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Abstract: It is of great clinical significance to establish an accurate intelligent model to diagnose the
somatization disorder of community correctional personnel. In this study, a novel machine learning
framework is proposed to predict the severity of somatization disorder in community correction
personnel. The core of this framework is to adopt the improved bacterial foraging optimization (IBFO)
to optimize two key parameters (penalty coefficient and the kernel width) of a kernel extreme learning
machine (KELM) and build an IBFO-based KELM (IBFO-KELM) for the diagnosis of somatization
disorder patients. The main innovation point of the IBFO-KELM model is the introduction of
opposition-based learning strategies in traditional bacteria foraging optimization, which increases
the diversity of bacterial species, keeps a uniform distribution of individuals of initial population,
and improves the convergence rate of the BFO optimization process as well as the probability of
escaping from the local optimal solution. In order to verify the effectiveness of the method proposed
in this study, a 10-fold cross-validation method based on data from a symptom self-assessment scale
(SCL-90) is used to make comparison among IBFO-KELM, BFO-KELM (model based on the original
bacterial foraging optimization model), GA-KELM (model based on genetic algorithm), PSO-KELM
(model based on particle swarm optimization algorithm) and Grid-KELM (model based on grid
search method). The experimental results show that the proposed IBFO-KELM prediction model
has better performance than other methods in terms of classification accuracy, Matthews correlation
coefficient (MCC), sensitivity and specificity. It can distinguish very well between severe somatization
disorder and mild somatization and assist the psychological doctor with clinical diagnosis.

Keywords: kernel extreme learning machine; somatization disorder; parameter optimization;
bacterial foraging optimization; opposition-based learning

1. Introduction

Since the middle of the 20th century, all countries in the world have been reforming the
penal system to explore more humane, scientific and effective punishment methods to improve
the psychology and behavior of criminals. Community correction systems are an entirely new
way of punishment under such innovation background. According to statistics, there are about
700,000 community correction objects in our country. In order to understand the psychological and
behavioral characteristics of community correction objects, a self-rating scale (SCL-90) [1,2] is generally
adopted to evaluate their mental health level. On the scale, somatization disorder can be reflected
by 12 factors. Somatization factors mainly reflects subjective physical discomfort, including the main
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discomfort in cardiovascular, gastrointestinal, respiratory system as well as headaches, back pain,
muscle pain and other physical performance of anxiety. According to the research, the application of
artificial intelligence technology in this area has not yet been reported.

This paper proposed a new machine learning framework to predict the severity of somatization
disorder for the first time. In order to improve the accuracy rate of assessment of the severity
of the somatization disorder, this paper proposes a kernel extreme learning machine based on
opposition-based BFO method (improved bacterial-foraging, optimization-based kernel extreme
learning machine, IBFO-KELM). As a major machine learning model, a kernel extreme learning
machine (KELM) develops on the basis of an extreme learning machine with the integration of the
kernel concept [3]. Due to its unique advantages, KELM has been widely used in some classification
tasks [4–19] and performed well especially in computer-assisted medical diagnosis [7–11]. However,
KELM’s performance is mainly influenced by the parameters in its models, and the research shows
that the accuracy of its classification can be greatly improved by establishing appropriate model
parameter settings. Therefore, the key parameters should be set to the appropriate values before they
are applied to the actual problem, such as penalty factor and width of kernel function. Traditionally,
these parameters are treated by means of grid search and gradient descent. However, these methods are
easy to get into local optimal solutions. Recently, some bio-inspired meta heuristic search algorithms
(such as genetic algorithms (GA) [15,20,21], particle swarm optimization algorithms (PSO) [18,22,23],
the grey wolf optimization algorithms (GWO) [13]) have made it easier to find the global optimal
solution, compared with the traditional method.

