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Abstract

:

The Hammer prototype is a query engine for corpora of Open Data that provides users with the concept of blind querying. Since data sets published on Open Data portals are heterogeneous, users wishing to find out interesting data sets are blind: queries cannot be fully specified, as in the case of databases. Consequently, the query engine is responsible for rewriting and adapting the blind query to the actual data sets, by exploiting lexical and semantic similarity. The effectiveness of this approach was discussed in our previous works. In this paper, we report our experience in developing the query engine. In fact, in the very first version of the prototype, we realized that the implementation of the retrieval technique was too slow, even though corpora contained only a few thousands of data sets. We decided to adopt the Map-Reduce paradigm, in order to parallelize the query engine and improve performances. We passed through several versions of the query engine, either based on the Hadoop framework or on the Spark framework. Hadoop and Spark are two very popular frameworks for writing and executing parallel algorithms based on the Map-Reduce paradigm. In this paper, we present our study about the impact of adopting the Map-Reduce approach and its two most famous frameworks to parallelize the Hammer query engine; we discuss various implementations of the query engine, either obtained without significantly rewriting the algorithm or obtained by completely rewriting the algorithm by exploiting high level abstractions provided by Spark. The experimental campaign we performed shows the benefits provided by each studied solution, with the perspective of moving toward Big Data in the future. The lessons we learned are collected and synthesized into behavioral guidelines for developers approaching the problem of parallelizing algorithms by means of Map-Reduce frameworks.
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1. Introduction


Open Data portals have become tools widely adopted by public administrations to diffuse data sets concerning territories and governments; since these data sets are publicly available to anybody, they are called “open”.



In [1], we started a research project whose aim is to develop a technique for blind querying corpora of Open Data. The idea of blind querying is motivated by the fact that a corpus of Open Data possibly contains thousands of data sets, each one with its own structure that is unknown to users wishing to look for interesting data sets.



The retrieval technique introduced in [1] has been further extended and improved in [2]; in both papers, we discussed the effectiveness of the technique in terms of recall and precision. In particular, we compared our technique with Apache Solr; it is based on Apache Lucene like ElasticSearch: both are feature-rich search engines and more or less give the same performance; however, Apache Solr is recommended for text-oriented search engines and Elasticsearch is better to handle analytical queries. Apart from better recall and precision we obtained with our technique, the main difference is that our technique does not have to index (possibly huge) instances of data sets, but only meta-data: instances are downloaded only in the final phase of retrieval, at query time. In practice, our technique can query several Open Data portals from an external server. Neither Apache Solr nor ElasticSearch can do this.



The retrieval technique that enables blind querying was implemented in the Hammer prototype, in order to test it and prove its feasibility. However, the very first version of the implementation was too slow, even with a few thousands of indexed data sets. Consequently, we decided to adopt the Map-Reduce paradigm and its most popular frameworks, i.e., Hadoop and Spark, to find out how to improve performances.



The Map-Reduce paradigm is a technique to simplify the development of parallel algorithms in the context of Big Data analysis. The idea is that the programmer has to think of tasks to perform, focusing on the problem to solve; it will be responsibility of the execution framework to control computation in a totally transparent way.



However, the availability of different frameworks and, for the same framework, different abstractions for implementing Map-Reduce strategy, makes it difficult for developers to approach the adoption of this paradigm.



In this paper, we report our experience in adopting the Map-Reduce paradigm within the Hammer query engine. We describe the native algorithms and how we transformed it to make it parallel and more efficient. The first step was to make the minimal changes necessary to parallelize computation, maintaining the original structure of the algorithm. We first realized the parallel version on top of the Hadoop framework. Then, we adopted the Spark framework. These two implementations gave us the possibility to understand the different behavior exhibited by the two frameworks. Then, to further improve performances, we redesigned completely the algorithm, to exploit the high-level abstraction provided by Spark called ”dataset”: this abstraction allows developers to think differently about the algorithm, simplifying procedures and fastening the development process; furthermore, high-level operations on datasets are automatically executed in Map-Reduce mode when necessary, in a totally transparent way.



In this paper, we report our experience concerning the adoption of the Map-Reduce paradigm and its frameworks. In particular, the experimental campaign we performed shows the benefits provided by each studied solution, with the perspective of moving toward Big Data in the future. The lessons we learned are collected and synthesized into behavioral guidelines for developers approaching the problem of parallelizing algorithms by means of Map-Reduce frameworks.



As far as our previous work is concerned, the contributions of this paper are manifold. First of all, a necessary premise gives an overview of the concept of blind querying of Open Data corpora, briefly reporting the retrieval technique. Then, a short overview of the Map-Reduce paradigm and of main features of Hadoop and Spark is given as well. After that, the paper provides the following contributions:

	
a detailed description of the architecture of the prototype, which will help us in analyzing performance;



	
the algorithm that implements the critical step of our blind querying technique (Step 4, see Section 3.3) is precisely described; its variants necessary to adapt it to Hadoop and Spark are also presented;



	
an extensive study about performance of Hadoop and Spark implementations is reported;



	
a critical analysis of performance is done, in order to compare the compared solutions;



	
we report the lessons we learned by the analysis of execution times, and we give some behavioral guidelines for developers wishing to transform non algorithms into Map-Reduce algorithms.








The paper is organized as follows: Section 2 discusses relevant related works. Section 3 introduces the general framework for blind querying Open Data corpora, where the retrieval technique is summarized. Section 4 presents the Map-Reduce paradigm and the main features of Hadoop and Spark. Section 5 presents the Hammer prototype: Section 5.1 introduces the architecture; Section 5.2 presents the basic non-parallel algorithm; Section 5.3 presents the first Map-Reduce evolution of the algorithm, while Section 5.4 presents the enhanced version based on high-level abstractions provided by Spark. Section 6 reports the extensive experimental campaign we performed, by discussing results. Section 7 reports the lessons we learned and the behavioral guidelines for developers. Section 8 draws conclusions and future work.




2. Related Works


We started our research on blind querying of Open Data corpora with [1]; the technique has been subsequently enhanced in [2]; this latter paper is the basis for the implementation of the Hammer prototype discussed in this paper. We previously discussed how to use Map-Reduce in the various components of the Hammer prototype in [3]; however, a deep analysis of performance was not performed. After these works, we think we are still the pioneers on this research line: it seems that no strictly related works are in literature. For this reason, it is not possible to perform a direct comparison with other approaches. Consequently, we will discuss more in general the world of Open Data and the world of Map-Reduce computation.



The world of Open Data is becoming more and more important for many human activities. Due to the wider and wider diffusion of Open Data portals, Open Data Management research is becoming more and more important, although this area is just at the beginning of its development. We can say that our vision of the problem was inspired by [4], where the authors observe characteristics of fifty Open Data repositories.



In [5], the authors note that there is a growing number of applications that require access to both structured and unstructured data. Such collections of data have been referred to as dataspaces, and Dataspace Support Platforms (DSSP) were proposed to offer several services over dataspaces. One of the key services of a DSSP is seamless querying on the data. The Hammer prototype can be seen as DSSP of Open Data, while Reference [5] proposes a DSSP of web pages.



In [6], the authors describe their approach and their idea to build a pool of federated Open Data corpora with SPARQL as query language. However, we considered SPARQL only for people that are highly skilled in computer science: our query technique is very easy to use and it is designed for analysts with medium-level or low-level skills in computer science.



We now consider the area concerned with Map-Reduce. Reference [7] introduced the Map-Reduce paradigm. In fact, with the upcoming advent of the concept of Big Data, it was clear that parallel computation had to be the straightforward solution to deal with very large data sets. However, it was also clear that traditional approaches to write parallel programs were not suitable, because they require the high expertise to design such programs. Map-Reduce is Columbus’ Egg: the hard part of parallel computing is automatically dealt with by the execution layer.



After some early prototype systems, Hadoop was developed and has become very popular [8,9]. Certainly, the choice of implementing as a Java library has helped its diffusion; nevertheless, it was effective in solving compuational problems in hard contexts. The fact that Facebook decided to adopt it [10] is the best proof in this respect.



However, Hadoop has exhibited an important issue concerned with execution times, in particular for iterative algorithms: the HDFS (Hadoop Distributed File System) is slow as far as sharing of data blocks among tasks is concerned. Consequently, Spark [11] was developed to solve this problem. The solution is the adoption of a main-memory abstraction called Resilient Distributed Dataset (RDD), which replaces HDFS for sharing data blocks. The effects are impressive: various studies [12] demonstrated that in most situations Spark dramatically overcomes Hadoop, provided that the cluster is equipped with enough main memory.



Looking at applications, they are so many that it is practically impossible to list them all. We only provide the reader with some hints. One topic where Map-Reduce is being investigated and/or adopted is machine learning. Refs. [13,14,15] reports experiences made to implement various machine learning techniques based on Map-Reduce; in particular, Reference [16] is an example of adopting Spark.



The field of data mining has been investigated too, in order to apply Map-Reduce; Reference [17] shows how many techniques can be implemented by exploiting Map-Reduce. Within this field, the topic of mining association rules has been investigated too: Refs. [18,19] are just a few of the papers on the topic.



Finally, the field of data management has been touched as well by Map-Reduce diffusion. One important topic is the distributed execution of queries over relational databases [20], but NoSQL databases have been considered as well [21].



Data storage systems that provide information retrieval capabilities have become popular in recent years. For example, ElasticSearch [22] is now widely used, even in industrial contexts. Another interesting system is Apach Solr [23], which can be considered a kind of more academic version of ElasticSearch. More or less, they provide similar capabilities, since they are both based on Apache Lucene. Compared with our approach. they need to fully load data set instances to index their content, while our Hammer prototype indexes only meta-data; furthermore, they do not provide structured queries with object selection condition, as our query language does.




3. A Framework for Blind Querying


In this section, we present the framework for blind querying a corpus of data sets.



3.1. Concepts, Definitions and Problem


Definition 1.

Data Set. A Data Set ds is a set of homogeneous objects (i.e., having the same schema). It is described by a tuple (data set descriptor)


ds:<ds_id dataset_name, schema, metadata>,








where ds_id is a unique identifier, dataset_name is the name of the data set (not unique); schema is a set of field names contained in objects belonging to the data set; metadata is a set of pairs(label, value), which are additional meta-data associated with the data set.



The instance of the data set is the actual set of objects in the data set.





