
algorithms

Article

Effects of Random Values for Particle Swarm
Optimization Algorithm

Hou-Ping Dai 1,2, Dong-Dong Chen 1,3,* ID and Zhou-Shun Zheng 1,* ID

1 School of Mathematics and Statistics, Central South University, Changsha 410083, China;
daihouping@163.com

2 School of Mathematics and Statistics, Jishou University, Jishou 416000, China
3 State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China
* Correspondence: ddchen@csu.edu.cn or cdd0525@163.com (D.-D.C.); 2009zhengzhoushun@163.com (Z.-S.Z.);

Tel.: +86-0183-9099-9143 (D.-D.C.); +86-0137-8713-6098 (Z.-S.Z.)

Received: 11 December 2017; Accepted: 13 February 2018; Published: 15 February 2018

Abstract: Particle swarm optimization (PSO) algorithm is generally improved by adaptively adjusting
the inertia weight or combining with other evolution algorithms. However, in most modified PSO
algorithms, the random values are always generated by uniform distribution in the range of [0, 1].
In this study, the random values, which are generated by uniform distribution in the ranges of [0, 1]
and [−1, 1], and Gauss distribution with mean 0 and variance 1 (U[0, 1], U[−1, 1] and G(0, 1)), are
respectively used in the standard PSO and linear decreasing inertia weight (LDIW) PSO algorithms.
For comparison, the deterministic PSO algorithm, in which the random values are set as 0.5, is also
investigated in this study. Some benchmark functions and the pressure vessel design problem are
selected to test these algorithms with different types of random values in three space dimensions
(10, 30, and 100). The experimental results show that the standard PSO and LDIW-PSO algorithms
with random values generated by U[−1, 1] or G(0, 1) are more likely to avoid falling into local optima
and quickly obtain the global optima. This is because the large-scale random values can expand the
range of particle velocity to make the particle more likely to escape from local optima and obtain
the global optima. Although the random values generated by U[−1, 1] or G(0, 1) are beneficial
to improve the global searching ability, the local searching ability for a low dimensional practical
optimization problem may be decreased due to the finite particles.

Keywords: particle swarm optimization algorithm; random values; uniform distribution; gauss
distribution

1. Introduction

Based on the intelligent collective behaviors of some animals such as fish schooling and
bird flocking, particle swarm optimization (PSO) algorithm was first introduced by Kennedy and
Eberhart [1]. This algorithm is a stochastic population based heuristic global optimization technology,
and it has advantages of simple implementation and rapid convergence capability [2–4]. Therefore,
PSO algorithm has been widely utilized in function optimization [5], neural network training [6–9],
parameters optimization of fuzzy system [10–12], and control system [13–17], etc.

However, the PSO algorithm is easily trapped in local optima when it is used to solve
complex problems [18–31]. This disadvantage seriously limits the application of the PSO algorithm.
In order to deal with this issue, many modifications or improvements are proposed to improve
the performance of the PSO algorithm. Generally, the improved methods include changing the
parameter values [19–21], tuning the inertia weight or population size [22–25], and combining with
other evolution algorithms [26–31], etc. In recent years, the PSO algorithms for dynamic optimization
problems are developed. The multi-swarm PSO algorithms, such as, multi-swarm charged/quantum

Algorithms 2018, 11, 23; doi:10.3390/a11020023 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-5892-6891
https://orcid.org/0000-0002-8792-6310
http://dx.doi.org/10.3390/a11020023
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 23 2 of 20

PSO [32], species-based PSO [33], clustering-based PSO [34], child and parent swarms PSO [35],
multi-strategy ensemble PSO [36], chaos mutation-based PSO [37], distributed adaptive PSO [38],
and stochastic diffusion search—aided PSO [39], are developed to improve their performances.
Furthermore, some dynamic neighborhood topology-based PSO algorithms are developed to deal
with dynamic optimization problems [40,41]. These improvements or modifications have improved
the global optimization ability of the PSO algorithm to some extent. However, these methods cannot
effectively prevent the stagnation of optimization and premature convergence. This is because the
velocity of particle becomes very small in the position of the local optima, which renders the particle
unable to escape from the local optimum. Therefore, it is necessary to propose an effective way to
make the particle jump out of the local optimum.

In the PSO algorithm, the velocity of particle is updated according to its previous velocity and
the distances of its current position from its own best position and the group’s best position [20].
The coefficients of previous velocity and two distances are inertia weight and random values,
respectively. In previous research, a variety of inertia weight strategies were proposed and developed
to improve the performance of the PSO algorithm. However, the random values for most modified PSO
algorithms are always generated by uniform distribution in the range of [0, 1]. Obviously, the random
values represent the weights of two distances for updating the particle velocity. If the range of random
values is small, these two distances have little influence on the new particle velocity, which means
that the velocity cannot be effectively increased or changed to escape from local optima. In order to
improve the global optimization ability of the PSO algorithm, it is necessary to expand the range of
random values.

In this paper, the random values generated by different probability distributions are utilized to
investigate their effects on the PSO algorithms. In addition, the deterministic PSO algorithm, in which
the random values are set as 0.5, is investigated for comparison. The performances of PSO algorithms
with different types of random values are tested and compared by the experiments of benchmark
functions in three space dimensions. The rest of the paper is organized as follow. Section 2 presents
the standard PSO algorithm and its modification strategies. The different types of random values are
provided in Section 3. Section 4 provides the performances of PSO algorithms with different types of
random values, and the effects of random values on PSO algorithms are also analyzed in this section.
Finally, Section 5 concludes this paper.

2. Standard and Modified Particle Swarm Optimization Algorithms

2.1. Standard Particle Swarm Optimization Algorithm

In standard PSO algorithm, each particle represents a potential solution to the task within the
search space. In the D-dimensional space, the position vector and velocity vector of the ith particle
can be expressed as xi = (xi1, xi2, · · · , xiD) and vi = (vi1, vi2, · · · , viD), respectively. After the random
initialization of particles, the velocity and position of the ith particle are updated as follow,

vi(t + 1) = wvi(t) + c1r1(pi − xi(t)) + c2r2
(

pg − xi(t)
)

(1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

where, w is the inertia weight and can be used to control the influence of previous velocity on the
new one; the parameters c1 and c2 are two constants which determine the weights of pi and pg; pi
represents the best previous position of the ith individual and pg denotes the best previous position of
all particles in current generation; r1 and r2 represent two separately generated random values which
uniformly distribute in the range of [0, 1]. The pseudocode of standard particle swarm optimization is
shown in Figure 1.

Algorithms 2018, 11, 23 3 of 20

Algorithms 2018, 11, 23 3 of 20

Figure 1. Pseudocode of standard particle swarm optimization.

2.2. Modifications for Particle Swarm Optimization Algorithm

In the original studies of the PSO algorithm, the range of inertia weight (w) attracted
researchers’ attention, and they suggested that the PSO algorithm with an inertia weight within the
range of [0.9, 1.2] can take the least average number of iterations to find the global optimum [42]. In
later research, the inertia weight adaptation mechanism is established to improve the global
optimization ability of the PSO algorithm. Generally, the various inertia weighting strategies can be
classified into three categories: (1) constant or random inertia weight strategies; (2) time varying
inertia weight strategies; (3) adaptive inertia weight strategies.

2.2.1. Constant or Random Inertia Weight Strategies

The value of inertia weight is constant during the search or is determined randomly [20,43]. The
impact of the inertia weight on the performance of the PSO algorithm is analyzed by Shi and Eberhart
[20], and then they proposed a random inertia weight strategy for the PSO algorithm to track the
optima in a dynamic environment, which can be expressed as,

0.5
2
rw = + (3)

where r is a random value in [0, 1]. Then w is a uniform random variable in the range of [0.5, 1].

2.2.2. Time Varying Inertia Weight Strategies

The inertia weight is defined as a function of time or iteration number [44–46]. In these strategies,
the inertia weight can be updated in many ways. For example, the linear decreasing inertia weight
can be expressed as [35,36],

()max
max min min

max

() iter iterw iter w w w
iter

−
= − + (4)

Figure 1. Pseudocode of standard particle swarm optimization.

2.2. Modifications for Particle Swarm Optimization Algorithm

In the original studies of the PSO algorithm, the range of inertia weight (w) attracted researchers’
attention, and they suggested that the PSO algorithm with an inertia weight within the range of
[0.9, 1.2] can take the least average number of iterations to find the global optimum [42]. In later
research, the inertia weight adaptation mechanism is established to improve the global optimization
ability of the PSO algorithm. Generally, the various inertia weighting strategies can be classified into
three categories: (1) constant or random inertia weight strategies; (2) time varying inertia weight
strategies; (3) adaptive inertia weight strategies.

2.2.1. Constant or Random Inertia Weight Strategies

The value of inertia weight is constant during the search or is determined randomly [20,43].
The impact of the inertia weight on the performance of the PSO algorithm is analyzed by Shi and
Eberhart [20], and then they proposed a random inertia weight strategy for the PSO algorithm to track
the optima in a dynamic environment, which can be expressed as,

w = 0.5 +
r
2

(3)

where r is a random value in [0, 1]. Then w is a uniform random variable in the range of [0.5, 1].

Algorithms 2018, 11, 23 4 of 20

2.2.2. Time Varying Inertia Weight Strategies

The inertia weight is defined as a function of time or iteration number [44–46]. In these strategies,
the inertia weight can be updated in many ways. For example, the linear decreasing inertia weight can
be expressed as [35,36],

w(iter) =
itermax − iter

itermax
(wmax − wmin) + wmin (4)

where iter is the current iteration of algorithm and itermax represents the maximum number of
iterations; wmax and wmin are the upper and lower bounds of inertia weight, and they are 0.9 and
0.4, respectively.

