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Abstract: The flexible job shop scheduling problem (FJSSP) and multi-row workshop layout problem
(MRWLP) are two major focuses in sustainable manufacturing processes. There is a close interaction
between them since the FJSSP provides the material handling information to guide the optimization of
the MRWLP, and the layout scheme affects the effect of the scheduling scheme by the transportation
time of jobs. However, in traditional methods, they are regarded as separate tasks performed
sequentially, which ignores the interaction. Therefore, developing effective methods to deal with the
multi-objective energy-aware integration of the FJSSP and MRWLP (MEIFM) problem in a sustainable
manufacturing system is becoming more and more important. Based on the interaction between
FJSSP and MRWLP, the MEIFM problem can be formulated as a multi-objective bi-level programming
(MOBLP) model. The upper-level model for FJSSP is employed to minimize the makespan and
total energy consumption, while the lower-level model for MRWLP is used to minimize the material
handling quantity. Because the MEIFM problem is denoted as a mixed integer non-liner programming
model, it is difficult to solve it using traditional methods. Thus, this paper proposes an improved
multi-objective hierarchical genetic algorithm (IMHGA) to solve this model. Finally, the effectiveness
of the method is verified through comparative experiments.

Keywords: integration of FJSSP and MRWLP; bi-level programming model; improved multi-objective
hierarchical genetic algorithm; energy consumption

1. Introduction

With the diversification and personalization of market demand, multi-variety and small batch
production has been adopted by more and more enterprises, aiming to respond to the changes
of customers and provide the market with creative products quickly. Drira et al. [1] reported that,
on average, 40% of an enterprise’s sales come from new products. The manufacturing of new
products leads to some changes in the process design, processing sequences, and material handling
quantity, which has a significant impact on the manufacturing process. Gupta et al. [2] concluded
that one-third of USA companies undergo major dislocation of scheduling and layout schemes
every two years. As the decision-making focus of the production process, scheduling and layout
planning run through the entire manufacturing process. To ensure production efficiency under
such a market environment, the scheduling and layout schemes of enterprises must be adaptive
to changing demand conditions. In view of this situation, general enterprises tend to re-design
scheduling schemes and avoid adjusting layout schemes as much as possible due to time-consuming
and expensive re-layout costs. The approach impedes the improvement of enterprises’ responsiveness
because the optimization performance of the scheduling scheme strongly depends on the original
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layout scheme. However, for some labor-intensive enterprises with moderately light machines or
workstations that are convenient for re-layout, such as footwear or clothing industries, they can adapt
better to the changes of market demand by re-designing the scheduling and layout schemes [3]. It is
noted that scheduling determines the allocation of operations to machines and provides detailed
material handling information between machines for the optimization of layout, while layout planning
determines the optimal positions of all machines in a given workshop according to the specific
scheduling scheme. It is observed that there is a close interaction between scheduling and layout
planning. Therefore, the coordinated optimization of scheduling and layout planning is of vital
importance for enterprises to respond quickly to changes of market demand.

Recently, the issues of environmental protection and energy conservation in manufacturing
industries have been gaining more and more attention. Since the beginning of the industrial revolution,
the industrial sector has consumed large amounts of energy. Manufacturing enterprises are responsible
for approximately 33% of global total energy consumption and 38% of greenhouse gas emissions [4].
Improving the utilization efficiency of resources and energy has become critical for the sustainable
development of modern industrial companies [5]. Therefore, the concept of green manufacturing has
caused wide concern in academia, society, and industry, referring to reducing pollution and saving
energy consumption during the production process. Admittedly, we should improve enterprises’
quick response ability when facing changes of market demand as much as possible, but it cannot be
implemented at the expense of the environment. Thus, another goal of enterprises is to determine how
to save energy and reduce emissions, without lowering the response ability. It should be noted that
a large number of studies [6–9] have indicated that reasonable scheduling and layout planning for
manufacturing systems will save great energy consumption.

Therefore, in order to respond quickly and effectively to changes of market demand and reduce
energy consumption, the integrated optimization of scheduling and layout planning is extremely
important. However, this integration is still a challenge in both research and applications. In traditional
approaches, scheduling and layout planning were carried out sequentially. These approaches cannot
consider the scheduling and layout planning problems from the perspective of system optimization
and ignore their interaction, which may prevent improvement of the productivity and energy efficiency
of the manufacturing system and generate the following problems:

• In much research, scheduling is done based on the assumption that the transportation time
between machines is either neglected or determined. However, in the actual workshop,
the positions of machines will significantly affect the transportation time of jobs. This may
make the enterprises’ production cycle longer or generate production stagnation, which leads
to more idle energy consumption. Therefore, the generated scheduling schemes are somehow
unrealistic and cannot be readily executed in the workshop, resulting in the optimum scheduling
scheme often becoming infeasible;

• After the layout is set, the performance of scheduling schemes is highly dependent on the
determined layout scheme. Moreover, if the type and requirement of the product change greatly,
the scheduling scheme will change accordingly. As a result, the material handling information
between machines will be greatly affected, which may cause the original layout scheme to
become inefficient;

• Separate optimization of scheduling and layout planning does not guarantee optimality of the
whole manufacturing system since scheduling or layout planning has more than one criterion
to be considered, in which many criterions are often conflicting. For example, in the real
manufacturing process, each operation could be implemented on a set of machines, including
dedicated machines and universal machines. Generally, when an operation is processed on the
dedicated machine, the corresponding processing time and energy consumption are minimal.
In this manner, the scheduling scheme displays a short completion time and low processing
energy consumption, while the corresponding layout scheme may lead to high transportation
energy consumption and material handling quantity since the jobs are frequently transported
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between machines. On the contrary, the scheduling scheme may lead to a long completion time
and high processing energy consumption, while the corresponding layout scheme may lead to
low transportation energy consumption and material handling quantity. Neither of these manners
can obtain a high production efficiency and low energy consumption solution.

