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Abstract: This paper presents a fast algorithm for texture-less object recognition, which is designed
to be robust to cluttered backgrounds and small transformations. At its core, the proposed method
demonstrates a two-stage template-based procedure using an orientation compressing map and
discriminative regional weight (OCM-DRW) to effectively detect texture-less objects. In the first stage,
the proposed method quantizes and compresses all the orientations in a neighborhood to obtain
the orientation compressing map which then is used to generate a set of possible object locations.
To recognize the object in these possible object locations, the second stage computes the similarity
of each possible object location with the learned template by using discriminative regional weight,
which can effectively distinguish different categories of objects with similar parts. Experiments on
publiclyavailable, texture-less object datasets indicate that apart from yielding efficient computational
performance, the proposed method also attained remarkable recognition rates surpassing recent
state-of-the-art texture-less object detectors in the presence of high-clutter, occlusion and scale-rotation
changes. It improves the accuracy and speed by 8% and 370% respectively, relative to the previous
best result on D-Textureless dataset.

Keywords: texture-less object; object detection; template matching; possible object locations;
orientation compressed map; real-time detection

1. Introduction

Object detection is one of the most fundamental problems in computer vision. Recognizing object
instances in natural scenes is crucial for many real applications such as Robotic systems [1], Image
retrieval [2], Augmented Reality [3] and 3D reconstruction [4]. In these applications, real-time object
learning and detection are two challenging tasks. Computationally efficient approaches are strongly
needed among these application fields to adapt to a changing and unknown environment, and to
learn and recognize new objects. Many of objects in these applications have little texture, and they are
therefore called “texture-less” objects.

Recently, deep Convolutional Neural Networks (CNN) have achieved impressive results for
object detection. These methods can be mainly divided into region-based CNN methods [5–10] and
regression-based CNN methods [11–15]. Region-based CNN method first extract candidate regions
in the detection area in preparation for subsequent feature extraction and classification. This starts
from Regions with CNN features (RCNN) [5] and is improved by SPP-Net [6] and Fast RCNN [7] in
terms of accuracy and speed. Later, Faster R-CNN [8] uses the region proposal network to quickly
generate object regions, achieving high object detection accuracy. The Faster R-CNN can also be used
for other sensors such as infrared image [9] and Terahertz image [10]. Compared with the method
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based on region, a regression-based method usually achieves better real-time performance by using
end-to-end detection frameworks. Typical regression-based CNN methods include You Only Look
Once (YOLO) [11] and Single Shot multibox Detector (SSD) [12]. The regression-based methods are
improved by multi-view object detection [13] and light field imaging by [14] in terms of accuracy
and dimension. Despite the progress, there are also notable limitations for deep leaning methods.
First, the deep leaning methods are much dependent on big training dataset which are usually lacking
in texture-less object detection applications. Second, the training for neural networks with deep
architecture is quite time-consuming [15].

The object detection methods based on the manual designed features methods could not
automatically extract abundant representative features from the vast training samples as deep leaning
methods. But these methods are attractive for object detection because they need neither a large
training set nor a time-consuming training stage, which can be implemented efficiently. Nowadays,
the methods of texture-less object detection based on the manual designed features can be divided into
descriptor-based methods and template-based methods.

