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Abstract: Hinge joint damage is a typical form of damage occurring in simply supported slab bridges,
which can present adverse effects on the overall force distribution of the structure. However, damage
identification methods of hinge joint damage are still limited. In this study, a damage identification
algorithm for simply supported hinged-slab bridges based on the modified hinge plate method
(MHPM) and artificial bee colony (ABC) algorithms was proposed by considering the effect of hinge
damage conditions on the lateral load distribution (LLD) of structures. Firstly, MHPM was proposed
and demonstrated, which is based on a traditional hinge plate method by introducing relative
displacement as a damage factor to simulate hinge joint damage. The effectiveness of MHPM was
verified through comparison with the finite element method (FEM). Secondly, damage identification
was treated as the inverse problem of calculating the LLD in damage conditions of simply supported
slab bridges. Four ABC algorithms were chosen to solve the problem due to its simple structure, ease
of implementation, and robustness. Comparisons of convergence speed and identification accuracy
with genetic algorithm and particle swarm optimization were also conducted. Finally, hinged bridges
composed of four and seven slabs were studied as numerical examples to account for the feasibility
and correctness of the proposed method. The simulation results revealed that the proposed algorithm
could identify the location and degree of damaged joints efficiently and precisely.

Keywords: damage identification algorithm; hinge joint damage; modified hinge plate method;
artificial bee colony algorithm; finite element analysis

1. Introduction

Under the influence of vehicle load and natural environmental erosion, structural damages
inevitably occur, which can seriously affect the safety and durability of bridges. Therefore, structural
damage identification has become an important part of bridge maintenance and reinforcement.
Prefabricated reinforced concrete (RC) bridges have become widely used because of their advantages
such as higher quality and shorter construction period, etc. As a typical prefabricated RC bridge, most
hinged-slab bridges were built decades ago. According to the structural features of a hinged-slab bridge,
hinge joints are the relative weak parts, which are prone to cracks (as shown in Figure 1). According to
the investigations of more than 500 bridges for expressways in Jilin Province, the maximum proportion
of hinge joint damage was 83.3% on the Changchun–Siping Expressway (in operation since 1996)
and the minimum was 11.8% for the Jilin–Jiangmifeng Expressway (in operation since 2011). Hinge
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joint damage in reinforced concrete bridges widely exists, which will cause single slab bearings and
aggravate the overall damage status of the structure. Therefore, it is significant to propose an efficient
and accurate damage evaluation method for hinge joints for hinged-slab bridges.
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In recent decades, structural health monitoring and damage identification, which are based on 
the dynamic properties of bridges, have been rapidly developed. To measure the dynamic response 
for structural health monitoring (SHM) accurately and efficiently, Heo et al. [1] developed an 
intelligent data acquisition system to evaluate the dynamic response performance of bridges using 
wireless sensor networks in real-time. With the appearance of damage, some changes will take 
place in modal parameters such as natural frequencies, mode shapes, damping ratios, etc. This 
feature can be utilized as indicators to identify the location and degree of damage [2–5]. Researchers 
also studied damage identification methods based on other identification indicators. For instance, 
Blachowski et al. [6] proposed a damage localization approach by axial strain accelerations for truss 
bridges, and Kim et al. [7] developed a damage detection method through Nair’s [7] damage 
indicator which was demonstrated superior to the modal parameters. Nevertheless, it cannot 
effectively analyze the damage of transverse connection components for hinged-slab bridges. In 
addition, hinge joint damage will lead to the redistribution of lateral load, which has an adverse 
effect on the bearing capacity of bridges. Some researchers have studied the relationship between 
lateral load distribution (LLD) and the damage condition of hinge joints. Russo et al. [8] performed 
a series of diagnostic load tests on damaged westbound and undamaged eastbound prestressed 
concrete bridges to determine the effects of hinge joint damage on load distribution. Test results 
showed that westbound bridges were somewhat flexible. Change in load distribution occurred 
when isolated damage was present. Chung et al. [9] investigated the effect of secondary elements 
and deck cracking on the LLD of girder bridges. Longitudinal cracking was found to increase the 
load distribution factor up to 17%, while the influence of transverse cracking was not significant. 
Al-Saidy et al. [10] researched the effect of girder damage on overall load distribution of a typical 
short-span composite bridge using a grillage method. Kim et al. [11] discovered that live loads were 
redistributed among the girders due to prestressed CFRP sheets. Azimi et al. [12] studied live load 
distribution factors of an AASHTO Type 3 precast-prestressed girder, which was calculated 
through finite element method (FEM) and compared with the simplified method prescribed by 
other codes. Although great achievements have been obtained in the study of LLD under damage 
conditions of hinge joints, it is limited in qualitative analysis. If the quantitative relationship for the 
damage condition of hinge joints with live load distribution can be obtained, damage identification 
of hinge joints can be achieved. 

Therefore, it is essential to calculate the LLD with the damage of lateral connections. Lateral 
load distribution theory is to convert the spatial live load analysis into planar one, which plays a 
significant role in bridge design and construction. The main computing methods are determined by 
the American Association of State Highway Transportation Officials (AASHTO) Standard 
Specifications and the AASHTO Load and Resistance Factor Design (LRFD) Specification in the 
United States [13,14], while calculated by the rigid-diaphragm method, hinge plate method, etc. in 
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In recent decades, structural health monitoring and damage identification, which are based on the
dynamic properties of bridges, have been rapidly developed. To measure the dynamic response for
structural health monitoring (SHM) accurately and efficiently, Heo et al. [1] developed an intelligent
data acquisition system to evaluate the dynamic response performance of bridges using wireless
sensor networks in real-time. With the appearance of damage, some changes will take place in modal
parameters such as natural frequencies, mode shapes, damping ratios, etc. This feature can be utilized
as indicators to identify the location and degree of damage [2–5]. Researchers also studied damage
identification methods based on other identification indicators. For instance, Blachowski et al. [6]
proposed a damage localization approach by axial strain accelerations for truss bridges, and Kim
et al. [7] developed a damage detection method through Nair’s [7] damage indicator which was
demonstrated superior to the modal parameters. Nevertheless, it cannot effectively analyze the
damage of transverse connection components for hinged-slab bridges. In addition, hinge joint damage
will lead to the redistribution of lateral load, which has an adverse effect on the bearing capacity
of bridges. Some researchers have studied the relationship between lateral load distribution (LLD)
and the damage condition of hinge joints. Russo et al. [8] performed a series of diagnostic load
tests on damaged westbound and undamaged eastbound prestressed concrete bridges to determine
the effects of hinge joint damage on load distribution. Test results showed that westbound bridges
were somewhat flexible. Change in load distribution occurred when isolated damage was present.
Chung et al. [9] investigated the effect of secondary elements and deck cracking on the LLD of girder
bridges. Longitudinal cracking was found to increase the load distribution factor up to 17%, while the
influence of transverse cracking was not significant. Al-Saidy et al. [10] researched the effect of girder
damage on overall load distribution of a typical short-span composite bridge using a grillage method.
Kim et al. [11] discovered that live loads were redistributed among the girders due to prestressed CFRP
sheets. Azimi et al. [12] studied live load distribution factors of an AASHTO Type 3 precast-prestressed
girder, which was calculated through finite element method (FEM) and compared with the simplified
method prescribed by other codes. Although great achievements have been obtained in the study of
LLD under damage conditions of hinge joints, it is limited in qualitative analysis. If the quantitative
relationship for the damage condition of hinge joints with live load distribution can be obtained,
damage identification of hinge joints can be achieved.