Based on Escherichia coli’s food consuming behavior in the human intestine, the bacteria
optimization algorithm (BFO) was proposed by Passino in 2002 as a new kind of bionic algorithm [24]
that imitates four kinds of intelligent behavior, such as the bacterial foraging trend, as well as cluster,
copy, and disperse. This algorithm is another hot spot in the field of bio-heuristic computing due to
its advantages, such as the parallel search of the swarm intelligence algorithm and that it can easily
jump out of local minima. The BFO algorithm has been widely used in many fields [25–33] since
it was put forward. However, in the process of optimization, BFO is extremely easy to get into the
local optimum [34–36], and it is difficult to find the global optimal solution. Aiming at resolving
this problem, this paper introduces opposition-based learning strategy [37] into BFO as an improved
bacterial foraging optimization algorithm (IBFO) to improve the population diversity and the rate of
convergence. The principle of opposition-based learning strategy [37] is to generate corresponding
opposite solutions for each initial candidate solution. From these two kinds of solutions (candidate
solutions and corresponding opposite solutions), the solutions with relatively better fitness are selected
as members of the initial populations. This will help to improve the rate of convergence in the process
of optimization. Through an opposition-based learning strategy, opposite bacteria populations are
obtained to help increase the diversity of the population and distribute the initial population of
individuals evenly as far as possible and improve the convergence rate of the optimization process.
The IBFO algorithm is then used to solve the parameter optimization problem of KELM and obtain
the optimal model (IBFO-KELM). Furthermore, this model will be used to predict the somatization
severity of community correction personnel. As far as we know, this paper is the first to solve the
parameter optimization problem of the KELM model. In the experiment, a 10-fold cross-validation
method is used on data in a symptom self-assessment scale (SCL-90) to make detailed comparison
between IBFO-KELM, BFO-KELM (model based on the primitive bacterial foraging optimization
model), GA-KELM (model based on genetic algorithms), PSO-KELM (model based on particle swarm
optimization algorithms) and Grid-KELM (model based on grid search). The experimental results
show that the proposed IBFO-KELM prediction model has better performance than other methods in
the classification accuracy, Mathews correlation coefficient (MCC), sensitivity and specificity.
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The main contributions of this study are as follows:

(a) First, in order to fully explore the potential of the KELM classifier, we introduce an
opposition-based, learning-strategy-enhanced BFO to adaptively determine the two key
parameters of KELM, which aided the KELM classifier in more efficiently achieving the maximum
classification performance.

(b) The resulting model, IBFO-KELM, is applied to serve as a computer-aided decision-making tool
for predicting the severity of somatization disorder.

(c) The proposed IBFO-KELM method achieves superior results, and offers more stable and robust
results when compared to the four other KELM models.

The remainder of this paper is structured as follows. In Section 2, background information
regarding KELM, BFO and opposition-based learning are presented. The implementation of the
proposed methodology is explained in Section 3. In Section 4, the experimental design is described in
detail. The experimental results and a discussion of the proposed approach are presented in Section 5.
Lastly, the conclusions and recommendations for future work are summarized in Section 6.

2. Background Information

2.1. Kernel Extreme Learning Machine (KELM)

In this section, a brief description of KELM is provided. KELM is an improved version of ELM,
proposed by Huang et al. [3], which combines the kernel function into ELM, ensuring that the network
has good generalization performance and greatly improves the forward nerve network learning speed
and avoids many problems of gradient descent training methods represented by back propagation
neural networks, such as their easily falling into local optimal, infinite iterations, etc. KELM not only
has the multi-dominance of the ELM algorithm, but also combines the kernel function to map the
linear inseparable pattern non-linearly to the high-dimensional feature space in order to achieve linear
separability and further improve the accuracy.

Using L hidden nodes in the output layer, the output function of the single-hidden-layer
feed-forward neural networks (SLFNs) can be expressed as:

f (x) = h(x)β (1)

where β = [β1, β2, · · · , βL]
T is the output weight vector between the hidden layer with L neurons and

the output neurons, h(x) = [h1(x), h2(x), · · · , hL(x)] is the output vector relative to the hidden layer
of input x, which maps the data from the input space to the ELM feature space.