Descriptor-based methods are widely used in texture-less object detection. While texture-rich
objects can be detected under severe occlusions with distinctive local features, such as Scale Invariant
Feature Transform (SIFT) [16] and Speeded Up Robust Features (SURF) [17], but these methods
fail on texture-less objects which have large uniform regions. The technique assumes a feature point
aggregation approach [18–21], often adopting a partial SIFT-like pipeline to describe its grouped feature
points. Some of descriptor-based methods like SIFT and SURF detect very few key points on texture-less
objects and local descriptors extracted on these key points are less discriminative because only similar
edges exist around the key points. To enhance the local features, the SIFT descriptor and an improved
spatial sparse coding Bag-Of-Words model (BOW) [22] were integrated for objects feature extraction
and representation, but object location is largely disturbed by cluttered background. Tombari [23] came
up with Bunch of Lines Descriptor (BOLD) features to describe and detect line segments in the pipeline
of SIFT-feature description and detection. It begins by applying an original Line Segment Detector
(LSD) [24] algorithm for image to obtain line segment. Then BOLD used line-segment midpoints
as interest-points to aggregate nearby segments via k-nearest neighbours (kNN), and the descriptor
was built by unique angle primitives over pairs of neighboring segments. The kNN classifier can be
used for many applications of signal and image processing [25], [26]. Given recognition performance,
another work that resembles BOLD is Bounding Oriented Rectangle Descriptor for Enclosed Regions
(BORDER) [27], which achieved an impressive recognition rate. The BORDER uses an adaptation of
LSD to obtain equal fragmented of each extensive line-segment termed Linelets. The improvement
demonstrates better resistance in the presence of occlusion. In! order to achieve scale and rotation
invariance, the BORDER proposed the oriented rectangle template, which is deployed in a multi-scale
rectangle scheme to enhance robustness of occlusion. Subsequently, encompassed regions are sampled
linearly to accumulate rotation-invariant angle primitives [23] to generate its descriptors. For the
descriptor, the key factor besides delivering exclusiveness is rotation invariance. However, to meet the
requirements of the object rotation invariance, the process of building the oriented rectangle template
rotations is relatively slow for high memory requiring and computational complexity especially in
cluttered scenes where large number of feature points need to be described.

Most methods are based on template matching, where objects are trained with various indifferent
methods and windowed through the scene to find the best matched location. Template matching is
attractive for object detection because it can work well for objects with few discriminating features
which are dominantly determined based on their overall shape. An early approach to template
matching [28] and its extension [29] include the use of the Chamfer distance between the template
and the input image contours as a dissimilarity measure. The distance measurement is efficiently
computed by distance transformation, but this method is very sensitive to noise and light changes.
Another method of distance measurement for binary edge images is Hausdorff distance [30],
which measures the maximum of all distances from each edge point in the image to its nearest neighbor
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in the template. However, it is vulnerable to an occlusion and complex background. Considering
the disadvantages of these methods, Hsiao proposed a novel shape matching algorithm, which can
explicitly obtain contour connectivity constraints by constructing a network on the image gradient
(Gradient Networks) [31]. While the method can improve the detection accuracy by iteration to
calculate the probability of matching each pixel to the object shape, it cannot process video or
image sequences in real-time. Generally, a typical template-based matching algorithm considers
the template in their entirety but tends to suffer performance complexity issues since the matching
process may require searching through a large amount of pixels to find potential matches for the
template. Consequently, many template-based algorithms have troubled in real-time object detection,
where massive amounts of templates are often required to compensate for the lack of visual properties
such as rotation and scale changes. To overcome the limitation, image gradients instead of image
contours was proposed for use as matching features [32,33]. Based on image gradients, Dominant
Orientation Templates (DOT) was designed to detect texture-less objects. At the core of DOT is a binary
representation of the image and template, choosing a dominant gradient orientation for each region,
which can be built efficiently and used to parse images to quickly find objects. Subsequently, based on
the work of DOT [32], LINEearizing the memory (LINE2D) [33] was proposed, which is faster and more
robust by cache-friendly response maps and spreading the orientations [34]. However, the DOT utilizes
only the dominant gradient orientations as the matching feature and cannot adequately describe a
texture-less object, resulting in the massive loss of information of the texture-less object and severe
degradation of performance or even failure in the presence of occlusion and clutter. By experiments, it
is found that the recognition rates of DOT and LINE2D are much inferior to descriptor-based methods.

In this paper, we propose a method having general purpose, fast, and high object detection rates
by using binarized orientation compressing map and discriminative regional weight. The proposed
fast algorithm, which consists of two stages, greatly reduces the computational complexity and false
recognition rate. Different from DOT which only exploits the dominant orientations, the proposed
method quantizes and encodes all the orientation in a neighborhood to retain more information.
In order to improve the computational efficiency, the proposed method compresses the quantized
gradient orientation by using a sliding circular window. After the quantization compression process,
a set of possible object locations is generated in an orientation similarity measure process. Based on
the possible object locations detected in the first stage, the discriminative regional weight is proposed
to distinguish different objects with similar parts effectively in the second stage. Finally, we test the
proposed method on two image datasets and the results are compared with some other algorithms.
Experimental results illustrate that the proposed method is suitable for real-time texture-less object
detection, and its performance is competitive with other state-of-the-art texture-less object detectors in
homogenous conditions.