The above problems can be conquered by the integration of scheduling and layout planning (ISLP),
which has been a hot research topic in recent years. Ranjbar et al. [10] studied a concurrent layout and
scheduling problem in a job shop environment to minimize makespan. Ripon et al. [11,12] developed
a multi-objective mathematical model for integrated job shop scheduling and the facility layout
planning problem that considers makespan, mean flow time, material handling cost, and closeness
rating score simultaneously. Mallikarjuna [13] proposed a flexible batch scheduling problem which
was integrated with loop layout pattern design, and applied the genetic algorithm (GA) and
simulated annealing algorithm (SA) to solve the problem for minimizing makespan and transportation
cost. Liu et al. [14] studied an integrated optimization problem of workshop layout and scheduling
considering energy consumption to minimize makespan and carbon emission simultaneously, in which
they proposed a multi-objective fruit fly optimization algorithm to solve the problem.

Besides this, in the field of cellular manufacturing, Wu et al. [15], Arkat et al. [16],
and Fahmy et al. [17] studied the integrated cell formation, group layout, and group scheduling,
and applied GA to solve the problem for minimizing makespan. Arkat et al. [18] adopted
the multi-objective genetic algorithm (MOGA) for the cell formation problem considering
cellular layout and operation scheduling to minimize makespan and transportation cost.
Suemitsu et al. [19] proposed a multi-robots cellular manufacturing system layout problem that
can determine the positions of manufacturing components and task scheduling simultaneously,
and they applied MOGA to solve the problem for minimizing the operation time, layout area,
and manipulability.

Although these studies validate that the ISLP can achieve better solutions than the independent
optimization method, they still have several disadvantages, as follows:

(1) These studies cannot provide effective guidance for enterprises. Since most of these studies
focus on the job shop scheduling problem (JSSP) and discrete workshop layout problem (DWLP),
the flexible processing route of jobs and size of machines are neglected, which means that these
studies cannot solve more realistic problems, such as the flexible job shop scheduling problem
(FJSSP), single-row workshop layout problem (SRWLP), multi-row workshop layout problem
(MRWLP), and so on;

(2) The optimality of the layout scheme cannot be ensured. Because most studies of ISLP only
consider scheduling objectives, the layout problem is simply appended to the scheduling problem
as a constraint, which ignores the interaction between scheduling and layout planning. For the
integrated model that only considers scheduling objectives, it is difficult to ensure the feasibility
of the scheduling and layout schemes simultaneously. For example, if only the makespan is
optimized, a scheduling scheme with lower makespan may be accompanied by an unreasonable
layout scheme. The unreasonable layout scheme may result in frequent job delays and processing
interruptions, which greatly offsets the economic advantage;

(3) Only a few studies of ISLP consider the energy consumption indicator. If only optimizing the
efficiency objectives, a solution with a higher production efficiency may also be a solution with
higher energy consumption. The higher energy cost will have an adverse impact on the final
profit of enterprises. Admittedly, we should seek a solution that balances energy consumption
and production efficiency in solving the ISLP problem.

To overcome these disadvantages, this paper chooses FJSSP and MRWLP, which are more suitable
for the real manufacturing system as research objects, and focuses on the interaction between them.
Then, the paper proposes a multi-objective energy-aware integration of FJSSP and MRWLP (MEIFM)
problem. In the proposed MEIFM, we consider flexible processing routes of jobs and unequal-area
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machines, as well as the interaction between FJSSP and MRWLP. The interaction is shown in Figure 1.
The FJSSP is linked to the MRWLP by the material handling information and distance between
machines. The FJSSP’s decision guides the optimization of the layout scheme by material handling
information, while the MRWLP’s decision influences the performance of the scheduling scheme
by distance between machines. Obviously, the MEIFM can be represented as a Leader-Follower or
Stackelberg game, where the FJSSP acts as the leader and the MRWLP acts as the follower. Therefore,
the MEIFM is a typical bi-level programming problem.

As both scheduling and layout planning are NP-hard problems [20,21], the MEIFM problem
considering the flexible processing route of jobs and unequal-area machines becomes a more
complicated problem. Additionally, it is concerned with balancing the production efficiency and
energy consumption of the overall manufacturing system, which also makes the problem become more
complex. Further, the bi-level programming problem also falls into the class of NP-hard problems [22].
As a result, developing an effective method to deal with the MEIFM problem is a challenge.

Figure 1. Relations between FJSSP and MRWLP.

To optimize the MEIFM problem, an improved multi-objective hierarchical genetic algorithm
(IMHGA) is proposed. The proposed algorithm is designed based on the framework of GA, which is
one of the most famous optimization algorithms and has been successfully applied in many bi-level
programming problems [23–26]. Moreover, in the IMHGA, two improved strategies are introduced to
enhance the performance of the algorithm based on the characteristics of the problem. One is to design
the multi-parent improved precedence operation crossover (MIPOX) and multi-parent multi-point
preservative crossover (MMPX) based on the multi-parent crossover method aiming to enhance the
global searching ability of the algorithm and increase the diversity of solutions; the other is to adopt
the tournament selection operator with the parent-offspring competition strategy to improve the
convergence speed of the algorithm.

Compared with previous work, this paper has threefold contributions:

(1) An MEIFM problem is proposed for balancing the production efficiency and energy consumption;
(2) Based on the interaction of FJSSP and MRWLP, an MOBLP model is formulated to depict the

integrated problem;
(3) An IMHGA is proposed to solve the bi-level programming model for optimizing the FJSSP and

MRWLP simultaneously.

The remainder of this paper is organized as follows. In Section 2, a review on the solution
strategies for the ISLP problem is presented and the motivation for the proposed bi-level programming
model is described. Section 3 is devoted to the bi-level programming model for the integrated problem.
An IMHGA is proposed for the bi-level model in Section 4. Experimental studies and discussions
are reported in Section 5. Section 6 concludes this paper by summarizing the findings and proposing
avenues for future research.

2. Literature Review on Solution Strategies

The possible solution strategies for the ISLP problem can be classified into three categories,
as shown in Figure 2.
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Figure 2. Structures of three methods for solving the ISLP problem.

For the sequential method, the integrated problem is decomposed into two subproblems: one is the
upper-level subproblem to determine scheduling schemes; the other is the lower-level subproblem to
design corresponding layout schemes. The upper-level decisions are used as inputs for the lower-level
subproblem. It is noted that the flow of information is only from the upper-level problem toward
the lower-level problem. The sequential method is widely applied because of its simplicity, but it
often results in a sub-optimal solution for the entire production process [27]. The sequential nature of
the traditional approach prevents the scheduling model from considering detailed workshop layout
information because the layout problem is not solved in the scheduling phase, which may lead to the
scheduling scheme becoming inefficient and less practical. For example, a scheduling model often
includes a parameter to denote the time required to process a job, but the actual completion time is
highly dependent on the layout scheme, which influences the performance of the scheduling scheme.