In the newly-developed KELM, the introduction of a positive coefficient into the learning system
makes the ELM more stable. If it is non-singular, the coefficient C can be added to the diagonal of HHT

when calculating the output weight β. Thus, the corresponding output function of the regularized
ELM can be expressed as follows:

f (x) = h(x)β = h(x)HT
(

I
C
+ HHT

)−1
T (2)

It has been shown that ELM with a kernel matrix can be defined as follows.

ΩKELM = HHT : ΩKELMi,j = h(xi) · h(xj) = K(xi, xj) (3)
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The output function can be written as:

f (x) = h(x)HT
(

I
C
+ HHT

)−1
T =

 K(x, x1)

. . .
K(x, xN)


T(

I
C
+ ΩKELM

)−1
T (4)

In this case, we do not need to know the hidden layer feature map h(x) because we can replace it
with the corresponding kernel function K(u, v).

2.2. Bacterial Foraging Optimization (BFO)

The bacterial foraging algorithm (BFO) is a novel swarm intelligence algorithm proposed by
Passino in 2002 [24], based on the competitive cooperative mechanism of E. coli in the process of
searching for food in the human intestine. By simulating the foraging behavior of E. coli, the BFO
mainly consists of four behaviors: chemotaxis, swarming, reproduction, and elimination–dispersal.

(1) Chemotaxis: Chemotaxis operation is the core of the algorithm, which simulates the foraging
behavior of E. coli moving and tumbling. In poorer areas, the bacteria tumble more frequently,
while bacteria move in areas where food is more abundant. The chemotaxis operation of the ith
bacterium can be represented as

θi(j + 1, k, l) = θi(j, k, l) + C(i) ∗ dcti

dcti =
∆(i)√

∆T(i)∆(i)

(5)

where the θi(j, k, l) represents the ith bacterium at the jth chemotactic, kth reproductive, and lth
elimination–dispersal steps. C(i) is the trend step length of bacteria i in a random direction (dcti).
∆ is a random vector between −1 and 1.

(2) Swarming: In the chemotactic of bacteria to the foraging process, in addition to searching for
food in their own way, there is both gravitation and repulsion among the individual bacteria.
Bacteria will generate attractive information to allow individual bacteria to travel to the center
of the population, bringing them together; at the same time, individual bacteria are kept at a
distance based on their respective repulsion information.

(3) Reproduction: According to the natural mechanism of survival of the fittest, after some time,
bacteria with weak ability to seek food will eventually be eliminated, and bacteria with strong
feeding ability will breed offspring to maintain the size of the population. By simulating this
phenomenon, a reproduction operation is proposed. In S-sized populations, S/2 bacteria with
poor fitness were eliminated and S/2 individuals with higher fitness self-replicated after the
bacteria performed the chemotaxis operator. After the execution of the reproduction operation,
the offspring will inherit the fine characteristics of the parent completely, protect the good
individuals, and greatly accelerate the speed towards the global optimal solution.

(4) Elimination–Dispersal: In the process of bacterial foraging, do not rule out the occurrence of
unexpected conditions leading to the death of bacteria or causing them to migrate to another new
area. By simulating this phenomenon, an elimination–dispersal operation has been proposed.
This operation occurs with a certain probability Ped. When the bacterial individual satisfies the
probability Ped, then the individual of the bacterial dies and randomly generates a new individual
anywhere in the solution space. This bacterium may be different from the original bacterial,
which helps to jump out of the local optimal solution and promote the search for the global
optimal solution.
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2.3. Improved Bacterial Foraging Optimization (IBFO)

The IBFO strategy was constructed by combining opposition-based learning (OBL) with the
original BFO algorithm. OBL was first proposed by Tizhoosh [37]. The OBL strategy generates
corresponding opposite solutions for each initial candidate solution. From these two kinds of solutions
(candidate solutions and corresponding opposite solutions), the solutions with relatively better fitness
are selected as members of the initial populations. This will help to improve the convergence rate in
the optimization process. The related mathematical concepts of the OBL strategy can be represented
as follows.