2. The Orientation Compressed Map

This section addresses the problem of generating possible object locations in texture-less object
detection. We describe a process of quantizing and compressing the orientation of the gradients and
explain how they can be built and used to generate possible object locations quickly. The proposed
method starts by using a binary string to represent the orientation of the gradient. An orientation
compressing map then is proposed to improve the matching speed. Finally, it shows how to use the
orientation compressing representation to compute the similarity and extract possible object locations.

2.1. Quantizing and Encoding the Orientations

Experts usually chose to consider image edge gradients because they are proved to be more
discriminant than other forms of representations [16,35]. To accelerate the matching process,
the gradient direction is quantized and a binary string is employed to represent the quantized
direction. As illustrated in Figure 1a, a semicircular space is divided into N parts (e.g, N = 16) which
are congruent with each other, and each part is represented by a binary string. In order not to be
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affected by whether the object is over a dark background or a bright background, we only consider the
orientation of the gradient, as shown in Figure 1b, if the angle of the direction is less than 0, it will be
mapped to the upper half of the circle. As shown in Figure 1b, the orientation is encoded by a binary
string, and each individual bit of the string corresponds to one quantized orientation.
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Figure 1. (a) A semi-circle is divided into 16 parts which are congruent with each other, and every part
has an unique discrete direction; (b) The orientation of the gradients and their binary strings.

In this paper, Canny operator is used for edge detection. After the non-maximum suppression,
double thresholds are applied to obtain the edge maps. The low threshold TL and the high threshold
TH of Canny detector are proportional to the maximum gradient Gmax of the tested image. In this
paper, TH = 0.1·Gmax and TL = 0.5·TH reaches the best performance with respect to our experiments.

2.2. Orientation Compressing Map

As mentioned above, although the DOT roughly achieves speed requirements, it only considers
the dominant orientations, resulting in the unsatisfactory performance of object detection. In order to
make the measure more robust to small transformations of object while meeting the speed requirements,
orientation compressing map which combines the encoded orientations is proposed in this section.

In order to reduce computation complexity, a compressing process is implemented after encoding
the orientation. The location k in the compressed image corresponds to a (2rc + 1)× (2rc + 1) block of
pixels in the original image centered at location i, with:

i = (2rc + 1)·k + rc. (1)

As illustrated in Figure 2b,c, rc = 1 and a blue 3 × 3 block corresponds to a pixel in the
compressed image.

Different from the DOT [32], the proposed compressing map exploits all the encoded orientations
in a neighborhood instead of only considering the orientation of the strongest gradient. Define oriC

as the encoded orientation of the compressing map, it can combine the orientations efficiently by
performing the bitwise OR operation:

oriCk (T , rc) = oriCk (T , rc)
∣∣∣orii′(T )∀i′ ∈ C(i, r′), (2)

where oriCk (T , rc) is the compressed orientation at location k in the orientation compressing map of the
template image T , which combines all the orientations in the region C(i, r′) centered at location i in the
template image. Specially, to prevent the orientation compressing map from changing largely when
shift one or two pixel, the mechanism of two overlapped circle windows is implemented. As shown
in Figure 2b, two circular windows centered on blue pixels partially overlap, and their radius can be
defined as follows:

r′ = rc + [rc/2], (3)

C(i, r′) indicates the circular window centered at location i with radius r′. The symbol [·]
indicates rounding.
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Figure 2 shows the process of computing the orientation compressing map of the template image
which is shown in Figure 2a. Figure 2b is original quantized gradient orientations in the red box of
the template’s edge map shown in Figure 2d. Figure 2c is the orientation compressing map of the
orientations in Figure 2b, it combines the original quantized orientations efficiently by performing the
bitwise OR operation. Figure 2e represents the orientation compressing map of the template image.
In Figure 2e, the darker pixel indicates the more different quantized orientations are combined.
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Figure 2. An example to explain the process of producing the binarized orientation compressing map.
(a) The model image; (b) Original quantized gradient orientations in the red box of model edge map;
(c) The quantized orientation compressing map of Figure 2b; (d) The edge map of the model; (e) The
orientation compressing map of the template image.