In our model, a data set instance contains objects, specifically, JSON (JavaScript Object Notation) objects. In fact, the traditional format for open data sets is as CSV (comma-separated values) files, where each data item is a row; the first row of the file reports the schema (list of field names) of the data set; consequently, the other rows have the same structure. A CSV file can be easily represented as an array of flat JSON objects, all having the same flat structure.



Nevertheless, JSON has become a very popular format for data exchange; many data sets on Open Data portals are provided as JSON data sets. In this case, a data set is an array of JSON objects. They usually are the straightforward representation of flat CSV files; however, even if they are not, objects in the data sets all have the same structure. This is why we decided to rely on the concept of (JSON) object to deal with data items.



Definition 2.

Corpus and Catalog. With C = {ds1, ds2, …} , we refer the corpus of data sets. The catalog of the corpus is the list of descriptors, i.e., meta-data, of data sets in C (see Definition 1).





We can now specify the concept of Query, in order to illustrate our approach for blind querying a corpus of data sets.



Definition 3.

Query. Given a Data Set Name dn, a set P of field names (properties) of interest P={pn1,pn2,…} and a selection condition sc on field values, a query q is a triple q:<dn,P,sc> (This definition appeared in [2]).





In order to introduce the general idea behind blind querying and to clarify the query technique in the remainder of the paper, we need to introduce the concept of query term.



Definition 4.

Query Term. Consider a query q:<dn,P,sc>. With Query Term (term for simplicity), we denote a data set name q.dn, a field name appearing in q.P or in q.sc, a constant appearing in q.sc (This definition appeared in [2]).





A term could be composed of many words, separated by blank spaces, underscores or lines. In fact, in JSON, field names can contain blanks, underscores and lines.



Example 1.

Figure 1 depicts the application scenario. The user wishing to find interesting data sets on an Open Data portal can perform a blind query without knowing anything about the data sets published by the portal. It is the responsibility of the query engine to address the query to the portal, possibly rewriting the query in order to capture lexically or semantically similar terms actually present in the catalog of the corpus. The result is a pool of data sets possibly meeting the wishes of the user.





As a concrete example, suppose a labour-market analyst wants to get information about job offers for “Data Scientist” located in a given city named “My City”. The query could be



q:<dn = [Job-Offers],



   P ={[Company], [Skills], [Contract]},



    sc =([Location]="My City" AND



        [Profession]="Data Scientist")>.



However, in the Open Data portal, there could not exist a data set with name Job-Offers: desired job vacancies could be in a different data set named Jobs. Thus, objects of interest could be retrieved by a slightly different query, i.e.,



nq1:<dn=[Jobs],



   P ={[Company], [Skills], [Contract]},



   sc =([Location]="My City" AND



        [Profession]="Data Scientist")>.



Query nq1 is obtained by rewriting query q: the data set name q.dn=[Job-Offers] is substituted with Jobs. In the rewritten query, it becomes nq1.dn=[Jobs].



Another possible rewritten query could be obtained by changing property City with Job-Location. In this case, we obtain the following rewritten query nq2:



nq2:<dn=[Job-Offers],



   P ={[Company], [Skills], [Contract]},



   sc =([Job-Location]="My City" AND



        [Profession]="Data Scientist")>.



The substitution of a term with a similar one originates a new query that could find out data sets containing objects of interest for the analysts.



Furthermore, another rewritten query nq3 could be obtained by substituting two terms:



nq3:<dn=[Jobs],



   P ={[Company], [Skills], [Contract]},



   sc =([Job-Location]="My City" AND



        [Profession]="Data Scientist")>.



Query nq3 looks for a data set named Jobs and selects objects with the field Job-Location having a value "My City".



Queries nq1, nq2 and nq3, similar to the original one q, constitute the neighborhood of q; for this reason, they are called Neighbour Queries.



The concept of Neighbour Queries is the key of the technique: the search space is expanded, by exploiting information in the catalog of the corpus, on the basis of lexical similarity as well as semantic similarity of query terms.



Problem 1.

Given a corpus C of data sets and a query q, return the result set RS={o1,o2,…}, which contains objects oi retrieved in data sets dsj∈C (oi∈Instance(dsj)) such that oi satisfies query q or a neighbour query nq that is obtained by rewriting query q.





The Hammer prototype implements our technique to solve the problem. In the remainder of the section, we summarize pre-processing steps and the retrieval technique.




3.2. Pre-Processing


In Section 3.3, we present the general retrieval technique based on the concept of blind querying, which we implemented within the Hammer prototype. However, before querying is possible, some pre-processing activities are necessary.



	
Scanning the Portal. The portal, containing data sets to add to the corpus C, is scanned, in order to get the complete list of available data sets.



	
Retrieving Meta-data of data sets. From the portal, for each data set, its meta-data and schema are retrieved.



	
Building the Catalog. The catalog of the corpus is built, in order to collect meta-data and schemas of data sets.



	
Indexing. An inverted index [24] is built, on the basis of meta-data and schemas of data sets.






At the end of pre-processing, the corpus C has its catalog and is indexed. The inverted index will be exploited at query time, as described in Section 3.3.




3.3. Retrieval Technique


The technique we developed for blind querying is fully explained in [2]. Here, we report a synthetic description (from [2]), with the goal to let the reader understand the rest of the paper.



The proposed technique is built around a query mechanism based on the Vector Space Model (VSM) [25], encompassed in a multi-step process devised to deal with the blind querying approach based on a query rewriting technique.



	
Step 1: Term Extraction and Retrieval of Alternative Terms. The set T(q) of terms is extracted from within the query q. Then, for each term t∈T(q), the set Alt(t) of similar terms is built. A term t′∈Alt(t) either if it is lexicographically similar (based on the Jaro-Winkler similarity measure [26]) or semantically similar (synonym) based on WordNet dictionary, or a combination of both. Terms in Alt(t) are actually present in the catalog of the corpus.



	
Step 2: Generation of Neighbour Queries. For each term t∈T(q), alternative terms Alt(t) are used to derive, from the original query q, the Neighbour Queries nq, i.e., queries which are similar to q. Both q and the derived neighbour queries are in the set Q of queries to process.



	
Step 3: Keyword Selection. For each query to process nq∈Q, keywords K(nq) are selected from terms in nq, in order to find the most representative/informative terms for finding potentially relevant data sets (introduced and extensively described in [1]).



For each query nq∈Q, its keyword vector K(nq) is computed: it is represented as a vector K(nq) = [k1, …, kn]; the accompanying vector w¯(nq) = [w¯1, …, w¯n] represents the weight w¯i of each term ki in vector K(nq); each weight w¯i∈[0,1] is the result of the previous steps, on the basis of (lexical or semantic) similarity with respect to original terms (see [2]).



	
Step 4: VSM Data Set Retrieval. For each query nq∈Q, the selected keywords K(nq) are used to retrieve data sets based on the Vector Space Model [25] approach: in this way, the set of possibly relevant data sets is obtained. Notice that we select only data sets with a similarity measure krm ∈[0,1] (cosine similarity with respect to a query nq∈Q) greater than or equal to a minimum threshold th_krm.



Specifically, given a data set dsi, vector


W(dsi)=[w1,…,wn]








is the vector of weights of each keyword kh for data set dsi, obtained through the inverted index (refer to [2] for details).



The Keyword-based Relevance Measure krm(dsi,nqJ)∈[0,1] for data set dsi with respect to query nq is the cosine of the angle between vectors w¯(nq) and W(dsi).



When krm(dsi,nqJ)=1, the data set is associated with all the keywords of the original query.



	
Step 5: Schema Fitting. The full set of field names in each query nq∈Q is compared with the schema of each selected data set, in order to compute the Schema Fitting Degree sfd(dsi,nq)∈[0,1]. Data sets whose schema better fits the query will be more relevant than other data sets. For this reason (refer to [2]), the relevance measure of a data set rm(dsi) is defined as a weighted composition of keyword relevance measure krm and schema fitting degree sfd. A minimum threshold th_rm is set, to select relevant data sets.



	
Step 6: Instance Filtering. Instances of relevant data sets are processed (i.e., downloaded from the portal and filtered) in order to filter out and keep only the objects that satisfy the selection condition. The result set is so far built: it is a collection of JSON objects.






To run the query process, three minimum thresholds must be set: the first one is the minimum string similarity threshold th_sim ∈[0,1], used to select lexicographically similar terms; the second one is the minimum keyword relevance threshold th_krm ∈[0,1] for cosine similarity of data sets with respect to queries in Q; the third one is the minimum relevance threshold th_rm ∈[0,1] for data sets.





4. Map-Reduce: Approach and Frameworks


In this section, we first introduce the main concepts concerning Map-Reduce programming; then, we briefly present the two most famous Map-Reduce frameworks, i.e., Hadoop and Spark.



4.1. The Map-Reduce Approach


The Map-Reduce programming paradigm was introduced in [7]. The goal of the authors was to separate the definition of the (possibly simple) computation from the (possibly complex) problem of parallelizing the execution. In fact, the authors argued that most of problems concerned with data transformation are conceptually simple problems; however, their simplicity disappears when they must be parallelized, in order to get an answer in a reasonable time when very large data sets (such as the case of Big Data) are processed. The idea is to define a programming abstraction based on two functional primitives, by means of which to express the transformation. It will be responsibility of the execution layer to handle hard issues of parallel execution.



Let us give a short description of the approach. Two primitives are available for programmers to write procedures: Map and Reduce.



	
Map primitive: this primitive is a programmer-defined function that processes (usually) small parts of input data in order to generate a set of intermediate key/value pairs. Keys will play the role of grouping values in the next Reduce step.



	
Reduce primitive: this primitive is a programmer-defined function that takes the set of key/value pairs generated in the Map phase and aggregate pairs with the same key.






Programmers have only to define the two functions, i.e., how to generate key/value pairs and what aggregation to compute from a set of aggregated pairs. It is the responsibility of the underlying execution layer to perform the following activities:

	
distributing data to computing nodes;



	
collecting key/value pairs;



	
distributing key/value pairs to nodes, in order to aggregate them.








As an example, consider the generation of the inverted index. Given a data set ds and the set of terms appearing in its schema and meta-data, the Map phase builds pairs (term,ds_id); the Reduce phase aggregates all pairs into the inverted index, in such a way a term is associated with the list of identifiers of data sets that contain that term (in fact, we implemented the indexing phase by means of Map-Reduce as well [3], but its description is outside the scope of the paper).



Iterative Algorithms


The Map-Reduce paradigm is particularly suitable for expressing simple transformations that can be depicted as a non-cyclic graph. An example could be building an inverted index (as previously discussed): only one Map-Reduce flow is necessary.