Let x ∈ R be a real number defined on a certain interval: x ∈ [a, b]. The opposite number
∼
x is

defined as follows:
x = a + b− x (6)

Let P(x1, x2, . . . , xn) be a point in a n-dimensional coordinate system with x1, x2, . . . , xn ∈ R and
xi ∈ [ai, bi]. The opposite point P∗ is completely defined by its coordinates x∗1 , x∗2 , . . . , x∗n where

x∗i = ai + bi − xi i = 1, . . . , n (7)

Let f (x) be the function in focus and g(·) a proper evaluation function. If x ∈ [a, b] is an initial
(random) guess and x∗ is its opposite value, then in every iteration we calculate f (x) and f (x∗).
The learning continues with x if g( f (x)) ≥ g( f (x∗)), otherwise with x∗.

The initial solutions of bacterial populations can be expressed as

xi = xlow + rand(xup − xlow) i = 1, . . . , S (8)

where S is the swarm size of the population.
The corresponding opposite solutions x∗i of bacterial populations based on opposition-based

learning can be expressed as
x∗i = xup + xlow − xi (9)

3. Proposed IBFO-KELM Model

In this study, a novel evolutionary KELM model was developed using the IBFO strategy, as
shown in Figure 1. The two key parameters of the proposed KELM model were automatically
tuned by using the IBFO strategy to simulate the foraging behaviors of the BFO model and its
interactions with the surrounding environment. The proposed model was comprised of two main
procedures, including inner parameter optimization and outer performance evaluation. During the
inner parameter optimization procedure, the penalty parameters C and kernel bandwidth γ of the
KELM were determined dynamically using the IBFO technique via a five-fold cross validation (CV)
analysis. Then, the obtained optimal parameter pair (C, γ) was inputted into the KELM prediction
model in order to perform the classification task in the outer loop using a 10-fold CV strategy. The
classification error rate was used as the fitness function.

f itness =
(
∑K

i=1 testErrori

)
/k (10)

where testErrori represents the average test error rates achieved by the KELM classifier via the five-fold
CV during the inner parameter optimization procedure.
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The pseudo-code of the IBFO strategy is described in detail as follows in Algorithm 1:
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Begin 

          Initialize dimension p, population S, chemotactic steps Nc, swimming length Ns, 

reproduction steps Nre, elimination-dispersal steps Ned, elimination-dispersal 

probability Ped, step size C(i). 

          Calculate the corresponding opposite solutions of bacterial populations based on 

opposition-based learning. From the original and its corresponding opposite 

solutions of bacterial populations, S superior individuals are selected as the initial 

solutions of bacterial populations. 

          for ell = 1:Ned 

              for K = 1:Nre 

                  for j = 1:Nc 

Intertime = Intertime + 1; 

for i = 1:s  

J(i,j,K,ell) = fobj(P(:,i,j,K,ell)); 

Jlast = J(i,j,K,ell);  

     Tumble according to Equation (5) 

m = 0; 

while m < Ns 

     m = m + 1; 

     if J(i,j + 1,K,ell) < Jlast 

Jlast = J(i,j + 1,K,ell); 

Tumble according to Equation (5) 

else 

                                   m = Ns; 

End 

End 

End   

End  

/*Reprodution*/ 

Jhealth = sum(J(:,:,K,ell),2); 

[Jhealth,sortind] = sort(Jhealth); 

P(:,:,1,K + 1,ell) = P(:,sortind,Nc + 1,K,ell); 

               for i = 1:Sr 

    P(:,i + Sr,1,K + 1,ell) = P(:,i,1,K + 1,ell);  

End 

End  

/*Elimination-Dispersal*/ 

for m = 1:s 

    if Ped > rand   

Reinitialize bacteria m 

    End   

End   

End   

End 
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4. Experimental Design

4.1. Somatization Disorder Data Description

The data obtained from this research are all from the jurisdiction of Wenzhou Municipal Bureau of
Justice. A total of 419 community correction objects were selected as the research objects. These research
objects are mainly inmates with mild offences, little subjective viciousness, including inmates who were
sentenced to public surveillance, have been suspended, with temporary sentence execution outside
a prison and a ruling by parole personnel, etc. In this study, the symptom self-rating scale (SCL-90)
was used to study psychological and physical symptoms, depression, hostility and psychosis in the
recent week. Among them, somatization symptoms mainly reflect subjective bodily discomfort, with
12 attributes in all. The range of values for features F1–F12 is {1, 2, 3, 4, 5}, representing five different
intensities of a given symptom. The range of values for the decision attribute F13 is {1, 2}, representing
a severe state and the mild state, respectively. Table 1 gives a description of the 13 attributes.