2.3. Similarity Measure and Possible Object Locations

In order to improve the matching speed, the gradient orientations are encoded and compressed.
Naturally, both the template and the input image are implemented by the same operation, which can
generate the binarized orientation compressing map respectively. The similarity measure based on
the orientation compressing map is designed to fulfill the requirements of robustness to deformation
and occlusion.

The orientation compressing map of the template (CMT) can be compared with the orientation
compressing map of the input image (CMI) pixel by pixel according to the bitwise AND operation:

δC
l+k,k(I , T , rc) = POPCNT(oriCl+k(I , rc)&oriCk (T , rc)), (4)

where oriCk (T , rc) is the compressed orientation at location k in the CMT and oriCl+k(I , rc) is the
compressed orientation at location k shifted by l in the CMI. POPCNT is returning the number of bits
set to 1 and δC

l+k,k(I , T , rc) counts the number of matched quantized orientations between oriCl+k(I , rc)

and oriCk (T , rc). As shown in Figure 3a,b, the CMT in Figure 3a is compared with the shadow region
of the CMI by Equation (4) and the matched quantized orientations are represented by the arrows with
blue and hollow in the Figure 3b.
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Figure 3. Illustration of the similarity measure. (a) Part of the quantized orientation compressing map
of the template; (b) CMT as a sliding window is used to calculate the similarity measure for each
location in the CMI; (c) The input image; (d) Orientation compressing map of the template (CMT); (e)
Orientation compressing map of the input image (CMI).

Given that parts of the model are occlusive in the input image, the similarity score is calculated
for each pixel between the CMI and the CMT, which can be formalized as:

SC
l+k,k(I , T , rc) =

δC
l+k,k(I , T , rc)

κl+k,k
, (5)

where κl+k,k usually indicates the number of quantized orientations at location k in the CMT. There are
many different quantized orientations if the CMT matches a cluttered region in the CMI. To improve
the robustness of clutter, κl+k,k needs to be adjusted according to the number of quantized orientations
at location k shifted by l in the CMI as follows:

κl+k,k =

{
δC

k (T , rc) if(δC
k (T , rc) ≥ δC

l+k(I , rc))

min(δC
l+k(I , rc), λ·δC

k (T , rc)) otherwise
, (6)

where
δC

k (T , rc) = POPCNT(oriCk (T , rc)), (7)

and
δC

l+k(I , rc) = POPCNT(oriCl+k(I , rc)), (8)

δC
k (T , rc) is the number of quantized orientations at location k in the CMT. Similarly, δC

l+k(I , rc)

returns the number of quantized orientations at location k shifted by l in the CMI. According to the
experimental results, λ is set to 3.

Considering the similarity measure SC
l that returns the average value of the similarity score of

pixels between the CMI and the CMT located at l, which can be evaluated as:

SC
l (I , T , rc) =

1
N ∑

k
SC

l+k,k(I , T , rc), (9)

where N represents the number of pixels possessing compressed orientations in the CMT. As shown in
Figure 3a, the value of N is 10.
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2.4. Extract Possible Object Locations Based on the Orientation Compressing Map

The similarity measure is used to yield a set of possible object locations. In the D-Textureless
dataset [23], models are rotated and scaled in the test images and the test images are 640 × 480 pixels
as shown in Figure 4. For the red plier model, it appears in Figure 4e,f respectively, which are the
positive test samples. Figure 4g,h are the negative test samples. Before matching with these test
images, the model is performed scale and rotation transformation, which can generate 252 templates
by rotating the model in the range of [0◦, 350◦] with 10◦ increment and scaling the model in the range
of [60%, 90%] with 5% increment. The model can be easily learned because the learning process only
requires generating and storing the orientation compressing maps of these templates (CMT) with
different scales and rotations. For the precision and computational load, rc = 6 is a good trade-off with
respect to our experiments, which will be explained in detail in Section 4.1.
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Figure 4. Possible object locations. (a–d) The similarity score of CMI. (e) There is only one possible
object location; (f) There are two possible object locations, and one of them is the positive; (g) There are
no possible object locations; (h) Unfortunately, there are two negative possible object locations, but
they can be eliminated in the second stage.