Based on the linear decreasing inertia weight strategy, the nonlinear decreasing strategy for inertia
weight is proposed for the PSO algorithm [47], and it can be expressed as,

w(iter) =
[

itermax − iter
itermax

]n
(wmax − wmin) + wmin (5)

where n is the nonlinear modulation index. Obviously, with n = 1, this strategy becomes the linearly
decreasing inertia weight strategy.

In addition, some similar methods [48–51], which use linear or nonlinear decreasing inertia
weight, haven been proposed to improve the performance of the PSO algorithm.

2.2.3. Adaptive Inertia Weight Strategies

The inertia weight is adjusted by using one or more feedback parameters to balance the global and
local searching abilities of the PSO algorithm [52–55]. These feedback parameters include the global
best fitness, the local best fitness, the particle rank, and the distance to the global best position, etc.

In each iteration, the inertia weight determined by the ratio of the global best fitness and the
average of particles’ local best fitness can be expressed as [17],

w(iter) = 1.1−
pg(iter)

1
N

N
∑

i=1
pi(iter)

(6)

where pi(iter) and pg(iter) represent the best previous positions of the i-th individual and all particles,
respectively; N is the number of particles.

The inertia weight updated by the particle rank can be expressed as [53],

wi(iter) = wmin +
ranki

N
(wmax − wmin) (7)

where wi(iter) is the inertia weight of the i-th particle in current iteration; ranki represents the position
of the i-th particle when the particles are ordered based on their best fitness.

The inertia weight adjusted by the distance to the global best position can be expressed as [54],

wi = w0

(
1− disti

max_dist

)
(8)

where the inertia weight w0 = rand(0.5, 1); disti is the current Euclidean distance of the i-th particle
from the global best, and it can be expressed as,

disti =

[
D

∑
d=1

(
pd

g − xd
i

)2
] 1

2

(9)

Algorithms 2018, 11, 23 5 of 20

and max_dist is the maximum distance of a particle from the global best in the previous generation.
In recent research, the PSO algorithm with inertia weight adjusted by the average absolute value

of velocity or the situation of swarm is proposed to keep the balance between local search and global
search [56–58]. In addition, the adaptive population size strategy is an effective way to improve the
accuracy and efficiency of the PSO algorithm [59–62].

It is obvious that the improvements of the PSO algorithm are generally implemented by adaptively
adjusting inertia weight or population size. These methods can avoid falling into local optima by
adaptively updating the velocity of particle to some extent. However, the effect of random values on
the particle velocity has never been discussed. Therefore, the PSO algorithm with different types of
random values will be studied in Section 3 in detail.

3. Particle Swarm Optimization Algorithm with Different Types of Random Values

3.1. Random Values with Uniform Distribution in the Range of [0, 1]

In the traditional PSO algorithm, the random values r1 and r2 are generated by uniform
distribution in the range of [0, 1] (U[0, 1]). As shown in Figure 2, the probability of each random value
is similar in the range.

Algorithms 2018, 11, 23 5 of 20

values on the particle velocity has never been discussed. Therefore, the PSO algorithm with different
types of random values will be studied in Section 3 in detail.

3. Particle Swarm Optimization Algorithm with Different Types of Random Values

3.1. Random Values with Uniform Distribution in the Range of [0, 1]

In the traditional PSO algorithm, the random values 1r and 2r are generated by uniform
distribution in the range of [0, 1] ([]0,1U). As shown in Figure 2, the probability of each random value
is similar in the range.

0.00 0.25 0.50 0.75 1.00
0.000

0.005

0.010

Pr
ob

ab
ilit

y
of

 ra
nd

om
 v

al
ue

Random value

Figure 2. Random values with uniform distribution in the range of [0, 1].

3.2. Random Values with Uniform Distribution in the Range of [−1, 1]

In order to expand the range of random values, the random values 1r and 2r are generated by
uniform distribution in the range of [−1, 1] ([]1,1U −) for the PSO algorithm. As shown in Figure 3,
the probability of each random value is similar in the range.

-1.0 -0.5 0.0 0.5 1.0
0.000

0.005

0.010

Pr
ob

ab
ilit

y
of

 ra
nd

om
 v

al
ue

Random value

Figure 3. Random values with uniform distribution in the range of [−1, 1].

3.3. Random Values with Gauss Distribution

In order to expand the range of random values and change their probability, the random values
1r and 2r are generated by Gauss distribution with mean 0, and variance 1 ((0,1)G) for the PSO

algorithm. As shown in Figure 4, the probability of each random value is different and symmetrically
distributes about 0r = . Furthermore, its probability is increased with decreasing the absolute value
of random number.

Figure 2. Random values with uniform distribution in the range of [0, 1].

3.2. Random Values with Uniform Distribution in the Range of [−1, 1]

In order to expand the range of random values, the random values r1 and r2 are generated by
uniform distribution in the range of [−1, 1] (U[−1, 1]) for the PSO algorithm. As shown in Figure 3,
the probability of each random value is similar in the range.

Algorithms 2018, 11, 23 5 of 20

values on the particle velocity has never been discussed. Therefore, the PSO algorithm with different
types of random values will be studied in Section 3 in detail.

3. Particle Swarm Optimization Algorithm with Different Types of Random Values

3.1. Random Values with Uniform Distribution in the Range of [0, 1]

In the traditional PSO algorithm, the random values 1r and 2r are generated by uniform
distribution in the range of [0, 1] ([]0,1U). As shown in Figure 2, the probability of each random value
is similar in the range.

0.00 0.25 0.50 0.75 1.00
0.000

0.005

0.010

Pr
ob

ab
ilit

y
of

 ra
nd

om
 v

al
ue

Random value

Figure 2. Random values with uniform distribution in the range of [0, 1].

3.2. Random Values with Uniform Distribution in the Range of [−1, 1]

In order to expand the range of random values, the random values 1r and 2r are generated by
uniform distribution in the range of [−1, 1] ([]1,1U −) for the PSO algorithm. As shown in Figure 3,
the probability of each random value is similar in the range.

-1.0 -0.5 0.0 0.5 1.0
0.000

0.005

0.010

Pr
ob

ab
ilit

y
of

 ra
nd

om
 v

al
ue

Random value

Figure 3. Random values with uniform distribution in the range of [−1, 1].

3.3. Random Values with Gauss Distribution

In order to expand the range of random values and change their probability, the random values
1r and 2r are generated by Gauss distribution with mean 0, and variance 1 ((0,1)G) for the PSO

algorithm. As shown in Figure 4, the probability of each random value is different and symmetrically
distributes about 0r = . Furthermore, its probability is increased with decreasing the absolute value
of random number.

Figure 3. Random values with uniform distribution in the range of [−1, 1].

3.3. Random Values with Gauss Distribution

In order to expand the range of random values and change their probability, the random values
r1 and r2 are generated by Gauss distribution with mean 0, and variance 1 (G(0, 1)) for the PSO
algorithm. As shown in Figure 4, the probability of each random value is different and symmetrically
distributes about r = 0. Furthermore, its probability is increased with decreasing the absolute value of
random number.

Algorithms 2018, 11, 23 6 of 20
Algorithms 2018, 11, 23 6 of 20

-4 -2 0 2 4
0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ilit

y
of

 ra
nd

om
 v

al
ue

Random value

Figure 4. Random values with Gauss distribution.

4. Experiments and Analysis

4.1. Experimental Setup

In order to investigate the performances of PSO algorithms with different types of random
values, some commonly used benchmark functions are adopted and shown in Table 1. The
dimensions of search space are 10, 30 and 100 in this study. The standard PSO algorithm is selected
to investigate the effects of random values. In addition, because the linear decreasing inertia weight
(LDIW) PSO algorithm has a better global search ability in starting phase to help the algorithm
converge to an area quickly and a stronger local search ability in the latter phase to obtain high
precision value, so the LDIW PSO algorithm is also utilized to study the effects of random values.
Moreover, although the effects of setting parameters on deterministic PSO algorithm have been
studied [63], the deterministic PSO algorithm (r = 0.5) is adopted to compare with standard PSO and
LDIW-PSO algorithms.

To have a fair comparison, the parameter settings of all algorithms are same. In this study, the
population size is 100, and the maximum number of function evaluations is 10,000. The parameters

1c and 2c are all 2. For standard PSO algorithm, the inertia weight w is 0.7. For LDIW-PSO
algorithm, maxw and minw are 0.9 and 0.4, respectively. In order to eliminate random discrepancy,
the results of all experiments are averaged over 30 independent runs.

4.2. Experimental Results and Comparisons

For some benchmark functions, the comparisons of standard PSO algorithm with different types
of random values are shown in Table 2. The bold numbers indicate the best solutions for each test
function in the certain space dimension. Obviously, the performances of deterministic PSO algorithm
(r = 0.5) are the worst for all the benchmark functions. This is because the random values are
deterministic which decreases the diversity of particles. For the random values generated by []0,1U
,the standard PSO algorithm can only obtain the optimal solutions of Sphere1, Sphere2, Alpine and
Moved axis parallel hyper-ellipsoid when the space dimension is 10, but this algorithm is useless for
other test functions or higher space dimensions. However, for the random values generated by

[]1,1U − or (0,1)G , the standard PSO algorithm can obtain the optimal solutions of all test functions
in every space dimension except Rosenbrock. In the low space dimension (10), the best solution of
Rosenbrock is obtained by the standard PSO algorithm with random values distributed in []0,1U .
However, in the high space dimension (30 or 100), its best solution is obtained by the standard PSO
algorithm with random values generated by []1,1U − or (0,1)G . In addition, the best solutions of
Levy and Montalvo 2 (30 dimensions) and Sinusoidal (100 dimensions) are also obtained by the
standard PSO algorithm with random values distributed in []0,1U . Obviously, the random values
make an important effect on the performance of standard PSO algorithm, and its performance is
highly improved when the range of random value is expanded. This implies that the standard PSO
algorithm with large-scale random values can avoid falling into local optima and obtain the global
optima.