In the simultaneous method, the layout model is simply appended to the scheduling model
as constraints [10,15–17], which leads to the layout scheme lacking autonomy. Without its own
objectives, the layout model is optimized to purse the objectives of the scheduling model. Nevertheless,
in addition to considering the objectives of the scheduling problem, the layout problem also needs to
achieve some objectives, such as the material handling cost, closeness rating score, space utilization
ratio, and so on, to ensure the performance of the layout scheme. For the monolithic model only
including scheduling objectives, it is difficult to consider the interaction of scheduling and layout
planning. For example, if only the makespan of the scheduling problem is optimized, a scheduling
scheme with minimum makespan may be executed difficultly in an unreasonable layout, resulting in
frequent delays, interruptions, or failures in the operation process.

For the bi-level method, it can be regarded as a compromise between the sequential method
and simultaneous method. Similar to the simultaneous method, it optimizes the scheduling and
layout problems simultaneously as an integrated problem. Meanwhile, this method grants a degree of
autonomy to the layout problems, so it has its own objectives. More importantly, the method enables
collaboration between the scheduling problem and the layout problem by a feedback loop. Though
the method outperforms the sequential and simultaneous methods in terms of the solution quality,
the method encounters severe computational complexity [28]. Therefore, it is necessary to develop
efficient algorithms to achieve this method.

In the proposed MEIFM problem, different from the previous literature [11,13,19], this paper
considers flexible processing routes of jobs and unequal-area machines concurrently, which embodies a
strong interaction between FJSSP and MRWLP. In addition, both FJSSP and MRWLP have independent
objectives. Based on the characteristics of this problem and the description of the above three methods,
it can be found that the bi-level method is a very efficient technique to tackle this MEIFM problem.
In this method, the FJSSP and MRWLP represent two levels, with autonomy and independent objectives.
More importantly, the bi-level method is flexible enough to consider the interaction of the FJSSP and
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MRWLP by the feedback loop. Therefore, the motivation of this study is using the hierarchical
interaction characteristic of the FJSSP and MRWLP to search for a more effective model and solution
for solving the complex integrated problem. In the next section, an MOBLP model for the proposed
MEIFM problem is presented.

3. Bi-Level Programming Model for MEIFM

3.1. Problem Description

Based on the above description, the proposed MEIFM can be described as follows. In a given
workshop, m rectangular machines are assigned to the multi-determined rows with the same height
and n jobs are processed on these machines. Each job consists of a sequence of operations with
known processing times, where each operation could be implemented on a set of machines. Different
machines have different processing and idle energy consumption per unit time values. Besides
this, using transporters to complete the transportation of jobs between machines and the number
of transporters is unlimited. Each transporter has the same transportation energy consumption per
unit time. The FJSSP aims to achieve the optimal scheduling scheme by assigning each operation to
an appropriate machine (machine assignment problem) and determining a sequence of operations
on all the machines (operation sequencing problem) for minimizing the makespan and total energy
consumption, while the MRWLP aims to achieve the optimal layout scheme by determining the
placement of all machines (machine location problem) for minimizing the material handling quantity.
Note that the FJSSP and MRWLP are linked by material handling frequency and distance between
machines, so they have a leader-follower coordinated structure. On the one hand, the FJSSP (leader)’s
decision guides the optimization of the MRWLP (follower) by the material handling frequency between
machines. On the other hand, the positions of machines determined by the layout scheme impact the
transportation time and transportation energy consumption of jobs, which influences the performance
of the scheduling scheme. Specifically, the integrated problem is shown in Figure 3. Moreover, to make
the problem more concise, some assumptions should be satisfied, as shown below:

(1) All jobs and machines are available at zero time, and machines can only be shut down if all jobs
on them have been completed;

(2) The job processing cannot be interrupted after starting processing, and each machine can only
process one job at a time;

(3) The loading and unloading time should be neglected in the process of jobs transportation;
(4) The centers of machines located on the same row are in the same horizontal line;
(5) The transportation time and energy consumption of jobs are only related to the distance

between machines.

Figure 3. Leader-follower coordinated structure of the MEIFM problem.



Algorithms 2018, 11, 210 7 of 26

3.2. Model Formulation

Based on the above description, the paper formulates an MOBLP model to depict the proposed
MEIFM problem. In the MOBLP, the “leader” in the upper-level is the FJSSP model, while the
“follower” in the lower-level is the MRWLP model. The details of this coordinated optimization model
are elaborated below.

3.2.1. Notations

This paper uses the following notations in the development of the mathematical model for the
proposed MEIFM problem, as shown in Table 1.

Table 1. The notations used in this paper.

Symbol Meaning

Optimization objectives
Cmax Makespan
TEC Total energy consumption

MHQ Material handling quantity

Index

i Index of job, i = 1, 2, · · · , n
j Index of operation for job i, j = 1, 2, · · · , oi

k, l Index of machine, k, l = 1, 2, · · · , m
r Index of machine row number, r = 1, 2, · · · , g

Intermediate variables

Oij j-th operation of the job i
ctijk Completion time of Oij on machine k
cti’j’k Completion time of immediate operation of Oij on machine k
stijk Start time of Oij on machine k
itk Idle time of machine k
ttlk Transportation time from machine l to machine k
dtijk Delay time of Oij on machine k due to machine resource constraints
dlk Distance between machine l to machine k
flk Material handling frequency from machine l to machine k
PE Processing energy consumption of all machines
IE Idle energy consumption of all machines
TE Transportation energy consumption of all jobs in workshop
xl Horizontal coordinate of machine l in workshop
yl Vertical coordinate of machine l in workshop