Table 1. Description of the somatization disorder data.

Feature Description

F1 Headache
F2 Dizzy or fainted
F3 Chest pain
F4 Low back pain
F5 Nausea or upset stomach
F6 Muscle soreness
F7 Having breathe difficulty
F8 A series of chills or fever
F9 Body tingling or prickling
F10 The throat is infarcted
F11 Feeling that part of the body is weak
F12 Feeling the weight of your hands or feet
F13 Somatization severity

4.2. Experimental Setup

The computational analysis was conducted on a Windows 7 operating system with an AMD
Athlon 64 X2 Dual Core Processor 5000+ (2.6 GHz) (AMD Company, Santa Clara, CA, USA) and
4GB of RAM. The IBFO-KELM, BFO-KELM, PSO-KELM, GA-KELM, and Grid-KELM models
were implemented in the MATLAB platform. The technique used by Huang (available online:
http://www3.ntu.edu.sg/home/egbhuang, 17 January 2018) was used for the KELM classification.
The data was scaled into a range of [−1, 1] before each classification was conducted.

The search ranges of the penalty parameter C and kernel bandwidth γ in
K(x, xi) = exp(−γ‖x− xi‖2) were defined as C ∈ {2−5, 2−3, . . . , 215} and γ ∈ {2−15, 2−13, . . . ,
25}. A population swarm size of eight, chemotactic step number of five, swimming length
of four, reproduction step number of five, elimination–dispersal event number of two, and
elimination–dispersal probability of 0.25 were selected for BFO-KELM and IBFO-KELM. The
chemotaxis step value was established through trial and error, as shown in the experimental results
section. For PSO, the maximum velocity was set to about 60% of the dynamic range of the variable
on each dimension for the continuous type of dimensions. The two acceleration coefficients c1 and
c2 were set as 2.05, the inertia weight was set to one.In order to determine the validity and accuracy
of the results, the k-fold CV [38] was used to evaluate the classification performance of the model.
A nested stratified 10-fold CV, which has been widely used in previous research, was used for the
purposes of this study [39]. The classification performance evaluation was conducted in the outer loop.
Since a 10-fold CV was used in the outer loop, the classifiers were evaluated in one independent fold
of data, and the other nine folds of data were left for training. The parameter optimization process was

http://www3.ntu.edu.sg/home/egbhuang
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performed in the inner loop. Since a five-fold CV was used in the inner loop, the IBFO-KELM searched
for the optimal values of C and γ in the remaining nine folds of data. The nine folds of data were
further split into one fold of data for the performance evaluation, and four folds of data were left for
training. To evaluate the proposed method, commonly used evaluation criteria such as classification
accuracy (ACC), sensitivity, specificity and Matthews correlation coefficients (MCC) were analyzed.

5. Experimental Results and Discussion

5.1. Benchmark Function Validation

In order to test the performance of the proposed algorithm IBFO, nine multidimensional
benchmark functions, as shown in Table 2, were used.

Table 2. Benchmark functions.

Function Range Minimum

f1(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| [−10, 10] 0

f2(x) = ∑n
i=1 (∑

i
j−1 xj)

2 [−100, 100] 0
f3(x) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100] 0

f4(x) = ∑n
i=1 ([xi + 0.5])2 [−100, 100] 0

f5(x) = ∑n
i=1 ixi

4 + random[0,1] [−1.28, 1.28] 0
f6(x) = ∑n

i=1−xi sin(
√
|xi|) [−500, 500] −418.9829 × 5

f7(x) = ( 1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

6 )
−1

[−65, 65] 1

f8(x) = ∑11
i=1 [ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]
2

[−5, 5] 0.00030

f9(x) = −∑10
i=1 [(x− ai)(x− ai)