Therefore, it is essential to calculate the LLD with the damage of lateral connections. Lateral load
distribution theory is to convert the spatial live load analysis into planar one, which plays a significant
role in bridge design and construction. The main computing methods are determined by the American
Association of State Highway Transportation Officials (AASHTO) Standard Specifications and the
AASHTO Load and Resistance Factor Design (LRFD) Specification in the United States [13,14], while
calculated by the rigid-diaphragm method, hinge plate method, etc. in China [15]. Huo et al. [16]
proposed a simplified equal distribution factor method of live load shear which originated from
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Henry’s [16] method with consideration of the skew angle and span, etc. Wang et al. [17] studied a
nine-beam hinged slab bridge which was calculated by comparison with the hinge plate method and
the grillage method. Jiao et al. [18] proposed a method based on modal properties for computing the
LLD, which was verified by comparison with FEM and the traditional simplified numerical method.
The abovementioned methods can accurately calculate the LLD of intact bridge, but it will highlight
its limitations for the damaged one. Researchers make a further study on the quantitative relationship
of damage conditions and LLD. Wei et al. [19] took into consideration the influence of hinge joints and
deck pavement damages and evaluated the LLD with various degrees and locations of damages by
the combination of hinge plate method and FEM. Cheng et al. [20] calculated the LLD under different
hinge joints damages and used genetic algorithm to identify the damage degree. Jiao et al. [18] utilized
the position for cross phenomenon of distribution factor curves between damaged and undamaged
bridges as the damage indicator for localizing. The literature demonstrates the great progress in the
damage identification of lateral connections, but there is still a great deal of deficiencies. The mentioned
methods have their own limitations, for example, it is only suitable for damage identification of a
lower degree and it is difficult to guarantee identification accuracy. The purpose of this paper is to
establish a modified hinge plate method (MHPM) which can calculate the LLD under arbitrary hinge
joint damage conditions.

In practical engineering, it is easy to obtain the LLD of simply supported hinged-slab bridges,
which can be equivalently calculated by deflection of the bridge. When parameters such as structural
geometries and material properties, etc., are known, the damage identification will be solved by
means of MHPM, which can be regarded as an inverse problem of LLD calculation with damages.
For such problems, swarm intelligence algorithms including genetic algorithm (GA), particle swarm
optimization (PSO), differential evolution (DE), and artificial bee colony algorithm (ABC) present
favorable performances [21–25]. For application in practical engineering, Antonelli et al. [26] determined
the best configuration of the phase-locked loop system by G.A. Hou et al. [27] who utilized the
glowworm swarm optimization algorithm (GSO), which was a new type of PSO, to determine the
optimal values of a photovoltaic system, and the results indicated the GSO was obviously superior
to traditional algorithms. Among these algorithms, ABC outperforms other algorithms due to its
simple structure, easy implementation, and outstanding performance [28–30], which have been applied
in structural damage identification. Sun et al. [31] presented a modified ABC to identify structural
systems, which can realize excellent parameter estimation, even with few measurements and high-noise
corruptions. Xu et al. [32] proposed a method for structural damage identification based on Chaotic
ABC with residuals of natural frequencies and modal assurance criteria used to establish the objective
function. Casciati et al. [25] performed the damage localization of a cable-stayed bridge by comparing
both identified and analytical stiffness matrices, and ABC were employed to proceed toward the
global minima. The original ABC algorithm was inspired by the cooperative foraging and waggle
dance behaviors of honey bee colonies [33]. The ABC has been shown to be competitive with other
population-based algorithms. However, there is still an insufficiency in it, which is good at exploration
but poor at exploitation [34]. Therefore, different optimization methods are used to enhance the
performance of the ABC algorithm [35–41]. It is worth noting that any improved ABC algorithm is
merely suitable for some special numerical optimization problems. In addition, it is necessary to further
verify which one is applicable for the damage identification of the hinged-slab bridge.

In this study, an identification algorithm for hinge joint damage of simply supported slab bridges
was proposed based on the modified hinge plate method (MHPM) and artificial bee colony (ABC)
algorithms. The MHPM was presented by introducing relative displacement as a damage factor to
simulate hinge joint damage, which can achieve the acquisition of lateral load distribution for intact
and damaged slab bridges. Four kinds of ABC algorithms were used to realize the identification of
damage severity of hinge joints, which were compared with GA and PSO. Hinged bridges composed
of four and seven slabs and comparisons with the methods in References [19,20] were studied as
numerical examples to account for the feasibility and effectiveness of the proposed method.



Algorithms 2018, 11, 198 4 of 24

2. Methods

2.1. Traditional Hinge Plate Method

Slabs at the loading positions deform and other slabs appear to have corresponding deflections,
when a hinge slab bridge is subjected to vehicle load. However, the transverse deformation of a single
slab is so tiny that it can be negligible. Live load is distributed to every slab because of the internal
forces of hinge joints, which include the vertical shear g(x), lateral bending moment m(x), longitudinal
shear t(x), and normal force n(x). The height and stiffness of tongue and groove are so weak that
other internal forces have little influence compared with vertical shear. Hence, tongue and groove
are assumed to be a hinge joint, which only transfer the vertical shear g(x). Meanwhile, the ratio of
internal forces, deformations, and distributed loads between slabs should meet the relations expressed
in Equation (1):

ωi(x)
ωj(x)

=
Mi(x)
Mj(x)

=
Qi(x)
Qj(x)

=
Pi(x)
Pj(x)

= constant, (1)

where ω(x), M(x), Q(x), and P(x) are the deflection, bending moment, shear, and distributed load,
respectively; i and j represent slab numbers in the range of {1, 2, . . . , n}, n is the number of slabs.

If the load patterns are concentrated or uniform, relationships of Equation (1) will not be satisfied.
Whereas, use of a half-wave sinusoidal load with a peak value p0, as shown in Figure 2, can harmonize
the ratio, which is another assumption for hinge plate method [42].
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Figure 2. The force diagram of simply supported hinged-slab bridge.

There are n-1 hinge joints in the bridge composed of n slabs, which means there are n-1 unknown
hinge joint forces (namely the vertical shear g(x)). If the whole hinge forces g(x) are solved, the
distributed loads on each slab can be obtained according to the principle of balance, which can be used
to calculate the influence line vertical value of LLD. According to the location of external load, the
calculation form can be divided into two categories. When the external load is located on the side slabs
(namely slab 1 or slab n), LLD can be defined by Equations (2) and (3). Equation (4) is used for the case
of load placed on internal slabs.

η11 = p11 = 1− g1

ηi1 = pi1 = gi−1 − gi 2 ≤ i ≤ n− 1,
ηn1 = pn1 = gn−1

(2)


η1n = p1n = g1

ηin = pin = gi − gi−1 2 ≤ i ≤ n− 1,
ηnn = pnn = 1− gn−1

(3)
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

η1j = p1j = g1

ηij = pij = gi − gi−1
ηjj = pjj = 1− gj−1 − gj
ηkj = pkj = gk−1 − gk

ηnj = pnj = gn

{
2 ≤ i ≤ j− 1
j + 1 ≤ k ≤ n− 2,

(4)

where pij and ηij represent the distributed load and LLD influence line vertical value of the ith slab
with the external load located at the jth one, respectively; gi is the vertical shear at ith hinge joint.

For statically indeterminate problem with n − 1 unknown forces, it can be solved by two
conditions. One is the basic system (shown in Figure 3) whose hinge joints are cut. Others are
the deformation compatibility conditions that the relative vertical displacements of two adjacent slabs
at hinge joints are zeros. Therefore, n − 1 canonical equations can be obtained and described as
Equation (5):

δ11g1 + δ12g2 + · · · + δ1,n−1gn−1 + δ1p = 0
δ21g1 + δ22g2 + · · · + δ2,n−1gn−1 + δ2p = 0

...
...

. . .
...

...
...

δn−1,1g1 + δn−1,2g2 + · · · + δn−1,n−1gn−1 + δn−1,p = 0,

(5)

where δij is the relative vertical displacement at the ith hinge joint when unit sinusoidal joint force is
applied in the jth joint; δip is the displacement caused by external load p.
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Figure 3. The basic system for shear analysis: (a) unit external force loaded on side slab; (b) unit
external force loaded on internal slab.

Here, an equivalent treatment was conducted that the unit sinusoidal joint force was decomposed
into a central force and a sinusoidal torque. It is supposed that ω is the deflection of slab caused by
central force and ϕ is the angle caused by sinusoidal torque. The symbol regulation: when δik and gi
are in the same direction, the sign is positive; on the contrary, it is negative. So the deflections of two
side slabs are ω + (b/2)ϕ and ω− (b/2)ϕ, and the overall δij and δip can be determined through the
basic system expressed in Equations (6)–(8):

δii = ωi +
bi
2 ϕi + ωi+1 +

bi+1
2 ϕi+1

δi,i+1 = δi+1,i = −
(

ωi+1 −
bi+1

2 ϕi+1

)
δothers = 0

1 ≤ i ≤ n− 1 , (6)
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{
δip = −ωi i = 1, n
δjp = 0 1 ≤ j ≤ nj 6= i ,

(7)

{
δi−1,p = δip = −ωi 2 ≤ i ≤ n− 1
δjp = 0 1 ≤ j ≤ nj 6= i 6= i− 1 ,

(8)

where ωi(x) = pl4

π4Ei Ii
sin πx

l , ϕi(x) = pbi l2

2π2Gi ITi
sin πx

l ; l is the span of the hinge slab bridge; bi, Ei, Gi, Ii
and ITi represent the cross section width, elastic modulus, shear modulus, bending moment of inertia
and torsional moment of inertia of the ith slab, respectively.