However, many transformations and computations are necessarily iterative processes, where each iteration relies on outputs produced by the previous iteration. Such algorithms can be described by means of the Map-Reduce paradigm as well: each iteration is a single Map-Reduce flow; the overall computation consists of as many Map-Reduce flows as the number of iterations.





4.2. Hadoop vs. Spark


Currently, the two most-popular open-source frameworks for executing Map-Reduce processes are Hadoop and Spark.



Hadoop is the first popular Map-Reduce framework. The reader can refer to [27] as a complete guide, to understand technicalities of the framework. Here, we summarize its main features. It has been designed to be a general framework suitable for various types of Big Data applications, possibly based on iterative algorithms. Two layers compose Hadoop:

	
a data storage layer called Hadoop Distributed File System (HDFS) [28], which provides storage support to process, both for input data and for intermediate results;



	
a data processing layer called Hadoop Map-Reduce Framework, which distributes and coordinates computation on the cluster; the basic component, which actually handles task execution, is named YARN (Yet Another Resource Negotiator) [29].








Data in HDFS are organized in blocks; single blocks are distributed to Map tasks (for each block, a processing task is created), as well as they are dispatched to one or many Reduce tasks. Iterative algorithms perform multiple Hadoop Map-Reduce flows; data are shared through HDFS: input data of each iteration are read from HDFS, as well as output data must be written back to HDFS, for each iteration. Consequently, the large amount of disk accesses and data exchanges through the network cause a significant overhead that is paid in terms of execution times. In this respect, many works, such as [9,30,31], studied the behavior of iterative algorithms within Hadoop.



Spark [11] is a more recent Map-Reduce framework than Hadoop. It has been designed [32] to overcome the issue exhibited by Hadoop in terms of high execution times, in particular for iterative algorithms, caused by the fact that the only way to share data is through the distributed file system HDFS.



The abstraction provided by Spark to overcome this issue is the concept of Resilient Distributed Dataset (RDD). It is a block of data that is shared to processing tasks through the main memory of computational devices in the cluster. Computational flows are performed as described hereafter.



	
Input data are transferred from persistent memory to main memory, subdivided in many RDDs; these RDDs are read-only for next tasks.



	
Computational tasks are performed by worker nodes; they access RDDs and generate new RDDs;



	
A RDD is resilient because the framework keeps track of the process that has generated it. In case of loss of its content (due to space limitations in main memory), the framework rebuilds the RDD, by re-executing the tasks that have generated the lost RDD.






This way, Spark is expected to be much more efficient than Hadoop, in particular for iterative algorithms, provided that the main memory actually available on the cluster is sufficient to store all RDDs. The reader can refer to [12] for a comparative analysis of performance with Hadoop, where a Page Rank algorithm is used as a testbed.





5. The Hammer Prototype


We now illustrate the Hammer prototype. First of all, we present its architecture in Section 5.1. In Section 5.2, we present the basic algorithm we implemented for Step 4 and Step 5. Then, in Section 5.3, we show how this basic algorithm was easily converted into a Map-Reduce algorithm. In Section 5.4, we show how we redesigned the algorithm by exploiting high-level abstractions provided by Spark.



5.1. Architecture of the Hammer Prototype


In this section, we describe the architecture of the Hammer prototype. The prototype, implemented in Java, is composed by two main components, as shown in Figure 2: the Indexer and the Query Engine. Two service components complete the architecture: the Crawler and the MongoDB NoSQL database management system.

	
The Indexer gets meta-data concerning data sets, without downloading the instances, and builds an Inverted Index; at the same time, the catalog of the corpus is built. Both the catalog and the inverted index are stored as collections of JSON objects within a MongoDB database.



	
The Query Engine is exploited by users to actually retrieve data sets. The query is processed on the basis of the inverted index and meta-data stored in MongoDB. For data sets matching the query or some neighbour query, their instances are actually retrieved and filtered, in order to produce the output results.



	
The Crawler is a service component exploited both by the indexer and by the query engine to access the Open Data portal, in order to get either meta-data about published data sets or instances.



	
MongoDB NoSQL DBMS provides storage support. We decided to adopt it due to the flexibility provided by the fact that it stores JSON objects in heterogeneous collections in a native way; this way, the prototype can be easily evolved and the database can be easily adapted.








Focusing on the query engine, the internal architecture is organized in blocks, as depicted in Figure 3. The query engine is organized as a pool of Executors: each executor is responsible for performing one or two of the steps that constitute the retrieval technique presented in Section 3.3. Executors are organized in a processing pipeline, as depicted in Figure 3: the output of one executor is the input for the next one. On the left-hand side, we depicted the meta-data catalog stored within the MongoDB database; on the right-hand side, we depicted the inverted index, stored within the MongoDB database as well. In particular, the figure shows which executor exploits the catalog and/or the inverted index. Finally, notice in the bottom right corner of Figure 3, the Crawler: it is exploited by the last executor to get instances of data sets selected by the Step 4/5 Executor.



The development of the Hammer prototype evolved step by step: in the very early version, the prototype was designed as a single process tool. Then, we identified Step4/5 Executor as the critical executor as far as performances are concerned; consequently, we mainly modified the above-mentioned executor in order to exploit the Map-Reduce paradigm, by means of the Hadoop framework; then, Hadoop was replaced by the Spark framework. Finally, the algorithms were re-implemented by exploiting high-level abstractions provided by Spark.




5.2. Step 4/5 Executor: Basic Algorithm


Algorithm 1 reports the pseudo-code of the algorithm implemented within the Step4/5 Executor. The procedure is divided in two parts: in the first part, the set of data sets that satisfy at least one query nq∈Q (the set of queries to process) is generated; in the second part (line 4), the final set of data sets is generated, such that their relevance measure rm is greater than the minimum threshold th_rm.









	
	Algorithm 1: Algorithm for Step 4.



	
	Procedure Step4/5_Executor(Q, th_krm, th_rm)



	
	Begin



	1.
	   MongoDB_Clear_FoundDS()



	2.
	   For Each q∈Qdo



	3.
	      Process_Query(q, th_krm)



	
	    End For Each



	
	



	4.
	   Evaluate_RM()



	
	End Procedure






The main data structure we adopt in the algorithm is the data set descriptor   


ds:(ds_id,W:[(t,w)],krm,rm,q),








where ds_id is the data set identifier. W is a vector of term weights, where each element is a pair that associates a term t with its weight w (to compute the cosine similarity with respect to a query). krm is the keyword relevance measure (obtained by applying the VSM approach); rm is the best relevance measure and q is the query for which the best relevance measure is obtained.



We now present the algorithm in detail:

	
At line 1, function MongoDB_Clear_FoundDS is called. It resets the content of a MongoDB collection called FoundDS: this collection has to store data set descriptors that satisfy at least one query q∈Q.



	
The For Each loop on line 2 calls (line 3) procedure Process_Query for each query q∈Q. This procedure stores data set descriptors possibly found for query q in the MongoDB collection FoundDS.



	
Algorithm 2 reports the pseudo-code of procedure Process_Query, which actually implements Step 4, for each single query q∈Q. We now describe its work in detail:

	
The procedure receives a query q and the minimum threshold for the keyword relevance measure th_krm.



	
On line 2, the set DS of data set descriptors is set to be empty. Furthermore, on line 3, function MongoDB_Get_FoundDS gets the set of data set descriptors already found for previous processed queries in Q.



	
The For Each loop on line 4 iterates for each term t in the set of terms q.terms extracted for query q by Step 3 Executor.



In particular, for each term t, the loop queries the inverted index stored within a MongoDB collection: function MongoDB_DS_for_term_Except queries the inverted index and returns the set of data set descriptors that contain term t; however, data sets already present in collection FoundDS are not retrieved by the function, in order to optimize the process: in fact, if a data set has been already found by a previous query, there is no need to consider it again in Step 4.



Specifically, the If instruction on line 5 assigns the content of the set of data set descriptors retrieved from the inverted index directly to DS if DS is empty (for the first processed term); otherwise (Else branch on line 7), the new set of data set descriptors retrieved from the inverted index is intersected with the previous one. Only data sets common to both operands of ∩ have a descriptor in its output: consequently, DS progressively narrows at each iteration.



Finally, line 8 checks if the set DS is empty: if this happens, it means that no data sets satisfying the query are in the corpus.



	
Once completed the first For Each loop, it is necessary to evaluate the keyword relevance measure for each data set in DS. Line 9 sets to empty the set of selected data sets selectedDS.



	
The loop on line 10 actually makes the computation of the keyword relevance measure krm for each data set in DS. On line 11, the cosine similarity between terms in data set ds (vector W) and terms in the query q is computed (by function CosineSimilarity).



On line 12, the If instruction compares ds.krm with the threshold th_krm: if the former is greater than or equal to the latter, the descriptor ds is added to the set SelectedDS; otherwise, it is discarded.



	
Finally, line 14 checks if the set SelectedDS is not empty: if so, the set of descriptors contained in SelectedDS is appended to the MongoDB colelction FoundDS by procedure MongoDB_Add_FoundDS. This terminates procedure Process_Query.








	
Let us come back to procedure Step4/5_Executor. After Step 4 is concluded, Step 5 is performed on line 4, by calling procedure Evaluate_RM, reported in Algorithm 3. It is described in detail hereafter:

	-

	
The goal of this procedure is computing the Schema Fitting Degree (r sfd) for all data sets selected by Step 4, in order to compute the overall relevance measure rm. Similarly to Step 4, descriptors of data sets to work on are stored in the MongoDB collection named FoundDS, while descriptors of data sets to produce as output of the step are stored in the MongoDB collection called ResultDS. Line 1 calls procedure MongoDB_Clear_ResultDS to clear this collection.




	-

	
Before starting the iterative process, line 2 initializes the set of data set descriptors to produce as output (ResultDS); line 3 reads the set of data set descriptors produced by Step 4 from the MongoDB collection FoundDS.




	-

	
The For Each loop on line 4 operates on each data set descriptor, in order to evaluate the best relevance measure rm; before starting the inner loop, line 8 reads the schema of the data set from the catalog stored in MongoDB.




	-

	
The inner loop on line 7 evaluates the data set against each query q∈Q.



Specifically, line 8 computes the relevance measure by calling function Compute_SFD_and_RM, that computes the sfd and, based on it, the relevance measure rm, which is assigned to variable new_rm.



Line 9 compares this value with the former best value for the data set and, if the new value is greater than the old one, it becomes (line 10) the new best value and (line 11) the data set is associated with the corresponding query.