T + ci]
−1 [0, 10] −10.5363

This paper selected nine multidimensional benchmark functions for the experiment to illustrate
the effectiveness of the proposed IBFO algorithm. The nine benchmark functions are made up of
five unimodal (f 1–f 5) benchmark functions, one multimodal (f 6) benchmark functions and three
fixed-dimension multimodal (f 7–f 9) benchmark functions. Moreover, the performance of the IBFO is
also compared with the PSO, Bat algorithm (BA) and conventional BFO. As mentioned in the literature,
the proposed IBFO has superior results for these benchmark functions compared to the PSO, BA
and original BFO. A total of 30 independent runs of the four algorithms were performed on each
benchmark function. The maximum number of iterations and population size for all algorithms were
set to 600 and 50, respectively. We recorded the average (Ave) and standard deviation (Std) for each
benchmark problem.

Table 3 shows the detailed statistical results for the nine multidimensional benchmark functions
when dimension =2 for different algorithms (PSO, BA, BFO, IBFO), respectively. Based on the results
in Table 3, IBFO can provide very competitive results. According to the statistical result of f 1–f 9, it
can be seen that IBFO has better searching ability and is more stable, which means that it also has
better robustness. According to the performance of f 1–f 9 in Figure 2, it is obvious that although the
proposed IBFO can converge slowly in the early stages in some functions, the final result is optimal as
the number of iterations increases.
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Table 3. Results of testing nine multidimensional benchmark functions.

Methods

PSO BA BFO IBFO

Ave Std Ave Std Ave Std Ave Std

f 1 0.0185 0.0097 0.0113 0.0053 0.0075 0.0042 0.0057 0.0031
f 2 0.0006 0.0005 0.0001 0.0001 4.07 × 10−5 4.76 × 10−5 2.83 × 10−5 4.83 × 10−5

f 3 0.0135 0.0079 0.0095 0.0045 0.2072 1.1059 0.0046 0.0029
f 4 0.0003 0.0003 9.88 × 10−5 0.0001 5.11 × 10−5 0.0001 3.13 × 10−5 3.76 × 10−5

f 5 0.0070 0.0045 0.0020 0.0016 0.00045 0.0003 0.0004 0.0003
f 6 −793.55 65.4056 −763.56 77.9863 −720.08 76.2664 −797.41 56.1899
f 7 1.9873 1.5529 2.8100 1.9357 1.7915 1.0204 1.3947 0.8472
f 8 0.0012 0.0002 0.0081 0.0095 0.0007 0.0002 0.0007 0.0002
f 9 −5.1904 1.9864 −5.8112 3.1206 −10.3323 0.9752 −10.5104 0.0135
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Figure 2. Convergence curves of the nine multidimensional benchmark functions for the four
algorithms when dimension =2.

5.2. Results of the Somatization Disorder Diagnosis

Previous studies have shown that the chemotaxis step size of the bacterial optimization algorithm
plays an important role in the search ability of bacteria. Thus this paper first analyzed and studied the
influence of this on the performance of IBFO-KELM. Table 4 shows that the IBFO-KELM obtained the
classification results in the psychological correction data under different chemotaxis step sizes. The
data shown in the table mainly consist of mean and variance. As can be seen from the table, when
the chemotaxis step size value is 0.5, the IBFO-KELM model achieved the best results with 96.97%
classification accuracy, 0.9243 MCC, 97.29% sensitivity and 96.00% specificity. In addition, the variance
of the model on the ACC index is the smallest when the value is 0.15, which indicates that the model
has the most stable performance at this value. Therefore, in the follow-up experiment, we will take the
chemotaxis step size value of 0.15 as the experimental parameter.

Table 4. The classification results of IBFO-KELM (kernel extreme learning machine) with different
chemotaxis step size.