The compressing map can be used for generating possible object locations efficiently. The whole
time of generating orientation compressing map of the test image (CMI) and matching with the
252 orientation compressing maps of templates takes 0.19 s on a laptop with Intel Core i5 processor
and 4 GB memory. The similarity score of the CMI of the four test images are shown in Figure 4a–d.
Note that each pixel of similarity score in Figure 4a–d is the max similarity score of the all the CMTs
matching with CMI in its location. Using the non-maximal suppression, a set of possible object
locations with different scale and rotation are selected as shown in the yellow boxes in Figure 4e–h.
In Figure 4e,f, it can be seen that the compressing map generates a small set of possible object locations
which contain the object with correct position, scale and rotation. Especially, for some negative test
samples as shown in Figure 4h, the orientation compressing map excludes all possible object locations.

3. Discriminative Regional Weight

In this section, the second part of the proposed method is introduced. After generating the
possible object locations, the remaining problem is how to recognize the texture-less object in these
possible locations. Based on the discriminative regional weight, a novel similarity measure is designed
for the texture-less object detection.
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3.1. Region Based Weight

Based on the observation from biological vision that the vision system is sensitive to the region
of the greater curvature, we propose a region-based weight method which exploits the number of
different quantized orientations in a neighborhood. Let wi be the weight value of the location i, and it
can be defined as follows:

wi = 1 +
POPCNT(oriw

i (T , rw))

m
, (10)

where oriw
i (T , rw) is binarized orientations at location i in the weighted image:

oriw
i (T , rw) = oriw

i (T , rw)
∣∣orii′(T )∀i′ ∈ B(i, rw), (11)

B(i, rw) indicates the window centered at i with (2rw + 1)× (2rw + 1) pixels.
As depicted in Figure 5, the weight w is proportional to the number of the different quantized

orientations in a neighborhood. In Equation (10), a small m will result in large weight in the region of
greater curvature but also a loss of contributions from other regions. In practice, we found that m= 12
is a good trade-off. The methods of descriptor-based usually use feature points as the basis for object
recognition. The feature points are generally detected in regions with significant gradient changes and
they are more discriminative. In this way, the discriminative regional weight combines the advantages
of feature points. It can not only effectively distinguish similar objects, but also enhance the robustness
of occlusion.
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3.2. Object Detection

This section describes our object detection approach where the template representation is modified
to deal with texture-less objects. In particular, we build on the work of spreading the orientations of
LINE2D [33], yet extend it by adding a discriminative regional weight for better performance. To be
robust to small image transformations, an image representation for template matching is designed
by spreading the orientations. The core of spreading orientation is to spread gradient orientations in
local image neighborhoods. Base on the quantized gradient orientation in the first of stage, and the
formulation is as follow:

sorii(T , rs) = sorii(T , rs)
∣∣orii′(T )∀i′ ∈ B(i, rs), (12)
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where sorii(T , rs) is the spread orientation at location i in the template image. According to
LINE2D [33], rs is set to 3 in our experiments.

According to the scale and rotation of each possible object location, the appropriate template
is selected and matched with the possible object location. The similarity measure is obtained by
the following:

Sj =

∑
i

wiΓj+i,i(I , T )

∑
i

wi
, (13)

where wi is the discriminative regional weight at location i. Γj+i,i is the similarity function, which
measures the similarity for each pixel between the candidate patch and template patch, it can be
formally expressed as:

Γj+i,i(I , T ) =
{

ε j+i,i(I , T ) if(ε j+i,i(I , T ) ≥ cos(π/3))
p otherwise

, (14)

where p is the penalty coefficient and its range is [−1, 0] in this paper, p is set to −0.2 according to the
experimental results. ε j+i,i(I , T ) can be seen as the measure defined by LINE2D [33]:

ε j+i,i(I , T ) = max
ori′i(T )∈sorii(T ,rs)

∣∣cos(orij+i(I)− ori′i(T ))
∣∣, (15)

where orij+i(I) is the quantized orientation at location i shifted by j in the input image I . And ori′i(T )
represents one quantized orientation, of the spread orientation sorii(T , rs).