Figure 4. Random values with Gauss distribution.

4. Experiments and Analysis

4.1. Experimental Setup

In order to investigate the performances of PSO algorithms with different types of random values,
some commonly used benchmark functions are adopted and shown in Table 1. The dimensions of
search space are 10, 30 and 100 in this study. The standard PSO algorithm is selected to investigate
the effects of random values. In addition, because the linear decreasing inertia weight (LDIW) PSO
algorithm has a better global search ability in starting phase to help the algorithm converge to an area
quickly and a stronger local search ability in the latter phase to obtain high precision value, so the
LDIW PSO algorithm is also utilized to study the effects of random values. Moreover, although the
effects of setting parameters on deterministic PSO algorithm have been studied [63], the deterministic
PSO algorithm (r = 0.5) is adopted to compare with standard PSO and LDIW-PSO algorithms.

To have a fair comparison, the parameter settings of all algorithms are same. In this study,
the population size is 100, and the maximum number of function evaluations is 10,000. The parameters
c1 and c2 are all 2. For standard PSO algorithm, the inertia weight w is 0.7. For LDIW-PSO algorithm,
wmax and wmin are 0.9 and 0.4, respectively. In order to eliminate random discrepancy, the results of all
experiments are averaged over 30 independent runs.

4.2. Experimental Results and Comparisons

For some benchmark functions, the comparisons of standard PSO algorithm with different types
of random values are shown in Table 2. The bold numbers indicate the best solutions for each test
function in the certain space dimension. Obviously, the performances of deterministic PSO algorithm
(r = 0.5) are the worst for all the benchmark functions. This is because the random values are
deterministic which decreases the diversity of particles. For the random values generated by U[0, 1],the
standard PSO algorithm can only obtain the optimal solutions of Sphere1, Sphere2, Alpine and Moved
axis parallel hyper-ellipsoid when the space dimension is 10, but this algorithm is useless for other
test functions or higher space dimensions. However, for the random values generated by U[−1, 1]
or G(0, 1), the standard PSO algorithm can obtain the optimal solutions of all test functions in every
space dimension except Rosenbrock. In the low space dimension (10), the best solution of Rosenbrock
is obtained by the standard PSO algorithm with random values distributed in U[0, 1]. However, in the
high space dimension (30 or 100), its best solution is obtained by the standard PSO algorithm with
random values generated by U[−1, 1] or G(0, 1). In addition, the best solutions of Levy and Montalvo
2 (30 dimensions) and Sinusoidal (100 dimensions) are also obtained by the standard PSO algorithm
with random values distributed in U[0, 1]. Obviously, the random values make an important effect on
the performance of standard PSO algorithm, and its performance is highly improved when the range
of random value is expanded. This implies that the standard PSO algorithm with large-scale random
values can avoid falling into local optima and obtain the global optima.

The comparisons of LDIW-PSO algorithm with different types of random values for benchmark
functions are shown in Table 3. In addition, the bold numbers indicate the best solutions for each

Algorithms 2018, 11, 23 7 of 20

test function in the certain space dimension. For all the benchmark functions, the performances
of deterministic LDIW-PSO algorithm (r = 0.5) are also the worst. For the U[−1, 1] and G(0, 1),
the performance of LDIW-PSO algorithm is similar with that of standard PSO algorithm. However,
for the random values distributed in U[0, 1], the performance of LDIW-PSO algorithm is improved
compared to the standard PSO algorithm, which is also reported in some references [5,20,45,46].
It should be noted that the LDIW-PSO algorithm with random values generated by U[0, 1] can obtain
the optimal solutions of all test function in low space dimension (10 and 30) except Sphere2, Rotated
Expanded Scaffer and Schwefel. In addition, for Levy and Montalvo 2, Sinusoidal and Alpine in 30
dimensions, the performance of LDIW-PSO algorithm with random values generated by U[0, 1] is
better than that with random values generated by U[−1, 1] or G(0, 1). However, in the high space
dimension (100), the LDIW-PSO algorithm with random values generated by U[0, 1] cannot obtain the
optimal solutions of these test functions, which implies that this algorithm is useless for the problems
in high dimension space. Therefore, the performance of improved PSO (LDIW-PSO) algorithm is
also influenced by the random values, especially for solving the problems in high dimension space.
Furthermore, the LDIW-PSO algorithm with a wide range of random values is more beneficial to
escape from local optima and obtain the global optima.

Figure 5 shows the mean best fitness of the standard PSO algorithm with different types of random
values for benchmark functions. For the same type of random values, the performance of the standard
PSO algorithm improves with decreasing the space dimension, and the convergence velocity also
improves with decreasing the space dimension. For the same space dimension of each test function,
the performances of deterministic PSO algorithm (r = 0.5) are the worst. However, the performances
of standard PSO algorithm with random values generated by U[−1, 1] or G(0, 1) are the best for the
most benchmark functions. In the low dimension (10 and 30), the performances of standard PSO
algorithm with random values generated by U[0, 1] and U[−1, 1] are the best for Levy and Montalvo 2
and Sinusoidal, respectively. The performance of the standard PSO algorithm with random values
distributed in U[−1, 1] is slightly worse than that of the standard PSO algorithm with random values
distributed in G(0, 1). In addition, the global optima can be obtained within 50 iterations by the
standard PSO algorithm with random values generated by U[−1, 1] or G(0, 1). This indicates that the
standard PSO algorithm with large-scale random values can more quickly obtain the global optima.

The mean best fitness of the LDIW-PSO algorithm with different types of random values for
benchmark functions are shown in Figure 6. In addition, the performance and convergence velocity of
the LDIW-PSO algorithm are all improved with decreasing the space dimension for the same random
values of each test function. When the random values are generated by U[0, 1], compared to the
standard PSO algorithm, the LDIW-PSO algorithm has better performance. In the space dimensions
10 and 30, the global optima of some test functions can be obtained by the LDIW-PSO algorithm
with random values are generated by U[0, 1], but its convergence velocity is slower than that of the
LDIW-PSO algorithm with random values generated by U[−1, 1] or G(0, 1). Moreover, in the low
dimension (10 and 30), the performance of the LDIW-PSO algorithm with random values generated by
U[0, 1] is the best for Levy and Montalvo 2, Sinusoidal and Alpine. When the space dimension is 100,
the global optima cannot be obtained by the LDIW-PSO algorithm with random values distributed in
U[0, 1], but can be obtained by the LDIW-PSO algorithm with random values distributed in U[−1, 1]
or G(0, 1). This implies that the LDIW-PSO algorithm with large-scale random values can be more
likely to obtain the global optima with less iterations.

Algorithms 2018, 11, 23 8 of 20

Table 1. Benchmark functions.

Function Name Test Function Search Space The Range of Particle
Velocity The Best Solution The Best Result

Sphere1 f1(x) =
D
∑

i=1
x2

i [−100, 100]D [−100, 100] [0, · · · , 0] 0

Sphere2 f2(x) =
D
∑

i=1
x2

i [−10, 190]D [−10, 10] [0, · · · , 0] 0

Rastrigin f3(x) =
D
∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

[−5.12, 5.12]D [−5.12, 5.12] [0, · · · , 0] 0

Rosenbrock f4(x) =
D−1
∑

i=1

(
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
)

[−30, 30]D [−30, 30] [1, · · · , 1] 0

Griewank f5(x) = 1
4000

D
∑

i=1
x2

i −
D
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600]D [−600, 600] [0, · · · , 0] 0

Ackley
f6(x) = −20 exp

(
−0.2

√
1

30

D
∑

i=1
x2

i

)
− exp

(
1
D

D
∑

i=1
cos(2πxi)

)
+ 20 + e

[−32, 32]D [−32, 32] [0, · · · , 0] 0

Levy and Montalvo 2
f7(x) = 0.1

(
sin2(3πx1) +

D−1
∑

i=1
(xi − 1)2[1 + sin2(3πxi+1)

]
+(xD − 1)2[1 + sin2(2πxD)

]) [−5, 5]D [−5, 5] [1, · · · , 1] 0

Sinsolidal
f8(x) = −[2.5 ∏D

i=1 sin
(
xi − π

6
)

+∏D
i=1 sin

(
5
(
xi − π

6
))] [0, π]D [−π, π]

[
2
3 π, · · · , 2

3 π
]

−3.5

Rotated Expanded Scaffer
F(x, y) = 0.5 +

sin2
(√

x2+y2
)
−0.5

(1+0.001(x2+y2))2

f9(x) = F(x1, x2) + F(x2, x3) + · · ·
+F(xD−1, xD) + F(xD, x1)

[−100, 100]D [−100, 100] [0, · · · , 0] 0

Alpine f1(x) =
D
∑

i=1
|xi · sin xi + 0.1xi| [−9, 7]D [−7, 7] [0, · · · , 0] 0

Moved axis parallel
hyper-ellipsoid f1(x) =

D
∑

i=1
5i · x2

i [−10, 30]D [−10, 10] [0, · · · , 0] 0

Schwefel f1(x) =
D
∑

i=1

[
−xi · sin(

√
|xi|)

]
[−300, 500]D [−300, 300]

 420.9687
...

420.9687

 −D · 418.9829

Algorithms 2018, 11, 23 9 of 20

Table 2. Comparisons of standard particle swarm optimization (PSO) algorithm with different types of random values for benchmark functions.