2.2. Modified Hinge Plate Method

The strength of hinge joint is weaker than other parts of the bridge, which will be damaged firstly.
Consequently, there must be some changes in vertical shear transfer by the hinges. Right-side value
of canonical equation represents the relative displacement of two adjacent slabs at the hinge, which
is zero for the intact bridge. When the hinge joint damage occurs, the relative displacement can be
regarded as damage indicator (shown in Figure 4), which is nonzero and proportional to the degree
of damage. µ is the degree of damage in the range of [0, 1]. For the general case, the indicator can be
expressed as Equation (9):

∆ = µi × (δip + δi,j × gj), (9)

where µi is the damage factor of the ith hinge joint; δip, δi,j and gj have the same meanings with that of
Equation (5) except the subscript j, which represents the hinge number closed to the ith joint at the
side of external load.Algorithms 2018, 11, 198 7 of 26 
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If µ equals 1, it demonstrates the hinge is damaged, which cannot transfer the distributed load
any more. At this condition, the displacement is described as ∆ = 1× (δip + δi,j × gj). It should be
noticed that the displacement of No. 1 joint will be expressed as ∆ = µ1 × δ1p when the load is located
on No. 1 slab. The principle is the same with No. (n − 1) joint when the load is placed on the side slab
No. n.

Here, we assume the hinge joint damage case is [µ1, µ2, · · · , µn−1], which depicts the damage
degrees for the whole hinge joints. When the external load is placed on slab 1, slab i (the arbitrary
internal slab) and slab n, the canonical equations will be redefined as Equations (10)–(12). Table 1
shows the calculation flow for LLD of the hinged-slab bridge under damage conditions.

δ1,1g1 + δ1,2g2 + · · · + δ1,n−1gn−1 + δ1,p = µ1δ1,p
...

...
. . .

...
...

...
δi−1,1g1 + δi−1,2g2 + · · · + δi−1,n−1gn−1 + δi−1,p = µi−1

(
δi−1,p + δi−1,i−2gi−2

)
δi,1g1 + δi,2g2 + · · · + δi,n−1gn−1 + δi,p = µi

(
δi,p + δi,i−1gi−1

)
...

...
. . .

...
...

...
δn−1,1g1 + δn−1,2g2 + · · · + δn−1,n−1gn−1 + δn−1,p = µn−1

(
δn−1,p + δn−1,n−2gn−2

)
,

(10)
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

δ1,1g1 + δ1,2g2 + · · · + δ1,n−1gn−1 + δ1,p = µ1
(
δ1,p + δ1,2g2

)
...

...
. . .

...
...

...
δi−1,1g1 + δi−1,2g2 + · · · + δi−1,n−1gn−1 + δi−1,p = µi−1

(
δi−1,p + δi−1,igi

)
δi,1g1 + δi,2g2 + · · · + δi,n−1gn−1 + δi,p = µi

(
δi,p + δi,i−1gi−1

)
...

...
. . .

...
...

...
δn−1,1g1 + δn−1,2g2 + · · · + δn−1,n−1gn−1 + δn−1,p = µn−1

(
δn−1,p + δn−1,n−2gn−2

)
,

(11)



δ1,1g1 + δ1,2g2 + · · · + δ1,n−1gn−1 + δ1,p = µ1
(
δ1,p + δ1,2g2

)
...

...
. . .

...
...

...
δi−1,1g1 + δi−1,2g2 + · · · + δi−1,n−1gn−1 + δi−1,p = µi−1

(
δi−1,p + δi−1,igi

)
δi,1g1 + δi,2g2 + · · · + δi,n−1gn−1 + δi,p = µi

(
δi,p + δi,i+1gi+1

)
...

...
. . .

...
...

...
δn−1,1g1 + δn−1,2g2 + · · · + δn−1,n−1gn−1 + δn−1,p = µn−1δn−1,p.

(12)

Table 1. Pseudo-code of modified hinged plate method.

Algorithm: The load lateral distribution influence line
Input: the number of slabs: n; Young’s modulus vector: E; the slab number to be calculated: SN
the three-dimensional geometry parameter of slab: l, b, h; the damage condition of hinged joints: µ

01 Calculate ωi and ϕi through the illustration of Equation (8)
02 for FP = 1: n
03 switch FP
04 case 1
05 Calculate δij and δip by Equations (6) and (7), respectively
06 Calculate the relative displacement through the right side of Equation (10)
07 Solve Equation (10) and obtain g = [g1, . . . , gi, . . . , gn−1]
08 Calculate the load lateral distribution vertical value by Equation (2)
09 case n
10 Calculate δij and δip by Equations (6) and (7), respectively
11 Calculate the relative displacement through the right side of Equation (12)
12 Solve Equation (12) and obtain g = [g1, . . . , gi, . . . , gn−1]
13 Calculate the load lateral distribution vertical value by Equation (3)
14 otherwise
15 Calculate δij and δip by Equations (6) and (8), respectively
16 Calculate the relative displacement through the right side of Equation (11)
17 Solve Equation (11) and obtain g = [g1, . . . , gi, . . . , gn−1]
18 Calculate the lateral load distribution vertical value by Equation (4)
19 end switch
20 Memory the objective lateral load distribution vertical value ηSN,FP
21 end for

Output: The load lateral distribution influence line of Slab SN: [ηSN,1, · · · , ηSN,i, · · · , ηSN,n]

2.3. Artificial Bee Colony (ABC) Algorithm

2.3.1. Original ABC Algorithm

With the aim to solve numerical function optimization, the original ABC, which was designed
by Karaboga [33] in 2005, is a modern heuristic algorithm inspired by the cooperative foraging and
waggle dance behaviors of honey bee colonies. Solutions are called food sources in ABC, which are
explored by employed bees, and the best solutions are stored in their memories. Since each food
source is possessed by a unique employed bee, the numbers of employed bees or onlooker bees equals
the number of food source positions (solutions). According to the functions of artificial bees in ABC,
they can be divided into three categories, namely employed bees, onlooker bees, and scout bees.
Correspondingly, the ABC algorithm is composed of four phases, such as the initialization phase,
employed bees phase, onlooker bees phase, and scout bees phase.
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(1) Initialization phase

At first, basic parameters are initialized, which include the number of food source (BN), the
termination criteria (maximum number of iterations and error goal), and the control parameter limit.
The dimension D of a solution is equal to the number of hinge joints in this paper. Then, an initial food
source (solution) is generated by Equation (13) and the fitness, described as Equation (14), is used to
evaluate the quality of the food source.

xij = lbj + (ubj − lbj) · rand(0, 1), (13)

where xij is the jth parameter of the ith solution, i = 1, 2, . . . , BN, j = 1, 2, . . . , D; lbj and ubj are the
lower and upper bounds of the jth parameter respectively; rand(0, 1) is a uniform distributed real
number in the interval between 0 and 1.

f iti =

{
1

1+ f (xi)

1 + abs( f (xi))

i f f (xi) ≥ 0
otherwise

, (14)

where f iti represents the fitness of the ith solution; f (xi) is the objective function value of the food
solution xi.

(2) Employed bees phase

Artificial employed bees will search the vicinity of its own food source. A new random solution
will be found and the better one between two solutions can be reserved according to the greedy
selection mechanism. This process is defined as Equation (15):

vij = xij + ψij · (xij − xkj), (15)

where vij is the jth parameter of the ith new solution; xkj is a food source selected randomly in the
swarm, and k is not equal to i; ψij is a random number in the range of [−1, 1].