Input variables

ptijk Processing time of Oij on machine k
v Transportation speed of transporter in workshop

pek Processing energy consumption per unit time of machine k
iek Idle energy consumption per unit time of machine k
te Transportation energy consumption per unit time of transporter

elk
Minimal distance between machine l and machine k that must be

maintained in horizontal direction

∆lk
Net distance between machine l and machine k in horizontal

direction
el Length of machine l in horizontal direction
wl Width of machine l in vertical direction
s Center distance of two adjacent rows
E Length of workshop in horizontal direction
W Width of workshop in vertical direction

Decision variables

xijk
Binary variable, if Oij is processed on machine k, then xijk = 1;

otherwise, xijk = 0

xilk
Binary variable, if job i is transported from machine l to machine k,

then xilk = 1; otherwise, xilk = 0

zlr
Binary variable, if machine l is located on r-th row in the workshop,

then zlr = 1; otherwise zlr = 0
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3.2.2. Multi-Objective Bi-Level Programming Model

The structure of the proposed bi-level model is illustrated in Figure 4. In the structure,
the upper-level model is linked to the lower-level model by flk and dlk. First, the lower-level model
regards the flk of the upper-level model as constraints to optimize the layout scheme. Then, the dlk
of the lower-level model feeds back to the upper-level model to affect the evaluation indexes of the
upper-level model.

Figure 4. Structure of the proposed bi-level model.

The upper-level model for FJSSP:

minCmax = max(ctijk); (1)

minTEC = PE + IE + TE; (2)

s.t.

ctijk = stijk + ptijk, (1 ≤ i ≤ n; 1 ≤ j ≤ oi; 1 ≤ k ≤ m); (3)

ctijk − cti(j−1)l ≥ ptijk, (1 ≤ i ≤ n; 1 ≤ j ≤ oi; 1 ≤ k, l ≤ m; k 6= l); (4)

dtijk =

{
0, cti′j′k ≤ cti(j−1)l + ttlk

cti′j′k − cti(j−1)l − ttlk, cti′j′k > cti(j−1)l + ttlk
, (1 ≤ i, i′ ≤ n; 1 ≤ j, j′ ≤ oi; 1 ≤ k, l ≤ m; k 6= l); (5)

ttlk = dlk/v, (1 ≤ k, l ≤ m; k 6= l); (6)

stijk = cti(j−1)l + xilkttlk + dtijk, (1 ≤ i ≤ n; 1 ≤ j ≤ oi; 1 ≤ k, l ≤ m; k 6= l); (7)

flk =
n

∑
i=1

xilk, (1 ≤ k, l ≤ m; k 6= l); (8)

itk =
n

∑
i,i′=1

oi

∑
j,j′=1

(ctijk − cti′j′k − ptijk

)
xijkxi′j′k, (1 ≤ k ≤ m); (9)

PE =
n

∑
i=1

oi

∑
j=1

m

∑
k=1

xijk pek ptijk; (10)

IE =
m

∑
k=1

iekitk; (11)

TE =
m

∑
l=1

m

∑
k=1

xilkttlkte, (1 ≤ i ≤ n; k 6= l). (12)
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Equations (1) and (2) are used to minimize the makespan and total energy consumption,
respectively. It is noted that the total energy consumption includes the processing energy consumption
and idle energy consumption of all machines, as well as the transportation energy consumption of all
jobs. Equation (3) ensures that jobs are processed non-preemptively. Equation (4) guarantees that each
machine can only process one job at a time. Equation (5) calculates the delay time of Oij on machine
k. Figure 5 shows two cases of calculating dtijk, in which Figure 5a expresses that when cti’j’k is less
than or equal to the sum of cti(j−1)l and ttlk, dtijk = 0 and Figure 5b shows that when cti’j’k is greater
than the sum of cti(j−1)l and ttlk, dtijk = cti’j’k − ttlk − cti(j−1)l. Equation (6) calculates the transportation
time of jobs between machines. Equation (7) calculates the start time of Oij on machine k. Equation (8)
computes the material handling frequency between machines. Equation (9) calculates the idle time of
each machine. Equations (10)–(12) are used to get the total processing energy consumption, total idle
energy consumption, and total transportation energy consumption, respectively.

Figure 5. Two cases of calculating dtijk.

The lower-level model for MRWLP:

minMHQ =
m

∑
l=1

m

∑
k=1

flkdlk; (13)

s.t.

xl = xk + (el + ek)/2 + elk + ∆lk, (1 ≤ k, l ≤ m; k 6= l); (14)

yl =
g

∑
r=1

s(r− 1)zlr + s, (1 ≤ l ≤ m); (15)

dlk = |xl − xk|+ |yl − yk|, (1 ≤ k, l ≤ m; k 6= l); (16)

|xl − xk| ≥
[

el + ek
2

+ elk

]
zlrzkr, (1 ≤ k, l ≤ m; k 6= l); (17)

ylzlr = ykzkr, (1 ≤ k, l ≤ m; 1 ≤ r ≤ g; k 6= l); (18)
g

∑
r=1

zlr= 1, (1 ≤ l ≤ m); (19)

xl −
el
2
≥ 0, (1 ≤ l ≤ m); (20)

xl −
el
2
≤ E, (1 ≤ l ≤ m); (21)

yl −
wl
2
≥ 0, (1 ≤ l ≤ m); (22)

yl −
wl
2
≤W, (1 ≤ l ≤ m). (23)
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Equation (13) is the objective function of the lower-level model, aiming to minimize the material
handling quantity. Equations (14) and (15) calculate the horizontal coordinate and vertical coordinate
of each machine in the workshop, respectively. Equation (16) calculates the distance between machine
l and machine k. Equation (17) guarantees that the machines do not overlap in the horizontal direction.
Equation (18) ensures that the vertical coordinates of the machines are identical in the same row.
Equation (19) guarantees that each machine can only be located on one row. Equations (20)–(23) are
boundary constraints, which indicates that each machine cannot exceed the workshop boundary. It is
clear that the proposed MOBLP model is a mixed integer non-liner programming model.

4. Model Solution

4.1. Algorithm Construction

The MEIFM problem formulated in the previous section is a fairly challenging problem. First,
the integrated problem is a bi-level program, which is an NP-hard problem [29]. Second, it essentially
entails combinatorial optimization, which contains a lot of 0–1 decision variables and several
complicated nonlinear constraints, resulting in this model becoming highly non-convex. Third,
as the three objectives considered in this paper have different attributes and units, it is difficult to
use traditional approaches to obtain a reasonable solution that balances production efficiency and
energy consumption.