Function
r1, r2 U[0, 1] 0.5 U[−1, 1] G(0, 1)

Dimension 10/30/100 10/30/100 10/30/100 10/30/100

Sphere1

Average solution 0/19.90/4203.68 0.74/1390.12/34,069.52 0/0/0 0/0/0
Standard deviation 0/12.37/4400.60 1.62/575.44/10,343.18 0/0/0 0/0/0
The worst solution 0/48.87/13,080.62 7.90/2730.92/53,024.46 0/0/0 0/0/0
The best solution 0/4.13/303.05 0/443.08/17,579.98 0/0/0 0/0/0

Sphere2

Average solution 0/1726.67/9386.74 130.34/5076.33/56,870.86 0/0/183.33 0/0/220
Standard deviation 0/466.04/6716.49 180.26/9114.11/75,788.47 0/0/159.92 0/0/174.99
The worst solution 0/2600/44,700 600/38,700/323,027.84 0/0/600 0/0/600
The best solution 0/900.00/6400.80 0.01/2319.72/9236.02 0/0/0 0/0/0

Rastrigin

Average solution 1.03/52.83/357.43 17.01/116.61/810.69 0/0/0 0/0/0
Standard deviation 1.60/21.87/81.84 9.70/33.22/76.28 0/0/0 0/0/0
The worst solution 4.97/100.77/499.92 42.81/215.88/932.59 0/0/0 0/0/0
The best solution 0/3.62/186.01 4.98/62.26/670.46 0/0/0 0/0/0

Rosenbrock

Average solution 0.40/462.38/308,982.29 250.36/63,215/13,665,740.29 1.93/28.86/98.92 0.98/28.90/98.94
Standard deviation 1.22/292.83/182,460.39 663.05/59,859/6,367,792.97 2.86/0.08/0.05 2.43/0.07/0.03
The worst solution 3.99/1383.17/874,057.21 3515.43/260,355.55/27,517,029.65 8.93/28.96/98.98 8.75/28.97/98.98
The best solution 0/165.84/36,093.44 5.86/1614.69/5,391,184.05 0.00/28.67/98.77 1.63 × 10−6/28.69/98.86

Griewank

Average solution 0.19/1.13/17.27 0.22/12.88/289.00 0/0/0 0/0/0
Standard deviation 0.15/0.15/9.06 0.12/5.64/84.70 0/0/0 0/0/0
The worst solution 0.51/1.51/39.44 0.59/26.48/519.72 0/0/0 0/0/0
The best solution 0/0.90/3.45 0.08/3.34/123.68 0/0/0 0/0/0

Ackley

Average solution 1.46/6.07/11.12 1.64/9.00/15.63 0/0/0 0/0/0
Standard deviation 1.22/1.50/2.26 1.02/1.25/1.10 0/0/0 0/0/0
The worst solution 3.22/8.90/15.17 3.58/12.06/17.46 0/0/0 0/0/0
The best solution 0/2.73/3.44 0.02/6.98/13.44 0/0/0 0/0/0

Levy and Montalvo 2

Average solution 0/0.14/12.83 0.01/1.31/20.28 0/0.23/8.63 0/1.34/8.78
Standard deviation 0/0.17/2.31 0.01/0.54/4.57 0/0.46/0.48 0/0.64/0.44
The worst solution 0/0.81/17.84 0.06/2.78/34.78 0/1.60/9.42 0/2.49/9.57
The best solution 0/0.01/9.09 0.00/0.28/14.28 0/0/7.38 0/0/7.89

Sinsolidal

Average solution −3.43/−1.02/−0.11 −3.43/−0.41/0 −3.50/−1.59/−0.09 −3.18/−1/0
Standard deviation 0.29/1.14/0.31 0.14/0.46/0 0/1.56/0.32 0.74/1.18/0
The worst solution −2.12/−0.01/0 −2.93/−0.01/0 −3.50/−0.01/0 −0.87/−0.01/0
The best solution −3.50/−3.45/−1.66 −3.50/−1.47/0 −3.50/−3.50/−1.75 −3.50/−3.50/0

Rotated Expanded Scaffer

Average solution 1.27/6.77/26.10 2.58/10.92/43.13 0/0/0 0/0/0
Standard deviation 0.74/1.96/5.54 0.47/1.18/1.59 0/0/0 0/0/0
The worst solution 2.60/9.24/34.49 3.56/13.11/45.81 0/0/0 0/0/0
The best solution 0/1.92/13.45 1.73/8.63/39.45 0/0/0 0/0/0

Algorithms 2018, 11, 23 10 of 20

Table 2. Cont.

Function
r1, r2 U[0, 1] 0.5 U[−1, 1] G(0, 1)

Dimension 10/30/100 10/30/100 10/30/100 10/30/100

Alpine

Average solution 0/2.67/39.15 0.12/6.36/57.50 0/2.14/27.04 0/3.36/30.12
Standard deviation 0/1.70/8.56 0.34/1.81/8.48 0/1.17/3.96 0/1.19/3.65
The worst solution 0/7.30/62.51 1.81/10.83/75.846 0/5.71/34.30 0/6.04/38.17
The best solution 0/0.27/17.71 0/2.94/44.30 0/0/16.87 0/1/23.11

Moved axis parallel
hyper-ellipsoid

Average solution 0/976.19/102,196.49 10.66/14,535.57/714,363.54 0/0/56,727.35 0/0/44,270.31
Standard deviation 0/2276.36/46,700.85 21.97/6358.06/125,266.58 0/0/54,460.61 0/0/70,284.76
The worst solution 0/8532.57/196,643.04 105.74/33,237.39/967,098.52 0/0/195,537.54 0/0/235,721.53
The best solution 0/7.13/21,301.13 0.01/5625.85/484,347.13 0/0/0 0/0/0

Schwefel

Average solution −3472.55/−8400.88/−25,222.99 −3072.44/−6957.38/−17,338.78 −3772.47/−10,596.14/−31,640.44 −3772.47/−10,651.80/−30,094.87
Standard deviation 301.97/862.61/2717.54 402.88/941.95/2511.55 229.58/745.71/2489.84 233.82/635.86/1790.82
The worst solution −2865.61/−6560.66/−20,423.87 −2151.57/−4665.91/−12,121.78 −3355.12/−9101.35/−25,385.62 −3235.87/−9101.35/−26,155.70
The best solution −4070.58/−9946.11/−31,017.18 −3733.40/−8648.21/−21,643.45 −4189.83/−11,854.02/−37,370.87 −4189.83/−11,854.01/−32,695.87

Table 3. Comparisons of LDIW-PSO algorithm with different types of random values for benchmark functions.

Function
r1, r2 U[0, 1] 0.5 U[−1, 1] G(0, 1)

Dimension 10/30/100 10/30/100 10/30/100 10/30/100

Sphere1

Average solution 0/0/1666.67 0/937.89/62,668.95 0/0/0 0/0/0
Standard deviation 0/0/4611.33 0.01/1954.53/19,933.81 0/0/0 0/0/0
The worst solution 0/0/20,000 0.04/8616.07/110,110.64 0/0/0 0/0/0
The best solution 0/0/0 0/62.99/35,629.65 0/0/0 0/0/0

Sphere2

Average solution 56.67/2033.33 /46,393.33 151.13/3905.81/49,939.96 0/0/293.33 0/0/236.6667
Standard deviation 67.89/256.41/35,977.84 122.87/6591.85/40,171.84 0/0/228.84 0/0/225.1181
The worst solution 200/2600/189,200 500.38/38,800/153,700 0/0/900 0/0/700
The best solution 0/1600/8600 0.03/2361.29/9103.90 0/0/0 0/0/0

Rastrigin

Average solution 0/18.90 /130.24 26.30/142.34/865.88 0/0/0 0/0/0
Standard deviation 0/22.91/83.07 11.70/31.11/82.15 0/0/0 0/0/0
The worst solution 0/82.72/335.59 48.75/193.01/1096.66 0/0/0 0/0/0
The best solution 0/0/28.92 7.97/67.63/737.39 0/0/0 0/0/0

Rosenbrock

Average solution 0.27/26.04/98.15 379.22/20,307.62/33,690,571.22 0.47/28.81/98.87 2.39/28.90/98.93
Standard deviation 1.01/0.54/0.08 845.50/34,257.18/41,367,235.20 1.54/0.09/0.04 3.33/0.06/0.04
The worst solution 3.99/27.30/98.24 3032.11/107,129.05/231,274,237.32 7.48/28.94/98.94 8.95/28.98/98.99
The best solution 0/25.04/97.89 4.96/1698.53/6,545,833.08 0/28.59/98.77 1.29 × 10−8/28.76/98.79

Algorithms 2018, 11, 23 11 of 20

Table 3. Cont.

Function
r1, r2 U[0, 1] 0.5 U[−1, 1] G(0, 1)

Dimension 10/30/100 10/30/100 10/30/100 10/30/100

Griewank

Average solution 0/0/28.04 0.19/5.28/478.06 0/0/0 0/0/0
Standard deviation 0/0/42.54 0.18/3.19/155.18 0/0/0 0/0/0
The worst solution 0/0/90.93 0.84/14.45/941.53 0/0/0 0/0/0
The best solution 0/0/0 0.05/1.70/203.77 0/0/0 0/0/0

Ackley

Average solution 0/0/9.64 0.80/8.25/18.27 0/0/0 0/0/0
Standard deviation 0/0/6.53 0.85/2.90/0.79 0/0/0 0/0/0
The worst solution 0/0/19.97 2.81/16.67/19.44 0/0/0 0/0/0
The best solution 0/0/0 0/4.40/16.92 0/0/0 0/0/0

Levy and Montalvo 2

Average solution 0/0/10.48 0/3.35/34.54 0/0.36/8.28 0/1.08/8.64
Standard deviation 0/0/3.20 0/1.84/8.01 0/0.50/0.62 0/0.68/0.37
The worst solution 0/0/17.73 0/7.62/49.10 0/1.51/9.37 0/2.20/9.32
The best solution 0/0/5.40 0/0.70/18.90 0/0/6.31 0/0/7.70

Sinsolidal

Average solution −3.38/−1/−0.03 −3.07/−0.12/0 −3.27/−0.72/−0.05 −3.21/−0.54/0
Standard deviation 0.44/1.13/0.09 0.53/0.16/0 0.61/1.02/0.18 0.66/0.80/0
The worst solution −1.75/0/0 −1.75/0/0 −1.75/0/0 −1.75/0/0
The best solution −3.50/−3.50/−0.44 −3.50/−0.70/0 −3.50/−3.50/−0.87 −3.50/−3.50/0