	-

	
The last action of the outer loop is the comparison of the relevance measure with respect to the threshold th_rm: if the measure is greater than or equal to the threshold (line 12), the data set descriptor is added to the output set ResultDS (Line 13).




	-

	
Finally, after the outer loop, if the set ResultDS is not empty (Line 14), it is stored to the ResultDS collection in MongoDB.




















	
	Algorithm 2: Procedure for extracting relevant data sets for a query.



	
	Procedure Process_Query(q, thh_krm)



	
	Begin



	1.
	  DS: set-of ds:(ids_d,W:[(t,w)],krm)



	2.
	  DS:= ∅



	3.
	  FoundDS=MongoDB_Get_FoundDS()



	4.
	   For Each t∈q.termsdo



	5.
	      If DS=∅Then



	6.
	       DS=MongoDB_DS_for_term_Except(t, FoundDS)



	
	      Else



	7.
	      DS=DS∩MongoDB_DS_for_term_Except(t, FoundDS)



	
	       End If



	8.
	      if DS=∅Then End Procedure



	
	   End For Each



	9.
	  SelectedDS=∅



	10.
	   For Each ds∈DSdo



	11.
	    ds.krm=CosineSimilarity(q.W, ds.W)



	12.
	      If ds.krm≥th_krmThen



	13.
	         SelectedDS=SelectedDS∪{ds}



	
	      End If



	
	   End For Each



	14.
	   If SelectedDS≠∅Then



	15.
	    MongoDB_Add_FoundDS(SelectedDS)



	
	    End If



	
	End Procedure












	
	Algorithm 3: Pseudo-code of procedure Evaluate_RM, performing Step 5.



	
	Procedure Evaluate_RM(Q, th_rm)



	
	Begin



	1.
	  MongoDB_Clear_ResultDS()



	2.
	   ResultDS:=∅



	3.
	  FoundDS:=MongoDB_Get_FoundDS()



	4.
	   For Each ds∈FoundDSdo



	5.
	    ds_schema=MongoDB_Get_Ds_Schema(ds.ds_id)



	6.
	      ds.rm:=0



	7.
	      For Each q∈Qdo



	8.
	      new_rm:=Compute_SFD_and_RM(ds, ds_schema, q)



	9.
	         If ds.rm<new_rmThen



	10.
	            ds.rm:=new_rm



	11.
	            ds.q:=q



	
	         End If



	
	      End For Each



	12.
	      If ds.rm≥th_rmdo



	13.
	         ResultDS:=ResultDS∪{ds}



	
	      End If



	
	   End For Each



	14.
	   If ResultDS≠∅Then



	15.
	    MongoDB_Save_ResultDS(ResultDS)



	
	   End If



	
	End Procedure







5.3. Evolving Step4/5 Executor toward Map-Reduce


The work performed by Step4/5 Executor is time-consuming, especially when the number of queries to process is large, as well as when the number of indexed data sets is only a few thousands (see Section 6). This motivates the introduction of the Map-Reduce approach, to try to improve performance.



We decided to adopt a lazy strategy, in order to evaluate the impact of the minimal changes necessary to transform the single-process version of Step4/5 Executor (Algorithm 1) into a Map-Reduce algorithm:

	
The first part of procedure Step4/5_Executor (lines from 1 to 3), which performs Step 4, becomes the Map phase: each Map task executes procedure Process_Query on one single query. Consequently, the number of parallel tasks coincides with the number of queries in Q.



	
The second part of procedure Step4/5_Executor (line 4) becomes the Reduce phase: results produced by the Map phase are collected and evaluated against queries in Q, by calling procedure Evaluate_RM.








In order to activate Map and Reduce tasks, without relying on any specific framework, we make use of two pseudo-primitives: Schedule_Map_Task and Schedule_Reduce_Task. The former pseudo- primitive schedules a Map task, by specifying the procedure to call; the latter pseudo-primitive schedules a Reduce task at the end of all previously scheduled Map tasks, by specifying the procedure to execute.



Algorithm 4 shows the modified versions of procedure Step4/5_Executor. Step 4 is always performed by lines 2 and 3; however, on line 3, procedure Process_Query is no longer called directly, while it is scheduled as a Map task. Similarly, on line 4, Step 5 is performed, but function Evaluate_RM is now scheduled as a Reduce task, in order to be executed when all Map tasks terminate.



We developed two distinct implementations, one based on the Hadoop framework, one based on the Spark framework.



Notice that we decided to adopt this strategy because we wanted to study the effect of the simplest transformation of the algorithm, without changing its structure. In fact, the reader can see that it was already naturally structured to be parallelized. This way, we can answer the questions: what is the effect of parallelization? Is Map-Reduce capable of fastening algorithms that were not thought to become Map-Reduce algorithms? Refer to Section 6 and Section 7 for the answers.









	
	Algorithm 4: Generic Map-Reduce version of Step4/5_Executor.



	
	Procedure Step4/5_Executor(Q, th_krm, th_rm)



	
	Begin



	1.
	  MongoDB_Clear_FoundDS()



	2.
	   For Each q∈Qdo



	3.
	    Schedule_Map_Task(ProcessQuery(q, th_krm))



	
	   End For Each



	 
	 



	4.
	  Schedule_Reduce_Task(Evaluate_RM(Q, th_rm))



	
	End Procedure







5.4. Enhancing Step 4: Exploiting High-Level Abstractions Provided by Spark


To continue the study about the impact of the Map-Reduce approach on our query engine, we developed an enhanced version of Step4/5 Executor, in which Map and Reduce tasks do not interact with MongoDB. This version exploits a high-level abstraction provided by Spark, called Dataset, that has been introduced in version 2 of Spark; Spark datasets are developed on top of RDD. The advantage of this abstraction is simplicity: as we will show, the program is written in a very simple way. In the rest of the paper, with the term sdataset, we will refer to Spark datasets, while, with data set, we will refer to a data set in the corpus C.



Algorithm 5 reports the enhanced Spark version of procedure Step4/5_Executor. The procedure has two extra parameters, i.e., I and D: I is a sdataset containing the inverted index; D is an sdataset containing the catalog of the corpus; now, Q is a sdataset, still containing queries.



Table 1 reports the structure of crucial sdatasets in the procedure. As the reader can see, they are non-flat tables (non 1-NF, non first normal form). In particular, a query in Q contains vector KW, that describes keywords in the query (field kw) with the corresponding weight (field w). Similarly, each element in I is a tuple that associates a term with the vector DS of data set identifiers. D associates a data set identifier ds_id with a vector schema, where each tuple describes a term in the schema, its role (e.g., data set name, field, etc.) and its weight (that depends on the role).



Let us consider now the procedure Step4/5_Executor. Algorithm 5 reports the pseudo-code of the Java-hosted Spark procedure that we implemented (by means of the pseudo-code, we avoid useless technicalities).



Lines from 1 to 3 correspond to Step 4, while lines 4 and 5 correspond to Step 5.









	
	Algorithm 5: Procedure Step4/5_Executor implemented as a Spark v2 program.



	
	Procedure Step4/5_Executor(Q, th_krm, th_rm, I, D)



	
	Begin



	1.
	  q_k_ds =



	1a.
	    Q.select("q_id", explode("KW"))



	1b.
	      .join(I on"kw==term")



	1c.
	        .select("q_id", "kw", "w", explode("ds_id"));



	2.
	  q_ds:= q_k_ds.groupBy("q_id", "ds_id").aggregate("kw").as("K")



	3.
	  q_ds_krm:=



	3a.
	    q_ds.join(Q on "q_id")



	3b.
	      .map(t ->{ t.krm:=CosineSimilarity(q.KW, q.W, q.K) })



	3c.
	        .filter("krm ≥ tr_krm"))



	3d.
	          .select("q_id", "ds_id", "krm")



	3e.
	            .collect()



	 
	 



	4.
	  q_ds_rm:=



	4a.
	    q_ds_krm.join(Don"ds_id")



	4b.
	      .map(e->{e.rm:=Compute_RM(e.krm, e.schema, e.KW)})



	4c.
	        .filter("rm ≥ th_rm")



	5.
	  ResyktDS:=



	5a.
	    q_ds_rm.groupBy("q_id", "ds_id").max("rm")



	5b.
	      .join(q_ds_rmon"q_id and ds_id and rm").select("ds_id", "rm", "q_id")



	5c.
	        .collect()



	
	End Procedure






	
On line 1, the temporary sdataset named q_k_ds is computed: it has to contain tuples associating a query (by its identifier q_id) with a keyword kw and a data set (by its identifier ds_id) that contains that keyword. See the structure in Table 1.



Line 1a flattens vector KW in tuples describing queries: this is necessary to associate the query with data set identifiers through the inverted index. Notice the explode operation in the select operation, which transforms the nested tuples into flat tuples (one tuple for each element in the vector).



Line 1b. performs a join with the sdataset I, that contains the inverted index (notice the join condition after the on). The resulting table contains vector DS, with data set identifiers: for this reason, the select operation on line 1c exploits the explode operation, in order to flatten the tuples by unnesting fields ds_id.



	
Line 2 prepares sdataset q_k_ds in order to aggregate common terms between a query and a data set.



Specifically, a groupBy operation is performed, in order to group tuples having the same q_id and ds_id. The subsequent aggregate operation aggregates single values of field kw into one single vector, which is given the name K.



The resulting temporary sdataset is named q_ds; its structure is shown in Table 1.



	
The actual computation of the krm value (keyword relevance measure) for each data set with respect to a query is computed on line 3.



Specifically, line 3a joins the previous temporary sdataset q_ds with sdatasetQ, in order to get again the KW vector of keywords with weights. This vector is necessary to compute the cosine similarity.



Line 3b actually computes the cosine similarity, which is the value of the new field krm. This is performed by explicitly performing a nap operation: for each tuple handled by means of the iterator t, the code within braces after the -> is executed. This code calls function CosineSimilarity to compute the relevance measure and extend the tuple with field krm.



Notice that the programmer explicitly schedules Map tasks. Nevertheless, it is not excluded that other operations are scheduled as Map tasks, such as unnesting: this is autonomously performed by the framework.



The operation ends by filtering tuples with value of field krm greater than or equal to the minimum threshold th_krm (line 3c) and by subsequently restructuring the sdataset (line 3d).



Notice the final collect operation: this is necessary to force Spark to actually perform the computation. In fact, Spark does not execute the program until it is not forced to do that. The collect operation is one possibility.






At this point, lines 4 and 5 perform Step 5.