(3) Onlooker bees phase

After employed bees search the food sources, onlooker bees will obtain the nectar information
and choose a food source (solution) by its probability pi, which is calculated by Equation (16). In other
words, the higher fitness of the food source is, the more onlooker bees will select it to exploit further.
The greedy selection mechanism is implemented again to memory the best solution so far.

pi =
f iti

BN
∑

j=1
f itj

. (16)

(4) Scout bee phase

In this phase, if the counter value of a food source exceeds the control parameter limit, the
employed bee will turn to be a scout bee by Equation (13). After obtaining the new food source, the
scout bee converts back into an employed bee and the counter is reset to zero. The steps from (2) to (4)
will be repeated until one of the termination criteria is met, namely, the error of the solution is lower
than the error goal or the number of cycles reaches the maximum number of iteration.

2.3.2. Improved ABC Algorithms

In more than a decade, great achievements have been obtained in the optimization of the ABC
algorithm. The ABCG proposed by Xiang et al. [39], ABCLGII developed by Lin et al. [40], and
HABCDE defined by Jadon et al. [41] have been proven to possess more favorable performance than
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other improved ABC algorithms in aspects of calculation accuracy, robustness, and convergence rate.
Therefore, the original ABC and three improved algorithms (ABCG, ABCLGII, and HABCDE) are
selected as the damage identification algorithms to estimate which one is the most suitable for the
proposed strategy in this study. The specific parameters of ABCG, ABCLGII, and HABCDE shown in
Table 2 can be seen in the literature [39–41].

Table 2. Optimization parameters values.

Algorithms The Parameter Values

ABCG 1 G = 0.1; ε = 2−52; α = 0.95; β = 0.15; δ = 0.95; ξ = 0.98
ABCLGII 2 r = 2; q = 0.2; Pstr = 0.5
HABCDE 3 C = 1; CR = 0.6; F = 0.5

1 An improved artificial bee colony algorithm based on the gravity model; 2 A novel artificial bee colony algorithm
with local and global information interaction; 3 A hybrid artificial bee colony with differential evolution.

2.4. Methodology

The basic algorithms for the hinge damage identification algorithm have been described in detail.
In conclusion, the overall steps of the proposed algorithm are presented as follows:

• Firstly, each slab deflection of hinged bridges are measured through a static experiment with
external loads and the corresponding parameters of the bridge should be obtained;

• Secondly, the actual LLD influence line can be calculated by the deflections in the first step;
• Thirdly, we can generate an ABC model, of which the objective function is the Euclidean distance

between the actual LLD influence line and the one calculated by the MHPM method;
• Lastly, we can search the solution with the best fitness by original or improved ABC algorithm, and

the best solution is the identified hinge joint damage degree and location of the hinged-slab bridge.

3. Results and Discussion

3.1. Lateral Load Distribution Evaluation Based on Modified Hinge Plate Method

Simply supported slab bridges composed of four and seven slabs were selected as the research
objects in this study, whose cross-section form of a single slab was rectangular. The sizes of width and
height were 1 m and 0.6 m, respectively. The span of the bridge was 12 m, and the material properties
of elements were elastic modulus E = 3.5 × 1010 Pa, Poisson’s ratio µ = 0.2, density ρ = 2500 kg/m3.
The finite element model was established by ANSYS 14.0 and composed through SOLID 65 element.
A general hinge joint mode is shown in Figure 5a. For the convenience of analysis, the hinge joint was
simplified as shown Figure 5b. The spring element COMBIN 7 was selected to simulate the damage
through reduction of spring stiffness, which is depicted in Figure 5c. Here, an undamaged hinge
joint was considered to have infinite stiffness, while the spring stiffness with damage extent µi could
be calculated by Equation (17). It should be noted that all numerical computations and algorithm
programs were implemented in MATLAB 2014b and run on a Core i5-6500 personal computer with
Windows 7 system, 3.20 GHz CPU and 8 GB RAM Memory.

ki =
gi

µi
(
δi,p + δi,jgj

) × 0.5, (17)

where ki is the spring stiffness.
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calculated through FEM. Damage cases of hinge joints for simply supported bridges with four and 
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influence lines of overall cases were shown in Figures 7 and 8. In the figures, MHPM and FEM 
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Figure 6. FEM of simply supported slab bridge: (a) composed of four slabs; (b) composed of seven 
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Table 3. Hinge joint damage cases for simply supported bridge with four slabs. 

Case No. Damage Location and Extent Slab Nos. for LLD 1 
1 [0.18, 0, 0] 1, 3 
2 [0, 0.33, 0] 2, 4 
3 [0.05, 0.15, 0] 2, 3 
4 [0.22, 0.10, 0.43] 1, 2 

1 Lateral load distribution. 
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Figure 5. Illustration of hinge joint forms: (a) general cross-sections of the hinge joint; (b) simplified
hinge joint; (c) hinge joint simulation in finite element method (FEM).

The deflections of each slab at mid-span cross section can be calculated based on finite element
simulation. According to the statics calculating procedure of LLD, it can be obtained by:

ηki =
ωki

n
∑

j=1
ωji

, (18)

where ωki is deflection of the kth slab at mid-span cross-section when the external load is located at
mid-span of the ith slab.

The efficiency and accuracy of MHPM were verified by comparing its results with those calculated
through FEM. Damage cases of hinge joints for simply supported bridges with four and seven slabs
(as shown in Figure 6) are listed in Tables 3 and 4, respectively. Corresponding LLD influence lines of
overall cases were shown in Figures 7 and 8. In the figures, MHPM and FEM represent two methods,
while D and U mean the hinge joint was damaged and undamaged, respectively.
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Table 3. Hinge joint damage cases for simply supported bridge with four slabs.

Case No. Damage Location and Extent Slab Nos. for LLD 1

1 [0.18, 0, 0] 1, 3
2 [0, 0.33, 0] 2, 4
3 [0.05, 0.15, 0] 2, 3
4 [0.22, 0.10, 0.43] 1, 2

1 Lateral load distribution.
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Table 4. Hinge joint damage cases for simply supported bridge with 7 slabs.

Case No. Damage Location and Extent Slab Nos. for LLD

5 [0.05, 0, 0, 0, 0, 0] 1, 4
6 [0, 0, 0.6, 0, 0, 0] 2, 5
7 [0.1, 0, 0, 0.5, 0, 0] 1, 3
8 [0.1, 0.15, 0, 0.4, 0.05, 0] 4, 7Algorithms 2018, 11, 198 12 of 26 
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Figure 7. LLD influence lines under damage and intact cases of 4-slab bridge: (a) case 1: slab 1; (b) 
case 1: slab 3; (c) case 2: slab 2; (d) case 2: slab 4; (e) case 3: slab 2; (f) case 3: slab 3; (g) case 4: slab 1; 
(h) case 4: slab 2. 
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Figure 7. LLD influence lines under damage and intact cases of 4-slab bridge: (a) case 1: slab 1;
(b) case 1: slab 3; (c) case 2: slab 2; (d) case 2: slab 4; (e) case 3: slab 2; (f) case 3: slab 3; (g) case 4: slab 1;
(h) case 4: slab 2.
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Figure 8. LLD influence lines under damage and intact cases of 7-slab bridge: (a) case 5: slab 1;
(b) case 5: slab 4; (c) case 6: slab 2; (d) case 6: slab 5; (e) case 7: slab 1; (f) case 7: slab 3; (g) case 8: slab 4;
(h) case 8: slab 7.

As can be seen from Figures 7 and 8, LLD influence lines computed by MHPM were consistent with
the results obtained through FEM. Compared with FEM, which was taken as the benchmark method,
the relative error of LLD for a single slab calculated by MHPM did not exceed 1.9%. It demonstrates
the correctness of MHPM proposed in this paper. In the case of single hinge joint damage, namely
cases 1, 2, 5, and 6, cross phenomena of LLD influence lines between damaged and undamaged cases
coincided with results found in the literature [18]. With respect to the multiple damaged location cases
(cases 3, 4, 7, 8), in which there was still one cross point, multiple damaged hinge joints cannot be
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identified through the cross phenomena merely. How to identify the damage degree and location
quantitatively needs to be investigated furtherly.