Rotated Expanded Scaffer

Average solution 0.07/1.44/8.33 3/11.74/43.49 0/0/0 0/0/0
Standard deviation 0.25/1.49/3.53 0.47/1.03/1.02 0/0/0 0/0/0
The worst solution 1/5.98/14.94 3.70/12.97/46.10 0/0/0 0/0/0
The best solution 0/0/0 1.42/8.57/41.56 0/0/0 0/0/0

Alpine

Average solution 0/0.91/16.46 0.31/8.41/73.22 0/2.45/27.24 0/2.93/30.70
Standard deviation 0/1.94/7.65 0.76/3.95/13.39 0/1.23/6.95 0/1.44/4.19
The worst solution 0/8.46/34.94 2.85/15.54/96.89 0/5.02/36.40 0/6.16/37.74
The best solution 0/0.02/5.71 0/1.08/48.66 0/0/0 0/1/22.49

Moved axis parallel
hyper-ellipsoid

Average solution 0/1383.33/102,196.49 20.64/9487.68/714,363.54 0/265.79/56,727.35 0/132.76/44,270.31
Standard deviation 0/2215.48/46,700.85 90.81/5798.05/125,266.58 0/865.18/54,460.61 0/727.13/70,284.76
The worst solution 0/7000/196,643.04 500/24,372.80/967,098.52 0/3982.80/195,537.54 0/3982.65/235,721.53
The best solution 0/0/21,301.13 0/2221.47/484,347.13 0/0/0 0/0/0

Schwefel

Average solution −3764.52/−9823.92/−26,540.45 −3134.09/−7401.16/−18,304.47 −3764.52/−10,431.89/−30,589.24 −3732.73/−10,492.05/−29,986.84
Standard deviation 142.42/1344.37/3360.98 450.61/794.06/2000.45 243.94/662.12/2767.91 226.00/698.81/2431.96
The worst solution −3474.36/−6944.90/−20,227.96 −2057.33/−5583.79/−14,272.03 −3235.87/−8743.62/−25,650.73 −3235.87/−8624.37/−25,743.44
The best solution −3951.34/−11,854.02/−31,935.70 −3832.10/−9056.25/−22,371.46 −4189.83/−11,496.29/−37,956.42 −4189.83/−11,948.07/−34,477.94

Algorithms 2018, 11, 23 12 of 20Algorithms 2018, 11, x 12 of 20

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000
 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be

st
 fi

tn
es

s

Iteration

0.5

0 20 40 60 80 100
0

30

60

0 2,000 4,000 6,000 8,000 10,000
0

20,000

40,000

60,000

80,000

100,000

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 500 1,000 1,500 2,000
0

5,000

10,000

(a) (b)

0 2,000 4,000 6,000 8,000 10,000
0

500

1,000

1,500

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 20 40 60 80 100
0

20

40

60

0 2,000 4,000 6,000 8,000 10,000
0.0

2.0x105

4.0x105

6.0x105

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 50 100 150
0

200

400

600

800

1,000

(c) (d)

0 2,000 4,000 6,000 8,000 10,000
0

100

200

300

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 20 40 60
0

5

10

0 2,000 4,000 6,000 8,000 10,000
0

5

10

15

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

3 4 5 6 7 8
0.0

0.1

0.2

(e) (f)

0 2,000 4,000 6,000 8,000 10,000
0

30

60

90

0.5

Be
st

 fi
tn

es
s

Iteration

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

0 20 40 60 80 100

0

2

4

0 2,000 4,000 6,000 8,000 10,000
-4

-2

0

2

0.5

Be
st

 fi
tn

es
s

Iteration

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

(g) (h)

Figure 5. Cont.

Algorithms 2018, 11, 23 13 of 20Algorithms 2018, 11, x 13 of 20

0 2,000 4,000 6,000 8,000 10,000

0

50

100

0.5

Be
st

 fi
tn

es
s

Iteration

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

0 40 80

0

2

4

0 2,000 4,000 6,000 8,000 10,000
0

100

200

300

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 20 40 60
0

5

10

(i) (j)

0 2,000 4,000 6,000 8,000 10,000
0

20,000

40,000

60,000

80,000

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0.5

0 50 100 150 200
0

50

100

0 2,000 4,000 6,000 8,000 10,000
-35,000

-30,000

-25,000

-20,000

-15,000

-10,000

-5,000

0

0.5

Be
st

 fi
tn

es
s

Iteration

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

(k) (l)

Figure 5. The mean best fitness of standard PSO algorithm with different types of random values for
benchmark functions: (a) Sphere1; (b) Sphere2; (c) Rastrigin; (d) Rosenbrock; (e) Griewank; (f) Ackley;
(g) Levy and Montalvo 2; (h) Sinusoidal; (i) Rotated Expanded Scaffer; (j) Alpine; (k) Moved axis
parallel hyper-ellipsoid; (l) Schwefel. (The solid, dash, short dash and short dash dot lines represent
the random values generated by uniform distribution in the ranges of [0, 1] and [−1, 1], Gauss
distribution, and 0.5, respectively; the black, red and blue lines represent the space dimensions 10, 30,
and 100, respectively).

0 2,000 4,000 6,000 8,000 10,000
0

5,000

10,000

15,000

20,000

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 20 40 60 80 100
0

50

100

150

200

0 2,000 4,000 6,000 8,000 10,000
0.0

2.0x105

4.0x105

6.0x105

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 200 400 600 800 1,000
0

5,000

10,000

(a) (b)

Figure 5. The mean best fitness of standard PSO algorithm with different types of random values for
benchmark functions: (a) Sphere1; (b) Sphere2; (c) Rastrigin; (d) Rosenbrock; (e) Griewank; (f) Ackley;
(g) Levy and Montalvo 2; (h) Sinusoidal; (i) Rotated Expanded Scaffer; (j) Alpine; (k) Moved axis
parallel hyper-ellipsoid; (l) Schwefel. (The solid, dash, short dash and short dash dot lines represent the
random values generated by uniform distribution in the ranges of [0, 1] and [−1, 1], Gauss distribution,
and 0.5, respectively; the black, red and blue lines represent the space dimensions 10, 30, and 100,
respectively).

Algorithms 2018, 11, x 13 of 20

0 2,000 4,000 6,000 8,000 10,000

0

50

100

0.5

Be

st
 fi

tn
es

s

Iteration

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

0 40 80

0

2

4

0 2,000 4,000 6,000 8,000 10,000
0

100

200

300

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 20 40 60
0

5

10

(i) (j)

0 2,000 4,000 6,000 8,000 10,000
0

20,000

40,000

60,000

80,000

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0.5

0 50 100 150 200
0

50

100

0 2,000 4,000 6,000 8,000 10,000
-35,000

-30,000

-25,000

-20,000

-15,000

-10,000

-5,000

0

0.5

Be
st

 fi
tn

es
s

Iteration

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

(k) (l)

Figure 5. The mean best fitness of standard PSO algorithm with different types of random values for
benchmark functions: (a) Sphere1; (b) Sphere2; (c) Rastrigin; (d) Rosenbrock; (e) Griewank; (f) Ackley;
(g) Levy and Montalvo 2; (h) Sinusoidal; (i) Rotated Expanded Scaffer; (j) Alpine; (k) Moved axis
parallel hyper-ellipsoid; (l) Schwefel. (The solid, dash, short dash and short dash dot lines represent
the random values generated by uniform distribution in the ranges of [0, 1] and [−1, 1], Gauss
distribution, and 0.5, respectively; the black, red and blue lines represent the space dimensions 10, 30,
and 100, respectively).

0 2,000 4,000 6,000 8,000 10,000
0

5,000

10,000

15,000

20,000

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 20 40 60 80 100
0

50

100

150

200

0 2,000 4,000 6,000 8,000 10,000
0.0

2.0x105

4.0x105

6.0x105

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 200 400 600 800 1,000
0

5,000

10,000

(a) (b)

Figure 6. Cont.

Algorithms 2018, 11, 23 14 of 20Algorithms 2018, 11, x 14 of 20

0 2,000 4,000 6,000 8,000 10,000
0

200

400

600

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be

st
 fi

tn
es

s

Iteration

0 10 20 30 40
0

2

4

0 2,000 4,000 6,000 8,000 10,000
0

20000

40000

60000

80000

100000

120000

140000

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 100 200 300 400 500
0

40

80

120

(c) (d)

0 2,000 4,000 6,000 8,000 10,000
0

50

100

150

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 10 20 30 40 50
0

2

4

0 2,000 4,000 6,000 8,000 10,000
0

5

10

15

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 20 40 60 80 100
0.0

0.5

1.0

(e) (f)

0 2,000 4,000 6,000 8,000 10,000

0

30

60

90

0.5

Be
st

 fi
tn

es
s

Iteration

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

0 20 40 60 80 100
0

2

4

0 2,000 4,000 6,000 8,000 10,000
-4

-2

0

2

0.5

Be
st

 fi
tn

es
s

Iteration

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

(g) (h)

0 2,000 4,000 6,000 8,000 10,000

0

50

100

0.5

Be
st

 fi
tn

es
s

Iteration

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

0 40 80

0

2

4

0 2,000 4,000 6,000 8,000 10,000
0

100

200

300

0.5

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be
st

 fi
tn

es
s

Iteration

0 20 40 60
0

5

10

(i) (j)

Figure 6. Cont.