	
In order to evaluate the Schema Fitting Degree and, on its basis, the relevance measure rm, it is necessary to retrieve the schema of each data set. Data set schemas are stored in the sdatasetD.



On line 4a, the temporary data set obtained by line 3, named q_ds_krm, is joined with sdatasetD (the join condition is equality of fields with the same name).



Map tasks are scheduled: on each tuple e (iterator over the sdataset) function Compute_RM is called. This function receives the keyword relevance measure krm, the schema of the data set, the vector KW of keywords in the query. A new field named rm is added to the tuple handled by e.



On line 4c, only tuples with value of field rm greater than or equal to the minimum threshold th_rm are selected. These become the new temporary sdataset q_ds_rm.



	
Finally, line 5 provides the final sdataset ResultDS. Since in the sdataset q_ds_rm the same data set might be associated with more than one query, in order to be compliant with the other implementations, it is necessary to take the best association.



Consequently, line 5a groups tuples on the basis of field ds_id; then, it computes the maximum value for field rm.



Line 5b joins tuples describing groups with original tuples in sdataset q_ds_rm, on the basis of the value of the common field rm: this way, the query identifier q_id is associated with ds_id.






The reader can notice that, by adopting sdatasets, the procedure has become more functional and less procedural. This is a very important advantage provided by sdatasets.



Furthermore, programmers do not have to worry about explicit parallelization of tasks: high-level operations may implicitly be executed as Map-Reduce operations by the framework, in a transparent way. Consequently, programmers focus only on the business logic of the problem, being aware that, were possible, the computation will be parallelized.




5.5. Other Executors Implemented by Means of Map-Reduce


Other executors in the Hammer prototype have been parallelized by means of the Map-Reduce approach. Since they are less critical than Step4/5 Executor, we have not discussed them.



Specifically, Step 2 Executor is implemented too on the basis of the Map-Reduce approach: in fact, given the set of alternative terms computed by Step 1 Executor, neighbor queries can be generated in a parallel way. Since this part is not critical, we do not describe it.



In addition, Step 6 Executor has been parallelized by means of Map-Reduce. In this step, instances of selected data sets are downloaded from the Open Data portal and filtered. As shown in [3], the Map-Reduce approach helps with parallelizing this task.





6. Experimental Campaign


In this section, we present the results of the experimental campaign we conducted to evaluate the benefits provided by adopting the Map-Reduce approach. Specifically, we compare execution times exhibited by all the implementations discussed in Section 5.



Recall that, in this paper, we focus on efficiency; readers interested in effectiveness (evaluated in terms of recall and precision) of the retrieval technique can refer to [1,2].



6.1. Experimental Settings


Experiments concern performances exhibited by the query engine at query time. We used three execution environments and nine configurations of the Hammer query engine.



6.1.1. Execution Environments


Table 2 reports the three different execution environments we set up. The environments are hosted on Amazon AWS infrastructure.

	
Environment Env1 is a cluster of two nodes powered by Hadoop technology; each node has 3 GB RAM shared among three virtual CPUs; the total amount of RAM available for executors is 6 GB.



	
Environment Env2 is a single node powered by Spark technology (standalone mode); the total RAM is 3 GB, shared among three virtual CPUs.



	
Environment Env3 is a cluster of two nodes powered by Spark technology; each node has 3 GB RAM shared among three virtual CPUs; thus, the cluster is equipped with six virtual CPUs that share 6 GB RAM.









6.1.2. Configurations of the Hammer Query Engine


Table 3 summarizes the nine different configurations we experimented for the Hanner query engine.

	
Parameter max_neigh determines the maximum number of neighbor queries to generate from the original query q. We chose three values: maximum 10 neighbor queries (configurations Conf1, Conf2 and Conf3), maximum 100 neighbor queries (configurations Conf4, Conf5 and Conf6) and maximum 1000 neighbor queries (configurations Conf7, Conf8 and Conf9). The greater the value, the harder the work to perform to evaluate each query to process against the inverted index.



	
Parameter th_krm determines the minimum threshold for selecting data sets based on the VSM method, on the basis of information present in the inverted index (Step 4 of the retrieval technique, see Section 3.3). We considered two different values: 0.2 (for configurations Conf1 and Conf2, Conf4 and Conf5, Conf7 and Conf8) and 0.3 (for configurations Conf3, Conf6 and Conf9). The smaller its value, the greater the number of data sets to retrieve and to process.



	
Parameter th_rm determines the minimum threshold for selecting data sets based on the overall relevance measure rm (Step 5 of the retrieval technique, see Section 3.3). We considered two different values: 0.2 (for configurations Conf1 and Conf2, Conf4 and Conf5, Conf7 and Conf8) and 0.3 (for configurations Conf3, Conf6 and Conf9). The smaller its value, the greater the number of data sets to retrieve and to process.



	
Parameter th_sim denotes the minimum threshold of string similarity used to select alternative terms on the basis of string similarity (Step 1 of the retrieval technique, see Section 3.3). We considered two different values: 0.9 (for configurations Conf1 and Conf3, Conf4 and Conf6, Conf7 and Conf9) and 0.8 (for configurations Conf2, Conf5 and Conf8). The lower the value, the larger the number of alternative terms retrieved on the basis of string similarity. However, for each term in the original query, we always limit the maximum number of alternative terms chosen on the basis of string similarity to 3.









6.1.3. Sample Corpora


In order to perform experiments, we considered the www.data.gov Open Data portal. It is the official Open Data portal of the U.S. Government. The portal plays the role of repository for federal, state, and local governments. Currently (2018), about 300,000 data sets are published, in various formats. For our purpose, we built three sample corpora of data sets extracted from data.gov: the first contains 1000 data sets; the second contains 10,000 data sets; the third contains 15,000 data sets.



After indexing of meta-data, the inverted index contains a significant number of entries. In particular, for the corpus containing 1000 data sets, the inverted index contains 13,916 terms and 127,396 pairs (term, data set id). For the corpus containing 10,000 data sets, the inverted index contains 52,865 terms and 1,105,390 pairs (term, data set id). For the corpus with 15,000 data sets, the inverted index contains 71,159 terms and 1,794,330 pairs (term, data set id).




6.1.4. Query


The query chosen to perform tests is the following:



q:<dn = [cities],



   P ={[city], [population], [outcomes]},



   sc =([census] = 2017)>.



The query was chosen in order to retrieve at least one data set from within the sample corpora used to perform tests.





6.2. Results


Now, we are ready to present the results of our performance analysis. Execution times, obtained for the Single-Process version of the algorithm (in the rest of the paper denoted as NO MR, for simplicity), are reported in Table 4; notice that the table is divided in three parts, each one (as denoted in the upper left corner) corresponds to a different number of indexed data sets (1000, 10,000 and 15,000).



Execution times for the first Map-Reduce version of the algorithm (described in Section 5.3) are reported in Table 5, Table 6 and Table 7. Specifically, Table 5 reports execution times for the corpus containing 1000 data sets; Table 6 reports execution times for the corpus containing 10,000 data sets; Table 7 reports execution tims for the corpus containing 15,000 data sets. All three tables are divided into three parts: the upper part is concerned with execution environment Env1; the central part is concerned with execution environment Env2; the lower part is concerned with execution environment Env3.



Finally, Table 8 reports the execution times obtained for the enhanced version of the implementation, based on sdatasets, executed on environment Env3; in the rest of the paper, we will denote this version as Spark V2. Again, each part of the table describes execution times obtained for 1000, 10,000 and 15,000 data sets, respectively.



In all five tables, we tested the nine configurations described in Table 3 (from Conf1 to Conf9); execution times of each single step of the retrieval process (see Section 3.3) are reported (columns Step 1 to Step 6); column Total reports the total execution time for each configuration.



Step 4 appears to be the most time-consuming step: its execution times are always at least 10 times larger than execution times exhibited by other steps. This is not surprising because this step performs the VSM evaluation of each query to process with respect to the inverted index, in order to retrieve data sets that possibly match the query.



Nevertheless, Step 6 contributes to the total execution time significantly, even though with execution times which are, often, a tenth of Step 4. This is not surprising because Step 6 is responsible for downloading instances of data sets from the Open Data portal and filtering objects that satisfy the selection condition. Nevertheless, with execution environment Env3 (first Map-Reduce version), it happens that Step 4 is faster than Step 6, with configurations Conf1, Conf2 and Conf3; this happens only with 1000 data sets (Table 5).



6.2.1. Effect of Introducing Map-Reduce


Let us start by evaluating the effect of introducing Map-Reduce. Figure 4 compares the overall average execution times of the No MR version (yellow line) with Hadoop and Spark versions on execution environments Env1, Env2 and Env3. Table 9 shows the percentage of total execution times of Env1 with respect to version No MR, for the nine different configurations. Figure 5 compares only average execution times exhibited by Step 4 only (again, the yellow bars correspond to version No MR).



Notice that, without changing the structure of the algorithm (as described in Section 5.3), the introduction of Map-Reduce is beneficial. In fact, even though the Hadoop version is the slowest among the Map-Reduce based ones, parallelism is effective in reducing execution times. Even though we can guess that the bottleneck of the process is accessing MongoDB server, the gain is from 30 to 40%.




6.2.2. Hadoop vs. Spark Comparison


We now compare performance exhibited by the basic Map-Reduce version of the algorithm (described in Section 5.3), executed on environments Env1 (Hadoop), Env2 (Spark) and Env3 (Spark).



We now focus on execution times shown by Step 4 of the retrieval technique (Section 3.3). Figure 5 depicts the average execution times of Step 4; blue bars correspond to environment Env1; red bars correspond to environment Env2 and grey bars correspond to environment Env3. The aggregated behavior shown in the figure is the same shown in Figure 4 for the average total execution times; this confirms that the general behavior is dominated by Step 4, i.e., retrieval of data sets that match the queries to process: the greater the number of indexed data sets, the greater the execution times to find the matching ones.



However, we can do an interesting observation (for both Figure 4 and Figure 5): the growth of the data sets of a factor 10 (from 1000 data sets to 10,000 data sets) does not cause a growth of execution times of a factor 10, but only around 3. This is true for all three of the environments.



In contrast, further increasing the number of data sets of a factor 1.5 (from 10,000 data sets to 15,000 data sets), execution times grow with a factor 2. This means that the way the Map-Reduce approach parallelizes the execution is the same with both technologies (notice that both environments Env1 and Env3 have the same amount of RAM). Thus, we can conclude that Spark is much more efficient than Hadoop due to critical implementation choices, concerning the way data are distributed to jobs (i.e., the main-memory RDDs).