Step Size
IBFO-KELM

ACC MCC Sensitivity Specificity

0.05 0.9213 (0.0389) 0.8227 (0.0903) 0.9679 (0.035) 0.8286 (0.0768)
0.1 0.9402 (0.0362) 0.8653 (0.0824) 0.9713 (0.0282) 0.8786 (0.0678)

0.15 0.9697 (0.0351) 0.9243 (0.0907) 0.9729 (0.0351) 0.9600 (0.0843)
0.2 0.9476 (0.0512) 0.8850 (0.1089) 0.9679 (0.0544) 0.9071 (0.0828)

0.25 0.9378 (0.0427) 0.8614 (0.0965) 0.9786 (0.0301) 0.8571 (0.1117)
0.3 0.9211 (0.0377) 0.8241 (0.0836) 0.9675 (0.0365) 0.8286 (0.1075)

In order to verify the effectiveness of the proposed method, we proposed a comparison study
with four other efficient machine learning models, namely Grid-KELM, BFO-KELM, GA-KELM and
PSO-KELM. The comparison of the five methods in terms of the average ACC, MCC, sensitivity, and
specificity is shown in Table 5. As shown, the IBFO-KELM had the highest ACC among the five
methods. IBFO-KELM yielded average results of 96.97% ACC, 0.9243 MCC, 97.29% sensitivity, and
96.00% specificity. BFO-KELM yielded an ACC of 93.29%, 0.8280 MCC, sensitivity of 95.86%, and
specificity of 85.50%. The PSO-KELM yielded an ACC of 92.82%, 0.8056 MCC, sensitivity of 96.57%,
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and specificity of 80.50%. The GA-KELM yielded an ACC of 91.76%, 0.7775 MCC, sensitivity of 95.95%,
and specificity of 80.00%. The Grid-KELM yielded the worst results with an ACC of 90.76%, 0.7592
MCC, sensitivity of 94.48%, and specificity of 79.00%. Figure 3 displays the surface of the training
classification accuracies achieved by the KELM method for one fold via the grid search strategy, where
the x-axis and y-axis are denoted by log2C and log2γ, respectively. In addition, each mesh node in the
plane (x, y) of the training accuracy represents a combination of the parameters, and the z-axis denotes
the training accuracy value obtained with each combination of the parameters.

Table 5. Classification performance obtained by the five methods in terms of ACC (classification
accuracy), MCC (Matthew’s correlation coefficient), sensitivity, and specificity.

Method
Metrics

ACC MCC Sensitivity Specificity

IBFO-KELM 0.9697 ± 0.0351 0.9243 ± 0.0907 0.9729 ± 0.0351 0.9600 ± 0.0843
BFO-KELM 0.9329 ± 0.0362 0.8280 ± 0.0850 0.9586 ± 0.0491 0.8550 ± 0.1012
PSO-KELM 0.9282 ± 0.0266 0.8056 ± 0.0813 0.9657 ± 0.0362 0.8050 ± 0.1383
GA-KELM 0.9176 ± 0.0662 0.7775 ± 0.1879 0.9595 ± 0.0349 0.8000 ± 0.2494

Grid-KELM 0.9076 ± 0.0679 0.7592 ± 0.1637 0.9448 ± 0.0724 0.7900 ± 0.1647
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Figure 3. Training accuracy surfaces of KELM and KELM with parameters obtained by the grid-search
based KELM (Grid-KELM) for several folds. (a) Training accuracy surface of fold 2 for KELM;
(b) Training accuracy surface of fold 4 for KELM; (c) Training accuracy surface of fold 6 for KELM;
(d) Training accuracy surface of fold 8 for KELM.

In order to reveal subtle differences in the classification performance of the methods, the
non-parametric statistical test Wilcoxon’s rank-sum was used to check whether or not the improvement
achieved by the IBFO-KELM was statistically significant. A p-value of less than 0.05 indicates statistical
significance in the experiment. Table 6 shows that IBFO-KELM has significantly better results than the
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other four methods in terms of ACC and MCC. In Table 6, significant values that are greater than 0.05
are shown in bold.

Table 6. p-values of the Wilcoxon test of IBFO-KELM results versus other four methods (p > 0.05 are
shown in bold).