The proposed similarity measure which integrates the discriminative regional weight achieves
better results for similar objects recognition. As shown in Figure 6, to detect the spanner model
(Model_02), a vernier caliper (Model_03) places in the input image, and part of its texture is similar to
spanners’. Consequently, there is a great possibility to mistake the vernier caliper as a spanner without
applying the discriminative regional weight as shown in Figure 6b. And Figure 6c represents a correct
recognition by using the weight of model as displayed in Figure 6b.
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Figure 6. To detect Model_02, an example to explain the effect of the discriminative region weight.
(a) Possible object locations are generated in the first stage; (b) There is a false detection without using
a discriminative region weight; (c) Applying the discriminative region weight can eliminate other
negative candidate regions in the second stage.
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3.3. Object Detection Algorithm

As shown in Figure 7, the proposed algorithm demonstrates a two-stage template-based procedure
using Orientation Compressing Map and Discriminative Regional Weight (OCM-DRW) to effectively
detect texture-less objects. In the first stage, the orientation compressing map of the template (CMT) can
be compared with the orientation compressing map of the input image (CMI) pixel by pixel according
to the bitwise operation, and a set of possible object locations with different scale and rotation possible
object locations are generated. In the second stage, according to the scale and rotation of each possible
object location, the appropriate template is selected and matched with the possible object location
based on the discriminative regional weight.
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Figure 7. Block-diagram of OCM-DRW algorithm.

4. Experiment Results

In this section, the OCM-DRW is tested and compared against several state-of-art detectors in
texture-less object genres. In order to evaluate the performance of OCM-DRW for object instance
detection, we include in our comparison template-based methods for texture-less object detection such
as LINE2D [33], as well as popular descriptor-based keypoint detectors like SIFT [16], BOLD [23] and
BORDER [27]. In addition, to ensure comprehensiveness, two datasets of experiments are conducted,
the D-Textureless dataset [23] for models appearing rotated, translated and scaled in the scenes and
the CMU Kitchen Occlusion dataset (CMU-KO8) [36] for its highly cluttered and occlusive scenes.

The OCM-DRW is compared with LINE2D, SIFT, BOLD and BORDER, which are all implemented
in C++ set with their proposed parameters in the literature. The OCM-DRW code is as we show
in Ref. [37]. The implementations of LINE2D and SIFT are taken from OpenCV, while BOLD and
BORDER are realized by the library from their project sites. Similar to [23] and [27], the performance of
these algorithms are evaluated measuring its true positive rate and false positive rate. The test samples
are divided into positive samples which contain the target object and negative samples which don’t
contain the target object. The true positive ratio (TPR), also known as sensitivity, is defined as follows:

TPR =TP/(TP + FN), (16)

where TP are the number of positive samples which are correctly detected (True Positives) and FN is
the number of positive samples which are incorrectly detected as the negative sample (False Negative).
And the False positive ratio (FPR) can be defined as follows:

FPR =FP/(FP + TN), (17)

where FP is the number of negative samples which are incorrectly detected as the positive sample (False
Positive) while TN is the number of negative samples which are correctly detected (True Negative).
Detector that have a good performance are indicated by high TPR value and low FPR value.

4.1. Parameter Experiment

In Section 2.2, the input image is compressed at the scale of rc. We evaluate the different rc by
using TPR and the number of possible objection locations in D-Textureless dataset, which consists
of 9 models and each model has 54 images. The possible object locations are generated and TPR
represents the ratio of possible object locations which contain the correct target object to all positive
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samples in the 486 test images. In the first stage, we consider rc which has higher TPR as better choice,
because the possible object locations where negative samples are incorrectly detected as the positive
samples will be removed in the second stage. From Figure 8, it can be seen that rc = 6 has higher TPR.
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In Section 3.1, the weight value is computed by counting the number of different quantized
orientations over a (2rw + 1)× (2rw + 1) neighborhood in the template image. The value of rw adjusts
adaptively according to the scale of template in the training stage. In the process of computing
the weight in D-Textureless dataset, template images are scaled in the range of [60%, 90%] with 5%
increment and the value of rw equals to its initial value multiplied by the scale of the templates. Figure 9
reports object detection results attained by an approach of multi-scale operation with different initial
values rw. From the Figure 9, it can be seen that rw = 6 offers the best region weighted.
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4.2. D-Textureless Dataset Experiment