The traditional way of solving this kind of problem is to use Karush-Kuhn-Tucker (KKT)
optimality conditions to replace the lower-level problem, which makes the bi-level programming
model transform into a single-level model [30,31]. However, this approach can only solve a linear and
convex lower-level problem, which makes the approach hard to apply in real-world problems, such as
non-linearity, discreteness, non-convexity etc. To conquer these problems, many researchers directly
simulate the decision-making process of bi-level programming by using the hierarchical optimization
algorithm. Li et al. [22] designed a bi-level multi-objective particle swarm optimization algorithm to
solve the dynamic construction site layout and security planning problem. Ma et al. [32] proposed a
hierarchical hybrid particle swarm optimization and differential evolution algorithm to solve the
pricing and lot-sizing decision problem. Miao et al. [33] developed a bi-level GA to solve the
mixed integer nonlinear bi-level programming for the product family problem. As a representative
intelligence algorithm, the genetic algorithm simulates the evolution process of survival of the fittest
and approaches the excellent results gradually. It has great value for solving bi-level programming
problems due to its better global searching performance and robust performance. Therefore, this paper
proposes an IMHGA to divide the optimization process of the integrated problem into upper and lower
levels. The upper-level NSGA-II is used to determine the optimal scheduling scheme by minimizing
the Cmax and TEC, and the lower-level GA is employed to obtain the optimal layout scheme by
minimizing the MHQ.

In the IMHGA, we design two improvement strategies to enhance the performance of the
algorithm based on the characteristics of the MOBLP model. First, for the upper-level FJSSP, because
its solution space is too large and the corresponding decision directly effects the optimization of
the lower-level MRWLP, we need to find high-quality upper-level solutions as much as possible
to guarantee the performance of the whole algorithm. However, it is difficult for the traditional
NSGA-II algorithm to find an effective solution since most of the non-elitist solutions cannot fully
participate in the genetic operation, which decreases the diversity of solutions and slows down the
searching speed of the algorithm. To enhance the performance of the upper-level NSGA-II, we design
the multi-parent improved precedence operation crossover (MIPOX) and multi-parent multipoint
preservative crossover (MMPX) based on the multi-parent crossover method [34] for improving the
quality of the Pareto solution set. The two crossovers not only satisfy the characteristics’ preservation
and feasibility between parents and their children, but also enhance the global searching ability of the
algorithm and improve the diversity of the solution by combining multiple parent information.
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Second, for the lower-level MRWLP, its feedback directly impacts the evaluation of the upper-level
FJSSP, so the convergence speed of the lower-level GA determines the convergence speed of the whole
algorithm. Based on the concentration and diffusion strategy, once the scheduling scheme of the
upper-level NSGA-II is determined, the lower-level GA will focus on finding the optimal layout
scheme based on corresponding flk. Thus, to improve the convergence speed of the lower-level GA and
find the optimal layout scheme, we adopt the tournament selection operator with the parent-offspring
competition strategy as the selection operation. This selection operation can reserve elite individuals
and conduct a centralized search of their neighborhood. Besides this, it can improve the convergence
speed remarkably [35]. Specifically, the flowchart of IMHGA is given in Figure 6.
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Figure 6. The flowchart of IMHGA.
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4.2. The Upper-Level Algorithm for FJSSP

4.2.1. Encoding and Initialization Population

Each scheduling scheme consists of two chromosomes: the operation sequence (OS) chromosome
and the machine assignment (MA) chromosome. The OS chromosome represents the processing
sequence of operations on machines and all operations belonging to the same job are denoted by
the same index in the OS chromosome. The MA chromosome represents the machines assigned to
the corresponding operations. Therefore, this chromosome representation method guarantees the
feasibility of the scheduling schemes. For example, in Figure 7a, the number 2 written in the first gene
of the OS chromosome is the first appearance of operation 2 in the sequence; therefore, it refers to
operation 1 of job 2, i.e., O21. Similarly, the number 2 written in the fifth gene of the OS chromosome
is the second appearance of operation 2, referring to operation 2 of job 2, i.e., O22. In Figure 7b,
O11 written outside the first gene of the MA chromosome indicates that operation 1 of job 1 will be
processed on machine 1. Similarly, O12 and O13 illustrate that operation 2 of job 1 will be processed on
machine 4 and operation 3 of job 1 will be processed on machine 5.

Based on the above model introduction, the processing time of jobs has a significant impact
on the upper-level algorithm. Therefore, in order to improve the quality of the initial population,
this paper adopts an initial population generation strategy based on the processing time of jobs [36].
This approach considers the quality and diversity of the population. The basic idea is to randomly
generate an OS chromosome, and then randomly select two machines from the corresponding available
machine set for each operation. After that, the processing machine for each operation is determined by
random numbers in the range of [0, 1]. If the random number is less than 0.8, the machine with a short
processing time is selected; otherwise, another machine is chosen.

Figure 7. A chromosome example for the scheduling scheme.

4.2.2. Fitness Evaluation

In the upper-level algorithm, the makespan and total energy consumption are directly used as the
fitness evaluation criteria.

4.2.3. Selection Operator

The tournament selection is used as the selection operation in the upper-level algorithm, in which
whether an individual is selected or not is determined by its non-dominated rank and crowding
distance value. When we select two individuals randomly, the one which has a smaller non-dominated
rank will be selected. When two individuals have the same non-dominated rank, we will select the
individual with a higher crowding distance value.

4.2.4. Multi-Parent Crossover Operator

The performance of GA depends on the crossover operator to a large extent, which determines
its global search capability. In traditional GA, the most common crossover operator uses two parents
to produce offspring. Recently, multi-parent crossovers have attracted the attention of more and
more researchers, and many studies have indicated the high performance of multi-parent crossover in
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some numerical optimization problems [37–39]. In the process of generating offspring, it is generally
believed that multi-parent crossover is likely to synthesize more information of the parent individuals
to obtain better search efficiency and higher quality solutions. Inspired by this crossover operation,
to improve the global search efficiency of the algorithm and enhance the diversity of solutions,
the multi-parent crossover is integrated with the improved precedence crossover (IPOX) [36,40] and
multi-point preservative crossover (MPX) [41,42], and named MIPOX and MMPX, respectively.