Algorithms 2018, 11, 23 15 of 20Algorithms 2018, 11, x 15 of 20

0 2,000 4,000 6,000 8,000 10,000
0

20,000

40,000

60,000

80,000

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

Be

st
 fi

tn
es

s

Iteration

0.5

0 50 100 150 200
0

50

100

0 2,000 4,000 6,000 8,000 10,000

-30,000

-25,000

-20,000

-15,000

-10,000

-5,000

0

0.5

Be
st

 fi
tn

es
s

Iteration

 10 30 100
 U[0,1]
U[-1,1]
G(0,1)

(k) (l)

Figure 6. The mean best fitness of LDIW-PSO algorithm with different types of random values for
benchmark functions: (a) Sphere1; (b) Sphere2; (c) Rastrigin; (d) Rosenbrock; (e) Griewank; (f) Ackley;
(g) Levy and Montalvo 2; (h) Sinusoidal; (i) Rotated Expanded Scaffer; (j) Alpine; (k) Moved axis
parallel hyper-ellipsoid; (l) Schwefel. (The solid, dash, short dash and short dash dot lines represent
the random values generated by uniform distribution in the ranges of [0, 1] and [−1, 1], Gauss
distribution, and 0.5, respectively; the black, red and blue lines represent the space dimensions 10, 30,
and 100, respectively).

4.3. Application and Analysis

4.3.1. Application in Engineering Problem

The pressure vessel design, which was initially introduced by Sandgren [64], is a real world
engineering problem. There are four involved variables, including the thickness (x1), thickness of the
head (x2), the inner radius (x3), and the length of the cylindrical section of the vessel (x4). The highly
constrained problem of pressure vessel design can be expressed as,

2 2 2
1 3 4 2 3 1 4 2 4Min: () 0.6224 1.7781 3.1611 19.84f x x x x x x x x x x= + + + (10)

1 3 1

2 3 2

2 3
3 3 4 3

4 4

5 1

6

Subject to:
 g 0.0163 0,
 g 0.00954 0,

4 g 1296000 0,
3

 g 240 0,
 g 1.1 0,
 g 0.6

x x
x x

x x x

x
x

π π

= − ≤
= − ≤

= − − ≤

= − ≤
= − ≤
= − 2 0.x ≤

 (11)

where x1 and x2 are integer multipliers of 0.0625. x3 and x4 are continuous variables in the ranges of
40 ≤ x3 ≤ 80 and 20 ≤ x4 ≤ 60. In this study, the standard PSO and LDIW-PSO algorithms with different
types of random values are utilized to solve this engineering problem.

The parameters of standard PSO and LDIW-PSO algorithms for the engineering problem are the
same as those for benchmark functions. In order to eliminate random discrepancy, the results are
averaged over 30 independent runs. The optimization results are shown in Table 4. Obviously, the
results of all algorithms are similar. However, the performances of LDIW-PSO algorithm random
values generated by []1,1U − and (0,1)G are slightly poorer than those of other algorithms. This is
because the pressure vessel design is a low dimensional optimization problem. Although the random
values generated by []1,1U − or (0,1)G are beneficial to improve the diversity of particles, the local
searching ability may be decreased due to the finite particles.

Figure 6. The mean best fitness of LDIW-PSO algorithm with different types of random values for
benchmark functions: (a) Sphere1; (b) Sphere2; (c) Rastrigin; (d) Rosenbrock; (e) Griewank; (f) Ackley;
(g) Levy and Montalvo 2; (h) Sinusoidal; (i) Rotated Expanded Scaffer; (j) Alpine; (k) Moved axis
parallel hyper-ellipsoid; (l) Schwefel. (The solid, dash, short dash and short dash dot lines represent
the random values generated by uniform distribution in the ranges of [0, 1] and [−1, 1], Gauss
distribution, and 0.5, respectively; the black, red and blue lines represent the space dimensions 10, 30,
and 100, respectively).

4.3. Application and Analysis

4.3.1. Application in Engineering Problem

The pressure vessel design, which was initially introduced by Sandgren [64], is a real world
engineering problem. There are four involved variables, including the thickness (x1), thickness of the
head (x2), the inner radius (x3), and the length of the cylindrical section of the vessel (x4). The highly
constrained problem of pressure vessel design can be expressed as,

Min : f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1611x2

1x4 + 19.84x2
2x4 (10)

Subject to :
g1 = 0.0163x3 − x1 ≤ 0,
g2 = 0.00954x3 − x2 ≤ 0,
g3 = 1296000− πx2

3x4 − 4
3 πx3

3 ≤ 0,
g4 = x4 − 240 ≤ 0,
g5 = 1.1− x1 ≤ 0,
g6 = 0.6− x2 ≤ 0.

(11)

where x1 and x2 are integer multipliers of 0.0625. x3 and x4 are continuous variables in the ranges of
40 ≤ x3 ≤ 80 and 20 ≤ x4 ≤ 60. In this study, the standard PSO and LDIW-PSO algorithms with
different types of random values are utilized to solve this engineering problem.

The parameters of standard PSO and LDIW-PSO algorithms for the engineering problem are
the same as those for benchmark functions. In order to eliminate random discrepancy, the results
are averaged over 30 independent runs. The optimization results are shown in Table 4. Obviously,
the results of all algorithms are similar. However, the performances of LDIW-PSO algorithm random
values generated by U[−1, 1] and G(0, 1) are slightly poorer than those of other algorithms. This is
because the pressure vessel design is a low dimensional optimization problem. Although the random
values generated by U[−1, 1] or G(0, 1) are beneficial to improve the diversity of particles, the local
searching ability may be decreased due to the finite particles.

Algorithms 2018, 11, 23 16 of 20

Table 4. Comparisons of standard PSO and LDIW-PSO algorithms with different types of random
values for pressure vessel design.

Type r1, r2 U[0, 1] 0.5 U[−1, 1] G(0, 1)

SPSO

Average solution 5975.93 5975.93 5975.93 5975.94
Standard deviation 0.00 0.00 0.01 0.01
The worst solution 5975.93 5975.93 5975.96 5975.99
The best solution 5975.93 5975.93 5975.93 5975.93

LDIW-PSO

Average solution 5975.93 5975.93 6001.34 6026.76
Standard deviation 0.00 0.00 139.18 193.41
The worst solution 5975.93 5975.93 6738.24 6738.26
The best solution 5975.93 5975.93 5975.93 5975.93

4.3.2. Analysis

According to the experimental results and comparisons, it can be concluded that the performances
of standard PSO and LDIW-PSO algorithms are all highly improved by expanding the range of random
values. This is because that the large-scale random values are helpful in increasing the velocity of
particles, and then the particles avoid falling into the local optima. As shown in Figure 7, in the local
optima areas (A or C), if the velocity cannot be increased or its direction cannot be changed, the particle
will gradually fall into the local optima and cannot jump out. However, if the velocity of particle can
be increased or changed according to a certain probability, the global optima will be obtained more
easily and quickly.

Algorithms 2018, 11, x 16 of 20

Table 4. Comparisons of standard PSO and LDIW-PSO algorithms with different types of random
values for pressure vessel design.

Type r1, r2 []0,1U 0.5 []1 1U − , (0,1)G

SPSO

Average solution 5975.93 5975.93 5975.93 5975.94
Standard deviation 0.00 0.00 0.01 0.01
The worst solution 5975.93 5975.93 5975.96 5975.99
The best solution 5975.93 5975.93 5975.93 5975.93

LDIW-PSO

Average solution 5975.93 5975.93 6001.34 6026.76
Standard deviation 0.00 0.00 139.18 193.41
The worst solution 5975.93 5975.93 6738.24 6738.26
The best solution 5975.93 5975.93 5975.93 5975.93

4.3.2. Analysis

According to the experimental results and comparisons, it can be concluded that the
performances of standard PSO and LDIW-PSO algorithms are all highly improved by expanding the
range of random values. This is because that the large-scale random values are helpful in increasing
the velocity of particles, and then the particles avoid falling into the local optima. As shown in Figure
7, in the local optima areas (A or C), if the velocity cannot be increased or its direction cannot be
changed, the particle will gradually fall into the local optima and cannot jump out. However, if the
velocity of particle can be increased or changed according to a certain probability, the global optima
will be obtained more easily and quickly.

Figure 7. Schematic diagram of particles’ velocity.

For the standard PSO and LDIW-PSO algorithms, if the random values are set as 0.5 or generated
by []0,1U , the diversity of particle is decreased, and the variation range of particle velocity is limited
in a narrow band. Therefore, the probability of escaping local optima is very small. This is because
the particle velocity gradually tends to 0 when the particle falls into local optima. In addition, the
random value is a positive/negative number, which may lead to the monotonous variation of particle
velocity. This also decreases the possibility of escaping local optima. However, the PSO algorithms
with large-scale random values (distributed in []1 1U − , or (0,1)G) can overcome these problems to
some extent. Furthermore, for a low dimensional practical optimization problem, the random values
generated by []1,1U − or (0,1)G can improve the diversity of particles, but the local searching
ability may be decreased due to the finite particles. However, keeping the balance between local
search and global search is very important for the performances of these PSO algorithms. So, the PSO

Global optima

Local optima
Local optima

A B CY

0

v
v

X

Figure 7. Schematic diagram of particles’ velocity.

For the standard PSO and LDIW-PSO algorithms, if the random values are set as 0.5 or generated
by U[0, 1], the diversity of particle is decreased, and the variation range of particle velocity is limited
in a narrow band. Therefore, the probability of escaping local optima is very small. This is because the
particle velocity gradually tends to 0 when the particle falls into local optima. In addition, the random
value is a positive/negative number, which may lead to the monotonous variation of particle velocity.
This also decreases the possibility of escaping local optima. However, the PSO algorithms with
large-scale random values (distributed in U[−1, 1] or G(0, 1)) can overcome these problems to some
extent. Furthermore, for a low dimensional practical optimization problem, the random values
generated by U[−1, 1] or G(0, 1) can improve the diversity of particles, but the local searching ability
may be decreased due to the finite particles. However, keeping the balance between local search and

Algorithms 2018, 11, 23 17 of 20

global search is very important for the performances of these PSO algorithms. So, the PSO algorithm
with random values distributed in U[0, 1] and deterministic PSO algorithm (r = 0.5) have better local
searching ability for some low dimensional optimization problems.