The reader can also observe Table 10, which shows the fraction of execution times exhibited by environments Env2 and Env3 (powered by Spark technology) with respect to execution times exhibited by environment Env1 (powered by Hadoop technology). The percentage is computed for each configuration. In particular, the reader can notice that the best improvements are obtained in the hardest configurations, i.e., with parameter max_neigh set to 1000 (i.e., at most 1000 neighbour queries are generated by Step 3 of the retrieval technique, see Section 3.3). Again, this confirms that Spark technology is very efficient in terms of data distribution to tasks.



Charts in Figure 6 are derived from Table 5, Table 6 and Table 7. In particular, they compare execution times for Step 4. Figure 6a reports execution times for Step 4 reported in Table 5; Figure 6b reports execution times for Step 4 reported in Table 6; Figure 6c reports execution times for Step 4 reported in Table 7.



Another aspect to analyze is the sensitivity of execution times to the nine different configurations. Specifically, we focus on Step 4, which we already established as being the most expensive step in our retrieval technique. We perform this analysis by means of Table 10 and by means of Figure 6.



We can notice that parameter max_neigh strongly influences execution times: we could expect this effect because by increasing the number of queries to process, the number of Map tasks to perform increases as well (as many Map tasks as queries to process, see Section 5.2). Of course, environment Env1 (powered by Hadoop technology) is the most sensitive.



Thus, an issue we will have to deal with is to find a good compromise between effectiveness and efficiency. In fact, by generating a large number of neighbor queries, we can expect to increase recall (but precision could drop down); nevertheless, too many queries to process slow down execution. We will address this issue in our future work.



Finally, notice the different behaviors exhibited by the three execution environments depending on the number of processed data sets. With 1000 data sets (Figure 6a), configurations Conf1, Conf2 and Conf3 exhibit execution times which are more or less stable; the same happens, more or less, with configurations Conf4, Conf5 and Conf6. In contrast, a strange variation is exhibited with configurations Conf7, Conf8 and Conf9, for all technologies: execution times increase when the minimum thresholds th_krm and th_rm increase. In principle, this is contradictory: by increasing the thresholds, the number of data sets selected by Step 4 and Step 5 does not increase, so even the execution time is not expected to increase. The answer is in the way we implemented the iterative computation in Step 4 (see Section 5.3: with th_krm=0.2, the algorithm finds the first data set in the early iterations and stops; with th_krm=0.3, all keywords extracted from queries to process nqi∈Q must be used to retrieve data sets, so that the algorithm must work on a large number of entries in the inverted index.



Recall from Section 5.3 that no data are passed to scheduled tasks, apart from query descriptors, because each task obtained directly by querying the MongoDB server to get information. Thus, why the Hadoop version is so slower, compared with Spark versions? The reason is that task synchronization is performed by exchanging data through the HDFS. This confirms that the HDFS is the bottleneck in the Hadoop implementation, even though it is marginally used by the algorithm.



Nevertheless, notice that the size of the inverted index strongly influences performance, even though we indexed up to 15,000 data sets: around 1,800,000 pairs (term/data set identifier) in the inverted index, queried many times for each query, strongly slow down performances.




6.2.3. Evaluating Version Spark V2


The last evaluation we performed is a comparison between the Spark version of the basic Map-Reduce algorithm presented in Section 5.3 with the enhanced version presented in Section 5.4 and based on sdatasets, named Spark V2. The enhanced version was tested again in the execution environment Env3; however, for clarity, with Env3, we refer to results obtained with the first Spark version, while, with Spark V2 we refer to results obtained with the enhanced version.



Table 8 reports detailed execution times exhibited by version Spark V2. We compare them with execution times reported in the bottom sections of Table 5, Table 6 and Table 7.



Figure 7 compares average execution times for both the versions: notice that the average execution times of version Spark V2 are up to five times smaller than the version denoted as Env3.



Since the hardest task is performed in Step 4, Figure 8 compares the average execution times exhibited by Step 4 only: again, version Spark V2 is much more efficient (green bars) than the previous version. In particular, notice how the gain increases when the size of the corpus increases. Observing green bars, the average execution times slightly increase, even though the size of the corpus becomes 10 times larger than the initial one.



If we deepen the analysis by evaluating configurations in detail, we can refer to Table 11 and to Figure 9. Table 11 reports the percentage of total execution times exhibited by version Spark V2 in relation to the version denoted as Env3 for each configuration. In some cases, version Spark V2 finishes in around 10% of the time. Looking at the table, a non-uniform behavior appears: version Spark V2 is always faster, but, in the case of configuration Conf9 and corpus containing 15,000 data sets, the gain is less than 30%.



Figure 9 analyzes execution times exhibited by Step 4, for each single configuration and for each one of the considered corpus sizes. Notice the great improvements given by version Spark V2 of the algorithm. In particular, for configurations with 1000 queries in Q (Conf7, Conf8 and Conf9), it seems that multiplying by ten the number of queries has little impact. Consequently, we can say that not only the gain is motivated by the fact that now the algorithm is decoupled from MongoDB, but also sdatasets are handled by Spark in a very efficient way.



To conclude the analysis, we observe that all the steps are improved in version Spark V2 (see Table 8), apart from Step 1: this is due to the fact that sdatasets are loaded from MongoDB in this step; the loss of performance of this step, anyway, is beneficial for the other steps.






7. Lessons We Learned and Behavioral Guidelines


The goal of this section is to summarize what we have learned from the work reported in this paper:

	
Spark is a very efficient framework, due to the fact that it does not rely on the HDFS to coordinate tasks. In fact, the basic Map-Reduce version of the algorithm (presented in Section 5.3) shares a very limited amount of data among parallel tasks, i.e., query descriptors. However, since synchronization is performed always through HDFS, Hadoop is much slower than Spark.



However, frameworks evolve: our experiment were conducted with Hadoop version 2. The new Hadoop version 3 (just released) promises to be much more efficient. Generally, Hadoop is always slower than Spark: it works with mass memory and cannot cache the data in memory, but Hadoop 3 should work up to 30% faster than the oldest version. The major difference is that version 3 provides better optimization, better and usability and a series of architectural improvements.



	
Hadoop is anyway able to improve performance, if compared to the No Map-Reduce version. Anyway, developers do not have to expect incredible improvements: in our case, with n executors, the final execution time is not 1/n, the No Map-Reduce execution time. Probably, increasing the number of nodes, we will get excellent results even with Hadoop but with a significant increase in costs.



	
Spark is so effective because it coordinates parallel tasks: by building a DAG (Direct Acyclic Graph): it computes an execution plan that is shared to all nodes. In contrast, Hadoop does not offer this feature: tasks are executed in a totally non-coordinate way.



	
Parallel tasks that continuously access MongoDB (and, we can expect, any other DBMS) are certainly slower than algorithms specifically designed to exploit Map-Reduce in a native way. Nevertheless, our experiments show that Spark, which is not overloaded by HDFS, performs very well, even for algorithms that are not originally designed as Map-Reduce algorithms.



	
The dataset abstraction provided by Spark (that we denoted as sdataset) is extremely interesting. First of all, it allows for avoiding complex technicalities concerned with the management of the execution environment. Second, it allows developers to think at a higher level of abstraction, compared with traditional procedural programming.



	
High-level abstractions provided by Spark are certainly very interesting and, in many cases, effective to reduce the development time. However, developers lose control of execution and optimization: it may happen that the level of abstractions is too high. If developers want to achieve the best performance, they probably have to scale down to low-level primitives (but, in this case, Spark programs become hard to write).



	
In our context, the HDFS is not exploited for computation. However, it is a good tool to share persistent data to nodes in the cluster, especially very large data sets. Spark does not provide a similar functionality. Again, the new Hadoop version 3 could produce interesting surprises in terms of performance with large data sets.








Based on the observations reported above, we can identify some behavioral guidelines for developers that want to start developing Map-Reduce applications.



	
Minimal effort. If the goal of developers is to migrate a classical algorithm to a first Map-Reduce version, by paying the minimal effort, this could be easily obtained, without changing the global structure of the algorithm. However, this can be done if the algorithm is structured as loops of complex tasks/procedures. Furthermore, connections to a DBMS can be maintained.



We suggest adopting the Spark framework, that, in general, provides better performance, even with database connections.



	
Privilege performance. If the goal of developers is to privilege performance, algorithms must be redesigned as pure Map-Reduce algorithms.



	
Simplicity of design. Abstractions provided by Spark are quite effective in order to strongly simplify the design (or redesign) of an algorithm. This could be a good choice for making the development process effective and efficient.



	
Hadoop or Spark? Notice that the two frameworks are not in conflict, even though the reader might think this. In fact, they can co-exist without any problem. Hadoop was created as an engine for processing large amounts of existing data: it has a low level of abstraction that allows for performing complex manipulations but can cause learning difficulties. Spark is faster, with a lot of great high-level tools and functions that can simplify the design and the development. If the algorithms or the processes do not require special features, Spark is always the most reasonable choice. However, there are situations in which the size of data is so large that the main memory of computing nodes could not be enough, causing Spark to significantly slow down. In these cases, Spark can operate on top of Hadoop and has many good libraries like Spark SQL or Spark MLlib.







8. Conclusions and Future Work


This paper reports our experience in the evolution of the Hammer query engine based on the adoption of Map-Reduce technology to improve performances. In fact, we consider this experience an interesting study case to learn about the introduction of Map-Reduce technology in algorithms that were not thought to be parallelized with this technology. Several approaches were evaluated and tested: first of all, a very simple transformation was done, tested both on top of the Hadoop framework and on top of the Spark framework. Then, a further enhanced version was developed, based on the high-level abstraction called dataset (that we called sdataset to avoid confusion) provided by Spark.



The goal of the study was to understand the impact of adopting Map-Reduce technology, learning lessons and synthesize some behavioral guidelines for developers that have to adopt Map-Reduce for the first time.



In fact, the reader can notice that our algorithms are not particularly optimized, as well as that we are working with a corpus that contains at most 15,000 data sets (thus, it is not exactly “Big Data”). Anyway, this context suffers for poor performance, due to the fact that no specific optimized data structure for representing the inverted index is adopted. Thus, we showed that the adoption of Map-Reduce does make sense.