To evaluate the effects of hinge joint damage degree on the LLD of simply supported slab bridges,
different damage conditions of hinge joints were discussed. Lateral load distribution for simply
supported bridge with four and seven slabs under single and multiple hinge joint damage conditions
are illustrated in Figures 9 and 10, respectively. It can be found from the results that the offset degrees
of LLDs for damaged bridges are proportional to damage degrees. The greater the damage degrees
are, the more severe the distortions are present. It indicates that the offset rate of LLD can realize the
qualitive assessment of hinge joint damage.
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3.2. Damage Severity Identification of Hinge Joint Based on Artificial Bee Colony

3.2.1. Damage Identification Process

Damage identification is formulated as an optimization problem in the ABC algorithm. By this
way, Euclidean distance between the actual measured LLD influence line and the result calculated
by MHPM is defined as the objective function, which is expressed in Equation (19). Meanwhile, the
function can be used to evaluate the error of damage identification. The smaller the objective function
value is, the more precise the damage identification result is. In consequence, the error goal was set to
be 10−20. If the error of damage identification result was less than the error goal, the algorithm will be
terminated immediately; otherwise, it runs until the maximum number of iterations. To be specific, the
flowchart of damage identification for a hinged-slab bridge is shown in Figure 11.

f =

√
n

∑
i=1

(ηi,jI − ηi,jA)
2, (19)

where ηi,jI and ηi,jA represent the identified and actual ith vertical value of LLD influence line of slab
j, respectively.Algorithms 2018, 11, 198 16 of 26 
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In ABC, ABCG, ABCLGII, and HABCDE algorithms, basic parameters are chosen to be the same,
so that a fair comparison can be made. Damage identification accuracy will be improved with the
increase of bee colony size, but it will also greatly increase the time cost of the calculation process [28,29].
According to the literature [21,33–35], the bee colony size BN, which is equal to the number of food
sources, is set to be 50 in all calculations. The control parameter limit is limit = BN × D [29], where
D is introduced in Section 3.1. And the maximum number of iterations is set to be 500. As for the
parameters of GA and PSO, the crossover and mutation probabilities of GA are 0.7 and 0.05. The inertia
weight and two acceleration coefficients in PSO are 0.5, 1.5, and 2.5, respectively. The specific theory
and process of GA and PSO can be seen in References [43,44].

3.2.2. Numerical Simulations

For damage severity assessment of hinge joint damage in simply supported bridges with four
slabs, LLD influence lines for damage cases listed in Table 3 were first obtained and listed in Table 5.
Iteration processes for damage identification using ABC algorithms, GA, and PSO were illustrated in
Figure 12. Corresponding identification results and time costs are listed in Tables 6 and 7.

Table 5. LLD influence lines for damage cases listed in Table 3.

Case No. Slab No.
LLD Influence Line Vertical Value

1 2 3 4

1
1 0.41844 0.19806 0.17576 0.16496
3 0.18972 0.26694 0.27956 0.27774

2
2 0.35677 0.36376 0.14416 0.13531
4 0.12700 0.13531 0.35677 0.38093

3
2 0.29225 0.32085 0.20157 0.18919
3 0.17522 0.20219 0.31539 0.31137

4
1 0.49264 0.23551 0.17375 0.07614
2 0.25219 0.37177 0.28635 0.12548

As can be seen from the results, ABC, ABCG, ABCLGII, and HABCDE presented favorable
identification accuracies for all damage cases of hinge joints. Particle swarm optimization also
possessed good precision except in case 3 (multiple damages for joints 1 and 2). The relative errors for
slabs 2 and 3 in case 3 were 8.2% and 6.0%, respectively. The GA presented the worst identification
results among these methods. As for calculation speed, PSO possessed the lowest time cost. Among
the ABC algorithms, ABCLGII presented the most favorable efficiency.

A simply supported hinged-slab bridge composed of seven slabs was also adopted as the
numerical analysis example. Under the damage cases of Table 4, the LLD influence lines calculated by
MHPM were shown in Table 8. After the damage identification calculated by the proposed method, the
iteration process and damage condition results based on ABC algorithms, GA, and PSO are described
in Figure 13 and Tables 9 and 10.

As shown in Figure 13, damage identification based on ABCLGII had the fastest convergence
rate among the ABC algorithms. It could converge after 100 iterations from case 1 to case 3, while the
convergence rate decreased to 180 cycles for case 4, which is a more complicated damage condition.
The HABCDE algorithm ranked only second to the ABCLGII in terms of convergence rate. With the
complexity of damage conditions increased, its convergence rate decreased from 200 to 400 iterations.
As for the other two algorithms, the convergence rate of ABCG was unstable. The original ABC
algorithm had the worst performance, which converged after almost 500 iterations in all damage
cases. In the aspect of calculation error, the three improved ABC algorithms had similar performances,
of which the error was approximately 5 × 10−10. But in the last case, ABCG had a maximum error
of 4.72 × 10−6. The original ABC algorithm error fluctuated within a range of 1.79 × 10−9 and
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9.68 × 10−7. The time cost of the damage identification algorithm based on ABCLGII and HABCDE
did not exceed 70 s for 500 iterations, while that of the others needed 10 to 15 min.Algorithms 2018, 11, 198 17 of 26 
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Figure 12. Iteration process of damage identification for cases 1 to 4: (a) case 1: slab 1; (b) case 1: slab 3;
(c) case 2: slab 2; (d) case 2: slab 4; (e) case 3: slab 2; (f) case 3: slab 3; (g) case 4: slab 1; (h) case 4: slab 2.
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Table 6. Damage identification results for cases 1 to 4.

Case No. Slab No. Algorithms Hinge Joint No.

1 2 3

1

1

ABC 0.18 5.643 × 10−10 0
ABCG 0.18 5.646 × 10−10 0

ABCLGII 0.18 5.641 × 10−10 0
HABCDE 0.18 0 0

GA 0.1802 7.630 × 10−6 4.252 × 10−9

PSO 0.18 0 0

3

ABC 0.18 3.512 × 10−10 1.724 × 10−9

ABCG 0.18 3.504 × 10−10 1.725 × 10−9

ABCLGII 0.18 3.505 × 10−10 1.725 × 10−9

HABCDE 0.18 3.506 × 10−10 1.725 × 10−9

GA 0.1799 3.064 × 10−5 1.526 × 10−5

PSO 0.18 0 0

2

2

ABC 4.140 × 10−10 0.33 0
ABCG 4.142 × 10−10 0.33 0

ABCLGII 4.139 × 10−10 0.33 0
HABCDE 4.141 × 10−10 0.33 0

GA 2.998 × 10−8 0.33 6.199 × 10−6

PSO 0 0.33 0

4

ABC 1.753 × 10−9 0.33 0
ABCG 1.753 × 10−9 0.33 0

ABCLGII 1.753 × 10−9 0.33 1.998 × 10−15

HABCDE 1.754 × 10−9 0.33 2.998 × 10−15

GA 0 0.3457 0
PSO 0 0.33 0

3

2

ABC 0.05 0.15 0
ABCG 0.05 0.15 0

ABCLGII 0.05 0.15 0
HABCDE 0.05 0.15 0

GA 0.0489 0.1485 0.0039
PSO 0 0.1377 0

3

ABC 0.05 0.15 0
ABCG 0.0499 0.15 0

ABCLGII 0.05 0.15 0
HABCDE 0.05 0.15 0

GA 0.0547 0.1484 0
PSO 0 0.159 0

4

1

ABC 0.22 0.1 0.43
ABCG 0.22 0.1 0.43

ABCLGII 0.22 0.1 0.43
HABCDE 0.22 0.1 0.43

GA 0.2166 0.1261 0.501
PSO 0.22 0.1 0.43

2

ABC 0.22 0.1 0.43
ABCG 0.22 0.1 0.43

ABCLGII 0.22 0.1 0.43
HABCDE 0.22 0.1 0.43

GA 0.1953 0.0525 0.5378
PSO 0.22 0.1 0.43

Table 7. Time costs for cases 1 to 4 (unit: s).

Case No. 1 2 3 4

Slab No. 1 3 2 4 2 3 1 2

Algorithms

ABC 432 429 434 435 449 454 476 471
ABCG 435 430 432 431 453 451 475 473

ABCLGII 53 49 51 54 52 51 54 56
HABCDE 56 55 57 56 59 63 62 65

GA 23 22 19 21 25 23 28 29
PSO 20 21 20 22 21 22 26 24



Algorithms 2018, 11, 198 18 of 24

Table 8. LLD influence lines for damage cases listed in Table 4.