5. Conclusions

In this paper, the standard PSO algorithm and one of its modifications (LDIW-PSO algorithm)
are adopted to study and analyze the influences of random values generated by uniform distribution
in the ranges of [0, 1] and [−1, 1], Gauss distribution with mean 0 and variance 1 (U[0, 1], U[−1, 1]
and G(0, 1)). In addition, the deterministic PSO algorithm, in which the random values are set as
0.5, is also investigated in this study. Some benchmark functions and the pressure vessel design
problem are utilized to test and compare the performances of two PSO algorithms with different types
of random values in three space dimensions (10, 30, and 100). The experimental results show that
the performances of deterministic PSO algorithms are the worst. Moreover, the performances of two
PSO algorithms with random values generated by U[−1, 1] or G(0, 1) are much better than that of
the algorithms with random values generated by U[0, 1] for most benchmark functions. In addition,
the convergence velocities of the algorithms with random values distributed in U[−1, 1] or G(0, 1) are
much faster than that of the algorithms with random values distributed in U[0, 1]. It is concluded that
the PSO algorithms with large-scale random values can effectively avoid falling into the local optima
and quickly obtain the global optima. However, for a low dimensional practical optimization problem,
the random values generated by U[−1, 1] or G(0, 1) are beneficial to improve the global searching
ability, but the local searching ability may be decreased due to the finite particles.

Acknowledgments: This work was supported by the National Key Research and Development Program of China
(Grant No. 2017YFB0701700), Educational Commission of Hunan Province of China (Grant No. 16c1307) and
Innovation Foundation for Postgraduate of Hunan Province of China (Grant No. CX2016B045).

Author Contributions: Hou-Ping Dai and Dong-Dong Chen conceived and designed the experiments;
Hou-Ping Dai performed the experiments; Hou-Ping Dai and Dong-Dong Chen analyzed the data;
Zhou-Shun Zheng contributed reagents/materials/analysis tools; Dong-Dong Chen wrote the paper. All authors
have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neuron Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

2. Wang, Y.; Li, B.; Weise, T.; Wang, J.Y.; Yuan, B.; Tian, Q.J. Self-adaptive learning based particle swarm
optimization. Inf. Sci. 2011, 180, 4515–4538. [CrossRef]

3. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particleswarm optimizer for global
optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]

4. Chen, D.B.; Zhao, C.X. Particle swarm optimization with adaptive population size and its application.
Appl. Soft Comput. 2009, 9, 39–48. [CrossRef]

5. Xu, G. An adaptive parameter tuning of particle swarm optimization algorithm. Appl. Math. Comput. 2013,
219, 4560–4569. [CrossRef]

6. Mirjalili, S.A.; Hashim, S.Z.M.; Sardroudi, H.M. Training feedforward neural networks using hybrid particle
swarm optimization and gravitational search algorithm. Appl. Math. Comput. 2012, 218, 11125–11137.
[CrossRef]

7. Ren, C.; An, N.; Wang, J.; Li, L.; Hu, B.; Shang, D. Optimal parameters selection for BP neural network based
on particle swarm optimization: A case study of wind speed forecasting. Knowl. Based Syst. 2014, 56, 226–239.
[CrossRef]

8. Zhang, J.R.; Zhang, J.; Lok, T.M.; Lyu, M.R. A hybrid particle swarmoptimization–back-propagation
algorithm for feedforward neural network training. Appl. Math. Comput. 2007, 185, 1026–1037.

9. Das, G.; Pattnaik, P.K.; Padhy, S.K. Artificial Neural Network trained by Particle Swarm Optimization for
non-linear channel equalization. Expert Syst. Appl. 2014, 41, 3491–3496. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2010.07.013
http://dx.doi.org/10.1109/TEVC.2005.857610
http://dx.doi.org/10.1016/j.asoc.2008.03.001
http://dx.doi.org/10.1016/j.amc.2012.10.067
http://dx.doi.org/10.1016/j.amc.2012.04.069
http://dx.doi.org/10.1016/j.knosys.2013.11.015
http://dx.doi.org/10.1016/j.eswa.2013.10.053

Algorithms 2018, 11, 23 18 of 20

10. Lin, C.J.; Chen, C.H.; Lin, C.T. A hybrid of cooperative particle swarm optimization and cultural algorithm
for neural fuzzy networks and its prediction applications. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
2009, 39, 55–68.

11. Juang, C.F.; Hsiao, C.M.; Hsu, C.H. Hierarchical cluster-based multispecies particle-swarm optimization for
fuzzy-system optimization. IEEE Trans. Fuzzy Syst. 2010, 18, 14–26. [CrossRef]

12. Kuo, R.J.; Hong, S.Y.; Huang, Y.C. Integration of particle swarm optimization-based fuzzy neural network
and artificial neural network for supplier selection. Appl. Math. Model. 2010, 34, 3976–3990. [CrossRef]

13. Tang, Y.; Ju, P.; He, H.; Qin, C.; Wu, F. Optimized control of DFIG-based wind generation using sensitivity
analysis and particle swarm optimization. IEEE Trans. Smart Grid 2013, 4, 509–520. [CrossRef]

14. Sui, X.; Tang, Y.; He, H.; Wen, J. Energy-storage-based low-frequency oscillation damping control using
particle swarm optimization and heuristic dynamic programming. IEEE Trans. Power Syst. 2014, 29,
2539–2548. [CrossRef]

15. Jiang, H.; Kwong, C.K.; Chen, Z.; Ysim, Y.C. Chaos particle swarm optimization and T–S fuzzy modeling
approaches to constrained predictive control. Expert Syst. Appl. 2012, 39, 194–201. [CrossRef]

16. Moharam, A.; El-Hosseini, M.A.; Ali, H.A. Design of optimal PID controller using hybrid differential
evolution and particle swarm optimization with an aging leader and challengers. Appl. Soft Comput. 2016,
38, 727–737. [CrossRef]

17. Arumugam, M.S.; Rao, M.V.C. On the improved performances of the particle swarm optimization algorithms
with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal
control of a class of hybrid systems. Appl. Soft Comput. 2008, 8, 324–336. [CrossRef]

18. Pehlivanoglu, Y.V. A new particle swarm optimization method enhanced with a periodic mutation strategy
and neural networks. IEEE Trans. Evolut. Comput. 2013, 17, 436–452. [CrossRef]

19. Ratnaweera, A.; Halgamuge, S.; Waston, H. Self-organizing hierarchical particle optimizer with time-varying
acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [CrossRef]

20. Shi, Y.H.; Eberhart, R.C. A modified particle swarm optimizer. In Proceedings of the IEEE International
Conference on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73.

21. Xing, J.; Xiao, D. New Metropolis coefficients of particle swarm optimization. In Proceedings of the IEEE
Chinese Control and Decision Conference, Yantai, China, 2–4 July 2008; pp. 3518–3521.

22. Taherkhani, M.; Safabakhsh, R. A novel stability-based adaptive inertia weight for particle swarm
optimization. Appl. Soft Comput. 2016, 38, 281–295. [CrossRef]

23. Nickabadi, A.; Ebadzadeh, M.M.; Safabakhsh, R. A novel particle swarm optimization algorithm with
adaptive inertia weight. Appl. Soft Comput. 2011, 11, 3658–3670. [CrossRef]

24. Zhang, L.; Tang, Y.; Hua, C.; Guan, X. A new particle swarm optimization algorithm with adaptive inertia
weight based on Bayesian techniques. Appl. Soft Comput. 2015, 28, 138–149. [CrossRef]

25. Hu, M.; Wu, T.; Weir, J.D. An adaptive particle swarm optimization with multiple adaptive methods.
IEEE Trans. Evol. Comput. 2013, 17, 705–720. [CrossRef]

26. Shi, X.H.; Liang, Y.C.; Lee, H.P.; Lu, C.; Wang, L.M. An improved GA and a novel PSOGA-based hybrid
algorithm. Inf. Process. Lett. 2005, 93, 255–261. [CrossRef]

27. Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans.
Evol. Comput. 2009, 13, 945–958. [CrossRef]

28. Mousa, A.A.; El-Shorbagy, M.A.; Abd-El-Wahed, W.F. Local search based hybrid particle swarm optimization
algorithm for multiobjective optimization. Swarm Evol. Comput. 2012, 3, 1–14. [CrossRef]

29. Liu, Y.; Niu, B.; Luo, Y. Hybrid learning particle swarm optimizer with genetic disturbance. Neurocomputing
2015, 151, 1237–1247. [CrossRef]

30. Duan, H.B.; Luo, Q.A.; Shi, Y.H.; Ma, G.J. Hybrid Particle Swarm Optimization and Genetic Algorithm for
Multi-UAV Formation Reconfiguration. IEEE Computat. Intell. Mag. 2013, 8, 16–27. [CrossRef]

31. Epitropakis, M.G.; Plagianakos, V.P.; Vrahatis, M.N. Evolving cognitive and social experience in particle
swarm optimization through differential evolution: A hybrid approach. Inf. Sci. 2012, 216, 50–92. [CrossRef]

32. Blackwell, T.; Branke, J. Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans.
Evol. Comput. 2006, 10, 459–472. [CrossRef]

33. Parrott, D.; Li, X. Locating and tracking multiple dynamic optima by a particle swarm model using speciation.
IEEE Trans. Evol. Comput. 2006, 10, 440–458. [CrossRef]

http://dx.doi.org/10.1109/TFUZZ.2009.2034529
http://dx.doi.org/10.1016/j.apm.2010.03.033
http://dx.doi.org/10.1109/TSG.2013.2237795
http://dx.doi.org/10.1109/TPWRS.2014.2305977
http://dx.doi.org/10.1016/j.eswa.2011.07.007
http://dx.doi.org/10.1016/j.asoc.2015.10.041
http://dx.doi.org/10.1016/j.asoc.2007.01.010
http://dx.doi.org/10.1109/TEVC.2012.2196047
http://dx.doi.org/10.1109/TEVC.2004.826071
http://dx.doi.org/10.1016/j.asoc.2015.10.004
http://dx.doi.org/10.1016/j.asoc.2011.01.037
http://dx.doi.org/10.1016/j.asoc.2014.11.018
http://dx.doi.org/10.1109/TEVC.2012.2232931
http://dx.doi.org/10.1016/j.ipl.2004.11.003
http://dx.doi.org/10.1109/TEVC.2009.2014613
http://dx.doi.org/10.1016/j.swevo.2011.11.005
http://dx.doi.org/10.1016/j.neucom.2014.03.081
http://dx.doi.org/10.1109/MCI.2013.2264577
http://dx.doi.org/10.1016/j.ins.2012.05.017
http://dx.doi.org/10.1109/TEVC.2005.857074
http://dx.doi.org/10.1109/TEVC.2005.859468

Algorithms 2018, 11, 23 19 of 20

34. Li, C.; Yang, S. A clustering particle swarm optimizer for dynamic optimization. In Proceedings of the 2009
Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 439–446.