The processes of the two designed crossover operators are described in Algorithms 1 and 2
separately and two examples are shown in Figures 8 and 9, respectively.

Algorithm 1 The procedure of MIPOX

Input: Three parent operation sequence chromosomes
Output: Two offspring operation sequence chromosomes
1: Randomly divide the set of job numbers {1, 2, . . . , n} into two nonempty exclusive subsets J1 and J2;
2: Copy those numbers in J2 from parent 1 to offspring 1 and from parent 3 to offspring 2, preserving
their order;
3: Copy those numbers in J1 from parent 2 to offspring 2 and from parent 3 to offspring 1, preserving
their order.

Algorithm 2 The procedure of MMPX

Input: Three parent machine assignment chromosomes
Output: Two offspring machine assignment chromosomes
1: Generate a random set Rand0_1, which consists of integer 0 and 1, and has the same length as machine
assignment chromosomes;
2: If Rand0_1 = 0, machine assignment number copies directly from Parent 1 to Offspring 1 and from Parent 2
to Offspring 2;
3: If Rand0_1 = 1, machine assignment number copies randomly from Parent 2 and Parent 3 to Offspring 1 and
from Parent 1 and Parent 3 to Offspring 2.

Figure 8. An example for MIPOX.
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Figure 9. An example for MMPX.

4.2.5. Mutation Evaluation

In the upper level NSGA-II, two types of mutation are used: assignment mutation and swap
mutation. The two mutation operators are applied to the selected chromosome and in the explained
order (i.e., first assignment mutation and then swap mutation is applied). The assignment mutation
is applied to the MA chromosome: a selected machine is replaced by another randomly chosen
machine that can process the operation, while the swap mutation is applied to the OS chromosome:
the randomly selected two genes are exchanged while maintaining the order of the operations of each
job that guarantees that the mutated gene is a feasible solution.

4.3. The Lower-Level Algorithm for MRWLP

4.3.1. Encoding and Decoding

For the MRWLP, each chromosome in the lower-level GA consists of two parts, where one is the
machine sequence chromosome and the other is the net distance chromosome between machines [43].
A complete layout scheme can be denoted as {m1, m2, . . . , mk}, {∆1, ∆2, . . . , ∆k}, where the machine
sequence chromosome indicates the processing priority of the machines by random number coding,
and the net distance chromosome expresses the net distance between machines by real number coding.

4.3.2. Fitness Evaluation

To reduce non-feasible solutions, this paper adds a penalty function with constraints to the fitness
function. The fitness function of each chromosome in the lower-level population is shown below.

f it =
1

MHQ + p f
; (24)

p f =

{
T, rs > W
0, otherwise

. (25)

In Equations (24) and (25), pf is the penalty function and T is a large natural number. This
paper adopts the automatic shift row strategy, which can ensure that all machines cannot exceed the
workshop boundary in the horizontal direction. Therefore, it is only necessary to determine whether
the last row of the machines exceeds the workshop boundary in the vertical direction. Figure 10 shows
two examples of calculating fit. Figure 10a expresses that when the arrangements of machines exceed
the workshop boundary in the vertical direction (rs > W), pf = T and fit = 1/(MHQ + T). Besides,
Figure 10b shows that the arrangements of machines do not exceed the workshop boundary in the
vertical direction, pf = 0 and fit = 1/MHQ.
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Figure 10. Two examples of calculating fit.

4.3.3. Tournament Selection Operator with Parent-Offspring Competition Strategy

The paper adopts the tournament selection operator with the parent-offspring competition
strategy to replace the traditional roulette wheel selection operator. In this selection operator, the parent
population (Pl) and corresponding offspring population (Ol) constitute a temporary population (Tl).
Then, the Tl is sorted according to the fitness value. Finally, the first Nl (the size of Pl) chromosomes are
selected to form the next generation parent population (Pl+1), so as to ensure that the population size
remains unchanged. The parent-offspring competition strategy not only preserves elite individuals
and avoids loss of the best solution, but also improves the fitness of the overall population. The specific
process is shown in Figure 11.

Figure 11. Tournament selection operator with the parent-offspring competition strategy.

4.3.4. Crossover Operator

For crossover operation, this paper uses the partially mapped crossover operator (PMX) for
machine sequence chromosomes and the arithmetic crossover operator for net distance chromosomes.

4.3.5. Mutation Operator

The mutation operator adopts the neighborhood search technique to find better offspring [44].

5. Computation Experiments

The IMHGA algorithm is coded in MATLAB R2018a and the experiments are run on an Intel
(R) Core (TM) i7-7700HQ 2.8 Ghz process with 8 GB of memory under the Windows 10 operating
system. To verify the effectiveness and efficiency of the proposed algorithm, we make comparisons
with a general multi-objective hierarchical genetic algorithm (MHGA) from the perspectives of the
convergence and distribution of the Pareto solution set.
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5.1. Description of Test Data and Parameter Setting

Since the MEIFM problem is proposed for the first time and there is not a standard test set for it,
in order to guarantee the validity and practicability of the proposed model and algorithm, the paper
constructs a test data set by combining the data set available in the related and high-cited literature,
instead of randomly generating a data set. Specifically, the jobs processing data [45] and corresponding
machine energy consumption data [46] are shown in Tables 2 and 3, separately, in which a solid line in
a cell implies that machines is not available to perform that operation. The size of each machine [47] is
shown in Table 4. Besides, these machines are located in a 17 m × 14 m workshop. The minimum
distance between machines is 0.5 m and the minimum distance between machines and the workshop
boundary is 1.5 m. The speed and energy consumption per unit time of transporter are 2 m/s and
5 kw, respectively.

Table 2. Processing time of jobs.