A point we want to discuss is the generation of so many neighbor queries (up to 1000, in configurations Conf7, Conf8 and Conf9): generating so many queries probably is not so useful (in [1] and, in [2], we tested the effectiveness of the technique with 10 neighbour queries, obtaining very good results); in fact, we decided to generate so many queries to stress execution times. However, four minutes to execute queries with 10 neighbor queries and 15,000 data sets (our best performance obtained with version Spark V2) is too much; thus, we are going to further study how to optimize the query engine.



Summarizing what we have learned, we can say that, currently, Spark Version 2 is, in general, more effective than Hadoop Version 2: optimization of execution, data sharing and high-level abstractions make Spark V2 a very good framework, suitable for many application contexts. However, Hadoop Version 3 has been just released and, probably, things could change.



As a future work, we are going to explore several directions. As far as efficiency, we are going to further study how to improve performance, by adopting different representations of the inverted index and by exploiting differently Spark primitives. Obviously, Hadoop Version 3 will be tested too. As far as the blind querying reconquer is concerned, we will foster its development, in order to introduce semantics to exploit during query rewriting.
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Figure 1. Blind querying scenario. 
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Figure 2. General architecture of the Hammer prototype. 
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Figure 3. General architecture of the Query Engine. 
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Figure 4. Average execution times. 
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Figure 5. Average execution times for Step 4. 
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Figure 6. Comparing execution times of Step 4 for each configuration, among the three different execution environments for the basic Map-Reduce algorithm. 
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Figure 7. Comparing average execution times of the basic Spark implementation (denoted as Env3) and the enhanced Spark implementation (denoted as Spark V2). 
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Figure 8. Comparing average execution times of of Step 4 for the basic Spark implementation (denoted as Env3) and the enhanced Spark implementation (denoted as Spark V2). 
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Figure 9. Comparing execution times of Step 4 for each configuration, between the basic Spark version (Env3) and the enhanced Spark version (Spark V2). 
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Table 1. Structure of Spark datasets in procedure Step4/5_Executor reported in Algorithm 5.
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	Sdataset
	Set-of





	Q
	<q_id, KW: vector-of(<kw, w>)>



	I
	<term, DS: vector-of(< ds_id>) >



	D
	<ds_id, schema: vector-of(<term, role, weight>)



	q_k_ds
	<q_id, kw, ds_id>



	q_ds
	<q_id, ds_id, K: vector-of(<kw, w>)>



	q_ds_krm
	<q_id, ds_id, krm>
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Table 2. Execution environments.
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	Environment
	Technology
	Nodes
	Virtual CPUs
	Total RAM





	Env1
	Hadoop
	2
	6
	6 GB



	Env2
	Spark
	1
	3
	3 GB



	Env3
	Spark
	2
	6
	6 GB
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Table 3. Configurations of the Hammer query engine.
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	Configuration
	max_neigh
	th_krm
	th_rm
	th_sim





	Conf1
	10
	0.2
	0.2
	0.9



	Conf2
	10
	0.2
	0.2
	0.8



	Conf3
	10
	0.3
	0.3
	0.9



	Conf4
	100
	0.2
	0.2
	0.9



	Conf5
	100
	0.2
	0.2
	0.8



	Conf6
	100
	0.3
	0.3
	0.9



	Conf7
	1000
	0.2
	0.2
	0.9



	Conf8
	1000
	0.2
	0.2
	0.8



	Conf9
	1000
	0.3
	0.3
	0.9
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Table 4. Execution times for the corpora of 1000–10,000–15,000 data sets for version without Map-Reduce of the algorithm.
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	1000 Data Sets
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	69,699
	150
	5277
	1,410,492
	158,891
	610,013
	2,254,522



	Conf2
	83,689
	102
	1844
	1,001,012
	171,160
	556,510
	1,814,317



	Conf3
	137,742
	143
	1440
	895,619
	152,791
	27,897
	1,215,632



	Conf4
	128,504
	163
	1082
	5,075,391
	79,785
	554,400
	5,839,325



	Conf5
	159,436
	109
	1884
	6,796,491
	836,515
	583,513
	8,377,948



	Conf6
	133,152
	125
	987
	5,821,900
	73,433
	49,266
	6,078,863



	Conf7
	164,107
	166
	1206
	29,952,490
	55,401
	463,736
	30,637,106



	Conf8
	173,785
	127
	1649
	24,480,779
	694,722
	651,068
	26,002,130



	Conf9
	133,349
	127
	1273
	23,848,456
	84,014
	46,749
	24,113,968



	10,000 Data Sets
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	125,162
	133
	8289
	6,247,375
	1,774,413
	494,387
	8,649,759



	Conf2
	145,730
	142
	1442
	8,940,382
	1,793,918
	563,101
	11,444,715



	Conf3
	257,793
	75
	995
	11,585,182
	559,855
	111,507
	12,515,407



	Conf4
	265,262
	190
	1277
	44,882,444
	1,374,816
	464,295
	46,988,284



	Conf5
	127,091
	125
	1615
	54,313,736
	11,374,301
	521,144
	66,338,012



	Conf6
	94,438
	75
	847
	84,234,220
	349,861
	197,854
	84,877,295



	Conf7
	87,629
	64
	1238
	36,259,183
	1,250,844
	349,380
	37,948,338



	Conf8
	157,812
	117
	2051
	66,990,740
	12,107,156
	746,812
	80,004,688



	Conf9
	204,534
	129
	1386
	104,930,839
	505,326
	163,578
	105,805,792



	15,000 Data Sets
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	109,365
	50
	6263
	6,367,932
	805,445
	683,549
	7,972,604



	Conf2
	130,563
	385
	979
	13,668,545
	875,351
	690,821
	15,366,644



	Conf3
	224,922
	139
	1026
	16,693,411
	1,097,360
	122,420
	18,139,278



	Conf4
	294,392
	153
	1091
	51,177,294
	2,852,516
	523,599
	54,849,045



	Conf5
	170,759
	193
	1750
	72,817,934
	20,378,100
	673,203
	94,041,939



	Conf6
	103,225
	72
	661
	128,535,201
	689,922
	213,775
	129,542,856



	Conf7
	71,493
	93
	1719
	67,185,486
	3,118,435
	457,630
	70,834,856



	Conf8
	190,613
	139
	2486
	90,892,440
	23,580,870
	771,655
	115,438,203



	Conf9
	161,401
	198
	1787
	128,640,058
	1,163,036
	242,773
	130,209,253
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Table 5. Execution times for the corpus of 1000 data sets (first Map-Reduce version).
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	Env1
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	49,954
	105
	3789
	1,067,387
	89,904
	419,777
	1,630,916



	Conf2
	59,981
	71
	1324
	757,514
	96,846
	382,959
	1,298,695



	Conf3
	98,722
	100
	1034
	677,758
	86,452
	19,197
	883,263



	Conf4
	92,101
	114
	777
	3,840,793
	45,144
	381,507
	4,360,436



	Conf5
	114,270
	76
	1353
	5,143,232
	473,317
	401,541
	6,133,789



	Conf6
	95,432
	87
	709
	4,405,712
	41,550
	33,902
	4,577,392



	Conf7
	117,618
	116
	866
	22,666,491
	31,347
	319,117
	23,135,555



	Conf8
	124,554
	89
	1184
	18,525,784
	393,088
	448,029
	19,492,728



	Conf9
	95,573
	89
	914
	18,047,275
	47,537
	32,170
	18,223,558



	Env2
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	12,170
	64
	819
	182,765
	15,345
	341,675
	552,838



	Conf2
	12,144
	60
	225
	172,772
	16,442
	344,312
	545,955



	Conf3
	22,020
	86
	205
	123,625
	15,536
	16,169
	177,641



	Conf4
	19,871
	83
	141
	890,814
	10,057
	305,142
	1,226,108



	Conf5
	22,414
	49
	261
	1,110,737
	83,602
	337,270
	1,554,333



	Conf6
	16,904
	65
	127
	941,497
	9991
	28,069
	996,653



	Conf7
	20,189
	89
	148
	4,631,174
	6872
	304,278
	4,962,750



	Conf8
	23,781
	59
	289
	4,561,780
	81,840
	378,912
	5,046,661



	Conf9
	22,619
	71
	156
	4,445,672
	11,872
	27,817
	4,508,207



	Env3
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	6211
	77
	856
	97,479
	9511
	188,150
	302,284



	Conf2
	6156
	62
	247
	78,478
	9512
	204,319
	298,774



	Conf3
	11,540
	102
	207
	64,805
	10,804
	7431
	94,889



	Conf4
	11,196
	84
	147
	487,033
	3423
	101,937
	603,820



	Conf5
	11,051
	56
	285
	460,746
	42,592
	101,783
	616,513



	Conf6
	8784
	67
	127
	388,326
	5643
	14,703
	417,650



	Conf7
	11,148
	99
	152
	2,076,886
	4416
	152,356
	2,245,057



	Conf8
	10,979
	66
	305
	1,923,165
	51,733
	156,590
	2,142,838



	Conf9
	12,386
	75
	157
	2,219,314
	3836
	13,466
	2,249,234
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Table 6. Execution times for the corpus of 10,000 data sets (first Map-Reduce version).






Table 6. Execution times for the corpus of 10,000 data sets (first Map-Reduce version).





	Env1
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	96,230
	85
	5275
	3,664,468
	1,322,651
	350,531
	5,439,240



	Conf2
	112,044
	91
	918
	5,244,081
	1,337,190
	399,251
	7,093,575



	Conf3
	198,203
	48
	633
	6,795,418
	417,317
	79,061
	7,490,680



	Conf4
	203,945
	122
	813
	26,326,300
	1,024,791
	329,195
	27,885,166



	Conf5
	97,713
	80
	1028
	31,858,330
	8,478,428
	369,502
	40,805,081



	Conf6
	72,608
	48
	539
	49,408,525
	260,787
	140,283
	49,882,790



	Conf7
	67,373
	41
	788
	21,268,230
	932,382
	247,718
	22,516,532



	Conf8
	121,333
	75
	1305
	39,294,169
	9,024,700
	529,506
	48,971,088



	Conf9
	157,255
	83
	882
	61,548,359
	376,671
	115,980
	62,199,230



	Env2
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	18,623
	56
	1002
	901,137
	280,039
	344,775
	1,545,632



	Conf2
	19,998
	68
	199
	968,779
	291,047
	356,721
	1,636,812



	Conf3
	39,058
	46
	158
	1,330,173
	93,359
	63,953
	1,526,747



	Conf4
	41,487
	83
	173
	4,392,227
	183,535
	307,911
	4,925,416



	Conf5
	19,370
	62
	231
	6,228,201
	1,479,875
	349,425
	8,077,164



	Conf6
	16,938
	29
	98
	10,130,264
	60,038
	111,021
	10,318,388



	Conf7
	13,047
	41
	189
	4,684,841
	191,352
	214,286
	5,103,756



	Conf8
	25,700
	61
	296
	7,254,463
	1,704,038
	411,768
	9,396,326



	Conf9
	27,347
	75
	203
	11,092,073
	82,351
	110,652
	11,312,701



	Env3
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	9452
	63
	1050
	446,641
	129,776
	174,026
	761,008



	Conf2
	9011
	79
	219
	529,375
	117,673
	188,706
	845,063



	Conf3
	18,057
	49
	163
	759,816
	47,116
	21,842
	847,043



	Conf4
	20,138
	84
	180
	2,159,509
	70,524
	176,915
	2,427,350



	Conf5
	9906
	72
	249
	2,701,601
	880,321
	175,523
	3,767,672



	Conf6
	9404
	30
	104
	4,610,965
	31,309
	56,121
	4,707,933



	Conf7
	5712
	46
	190
	2,661,610
	71,846
	105,054
	2,844,458



	Conf8
	13,173
	66
	324
	4,132,891
	771,158
	245,783
	5,163,395



	Conf9
	11,117
	88
	208
	6,224,426
	30,077
	66,208
	6,332,124
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Table 7. Execution times for the corpus of 15,000 data sets (first Map-Reduce version).