Method
p-Value

ACC MCC Sensitivity Specificity

BFO-KELM 0.03 0.03 0.24 0.06
PSO-KELM 0.02 0.02 0.41 0.02
GA-KELM 0.03 0.04 0.61 0.08

Grid-KELM 0.02 0.02 0.23 0.02

In order to describe the convergence of the proposed IBFO algorithm, we also recorded the
trend that the accuracy (of the various KELM models based on swarm intelligence algorithms in
the experiment) changed with population iteration. It is found from Figure 4 that the IBFO-KELM
model can quickly converge to the best accuracy in the sixth iteration during the process of training,
suggesting that the IBFO algorithm has a strong global search ability to avoid the algorithm being
trapped prematurely in the local optimum. The main reason for this is that the opposite learning
strategy plays a role in regulating the diversity of the population so as to accelerate the convergence of
the whole population to the optimal solution. The original BFO-KELM model requires 24 iterations to
converge to the optimal solution, and the obtained solution is less than that of IBFO. The PSO-KELM
model converged faster than BFO, but the fitness value was less than BFO. The GA-KELM model
obtained the maximum number of iteration times for the optimal solution, and the obtained solution
was the lowest in the four methods, mainly because the GA algorithm in the current data has poor
searching ability.

1 

 

 
Figure 4. Relationship between the iteration and training accuracy of improved bacterial foraging
optimization based KELM (IBFO-KELM), bacterial foraging optimization (BFO-KELM), particle swarm
optimization based KELM (PSO-KELM) and genetic algorithm (GA-KELM).



Algorithms 2018, 11, 17 16 of 18

In order to show the effectiveness of the proposed method, we also carried out the experiment
using the other classifiers including support vector machines (SVM), random forest (RF) and Naive
Bayes (NB) for comparison. The grid search method was also used to search for the two values for
the radial basis function (RBF) kernel of SVM. The number of trees (ntree) and variables (mtry) were
chosen from the range of ntree ∈ [50, 500] and mtry ∈ [1, 6] with a step of one, and the optimal results
was taken for comparison. The detailed results of the above three methods are shown in Table 7.
We found that RF achieved the best results among the three methods, while NB performed the worst.
SVM ranked between NB and RF. Comparing Tables 5 and 7, we find that KELM can achieve better
results than SVM and that the proposed IBFO-KELM can achieve much better results than all the
other methods.

Table 7. Detailed results for random forest (RF), Naïve Bayes (NB) and (SVM).

Method
Metrics

ACC MCC Sensitivity Specificity

NB 0.9182 ± 0.0543 0.7766 ± 0.1495 0.9800 ± 0.0322 0.7350 ± 0.1634
SVM 0.8971 ± 0.0735 0.7122 ± 0.2148 0.9595 ± 0.0469 0.7100 ± 0.2601
RF 0.9382 ± 0.0405 0.8337 ± 0.1133 0.9652 ± 0.0367 0.8500 ± 0.1414

6. Conclusions and Future Work

In this study, a kind of kernel learning machine model (IBFO-KELM) based on an oppositional
bacterial foraging optimization algorithm is proposed to predict the severity of somatization disorder
in community correction personnel. The main innovation point of this article is the improved bacterial
foraging optimization algorithm (IBFO) proposed on the basis of opposition-based learning strategy.
Compared with the original BFO algorithm, this method can not only obtain a solution of the higher
quality, but also with a faster convergence speed. Based on this method, KELM can obtain better
parameters and higher prediction performance. The experimental results show that the IBFO-KELM
model has better performance in terms of ACC, MCC, sensitivity and specificity than the other four
KELM models.

Therefore, we can certainly come to the conclusion that the proposed intelligent prediction model
can well predict the severity of somatization disorder in community correction personnel and provide
psychological workers or doctors with meaningful information for clinical decisions and reference.
In future work, we will continue to improve the methodology presented in this study, enabling it to be
used to identify key factors that affect the physical impairment of community correctional personnel.
In addition, we consider collecting more data samples, further improving the performance of the
whole model, and introducing the proposed models to other similar mental disease diagnoses.
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