Job Operation
Processing Time (min)

M1 M2 M3 M4 M5 M6 M7 M8

Job 1
O1,1 5 3 5 3 3 — 10 9
O1,2 10 — 5 8 3 9 9 6
O1,3 — 10 — 5 6 2 4 5

Job 2

O2,1 5 7 3 9 8 — 9 —
O2,2 — 8 5 2 6 7 10 9
O2,3 — 10 — 5 6 4 1 7
O2,4 10 8 9 6 4 7 — —

Job 3
O3,1 10 — — 7 6 5 2 4
O3,2 — 10 6 4 8 9 10 —
O3,3 1 4 5 6 — 10 — 7

Job 4
O4,1 3 1 6 5 9 7 8 4
O4,2 12 11 7 8 10 5 6 9
O4,3 4 6 2 10 3 9 5 7

Job 5

O5,1 3 6 7 8 9 — 10 —
O5,2 10 — 7 4 9 8 6 —
O5,3 — 9 8 7 4 2 7 —
O5,4 11 9 — 6 7 5 3 6

Job 6
O6,1 6 7 1 4 6 9 — 10
O6,2 11 — 9 9 9 7 6 4
O6,3 10 5 9 10 11 — 10 —

Job 7
O7,1 5 4 2 6 7 — 10 —
O7,2 — 9 — 9 11 9 10 5
O7,3 — 8 9 3 8 6 — 10

Job 8

O8,1 2 8 5 9 — 4 — 10
O8,2 7 4 7 8 9 — 10 —
O8,3 9 9 — 8 5 6 7 1
O8,4 9 — 3 7 1 5 8 —

Table 3. The energy consumption per unit time of machines.

Energy Consumption

Machine Number
M1 M2 M3 M4 M5 M6 M7 M8

pek (kw) 4.0 7.0 9.0 14.0 6.0 5.0 8.0 4.0
iek (kw) 1.0 1.2 0.9 0.8 0.6 0.9 0.8 0.8
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Table 4. The size of each machine.

Size

Machine Number
M1 M2 M3 M4 M5 M6 M7 M8

ek (m) 1.9 3.0 2.0 2.0 2.5 3.0 3.0 5.0
wk (m) 1.8 2.0 1.0 1.8 1.5 3.0 2.8 3.0

In addition, the parameters of the proposed algorithm are determined after multiple trials. For the
upper-level NSGA-II, the population size is 50, the maximal number of generations is 500, the crossover
rate is 0.8, and the mutation rate is 0.1. For the lower-level GA, the population size is 40, the maximal
number of generations is 100, the crossover rate is 0.8, and the mutation rate is 0.2.

5.2. Experimental Analyses

Figure 12 shows the convergence curves of three objectives, and these curves start to converge in
the 280th generation. The Pareto solutions’ distributions of the final generation are shown in Figure 13,
in which the same pareto solutions are plotted only once, and it can be seen that the Pareto solution set
has a good distributivity. Thus, it can provide a wide range of alternative choices for the managers.

Moreover, Table 5 displays the three objectives and corresponding energy consumption
components of part solutions in the Pareto solution set, where these solutions are ranked in
non-increasing order of TEC. Figures 14 and 15 give the scheduling gantt chart and workshop layout
of solution 1, respectively, which shows that these solutions are logical and feasible. It can be seen that
although the TEC of solution 1 is minimal in Pareto solutions, its energy consumption components
(PE, IE, and TE) are not all minimal. This phenomenon implies that coordinated optimization of
scheduling and layout planning is extremely important to reduce energy consumption for workshops.

Figure 12. The convergence curve of three objective functions.
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Figure 13. The Pareto solutions’ distribution for three objective functions.

Table 5. The Pareto set.

Solution
Number Cmax (min) TEC (kw/h) MHQ (kg) PE (kw/h) IE (kw/h) TE (kw/h)

1 23.4752 853.0703 82.8975 562 83.8266 207.2437
2 23.4752 853.2411 82.9660 562 83.8260 207.4151
3 23.5124 857.1738 73.6347 592 81.0870 184.0868
4 23.4751 866.7355 88.3640 562 83.8254 220.9101
5 23.4794 871.7218 79.5463 592 80.8560 198.8658
...

...
...

...
...

...
...

46 33.3751 1133.8233 24.9989 952 119.3260 62.4973
47 33.3750 1148.3944 27.4677 954 125.7250 68.6693
48 33.3838 1156.5963 23.0329 978 120.9869 57.5823
49 33.3769 1158.3316 24.8773 978 118.1384 62.1932
50 33.3750 1188.4205 26.4382 1004 118.3250 66.0955

Figure 14. The Gantt chart of solution 1.
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Figure 15. The layout scheme of solution 1.

In order to further analyze the relationship between TEC and corresponding energy consumption
components (PE, IE, and TE), this paper uses the TEC of the Pareto solution set as the horizontal
coordinate and the corresponding energy consumption components as the vertical coordinate to draw
the distribution curve of each energy consumption component, as shown in Figure 16. It can be seen
that the PE and TE curves are relatively stable, while the IE curve shows remarkable fluctuation. This is
because the scheduling and layout planning determine the values of PE and TE, respectively, while the
value of IE is affected by the scheduling and layout planning, which leads to the obvious fluctuation of
the IE curve.

Moreover, in Figure 16, it is noted that the PE curve and TE curve correspond to a trough and
a peak, respectively, when the TEC is about 900 kw/h. In order to explain this special phenomenon,
the solutions related to this phenomenon are shown in Table 6. Figures 17 and 18 show the scheduling
gantt chart and workshop layout of the solution 13 in Table 6, respectively. Comparing Figure 14
with Figure 17, it can be found that although the Cmax and PE of solution 13 are less than solution 1,
the TEC of solution 13 is still greater than that of solution 1. This is because each operation in solution
13 chooses the machine with a minimum processing time, which causes jobs to move frequently
between machines, resulting in excessive TE and MHQ. Therefore, the PE and TE curves generate the
peak-trough correspondence phenomenon. The phenomenon further illustrates that the coordinated
optimization of scheduling and layout planning can not only quick respond to the changes of market
demand, but also balance the production efficiency and energy consumption of enterprises.

Figure 16. The distribution curves for three energy consumption components.
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Table 6. The solutions in the trough and the peak.

Solution
Number Cmax (min) TEC (kw/h) MHQ (kg) PE (kw/h) IE (kw/h) TE (kw/h)

13 22.0077 904.4978 107.4975 550 85.7541 268.7437
14 21.5220 906.5748 106.9683 550 89.1541 267.4207
15 22.7642 909.2554 105.9224 550 94.4495 264.8059
16 22.6255 910.7705 106.9167 550 93.4788 267.2918

Figure 17. The Gantt chart of solution 13.