Case No. Slab No.
LLD Influence Line Vertical Value

1 2 3 4 5 6 7

5
1 0.26629 0.18381 0.14782 0.12150 0.10314 0.09153 0.08590
4 0.11814 0.13872 0.15553 0.16616 0.15493 0.13749 0.12904

6
2 0.29513 0.29808 0.28782 0.03595 0.03052 0.02708 0.02542
5 0.02767 0.02948 0.03322 0.23341 0.23824 0.22593 0.21205

7
1 0.34244 0.21413 0.18510 0.16820 0.03313 0.02940 0.02760
3 0.17655 0.22862 0.23877 0.23183 0.04567 0.04053 0.03804

8
4 0.12022 0.15568 0.25309 0.27135 0.07970 0.06187 0.05807
7 0.02463 0.03190 0.05186 0.05895 0.22806 0.28812 0.31649

As can be seen from Table 9, the relative error of a single hinge joint damage level was no more
than 2 × 10−5, while those of case 1 to case 3 were much less than this value. It demonstrates that
the damage identification method based on MHPM and original or improved ABC algorithms can
successfully identify the location and degree of hinge joint damage, which has favorable applicability
and accuracy. Taking into consideration the convergence rate, identification accuracy, and time cost,
the ABCLGII algorithm is more suitable for the damage identification method proposed in this paper.

Comparations with PSO and GA were also conducted. Particle swarm optimization presented
favorable convergence speed and identification accuracy for most of the damage cases except case
4 (multiple damages for joints 1, 2, 4, and 5). In this case, the identification results of PSO were
unacceptable. As for GA, it presented the most unsatisfactory results among these methods.

In order to verify the applicability of the proposed damage identification method in this article, we
compared the damage identification results for several cases of Tables 3 and 4 (as shown in Table 11),
which were calculated by the algorithms in this article and References [19,20], respectively. The error
in Table 11 was computed by Equation (19).

As can be seen from Table 11, the proposed algorithm in this paper has zero error, which means
it has the best performance for damage identification. Although some undamaged hinge joints
were identified as damage through the method of this paper; the identified damage was less than
3.035 × 10−9 and we have reasons to confirm they are intact. The identification errors of other methods
in the literature [19,20] revealed that these two methods cannot identify the damage location and
extent exactly, and the errors rise with the actual damage degree increase. For cases 2 and 7, both of
the methods even have wrong diagnoses. Through comparative analysis, it verifies the feasibility and
correctness of the proposed method once more.

In this paper, the damage identification method based on ABCLGII has better performance than
other ABC algorithms, but the time cost (from 50 to 70 s for the damage cases) is still high for the
damage cases with 500 iterations. And from Tables 7 and 10, we can obtain that the more complicated
the damage condition is, the higher the time cost will be. The hinge joint damage condition is usually
more complicated for real engineering problems. As a result, time cost could be a barrier for the
proposed method. It should be noticed that the damage identification algorithm is based on LLD
influence lines. If we want to analyze hinge joint damage conditions of simply supported hinged-slab
bridges, the LLD influence line measured and calculated by field experiment must be acquired first.
Although the principle of field experiment is simple, it is time-consuming and is costly, which is a
disadvantage for the proposed algorithm in this article.
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Figure 13. Iteration process of damage identification for Case 5 to Case 8: (a) case 5: slab 1; (b) case 5:
slab 4; (c) case 6: slab 2; (d) case 6: slab 5; (e) case 7: slab 1; (f) case 7: slab 3; (g) case 4: slab 4; (h) case 4:
slab 7.
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Table 9. Damage identification results for case 5 to case 8.

Case No. Slab No. Algorithms Hinge Joint No.

1 2 3 4 5 6

5

1

ABC 0.05 0 0 0 0 0
ABCG 0.05 5.740 × 10−10 0 0 0 0

ABCLGII 0.05 5.275 × 10−10 0 0 0 3.035 × 10−9

HABCDE 0.05 5.597 × 10−10 0 0 1.786 × 10−10 0
GA 0.0625 0 0 0 0 0
PSO 0.05 0 0 0 0 0

4

ABC 0.0500001 0 0 0 0 0
ABCG 0.05 0 0 0 0 0

ABCLGII 0.05 1.384 × 10−9 0 1.050 × 10−9 1.486 × 10−10 3.510 × 10−10

HABCDE 0.05 1.386 × 10−9 0 1.049 × 10−9 2.280 × 10−10 0
GA 0.0626 0 0 0 4.768 × 10−7 0
PSO 0.05 0 0 0 0 0

6

2

ABC 0 0 0.6 0 0 0
ABCG 0 0 0.6 2.644 × 10−9 0 0

ABCLGII 0 0 0.6 2.640 × 10−9 0 0
HABCDE 0 0 0.6 2.644 × 10−9 0 0

GA 0 6.820 × 10−13 0.6441 2.980 × 10−8 0 7.629 × 10−6

PSO 0 0 0.6 0 0 0

5

ABC 0 0 0.6 0 0 2.514 × 10−10

ABCG 0 0 0.6 0 0 0
ABCLGII 2.598 × 10−14 0 0.6 5.820 × 10−10 5.523 × 10−10 2.002 × 10−10

HABCDE 9.992 × 10−15 0 0.6 5.828 × 10−10 5.534 × 10−10 1.996 × 10−10

GA 3.074 × 10−8 0 0.5977 3.243 × 10−5 2.235 × 10−8 1.073 × 10−6

PSO 0 0 0.6 0 0 0

7

1

ABC 0.1 6.030 × 10−9 0 0.5 0 3.176 × 10−9

ABCG 0.1 0 0 0.5 0 0
ABCLGII 0.1 2.428 × 10−10 0 0.5 0 2.998 × 10−15

HABCDE 0.1 2.423 × 10−10 0 0.5 0 0
GA 0.1250 0 0 0.5002 1.513 × 10−8 0
PSO 0.1 0 0 0.5 0 0

3

ABC 0.1 0 0 0.5 0 0
ABCG 0.1 0 0 0.5 0 0

ABCLGII 0.1 3.608 × 10−10 7.175 ×
10−10 0.5 0 0

HABCDE 0.1 3.612 × 10−10 7.182 ×
10−10 0.5 0 0

GA 0.1250 4.888 × 10−6 2.328 ×
10−10 0.5010 2.384 × 10−7 1.197 × 10−7

PSO 0.1 0 0 0.5 0 0

8

4

ABC 0.0999 0.150002 0 0.400001 0.0499 2.300 × 10−6

ABCG 0.1 0.15 0 0.4 0.05 0
ABCLGII 0.1 0.15 0 0.4 0.05 0
HABCDE 0.1 0.15 0 0.4 0.05 0

GA 0.0625 0.1885 0 0.4119 1.967 × 10−6 0
PSO 0.1012 0.1505 0 0.4093 0 0

7

ABC 0.1 0.1499 0 0.4 0.0499 0
ABCG 0.1001 0.1499 0 0.400004 0.050001 0

ABCLGII 0.1 0.15 0 0.4 0.05 6.652 × 10−10

HABCDE 0.1 0.15 0 0.4 0.05 6.656 × 10−10

GA 0.0674 0.1765 0 0.3988 0.0449 0.0019
PSO 0.2218 0 0.0397 0.4287 0 0

Table 10. Time cost for case 5 to case 8 (unit: s).

Case No. 5 6 7 8

Slab No. 1 4 2 5 1 3 4 7

Algorithms

ABC 641 655 631 647 753 701 768 787
ABCG 660 673 666 628 740 724 747 753

ABCLGII 59 53 59 61 58 58 60 62
HABCDE 60 60 62 61 64 66 69 69

GA 23 25 20 24 23 24 28 27
PSO 22 23 22 25 24 25 29 28
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Table 11. Hinge joint damage identification results comparison.