The first experiment engages the publicly-available D-Textureless dataset by the creators of
BOLD [23]. It contains 9 texture-less models, accompanied by 54 scenes with clutter and occlusions.
Besides being texture-less, this dataset challenges algorithms on properties such as translation, rotation,
and up to about 50% scale and occlusion. As mentioned above, 252 templates in the first stage are used
to match the test image, generating a set of possible object locations. In the second stage, according to
the scale and rotation of each possible object location, the appropriate template and the adjacent scale
and rotation total of 9 templates are selected to detect the object and estimate its position, scale and
rotation. We consolidate all participating algorithms to obtain the ROC plot as shown in Figure 10a.
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Upon analysis, it can be observed that texture based like SIFT clearly is inferior to the others in the
texture-less objects detection. It is found that BORDER achieves an impressive object recognition rate,
with OCM-DRW able to slightly edge out BORDER to claim top spot. Figure 10 presents some of
OCM-DRW’s, BORDER’s and BOLD’s recognition results in the D-Textureless dataset. Based on the
compressing map which exploits all the encoded orientations in a neighborhood and the discriminative
regional weight which can effectively distinguish different texture-less objects, OCM-DRW performs
better than BORDER and BOLD, it can detect the rotated target in the cluttered background as shown
in Figure 11.
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4.3. CMU-KO8 Dataset Experiment

For evaluation the robustness of OCM-DRW with respect to occlusion, the next experiment
involves the extremely cluttered and occluded CMU Kitchen Occlusion dataset (CMU-KO8) assembled
by Hsiao and Herbert [36]. This dataset consists of common household objects in a more natural setting,
and cluttered environments under various levels of occlusion, making this dataset very challenging.
It contains 8 texture-less kitchen-wares models, together with 100 scene images for each model in
both single view and multiple view situations. In addition, each single-view scene image holds only
one instance of a model object and contains ground truth labels of the occlusions. According to the
dataset, Hsiao and Herbert propose three different variants of LINE2D (rLINE2D, rLINE2D+OPP and
rLINE2D+OCLP) [36]. For OCM-DRW evaluation, each model does not have significant scale and
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rotation changes over the test images in the single-view dataset. Therefore, only 9 templates are trained
by the scale and rotation transformation, which creates templates by rotating the template in the range
of [−5◦, 5◦] with 5◦ increment and scaling the template in the range of [95%, 105%] with 5% increment.
We attain the results of OCM-DRW, BORDER, BOLD, LINE2D and rLINE2D+OCLP in terms of recall
versus FPPI (False Positives PerImage) scheme [18] as portrayed to assess the detection rate in the
single-view scene. In addition, rLINE2D+OCLP is used to compare with other detectors due to the
best recognition result of it among three different variants of LINE2D. SIFT is not included because of
the lack of keypoint information for most of the models in this dataset. The similarity measure used
by OCM-DRW make this method have good robustness of clutter, which explained in expression (6).
Figure 10b shows the performance of OCM-DRW over the others in the single-view database, also
revealing OCM-DRW’s robustness in heavy occlusion and clutter. OCM-DRW performs better than
BORDER and BOLD, it can detect the target object partially covered in the cluttered background as
shown in Figure 12.

