients, or the middle N coefficients, or the last N
coefficients of the corresponding convolution for frequency-domain method.
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There are three methods for the calculation of linear convolution. The first one is to directly
implement the definition of linear convolution. The second one is known as the FFT-based method,
for example, Algorithm 1. Lastly, if the length of the signal is far larger than the length of the filter,
an overlap-add procedure for the calculation of linear convolution is faster than the previous two
methods [23]. How to combine the Frequency-domain method and an overlap-add procedure for the
computation of CWT is a question for future research.
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