Table 7. Execution times for the corpus of 15,000 data sets (first Map-Reduce version).





	Env1
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	79,009
	29
	4408
	4,775,258
	606,463
	423,296
	5,888,463



	Conf2
	94,323
	224
	689
	10,249,925
	659,099
	427,799
	11,432,059



	Conf3
	162,491
	81
	722
	12,518,246
	826,261
	75,810
	13,583,611



	Conf4
	212,678
	89
	768
	38,377,416
	2,147,812
	324,245
	41,063,008



	Conf5
	123,362
	112
	1232
	54,605,547
	15,343,763
	416,889
	70,490,905



	Conf6
	74,573
	42
	465
	96,387,450
	519,479
	132,383
	97,114,392



	Conf7
	51,649
	54
	1210
	50,381,822
	2,348,037
	283,393
	53,066,165



	Conf8
	137,705
	81
	1750
	68,159,465
	17,755,300
	477,857
	86,532,158



	Conf9
	116,601
	115
	1258
	96,466,081
	875,712
	150,340
	97,610,107



	Env2
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	18,639
	25
	809
	942,283
	130,175
	357,763
	1,449,694



	Conf2
	15,782
	154
	168
	2,072,424
	145,164
	347,329
	2,581,021



	Conf3
	37,310
	49
	176
	2,703,332
	195,522
	63,648
	3,000,037



	Conf4
	41,833
	80
	188
	9,397,267
	390,018
	299,062
	10,128,448



	Conf5
	21,482
	68
	264
	12,910,417
	2,916,485
	363,245
	16,211,961



	Conf6
	17,548
	31
	108
	20,408,651
	125,260
	109,565
	20,661,163



	Conf7
	12,658
	46
	204
	92,838,15
	393,117
	224,765
	9,914,605



	Conf8
	27,944
	68
	321
	14,424,530
	3,400,795
	398,221
	18,251,879



	Conf9
	26,909
	86
	217
	22,155,578
	171,715
	115,647
	22,470,152



	Env3
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	9762
	26
	879
	444,505
	50,496
	148,585
	654,253



	Conf2
	7341
	182
	175
	1,058,477
	72,370
	203,713
	1,342,258



	Conf3
	16,910
	58
	193
	1,492,059
	86,309
	37,498
	1,633,027



	Conf4
	19,457
	95
	188
	4,627,830
	254,045
	146,739
	5,048,354



	Conf5
	9366
	80
	274
	5,935,994
	919,258
	166,406
	7,031,378



	Conf6
	8061
	36
	111
	8,743,991
	56,670
	50,373
	8,859,242



	Conf7
	6615
	54
	221
	4,272,484
	246,609
	105,990
	4,631,973



	Conf8
	11,850
	80
	348
	7,256,341
	1,255,804
	135,068
	8,659,491



	Conf9
	11,609
	93
	219
	9,869,213
	73,973
	45,676
	10,000,783
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Table 8. Execution times for the corpus of 1000–10,000–15,000 data sets for version Spark V2.






Table 8. Execution times for the corpus of 1000–10,000–15,000 data sets for version Spark V2.





	1000 Data Sets
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	17,231
	56
	307
	34,855
	9297
	187,456
	249,202



	Conf2
	17,545
	41
	98
	45,909
	10,955
	216,205
	290,753



	Conf3
	32,890
	67
	82
	21,395
	12,443
	7863
	74,740



	Conf4
	31,910
	55
	58
	160,793
	3942
	107,867
	304,625



	Conf5
	31,496
	37
	113
	162,115
	49,055
	107,704
	350,520



	Conf6
	25,035
	44
	50
	128,205
	6499
	15,558
	175,391



	Conf7
	31,773
	65
	60
	685,682
	5086
	161,219
	883,885



	Conf8
	31,291
	44
	121
	694,931
	59,583
	165,700
	951,670



	Conf9
	35,301
	50
	62
	532,704
	4418
	14,249
	586,784



	10,000 Data Sets
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	9303
	68
	1062
	45,887
	125,741
	175,371
	357,432



	Conf2
	8869
	85
	221
	60,440
	114,015
	190,165
	373,795



	Conf3
	17,773
	53
	165
	28,167
	45,651
	22,011
	113,820



	Conf4
	19,821
	90
	182
	211,685
	68,331
	178,282
	478,391



	Conf5
	9750
	77
	252
	213,426
	852,953
	176,880
	1,253,338



	Conf6
	9256
	32
	105
	168,783
	30,336
	56,555
	265,067



	Conf7
	5622
	49
	192
	902,706
	69,612
	105,866
	1,084,047



	Conf8
	12,966
	71
	328
	914,883
	747,183
	247,683
	1,923,114



	Conf9
	10,942
	94
	210
	662,619
	29,142
	66,720
	769,727



	15,000 Data Sets
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Total



	Conf1
	10,199
	25
	923
	48,677
	49,986
	156,749
	266,559



	Conf2
	7670
	172
	184
	64,115
	71,638
	214,906
	358,685



	Conf3
	17,667
	55
	203
	29,880
	85,437
	39,558
	172,800



	Conf4
	20,328
	90
	197
	224,558
	251,477
	154,802
	651,452



	Conf5
	9785
	76
	288
	226,405
	909,965
	175,549
	1,322,068



	Conf6
	8422
	34
	117
	179,047
	56,097
	53,141
	296,858



	Conf7
	6911
	51
	232
	957,602
	244,116
	111,814
	1,320,726



	Conf8
	12,380
	76
	366
	970,519
	1,243,109
	142,489
	2,368,939



	Conf9
	12,129
	88
	230
	594,276
	73,225
	48,186
	728,134










[image: Table]





Table 9. Fraction of average execution times for environment Env1 (Hadoop technology) with respect to no Map-Reduce version.






Table 9. Fraction of average execution times for environment Env1 (Hadoop technology) with respect to no Map-Reduce version.












	Configuration
	max_neigh
	1000 Data Sets
	10,000 Data Sets
	15,000 Data Sets





	Conf1
	
	72.30%
	62.88%
	73.86%



	Conf2
	10
	71.58%
	61.98%
	74.40%



	Conf3
	
	72.66%
	59.85%
	74.89%



	Conf4
	
	74.67%
	59.34%
	74.87%



	Conf5
	100
	73.21%
	61.51%
	74.96%



	Conf6
	
	75.30%
	58.77%
	74.97%



	Conf7
	
	75.51%
	59.33%
	74.92%



	Conf8
	1000
	74.97%
	61.21%
	74.96%



	Conf9
	
	75.57%
	58.79%
	74.96%
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Table 10. Fraction of average execution times for environments Env2 and Env3 (Spark technology) with respect to execution times for environment Env1 (Hadoop technology).






Table 10. Fraction of average execution times for environments Env2 and Env3 (Spark technology) with respect to execution times for environment Env1 (Hadoop technology).












	Env2
	max_neigh
	1000 Data Sets
	10,000 Data Sets
	15,000 Data Sets



	Conf1
	
	33.90%
	28.42%
	24.62%



	Conf2
	10
	42.04%
	23.07%
	22.58%



	Conf3
	
	20.11%
	20.38%
	22.09%



	Conf4
	
	28.12%
	17.66%
	24.67%



	Conf5
	100
	25.34%
	19.79%
	23.00%



	Conf6
	
	21.77%
	20.69%
	21.28%



	Conf7
	
	21.45%
	22.67%
	18.68%



	Conf8
	1000
	25.89%
	19.19%
	21.09%



	Conf9
	
	24.74%
	18.19%
	23.02%



	Env3
	max_neigh
	1000 Data Sets
	10,000 Data Sets
	15,000 Data Sets



	Conf1
	
	18.53%
	13.99%
	11.11%



	Conf2
	10
	23.01%
	11.91%
	11.74%



	Conf3
	
	10.74%
	11.31%
	12.02%



	Conf4
	
	13.85%
	8.70%
	12.29%



	Conf5
	1000
	10.05%
	9.23%
	9.97%



	Conf6
	
	9.12%
	9.44%
	9.12%



	Conf7
	
	9.70%
	12.63%
	8.73%



	Conf8
	1000
	10.99%
	10.54%
	10.01%



	Conf9
	
	12.34%
	10.18%
	10.25%
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Table 11. Fraction of average execution times for version Spark V2 of the algorithm, in comparison with basic Spark implementation executed on environment Env3.






Table 11. Fraction of average execution times for version Spark V2 of the algorithm, in comparison with basic Spark implementation executed on environment Env3.












	Configurations
	max_neigh
	1000 Data Sets
	10,000 Data Sets
	15,000 Data Sets





	Conf1
	
	82.44%
	46.97%
	40.74%



	Conf2
	10
	97.32%
	44.23%
	26.72%



	Conf3
	
	78.77%
	13.44%
	10.58%



	Conf4
	
	50.45%
	19.71%
	12.90%



	Conf5
	100
	56.86%
	33.27%
	18.80%



	Conf6
	
	41.99%
	5.63%
	3.35%



	Conf7
	
	39.37%
	38.11%
	28.51%



	Conf8
	1000
	44.41%
	37.25%
	27.36%



	Conf9
	
	26.09%
	12.16%
	7.28%
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