Algorithms 2018, 11, x FOR PEER REVIEW  13 of 16 

image holds only one instance of a model object and contains ground truth labels of the occlusions. 
According to the dataset, Hsiao and Herbert propose three different variants of LINE2D (rLINE2D, 
rLINE2D+OPP and rLINE2D+OCLP) [36]. For OCM-DRW evaluation, each model does not have 
significant scale and rotation changes over the test images in the single-view dataset. Therefore, only 
9 templates are trained by the scale and rotation transformation, which creates templates by rotating 
the template in the range of [ 5 ,5 ]− ° °  with 5° increment and scaling the template in the range of 
[95%, 105%] with 5% increment. We attain the results of OCM-DRW, BORDER, BOLD, LINE2D and 
rLINE2D+OCLP in terms of recall versus FPPI (False Positives PerImage) scheme [18] as portrayed 
to assess the detection rate in the single-view scene. In addition, rLINE2D+OCLP is used to compare 
with other detectors due to the best recognition result of it among three different variants of 
LINE2D. SIFT is not included because of the lack of keypoint information for most of the models in 
this dataset. The similarity measure used by OCM-DRW make this method have good robustness of 
clutter, which explained in expression (6). Figure 10b shows the performance of OCM-DRW over the 
others in the single-view database, also revealing OCM-DRW’s robustness in heavy occlusion and 
clutter. OCM-DRW performs better than BORDER and BOLD, it can detect the target object partially 
covered in the cluttered background as shown in Figure 12. 

 
Figure 12. Some detection results are achieved by OCM-DRW, BORDER and BOLD respectively 
from CMU-KO8 dataset. (a) OCM-DRW successfully detects; (b) BORDER fails to detect; (c) BOLD 
also fails to detect. 

4.4. Timing Comparison 

All mentioned algorithms are compared the average recognition time for test images. In 
addition, the recognition time is not be evaluated on the CMU-KO8 dataset, because very little 
emphasis is placed in scale and rotation changes and only 9 templates are used to match. Thus, the 
detection time is computed as an average over all the test images in D-Textureless dataset. The size 
of per test image is 640 × 480 in the D-Textureless dataset. The comparison results are given in Figure 
13. For a fair comparison, all the algorithms are implemented on a laptop with an Intel Core i5 
processor and 4 GB memory. As OCM-DRW is predominantly a binary-based detector, it has fast 
matching speeds. Regarding the processing time, OCM-DRW is faster than BOLD, BORDER and 
SIFT and slower than LINE2D because we do not implement their cache-friendly response map. 

In the Existing system, in order to further accelerate detection speed, the parallel processing 
cores of the GPU hardware will be considered in the future. The major computation in OCM-DRW is 
the similarity measure for each location of test image. By using Compute Unified Device 
Architecture (CUDA), the main process of OCM-DRW can be parallelized, and the execution of 
program is accelerated. 

Figure 12. Some detection results are achieved by OCM-DRW, BORDER and BOLD respectively from
CMU-KO8 dataset. (a) OCM-DRW successfully detects; (b) BORDER fails to detect; (c) BOLD also fails
to detect.

4.4. Timing Comparison

All mentioned algorithms are compared the average recognition time for test images. In addition,
the recognition time is not be evaluated on the CMU-KO8 dataset, because very little emphasis is
placed in scale and rotation changes and only 9 templates are used to match. Thus, the detection time
is computed as an average over all the test images in D-Textureless dataset. The size of per test image
is 640 × 480 in the D-Textureless dataset. The comparison results are given in Figure 13. For a fair
comparison, all the algorithms are implemented on a laptop with an Intel Core i5 processor and 4
GB memory. As OCM-DRW is predominantly a binary-based detector, it has fast matching speeds.
Regarding the processing time, OCM-DRW is faster than BOLD, BORDER and SIFT and slower than
LINE2D because we do not implement their cache-friendly response map.

In the Existing system, in order to further accelerate detection speed, the parallel processing
cores of the GPU hardware will be considered in the future. The major computation in OCM-DRW
is the similarity measure for each location of test image. By using Compute Unified Device
Architecture (CUDA), the main process of OCM-DRW can be parallelized, and the execution of
program is accelerated.
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5. Conclusions

In this paper, a fast approach to texture-less object detection is proposed, which is a two-stage
template-based procedure using an orientation compressing map and discriminative regional weight.
Possible object locations are predicted by employing the orientation compressing map in the first
stage. According to the scale and rotation of each possible object location, the appropriate template is
selected and matched with the possible object locations by using the discriminative regional weight
in the second stage. Results from two datasets reveal that OCM-DRW displays high competence in
recognizing texture-less objects. Hence, it is expected to be utilized in a wide range of industrial vision
applications. To achieve higher frame rates, in future work, we plan to parallelize the algorithm on the
GPU, using CUDA parallel computation framework.
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