Case No. Slab No. Algorithms Damage Identification Results Error

2 2
In this article [4.139 × 10−10, 0.33, 0] 0

[19] [0.04, 0.41, 0] 0.079
[20] [0, 0.38, 0.03] 0.063

3 3
In this article [0.05, 0.15, 0] 0

[19] [0.033, 0.14, 0] 0.017
[20] [0.046, 0.155, 0] 0.014

5 1
In this article [0.05, 5.275 × 10−10, 0, 0, 0, 3.035 × 10−9] 0

[19] [0.057, 0, 0, 0, 0, 0] 0.005
[20] [0.048, 0, 0, 0, 0, 0] 0.003

7 3
In this article [0.1, 3.608 × 10−10, 7.175 × 10−10, 0.5, 0, 0] 0

[19] [0.15, 0.03, 0.12, 0.41, 0.07, 0] 0.164
[20] [0.13, 0, 0.09, 0.54, 0.049, 0] 0.118

4. Conclusions

In this study, a damage identification algorithm based on a modified hinged plate method and
improved artificial bee colony algorithms was proposed to identify the hinged joint damage of simply
supported hinged-slab bridges. The following conclusions were obtained:

(1) The damage factor through substitution of a relative displacement into the canonical equations
can realize the simulation of hinge joint damage. The lateral load distribution influence line
calculated by modified hinge plate method coincided with the result computed by the finite
element method. The maximum error of damage cases in this study by modified hinge plate
method was less than 1.9%.

(2) Hinge joint damage can lead to cross phenomenon of lateral load distribution influence lines,
which is suitable for the damage localization of hinged-slab bridges with single hinge damage.
Moreover, the offset degree of lateral load distribution influence line is proportional to damage
degrees, which can realize the qualitative assessment of hinge damage. However, cross
phenomenon is not effective to identify the damage location with multiple hinge damages.

(3) Original and improved artificial bee colony algorithms successfully identified the location and
degree of hinge joint damages, of which the maximum error did not exceed 4.72 × 10−6. Based
on ABCLGII and HABCDE, the algorithms had the lowest time cost (less than 70 s). Moreover,
ABCLGII converged after 100 iterations approximately, while the others did not. So ABCLGII is
the most suitable for the proposed damage identification algorithm among artificial bee colony
algorithms in this work.

(4) The results of comparison with particle swarm optimization and genetic algorithm revealed
that both PSO and GA converged after 100 iterations at most and the time costs of them were
no more than 30 s, which presented satisfactory convergence speed and time cost. However,
the accuracy of damage identification algorithm based on PSO was not stable; namely, the
minimum and maximum errors were 1× 10−9 for single damage condition and 0.028 for multiple
hinge damages, respectively. As for GA, its error fluctuated between 0.0005 and 0.022, which
demonstrated it had the most unsatisfactory identification results among these methods.

(5) It demonstrated again that the proposed algorithm was accurate through comparison with
methods in the literature [19,20]. The former algorithm had zero error while the latter ones had
larger errors ranging from 0.003 to 0.164. Even the latter algorithms identified the damage degree
and location improperly.

The proposed algorithm presents good performances for hinge joint damage identification, but
there are still some barriers for it, such as the computation time of the algorithm and the cost and
efficiency of field experiment. In the future, the damage identification algorithm should be improved
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to reduce the high time cost. Furthermore, we will present a new field experiment method, which can
measure the LLD influence line effectively and economically, as well as verify the performance of the
proposed algorithm in actual engineering.

Author Contributions: All authors discussed and agreed upon the idea and made scientific contributions. H.L.
conceived the original idea of this article and analyzed the results; X.H. realized the MATLAB program of the
proposed method, performed the finite element simulations, and wrote the manuscript; Y.J. edited and audited the
content and contributed to the discussion of the results. All authors have read and approved the final manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grants Nos. 51408258
and 51378236); the China Postdoctoral Science Foundation funded projects (Nos. 2014M560237 and 2015T80305);
and the Fundamental Research Funds for the Central Universities (JCKYQKJC06); Science and Technology
Development Program of Jilin Province.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Heo, G.; Kim, C.; Jeon, S.; Jeon, J. An experimental study of a data compression technology-based intelligent
data acquisition (IDAQ) system for structural health monitoring of a long-span bridge. Appl. Sci. 2018, 8,
361. [CrossRef]

2. Amezquita-Sanchez, J.P.; Adeli, H. Signal processing techniques for vibration-based health monitoring of
smart structures. Arch. Comput. Method Eng. 2016, 23, 1–15. [CrossRef]

3. Satpal, S.B.; Guha, A.; Banerjee, S. Damage identification in aluminum beams using support vector machine:
Numerical and experimental studies. Struct. Control Health 2016, 23, 446–457. [CrossRef]

4. Fan, W.; Qiao, P.Z. Vibration-based damage identification methods: A review and comparative study.
Struct. Health Monit. 2011, 10, 83–111. [CrossRef]

5. Qin, S.Q.; Zhang, Y.Z.; Zhou, Y.L.; Kang, J.T. Dynamic model updating for bridge structures using the
kriging model and PSO algorithm ensemble with higher vibration modes. Sensors 2018, 18, 1879. [CrossRef]
[PubMed]

6. Blachowski, B.; An, Y.; Spencer, B.F., Jr.; Ou, J. Axial strain accelerations approach for damage localization in
statically determinate truss structures. Comput.-Aided Civ. Inf. 2017, 32, 304–318. [CrossRef]

7. Kim, C.-W.; Chang, K.-C.; Kitauchi, S.; McGetrick, P.J. A field experiment on a steel gerber-truss bridge for
damage detection utilizing vehicle-induced vibrations. Struct. Health Monit. 2016, 15, 174–192. [CrossRef]

8. Russo, F.M.; Wipf, T.J.; Klaiber, F.W.; Trb, T.R.B. Diagnostic load tests of a prestressed concrete bridge
damaged by overheight vehicle impact. In Proceedings of the Fifth International Bridge Engineering
Conference, TAMPA, FL, USA, 3–5 April 2000.

9. Chung, W.; Liu, J.; Sotelino, E.D. Influence of secondary elements and deck cracking on the lateral load
distribution of steel girder bridges. J. Bridge Eng. 2006, 11, 178–187. [CrossRef]

10. Al-Saidy, A.H.; Klaiber, F.W.; Wipf, T.J.; Al-Jabri, K.S.; Al-Nuaimi, A.S. Parametric study on the behavior of
short span composite bridge girders strengthened with carbon fiber reinforced polymer plates. Constr. Build.
Mater. 2008, 22, 729–737. [CrossRef]

11. Kim, Y.J.; Green, M.F.; Fallis, G.J. Repair of bridge girder damaged by impact loads with prestressed CFRP
sheets. J. Bridge Eng. 2008, 13, 15–23. [CrossRef]

12. Azimi, H.; Sennah, K. Parametric effects on evaluation of an impact-damaged prestressed concrete bridge
girder repaired by externally bonded carbon-fiber-reinforced polymer sheets. J. Perform. Constr. Facil. 2015,
29, 1–12. [CrossRef]

13. Yao, L.S. Bridge Engineering, 2nd ed.; China Communicaitons Press: Beijing, China, 2010; pp. 128–142. ISBN
978-7-114-07042-6. (In Chinese)

14. American Association of State Highway and Transportation Officials (AASHTO). AASHTO Standard
Specifications for Highway Bridges, 16th ed.; American Association of State Highway and Transportation
Officials, Inc.: Washington, DC, USA, 1996; ISBN 1-56051-040-4.

15. American Association of State Highway and Transportation Officials (AASHTO). AASHTO LRFD Bridge
Design Specifications, 6th ed.; American Association of State Highway and Transportation Officials, Inc.:
Washington, DC, USA, 2012; ISBN 978-1-56051-523-4.

http://dx.doi.org/10.3390/app8030361
http://dx.doi.org/10.1007/s11831-014-9135-7
http://dx.doi.org/10.1002/stc.1773
http://dx.doi.org/10.1177/1475921710365419
http://dx.doi.org/10.3390/s18061879
http://www.ncbi.nlm.nih.gov/pubmed/29890645
http://dx.doi.org/10.1111/mice.12258
http://dx.doi.org/10.1177/1475921715627506
http://dx.doi.org/10.1061/(ASCE)1084-0702(2006)11:2(178)
http://dx.doi.org/10.1016/j.conbuildmat.2007.01.020
http://dx.doi.org/10.1061/(ASCE)1084-0702(2008)13:1(15)
http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000544


Algorithms 2018, 11, 198 23 of 24

16. Huo, X.S.; Wasserman, E.P.; Iqbal, R.A. Simplified method for calculating lateral distribution factors for live
load shear. J. Bridge Eng. 2005, 10, 544–554. [CrossRef]

17. Wang, W.Y.; Zhang, C.; Wan, S. Study on transverse load distribution of hinged hollow beam. In Proceedings
of the 2017 4th International Conference on Advanced Materials, Mechanics and Structural Engineering,
Tianjin, China, 22–24 September 2017.