Figure 18. The layout scheme of solution 13.

5.3. Algorithm Comparison

In order to verify the effectiveness of the two improvement strategies, we compare the results of
IMHGA with those of MHGA. In MHGA, the encoding scheme and mutation operator are the same as
those in IMHGA, in which the operation sequence chromosome and machine assignment chromosome
adopt IPOX and MPX as the crossover operator separately. Moreover, the parameters’ setting of the
MHGA is the same as that of IMHGA.

In this paper, we adopt the convergence metric proposed by Zitzler et al. [48] and the spacing
metric proposed by Schott et al. [49] to evaluate the convergence and distribution of Pareto solution
sets, respectively. The two metrics are defined as follows.
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Convergence metric: Compares the dominance relations between the pareto solutions obtained
by the two algorithms to evaluate their convergence quality. It is assumed that X and Y are two pareto
solutions obtained by the two algorithms. The dominance rate of X to Y can be expressed by the
following formulation:

C(X, Y) =
|{y ∈ Y}, ∃x ∈ X : x � y or x = y|

|Y| . (26)

In Equation (26), |Y| is the number of solutions in the Y pareto solution set. The value C(X,Y) = 1,
which means that all solutions in Y are dominated by or equal to solutions in X. On the contrary,
if C(X,Y) = 0, this represents the situation when none of the solutions in Y are covered by the set X.
It is noted that both C(X,Y) and C(Y,X) must be considered, since C(X,Y) is not necessarily equal to
1 − C(Y,X).

Spacing metric: Assumes that A is the Pareto solution set obtained by the algorithm. The formula
for calculating the spacing metric is defined as follows.

S(Z) ,

√√√√ 1
|Z|−1

|Z|

∑
i=1

(dZ − dzi)
2
; (27)

dzi = min
j
{

k

∑
m=1

∣∣ fm(zi)− fm(zj)
∣∣}, (zi, zj ∈ Z; i, j = 1, 2, . . . , |Z|; i 6= j). (28)

In Equations (27) and (28), dz is the mean of all dzi, and |Z| is the number of solutions in the
Z pareto solution set. If the metric is equal to zero, all solutions among the current Pareto front
are equidistant.

Specifically, Figure 19 shows an example including two objectives to illustrate the above
convergence and spacing metric. In the example, A and B are two pareto solutions obtained by
different algorithms, in which A = [a1(1,7), a2(2, 4), a3(3, 3), a4(4, 2), a4(7, 1)] and B = [b1(2, 6), b2(3, 5),
b3(4, 4), b4(5, 3), b5(6, 2)]. In Figure 19, it is obvious that the convergence of A is better than B and the
distribution of B is better than A. From the perspective of the convergence metric, C(A,B) = 5/5 = 1
and C(B,A) = 0/5 = 0. Besides, from the perspective of the spacing metric, da1 = min{|1 − 2| + |7
− 4|, |1 − 3| + |7 − 3|, |1 − 4| + |7 − 2|, |1 − 7| + |7 − 1|} = min{4, 6, 8, 12} = 4; da2 = 2;
da3 = 2; da4 = 2; da5 = 4; db1 = 2; db2 = 2; db3 = 2; db4 = 2; db5 = 2; dA = 2.8 and dB = 2. Accordingly,

S(A) =
√

1
1−5 ∑5

i=1(2.8− dai) = 1.0954 and S(B) = 0. It is clear that the results of the two metrics consist
of the actual characterization of A and B, and illustrate that the larger the convergence value, the better
the convergence, and the smaller spacing value, the better the distribution.

Figure 19. An example of calculating the convergence and spacing metric.

Table 7 shows the comparison results of the IMHGA and MHGA considering the metrics
previously described. In Table 7, a solid line in a cell means a null value, which is a common
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practice. It can be seen that the Pareto solution set obtained by IMHGA is better than that by MHGA
in terms of convergence and distribution, which illustrates the efficiency of MIPOX, MMPX, and the
parent-offspring competition strategy.

Table 7. Result of the evaluation metrics of the IMHAG and MHGA.

Algorithm
Convergence Metric

Spacing Metric
C(IMHGA, MHGA) C(MHGA, IMHGA)

IMHGA 0.9338 — 3.2292
MHGA — 0.2000 5.9856

6. Conclusions and Future Work

To improve the rapid response capability and save energy consumption for enterprises,
we propose a novel MEIFM problem. FJSSP and MRWLP are traditionally addressed as two
separate decisions, without considering the interaction between them. This paper focuses on the
coordinated optimization between FJSSP and MRWLP, and integrates FJSSP and MRWLP decisions
into a leader-follower decision framework. As a leader, the FJSSP aims at optimizing the performance
of the scheduling scheme, while the MRWLP acts as a follower which responds to the leader’s decision
on workshop layout. Furtherly, the paper proposes an MOBLP model to reveal the inherent bi-level
structure in the MEIFM problem, which includes an upper-level model and a lower-level model.
The upper-level model is FJSSP, which seeks the optimal scheduling scheme by minimizing the
makespan and total energy consumption. The lower-level model is the MRWLP problem, which finds
the optimal layout scheme by minimizing material handling quantity. As the integrated optimization
problem is NP-hard, this paper proposes an IMHGA to solve it. The experimental results indicate
that the proposed method can identify a set of Pareto optimal solutions with better convergence
and distribution.

Based on the experimental results, the findings and implications are as follows:

(1) Separate optimization of scheduling and layout planning can limit the performance of the
manufacturing system because the interaction between them is ignored. Therefore, the coordination
optimization of scheduling and layout planning is necessary and can greatly improve the
compatibility of the manufacturing system;

(2) The solutions of the MEIFM problem proposed by this paper not only improve the responsiveness
of enterprises facing rapid changes of market demand, but also provide energy-saving methods
from a systematic optimization perspective for manufacturing enterprises;

(3) The methodology developed in this paper will provide efficient guidance and reference for
solving complex bilevel optimization problems.

In the future, some other objectives, such as total tardiness, closeness rating score, and re-layout
cost, should be considered when applying the proposed method. Besides, although the efficiency of
this method is verified by the experimental results, its robustness and stability should be strengthened
in future research.
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