35. Kamosi, M.; Hashemi, A.B.; Meybodi, M.R. A new particle swarm optimization algorithm for dynamic
environments. In Proceedings of the 2010 Congress on Swarm, Evolutionary, and Memetic Computing,
Chennai, India, 16–18 December 2010; pp. 129–138.

36. Du, W.; Li, B. Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf. Sci. 2008,
178, 3096–3109. [CrossRef]

37. Dong, D.M.; Jie, J.; Zeng, J.C.; Wang, M. Chaos-mutation-based particle swarm optimizer for dynamic
environment. In Proceedings of the 2008 Conference on Intelligent System and Knowledge Engineering,
Xiamen, China, 17–19 November 2008; pp. 1032–1037.

38. Cui, X.; Potok, T.E. Distributed adaptive particle swarm optimizer in dynamic environment. In Proceedings
of the 2007 Conference on Parallel and Distributed Processing Symposium, Rome, Italy, 26–30 March 2007;
pp. 1–7.

39. De, M.K.; Slawomir, N.J.; Mark, B. Stochastic diffusion search: Partial function evaluation in swarm
intelligence dynamic optimization. In Stigmergic Optimization; Springer: Berlin/Heidelberg, Germany,
2006; pp. 185–207.

40. Janson, S.; Middendorf, M. A hierarchical particle swarm optimizer for noisy and dynamic environments.
Genet. Program. Evol. Mach. 2006, 7, 329–354. [CrossRef]

41. Zheng, X.; Liu, H. A different topology multi-swarm PSO in dynamic environment. In Proceedings of the
2009 Conference on Medicine & Education, Jinan, China, 14–16 August 2009; pp. 790–795.

42. Shi, Y.H.; Eberhart, R.C. Parameter selection in particle swarm optimization. In Proceedings of the 7th
Annual International Conference on Evolutionary Programming, San Diego, CA, USA, 25–27 March 1998;
pp. 591–601.

43. Eberhart, R.C.; Shi, Y.H. Tracking and optimizing dynamic systems with particle swarms. In Proceedings of
the 2001 Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; pp. 81–86.

44. Yang, C.; Gao, W.; Liu, N.; Song, C. Low-discrepancy sequence initialized particle swarm optimization
algorithm with high-order nonlinear time-varying inertia weight. Appl. Soft Comput. 2015, 29, 386–394.
[CrossRef]

45. Shi, Y.H.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress
on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; pp. 1945–1950.

46. Eberhart, R.C.; Shi, Y.H. Comparing inertia weights and constriction factors in particle swarm optimization.
In Proceedings of the IEEE Congress on Evolutionary Computation, La Jolla, CA, USA, 16–19 July 2000;
pp. 84–88.

47. Chatterjee, A.; Siarry, P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm
optimization. Comput. Oper. Res. 2006, 33, 859–871. [CrossRef]

48. Feng, Y.; Teng, G.F.; Wang, A.X.; Yao, Y.M. Chaotic inertia weight in particle swarm optimization.
In Proceedings of the 2nd International Conference on Innovative Computing, Information and Control,
Kumamoto, Japan, 5–7 September 2007; p. 475.

49. Fan, S.K.S.; Chiu, Y.Y. A decreasing inertia weight particle swarm optimizer. Eng. Optimiz. 2007, 39, 203–228.
[CrossRef]

50. Jiao, B.; Lian, Z.; Gu, X. A dynamic inertia weight particle swarm optimization algorithm. Chaos Solitons
Fract. 2008, 37, 698–705. [CrossRef]

51. Lei, K.; Qiu, Y.; He, Y. A new adaptive well-chosen inertia weight strategy to automatically harmonize global
and local search ability in particle swarm optimization. In Proceedings of the 1st International Symposium
on Systems and Control in Aerospace and Astronautics, Harbin, China, 19–21 January 2006; pp. 977–980.

52. Yang, X.; Yuan, J.; Mao, H. A modified particle swarm optimizer with dynamic adaptation. Appl. Math.
Comput. 2007, 189, 1205–1213. [CrossRef]

53. Panigrahi, B.K.; Pandi, V.R.; Das, S. Adaptive particle swarm optimization approach for static and dynamic
economic load dispatch. Energ. Convers. Manag. 2008, 49, 1407–1415. [CrossRef]

54. Suresh, K.; Ghosh, S.; Kundu, D.; Sen, A.; Das, S.; Abraham, A. Inertia-adaptiveparticle swarm optimizer
for improved global search. In Proceedings of the Eighth International Conference on Intelligent Systems
Design and Applications, Kaohsiung, Taiwan, 26–28 November 2008; pp. 253–258.

http://dx.doi.org/10.1016/j.ins.2008.01.020
http://dx.doi.org/10.1007/s10710-006-9014-6
http://dx.doi.org/10.1016/j.asoc.2015.01.004
http://dx.doi.org/10.1016/j.cor.2004.08.012
http://dx.doi.org/10.1080/03052150601047362
http://dx.doi.org/10.1016/j.chaos.2006.09.063
http://dx.doi.org/10.1016/j.amc.2006.12.045
http://dx.doi.org/10.1016/j.enconman.2007.12.023

Algorithms 2018, 11, 23 20 of 20

55. Tanweer, M.R.; Suresh, S.; Sundararajan, N. Self-regulating particle swarm optimization algorithm. Inf. Sci.
2015, 294, 182–202. [CrossRef]

56. Nakagawa, N.; Ishigame, A.; Yasuda, K. Particle swarm optimization using velocity control. IEEJ Trans.
Electr. Inf. Syst. 2009, 129, 1331–1338. [CrossRef]

57. Clerc, M.; Kennedy, J. The particle swarm: Explosion stability and convergence in a multi-dimensional
complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]

58. Iwasaki, N.; Yasuda, K.; Ueno, G. Dynamic parameter tuning of particle swarm optimization. IEEJ Trans.
Electr. Electr. 2006, 1, 353–363. [CrossRef]

59. Leong, W.F.; Yen, G.G. PSO-based multiobjective optimization with dynamic population size and adaptive
local archives. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2008, 38, 1270–1293. [CrossRef] [PubMed]

60. Rada-Vilela, J.; Johnston, M.; Zhang, M. Population statistics for particle swarm optimization:
Single-evaluation methods in noisy optimization problems. Soft Comput. 2014, 19, 1–26. [CrossRef]

61. Hsieh, S.T.; Sun, T.Y.; Liu, C.C.; Tsai, S.J. Efficient population utilization strategy for particle swarm optimizer.
IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 444–456. [CrossRef] [PubMed]

62. Ruan, Z.H.; Yuan, Y.; Chen, Q.X.; Zhang, C.X.; Shuai, Y.; Tan, H.P. A new multi-function global particle
swarm optimization. Appl. Soft Comput. 2016, 49, 279–291. [CrossRef]

63. Serani, A.; Leotardi, C.; Iemma, U.; Campana, E.F.; Fasano, G.; Diez, M. Parameter selection in synchronous
and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems. Appl. Soft
Comput. 2016, 49, 313–334. [CrossRef]

64. Sandgren, E. Nonlinear integer and discrete programming in mechanical design optimization. J. Mech. Des.
ASME 1990, 112, 223–229. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ins.2014.09.053
http://dx.doi.org/10.1541/ieejeiss.129.1331
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1002/tee.20078
http://dx.doi.org/10.1109/TSMCB.2008.925757
http://www.ncbi.nlm.nih.gov/pubmed/18784011
http://dx.doi.org/10.1007/s00500-014-1438-y
http://dx.doi.org/10.1109/TSMCB.2008.2006628
http://www.ncbi.nlm.nih.gov/pubmed/19095550
http://dx.doi.org/10.1016/j.asoc.2016.07.034
http://dx.doi.org/10.1016/j.asoc.2016.08.028
http://dx.doi.org/10.1115/1.2912596
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Standard and Modified Particle Swarm Optimization Algorithms
	Standard Particle Swarm Optimization Algorithm
	Modifications for Particle Swarm Optimization Algorithm
	Constant or Random Inertia Weight Strategies
	Time Varying Inertia Weight Strategies
	Adaptive Inertia Weight Strategies

	Particle Swarm Optimization Algorithm with Different Types of Random Values
	Random Values with Uniform Distribution in the Range of [0, 1]
	Random Values with Uniform Distribution in the Range of [-1, 1]
	Random Values with Gauss Distribution

	Experiments and Analysis
	Experimental Setup
	Experimental Results and Comparisons
	Application and Analysis
	Application in Engineering Problem
	Analysis

	Conclusions
	References