18. Jiao, Y.B.; Liu, H.B.; Wang, X.Q.; Luo, G.B. Modal property-based approach for lateral distribution evaluation
of intact and damaged reinforced concrete bridge. In Proceedings of the 10th International Workshop on
Structural Health Monitoring, Stanford, CA, USA, 1–3 September 2015; pp. 2911–2918.

19. Wei, B.L.; Deng, M.Y. Computional method analysis for transverse load distribution of damage bridge.
J. Henan Polytech. Univ. 2015, 34, 102–108. [CrossRef]

20. Cheng, C.; Shen, C.W.; Xu, L. The hinged-jointed plate method for calculating transverse load distribution
on a damaged bridge. J. Wuhan Univ. Technol. 2004, 28, 229–231. (In Chinese)

21. Conde, B.; Drosopoulos, G.A.; Stavroulakis, G.E.; Riveiro, B.; Stavroulaki, M.E. Inverse analysis of masonry
arch bridges for damaged condition investigation: Application on kakodiki bridge. Eng. Struct. 2016, 127,
388–401. [CrossRef]

22. Santos, A.; Silva, M.; Santos, R.; Figueiredo, E.; Sales, C.; Costa, J.C.W.A. A global expectation-maximization
based on memetic swarm optimization for structural damage detection. Struct. Health Monit. 2016, 15, 610–625.
[CrossRef]

23. Wei, Z.T.; Liu, J.K.; Lu, Z.R. Structural damage detection using improved particle swarm optimization.
Inverse Probl. Sci. Eng. 2018, 26, 792–810. [CrossRef]

24. Yang, Z.B.; Chen, X.F.; Xie, Y.; Miao, H.H.; Gao, J.J.; Qi, K.Z. Hybrid two-step method of damage detection
for plate-like structures. Struct. Control Health 2016, 23, 267–285. [CrossRef]

25. Casciati, S.; Elia, L. Damage localization in a cable-stayed bridge via bio-inspired metaheuristic tools.
Struct. Control Health 2017, 24. [CrossRef]

26. Antonelli, A.; Giarnetti, S.; Leccese, F. Enhanced PLL system for harmonic analysis through genetic algorithm
application. In Proceedings of the International Conference on Environment and Electrical Engineering,
Venice, Italy, 18–25 May 2012; pp. 328–333. [CrossRef]

27. Hou, W.; Jin, Y.; Zhu, C.; Li, G. A novel maximum power point tracking algorithm based on glowworm
swarm optimization for photovoltaic systems. Int. J. Photoenergy 2016. [CrossRef]

28. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput.
2008, 8, 687–697. [CrossRef]

29. Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009,
214, 108–132. [CrossRef]

30. Pham, D.T.; Castellani, M. Benchmarking and comparison of nature-inspired population-based continuous
optimisation algorithms. Soft Comput. 2014, 18, 871–903. [CrossRef]

31. Sun, H.; Lus, H.; Betti, R. Identification of structural models using a modified artificial bee colony algorithm.
Comput. Struct. 2013, 116, 59–74. [CrossRef]

32. Xu, H.J.; Ding, Z.H.; Lu, Z.R.; Liu, J.K. Structural damage detection based on chaotic artificial bee colony
algorithm. Struct. Eng. Mech. 2015, 55, 1223–1239. [CrossRef]

33. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Ph.D. Thesis, Erciyes
University, Kayseri, Turkey, 2005.

34. Gao, W.F.; Liu, S.Y.; Huang, L.L. Enhancing artificial bee colony algorithm using more information-based
search equations. Inf. Sci. 2014, 270, 112–133. [CrossRef]

35. Akay, B.; Karaboga, D. A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci.
2012, 192, 120–142. [CrossRef]

36. Pang, B.; Song, Y.; Zhang, C.; Wang, H.; Yang, R. A modified artificial bee colony algorithm based on the
self-learning mechanism. Algorithms 2018, 11, 78. [CrossRef]

37. Karaboga, D.; Gorkemli, B. A quick artificial bee colony (QABC) algorithm and its performance on
optimization problems. Appl. Soft Comput. 2014, 23, 227–238. [CrossRef]

38. Jadon, S.S.; Tiwari, R.; Sharma, H.; Bansal, J.C. Hybrid artificial bee colony algorithm with differential
evolution. Appl. Soft Comput. 2017, 58, 11–24. [CrossRef]

39. Xiang, W.L.; Meng, X.L.; Li, Y.Z.; He, R.C.; An, M.Q. An improved artificial bee colony algorithm based on
the gravity model. Inf. Sci. 2018, 429, 49–71. [CrossRef]

http://dx.doi.org/10.1061/(ASCE)1084-0702(2005)10:5(544)
http://dx.doi.org/10.16186/j.cnki.1673-9787.2015.01.020(In Chinese)
http://dx.doi.org/10.1016/j.engstruct.2016.08.060
http://dx.doi.org/10.1177/1475921716654433
http://dx.doi.org/10.1080/17415977.2017.1347168
http://dx.doi.org/10.1002/stc.1769
http://dx.doi.org/10.1002/stc.1922
http://dx.doi.org/10.1109/EEEIC.2012.6221397
http://dx.doi.org/10.1155/2016/4910862
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1016/j.amc.2009.03.090
http://dx.doi.org/10.1007/s00500-013-1104-9
http://dx.doi.org/10.1016/j.compstruc.2012.10.017
http://dx.doi.org/10.12989/sem.2015.55.6.1223
http://dx.doi.org/10.1016/j.ins.2014.02.104
http://dx.doi.org/10.1016/j.ins.2010.07.015
http://dx.doi.org/10.3390/a11060078
http://dx.doi.org/10.1016/j.asoc.2014.06.035
http://dx.doi.org/10.1016/j.asoc.2017.04.018
http://dx.doi.org/10.1016/j.ins.2017.11.007


Algorithms 2018, 11, 198 24 of 24

40. Liu, Q.Z.; Zhu, M.M.; Li, G.H.; Wang, W.J.; Cui, L.Z.; Chen, J.Y.; Lu, J. A novel artificial bee colony algorithm
with local and global information interaction. Appl. Soft Comput. 2018, 62, 702–735. [CrossRef]

41. Yildiz, A.R. A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing.
Appl. Soft Comput. 2013, 13, 2906–2912. [CrossRef]

42. Li, G.H.; Shi, D. Calculation of Lateral Load Distribution of Highway Bridges, 2nd ed.; China Communicaitons
Press: Beijing, China, 1990; pp. 87–116. (In Chinese)

43. Ravanfar, S.A.; Razak, H.A.; Ismail, Z.; Hakim, S.J.S. A two-step damage identification approach for beam
structures based on wavelet transform and genetic algorithm. Meccanica 2016, 51, 635–653. [CrossRef]

44. Liu, H.B.; Wang, X.Q.; Jiao, Y.B. Damage identification for irregular-shaped bridge based on fuzzy c-means
clustering improved by particle swarm optimization algorithm. J. Vibroeng. 2016, 18, 2149–2166. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2017.11.012
http://dx.doi.org/10.1016/j.asoc.2012.04.013
http://dx.doi.org/10.1007/s11012-015-0227-8
http://dx.doi.org/10.21595/jve.2016.16817
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Traditional Hinge Plate Method 
	Modified Hinge Plate Method 
	Artificial Bee Colony (ABC) Algorithm 
	Original ABC Algorithm 
	Improved ABC Algorithms 

	Methodology 

	Results and Discussion 
	Lateral Load Distribution Evaluation Based on Modified Hinge Plate Method 
	Damage Severity Identification of Hinge Joint Based on Artificial Bee Colony 
	Damage Identification Process 
	Numerical Simulations 


	Conclusions 
	References

